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Abstract: Employing low tensor rank decompositions in image inpainting has attracted increasing attention. 

This paper exploits a novel tensor-augmentation schemes to transform an image (a low-order tensor) to a 

higher-order tensor without changing the total number of pixels. The developed augmentation schemes 

enhance the low-rankness of an image under three tensor decompositions: matrix SVD, tensor train (TT) 

decomposition, and tensor singular value decomposition (t-SVD). By exploiting the schemes, we solve the 

image inpainting problem with three low-rank constrained models which use the matrix rank, TT rank, and 

tubal rank as constrained priors respectively. The tensor tubal rank and tensor train multi-rank are developed 

from t-SVD and TT decomposition respectively. We exploit efficient ADMM algorithms for solving the three 

models. Experimental results demonstrate that our methods are effective for image inpainting and superior to 

numerous close methods. 

Keywords: image inpainting; tensor decomposition; rearrangement scheme; unfolding matrix; 

alternating direction multiplier method 

 

1. Introduction 

Image inpainting refers to the process of completing missing entries or restoring damaged 

regions of an image. It is a typical ill-posed inverse problem, generally solved by exploiting the image 

priors [1,2], such as smoothness, sparsity, and low rankness. In recent years, tensor analysis including 

tensor low-rank decomposition and tensor completion, has attracted increasing attention [3–6]. A 

color image itself is an order-3 tensor, or it can be used to construct a high order (greater than 3) 

tensor, then the image inpainting problem becomes a tensor completion problem. A tensor is more 

challenging to analyze than a matrix due to the complicated nature of higher-order arrays [7]. We can 

constrain the low tensor rank to recover the missing pixels. The effectiveness relies on the tensor rank. 

The lower the tensor rank is, the better the recovery results are. Thus, finding ways to decrease the 

tensor rank is essential in the tensor completion problem. Unlike matrix rank, the definition of tensor 

rank is not unique, and relates to the tensor decomposition scheme. 

Low tensor-rank completion methods can be categorized according to the tensor decomposition 

frameworks they use [8]. The traditional tensor decomposition tools include 

CANDECOMP/PARAFAC (CP), and Tucker decomposition [8,9]. The recently proposed 

decomposition frameworks include tensor singular value decomposition (t-SVD) [10–12], tensor train 

(TT) decomposition [13,14], tensor tree (TTR) decomposition [6,15] etc. As we know, CP rank is hard 

to estimate. Tucker rank is multi-rank, whose elements are the ranks of mode-n matrices which are 

highly unbalanced. TT rank is also multi-rank, whose elements are the ranks of TT matrices. For a 

high-order tensor, the most TT matrices are more balanced than the mode-n matrices. Since the matrix 

rank minimization is only efficient when the matrix is balanced, TT decomposition is more suitable 

for describing global information of high-order tensors than Tucker decomposition. T-SVD defines 

the tubal rank of the high order tensor, which can be easily estimated according to a fast Fourier-

based method. The tubal rank has been shown more efficient than the matrix-rank and Tucker multi-

rank in video applications [16–18]. TTR rank is essentially equivalent to Tucker multi-rank. 
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Many popular tensor-completion methods have applied the traditional CP or Tucker 

decomposition on color image inpainting. Some recent works exploited the sparse Tucker core tensor 

and nonnegative Tucker factor matrices for image restoration [7,19,20]. Some works constrained the 

low rankness of the mode-n matrix caused by decomposition of a color image for inpainting [21,22]. 

Since low-tensor-rank constraint cannot fully capture the local smooth and global sparsity priors of 

tensors, some works combine Tucker and total variation (TV). The SPCTV (smooth PARAFAC tensor 

completion & total variation) method [23] used the PD (PARAFAC decomposition, a derivation of 

Tucker decomposition) framework, and constrained the TV (total variation) on every factor matrix of 

PD respectively. Some works combined the constraints of the low rankness of every mode-n matrix 

and the TV regularization on every mode-n matrix for color image inpainting [24,25]. Some works 

proposed data restoration methods based on Bayesian tensor completion [26–29]. 

The afore-mentioned methods all take the color image as an order-3 tensor directly and haven’t 

deeply explored the potential low-rank prior to a color image. Since TT decomposition is efficient for 

higher-order tensors, the TMac-TTKA method [30] first used the Ket augmentation (KA) scheme to 

permute the image to a high order data, then proposed the optimal models by enforcing low TT 

rankness. The KA scheme is proven to be efficient for improving the accuracy of color image/video 

inpainting and dynamic MR image reconstruction in TT rank based completion methods [30–33]. As 

far as we know, the KA scheme is the only one used to permute data into a high order data. 

This paper aims to deeply explore the potential low-rank structure of the image and to find an 

efficient way to apply the SVD, t-SVD, and TT decomposition in the image inpainting problems. The 

contributions of our work are summarized as follows: 

 First, we developed a novel rearrangement named as quarter augmentation (QA) scheme for 

permuting the image into three flexible forms of data. The first flexible QA scheme can permute 

an image into an unfolding matrix (with a low matrix rank structure). The second and the third 

flexible QA schemes can permute the color image into a balanced 3-order form of data (with low 

tubal rank structure) and a higher-order form of data (with low TT rank structure) respectively. 

Since those developed schemes are designed to exploit the internal structure similarity of the 

original data as much as possible, the rearranged data has the corresponding kind of low-rank 

structure.  

 Second, based on the above QA scheme, we developed three image inpainting models that 

exploit the unfolding matrix rank, tensor tubal rank, and TT multi-rank of the rearranged data 

respectively for solving the image inpainting problem.  

 Lastly, three efficient ADMM algorithms were developed for solving the above three models. 

Compared with numerous close image inpainting methods, the experimental results 

demonstrated the superior performance of our methods. 

The remainder of this paper is organized as follows. In section II, we give the related work. In 

section III, we mainly introduce the proposed methods. Section IV the experimental results and 

analyses. The conclusion is given in section V. 

2. Related work 

In this section, we briefly introduce the KA scheme, the t-SVD decomposition, and tensor train 

decomposition. Notations and definitions are summarized in Table 1. 

Table 1. Notations and definitions. 

Symbols Notations and definitions 

fiber A vector defined by fixing every index but one of a tensor. 

slice A matrix defined by fixing all but two indices of a tensor. 

(:, :, )k  The
th
k frontal slice of a 3-order tensor  . 

( )n


 

Mode-n matrix, the result of unfolding tensor  by reshaping its mode-n fibers to the 

columns of ( )n


. 
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f-diagonal tensor 
Order-3 tensor  is called f-diagonal if each frontal slice (:, :, )k is a diagonal matrix 

[10]. 

orthogonal tensor 

Tensor  with the size of 3n n n× ×
is called orthogonal tensor if 

H∗ =   , where 

stands for identity tensor if the first frontal slice
(1) is the n n× identity matrix and all 

other frontal slices 
( )k (

1, 2, , 3k n= 
) are zero. 

2.1. Ket augmentation 

The Ket Augmentation (KA) scheme was originally introduced by Latorre in [34] for casting a 

grayscale image into the real ket state of a Hilbert space. Bengua etc. [30] used KA to reshape a low-

order tensor e.g. a color image to a higher-order tensor and proved that KA is efficient in improving 

the accuracy of the recovered image in TT-based completion. 

Figure 1 shows the operation of KA for an 8 × 8 matrix [31–34]. By the KA scheme, the 8 × 8 

matrix can be turned into a 3-order tensor of size 4 × 4 ×4. As well, the KA scheme can turn a 3-order 

tensor size of 3  N Nx y N× × into an
( )1N +

-order tensor with a size of 3:::xy xy xy N× × × ×
. 

 

Figure 1. Example of KA for an 8 × 8 matrix. The order-2 M can be rearranged to a higher-order tensor 

T (order = 3) without changing the total number of entries. 

2.2. T-SVD decomposition 

Definition 1 t-product [35]. For
1 2 3n n n

R
× ×∈ and

2 4 3n n n
R

× ×∈ , the t-product ∗ = ฀ is a tensor of 

size 1 4 3n n n× ×
where

( , , :)i j
is given by

2

1
( , , :) ( , , :)

n

k
i k k j

=∑  
.  denotes the circular convolution 

between the two vectors, and 11, 2, ,i n= 
, 41, 2, ,j n= 

. 

The t-SVD of
1 2 3n n nR × ×∈ is given by 

T= ∗ ∗       

where  and  are orthogonal tensors of size 1 1 3n n n× ×
and 2 2 3n n n× ×

respectively.  is a 

rectangular f-diagonal tensor of size 1 2 3n n n× ×
and * denote t-product [35], T denotes tensor 

transpose defined in [35]. 
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Figure 2. The t-SVD of a tensor of size I1×I2×I3. 

Figure 2 depicts the t-SVD of an order-3 tensor [36][4]. Tensor rank defined in t-SVD is tensor 

tubal rank, which is the number of nonzero singular tubes in  . [36] proposed the fast Fourier-based 

method to calculate the tubal rank, and used tensor nuclear norm (TNN) as the convex relaxation of 

the tensor tubal rank. 

*
= ( )

TNN
blockdiag 

  
 

where =fft ( , [ ], 3)  is the tensor obtained by applying the 1D FFT along the third dimension of

 , * denotes nuclear norm, and 

3

(1)

(2)

( )

( )=

I

blockdiag

 
 
 
 
 
 
  








  

 

2.3. Tensor train decomposition 

1 2 1 1 2 2( , , , ) (:, ,:) (:, ,:) (:, ,:) (:, ,:)n N n n N Ni i i i i i i i=       
 

Given a tensor
1 2 NI I I

R
× ×∈  , tensor train (TT) decomposition [13,14] can decompose it to N order-

3 tensors
1n n nS I S

n R +× ×∈ 
, 1, ,n N=  . The tensor rank defined in TT decomposition is a multi-rank i.e.

1 2 1( , , , )NS S S +
, which is combined with the second-dimensional size of each n . The details of TT 

decomposition are shown in the following formula and Figure 3 [31–33]. 

 

Figure 3. The tensor train decomposition of an order-N tensor with the size of I1×I2×…×In×…×IN. 

The widely used way to find TT rank is to estimate the rank of each TT matrix [37] as the element 

of 1 2 1( , , , )NS S S +
. The TT matrix [n]

 ( 1, , 1n N= − ) with rank nS is the mode-
( )1,2, ,n

matricization of 

the tensor with the size of m h× , where 1

n

l

l

m I
=

=∏
, 1

N

l

l n

h I
= +

= ∏
. 
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3. Methods 

3.1. Quarter Augmentation 

To deeply explore the more efficient low-rank structure of an image, we develop a novel 

rearrangement scheme named as quarter augmentation (QA) scheme to turn a color image into other 

forms of data. The QA schemes can maintain the internal similarity of the original image in the 

rearranged data.  

The basic QA scheme: For example, as shown in Figure 4 (a), M is a 2D matrix ( 8 8× ). We first 

extract the entries of M every other row and column to get four smaller matrices. Each smaller matrix 

with a size of 4 4× . Then we place these four smaller matrices along the third dimension in a designed 

order. Lastly, a 3D tensor of size 4 4 4× ×  is obtained from the 8 8× matrix M without changing the 

total number of entries. The entries in the four smaller matrices are labeled as the MATLAB notation

(:,:,1) , (:,:,2) , (:,:,3) and (:,:,4)  respectively. If M is smooth (most images satisfy), the four smaller 

matrices are similar in structure due to the adjacent entries. 

Applying the basic QA scheme on the single Lena image, the Lena image can be divided into 4 

smaller Lena images, and as shown in Figure 4 (b) the four smaller Lena images are similar to each 

other. In Figure 4 (c), the pixel values curves of the four smaller images have overlapped into one 

curve. We can say that the similarity of local image structure is mainly maintained by the basic QA 

scheme. 

Under this basic QA scheme, three flexible QA schemes are proposed for permuting the image 

into three flexible forms of data. The three flexible QA schemes can enhance the low-rankness for an 

image by matrix SVD, tensor train decomposition, and tensor-SVD respectively. Then, by exploiting 

the flexible QA schemes, three low-rank constrained methods which use the TT rank, tubal rank, and 

matrix rank as constrained priors respectively are exploited for image inpainting. 

The three flexible QA schemes and methods are described in detail in the following three 

sections.  

 
  

(a) (b) (c) 

Figure 4. (a) Examples of the basic QA. By the basic QA scheme, the matrix M size of 88 can be 

turned into an order-3 tensor with a size of 444. (b) By the basic QA, the Lena image can be divided 

into 4 small Lena images. (c) The four-pixel values curves of the four smaller Lena images have 

overlapped into one curve. 
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3.2. Method 1: The low unfolding matrix rank-based method 

 

 

(a) (b) 

Figure 5. (a) The first flexible QA scheme to obtain the unfolding matrix. Take the Lena RGB image 

as an example, we first permute the image size of 2562563 to order-3 tensor with the size of 

32×32×192 by the basic QA scheme. Then this order-3 tensor is reshaped into the unfolding matrix of 

size 102492. (b) The singular values of this unfolding matrix. 

The unfolding method is widely used to permute the order-3 video or dynamic magnetic 

resonance images into an unfolding matrix, and then exploit the low rankness of this matrix for data 

reconstruction [21,38]. The unfolding matrix has a low-rank structure because of the similarity of 

every slightly changed slice along the time dimension.  

We try to dig out the potential low unfolding-matrix rankness of a color image by a flexible QA 

scheme, and we call this scheme the first flexible QA scheme.  

Take a 256×256×3 Lena image as an example, as shown in Figure 5 (a), we first permute the image 

into the 3-order tensor size of 32×32×192 by the basic QA scheme, then unfold the similar slices of this 

3-order. Lastly, the balanced1 unfolding matrix size of 1024×192 is obtained. Since the slices (32×32) 

in the 3-order tensor are similar, the unfolding matrix is low rank, as shown in Figure 5 (b). In practice, 

the size of the designed unfolding matrix should be balanced such that the minimization of the 

unfolding matrix rank is efficient. 

We exploit the low unfolding matrix rank in image inpainting and give the low unfolding 

matrix-rank-based model as follows. 

 
1 *X

min ( ) subject to (i, j) = (i, j), (i, j)X X YΜ Φ ∀ ∈Ω
 (1) 

where X denotes the image to be recovered, 1Φ
denotes the operator of permuting the image into 

a suitable 3-order tensor by multiple basic QA schemes. Μ denotes the operator of the unfolding 

process, which unfolding every slice along the third dimension of the 3-order tensor 1XΦ
. Ω is the 

position without painting, Y is the painted image with damaged entries at the positionsΩ


. 

To reduce the computational complexity, in the model (1), the following SVD-free approach 

[39,40] is exploited to constrain the low rankness of the unfolding matrix 1( )XΜ Φ
instead of the 

nuclear norm. 

 ( )
1

2 2

1 *
( )

1
min ( )

2H F F
U V X

U V X
=Μ Φ

+ = Μ Φ  (2) 

 
1 The context of ‘balanced’ is that the size changes from the unbalanced 256×3 to the more balanced 

size of 1024×192. 
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Besides, since total variation (TV) has been proved as an effective constraint of smooth prior 

[41,42], incorporate model (1) with 2D TV to exploit the local smooth priors of visual image data. 

Then, the image inpainting model (1) turns to the following. 

 

( )2 2

, ,

1

1
min

2 2

subject to (i, j) = (i, j), (i, j)

F F TVU V X

H

U V X

X Y X UV

β
+ +

∀ ∈Ω ΜΦ =,  



 

(3) 

where β is the regularization parameter. 

We conduct the algorithm by alternating direction method of multipliers (ADMM) for solving 

the low unfolding matrix rank and TV-based image inpainting model (3). Firstly, introduce an 

auxiliary variable Z DX= , where D is the finite difference operator, and then rewrite (3) as the 

unconstrained convex optimization problem (4). 

( ) 22 2 1
1

, , , , ,

22

1

1
min ( )

2 2

+
2 2

H

F F FU V L Z X

F

X U V X UV

Z DX Z L

ρτ

β βρ

ΩΛ
+ + + ΜΦ − + Λ

+ − +
  

(4) 

where
( )XτΩ denotes the indicator function:  

0
( )=

, otherwise

X
XτΩ

∈Ω
∞

,

, 

L andΛ are the Lagrangian multipliers for variables Z and
HUV respectively. The regularization 

parameter β is used to balance the low rankness and sparsity constraints (i.e. TV), the penalty 

parameters 1 0ρ >
and 2 0ρ >

generally affect the convergence of the algorithm. By applying ADMM, 

each sub-problem is performed at each iteration  as follows: 

 

( 1) 1 2
11

1arg min ( )
2

t H tt t

X F
X X X U V

ρτ
− −−

Ω= + ΜΦ − + Λ
  

(5) 

 

22 ( 1) 11
1arg min

2

t t t H t

F FU
U U X UV

ρ − −= + ΜΦ − + Λ
  

(6) 

 

22 11
1arg min

2

t t t H t

F FV
V V X U V

ρ −= + ΜΦ − + Λ
  

(7) 

 

2
12

1
arg min

2

t t t

FZ
Z Z DX Z L

ρ −= + − +
  

(8) 

 
1 ( )

1

t t t t t HX U V−Λ = Λ +ΜΦ −  (9) 

1t t t tL L DX Z−= + −   (10) 

The initialU andV can be determined by solving the following optimization problem using the 

LMaFit method [43]. 

2

1
, ,

min (i, j) = (i, j), (i, j)H

FU V X
U V X subject to X Y−ΜΦ ∀ ∈Ω

  
(11) 

The whole algorithm for solving the model (3) is shown in Table 2. 

  

t
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Table 2. Algorithm 1. 

Input: 1 2, , , ,Y ρ β ρΩ , maximum number of iteration maxt , convergence condition tolη . 

Initialization: initial (0)U , (0)V  by solving the matrix completion problem (11), (0)Λ , (0)L , (0)Z , t=0. 

While maxt t<  and maxη η<  do 

The first flexible QA scheme: Turn an image into an order-N tensor 1XΦ , then unfold it. 

Solve (5)-(10) for *X , where * represents the optimal solution. 

Update 
1

1

(:) (:)

(:)

t t

n n F
t t

n F

X X

X
η

+

+

−
= , 1t t= + . 

End while 

Output: *X . 

3.3. Method 2: The low tubal-rank-based method 

 
 

(a) (b) 

Figure 6. (a) The second flexible QA scheme to permute the image into a balanced order-3 tensor. 

Take the Lena image size of 256×256×3 as an example, we obtain the balanced order-3 tensor size of 

64×64×48 by multiple QA schemes. This balanced order-3 tensor is more suitable for the t-SVD 

decomposition than the original image size of 256×256×3. (b) The low tubal rankness of the balanced 

order-3 tensor. 

Tensor-SVD decomposition has been efficiently used in the video image completion and 

dynamic MR image reconstruction problem [16,44–46]. Since the color image is highly unbalanced in 

the size of three dimensions, which is not suitable for the low tubal rank constraint, we exploit the 

second flexible QA scheme to deeply dig out the potential low tubal-rank prior information. 

Considering that tubal rank minimizations are more efficient for the balanced tensor [10], we 

first turn the unbalanced image into the balanced order-3 data by the second flexible QA scheme.  

Take the color image size of 256×256×3 as an example, as shown in Figure 6 (a), we can obtain 

the order-4 tensor size of 128×128×4×3 by the basic QA schemes, and then multiplying the basic QA 

schemes we can obtain the order-4 tensor size of 64×64×4×4×3. Lastly, we reshape the order-4 tensor 

into the balanced order-3 tensor size of 64×64×48. Here, the context of ‘balanced’ is that the size 

changes from the unbalanced 256×256×3 to the more balanced size of 64×64×48. In practice, the size 

of the designed order-3 tensor should be as balanced as possible. We call the above the second flexible 

QA scheme.  

In Figure 6 (b), we show the low tubal rankness of the balanced order-3 data (with the size of

1 2 3 =64 64 48n n n× × × ×
here) by plotting jδ which is defined as follows. 

3

1 2

13

1
= ( , , ), 1, 2, , min( , )

n

j

i

T i i j i n n
n

δ
=

=∑ 
  

 

Then, TNN is used to enforce the tensor tubal rank in the image inpainting model as follows. 
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2min s (i, j) = (i, j), (i, j)
TNNX

X ubject to X YΦ ∀ ∈Ω
  (12) 

where 2Φ
denotes the operator of permuting the color image into a more ‘balanced’ order-3 

tensor by the second flexible QA scheme. Combining the low tubal rank and sparsity, we introduce 

auxiliary variables 2= XΦ
, and Z DX= , then rewrite (12) as the following unconstrained convex 

optimization problem. 

 

3 ( ) 2

2

*

22

1

min ( )
2

+
2 2

I
i

FX
i

F

X X

Z DX Z L

ρτ

β βρ

Ω + + Φ − + Λ

+ − +

∑  

 

(13) 

where 3I is the third size of the 3-order tensor 2XΦ
. We conduct the algorithm by ADMM for 

solving model (13) as shown in Table 3. 

Table 3. Algorithm 2. 

Input: 1 2, , , ,Y ρ β ρΩ , the maximum number of iteration maxt , convergence condition tolη . 

Initialization: (0)Λ , (0)L , (0) , (0)Z , t=0. 

While maxt t<  and maxη η<  do 

QA scheme: Turn an image into the balanced order-3 tensor 2XΦ . 

Update 
2

-1 -1

2arg min ( )
2

t t t

FX
X X X

ρτΩ= + Φ − + Λ  

Update 
( )

2( ) ( ) 1

2 3
*

arg min , 1, ,
2i

i t i t t

F
X i I

ρ −= + Φ − + Λ = 


    

Update 
( )

2
1

1
arg min

2i

t t t

F
Z Z DX Z L

ρ −= + − +


 

Update 
1

2

t t t tX−Λ = Λ +Φ − , 1t t t tL L DX Z−= + −  

Update 
1

1

(:) (:)

(:)

t t

n n F
t t

n F

X X

X
η

+

+

−
= , 1t t= + . 

End while 

Output: *X . 

3.4. Method 3: the low TT-rank-based method 

TT decomposition works better on higher-order tensors than Tucker decomposition. To fulfill 

TT decomposition efficiently, we first exploit the third flexible QA scheme to permute the 3-order 

image into a higher-order tensor. Based on the basic QA scheme, high-order tensors can be obtained 

flexibly. 

The third flexible QA scheme is shown below. We take a16 16× matrix as an example, as shown 

in Figure 7 (a). We first turn a 2-order matrix into a 3D tensor via the basic QA scheme and then 

repeat the basic QA to obtain the final 4D tensor with the size of 4 4 4 4× × × . The entry comes from 

the ith smaller matrix of the first basic QA scheme, and the jth smaller matrix of the second basic QA 

scheme is labeled as the MATLAB notation (:,:, , )i j . By analogy, the third flexible QA scheme can 

permute a matrix with the size of 4 4P Q×  to order- min{ , }P Q  tensor with the size of min{ , }

4 4 4
P Q

× × ×
. An 

RGB image with the size of 4 4 3P Q× × can be permuted into an order- min{ , }+1P Q tensor with the size 

of 1+ min{ , }

4 4 4 3
P Q

× × × ×
. The third flexible QA scheme should ensure that the designed tensor has a higher 

order. 
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(a) (b) 

Figure 7. (a) Examples of the third flexible QA scheme. By the third flexible QA, the matrix size of 

16×16 can be permuted into an order-4 tensor size of 4×4×4×4. (b) Singular values of TT matrices. We 

permute the order-3 Lena RGB image size of 256×256×3 into an 8-order tensor with the size of 

4×4×4×4×4×4×4×4×3 by the third flexible QA scheme. Then eight different TT matrices are obtained 

from this higher-order tensor. We labeled those TT matrices as k=1, 2, …, 8. 

We permute the Lena image into a high-order tensor via the third flexible QA scheme, and then 

obtain the TT matrices of the augmented tensor. We name those TT matrices as QA-TT matrices, and 

their singular values are shown in Figure 7 (b), which demonstrates the low TT rankness of the 

rearranged tensor. 

Then, we enforce the low TT rankness to improve the inpainting accuracy. The third model is as 

follows. 

 
n n 3 *

n 1

min s (i, j) = (i, j), (i, j)
N

X
X ubject to X Yα

=

Φ ∀ ∈Ω∑ 
 

(14) 

where 3Φ
stands for the third flexible QA used to permute image X into a high-dimensional 

tensor. We name the tensor obtained by the third flexible QA scheme as a QA tensor. n is the 

operator that converts a tensor into the nth TT matrix,
1, 2, ,n N= 

. The order of QA tensor is N . The 

inverse operators corresponding toΦ and n are
1−Φ and

-1

n  respectively. The weight nα is given by: 

 
1

1

n
n N

nn

θα
θ−

=

=
∑ with 1 1

min( , )
n N

n l l

l l k

I Iθ
= = +

= ∏ ∏
 

(15) 

where 1 2 NI I I× × ×
is the size of the QA tensor. 

Combining the low TT rank and sparsity constraints, we introduce auxiliary variables Z=DX and

3

H

n n nU V X= Φ
, rewrite (14) as the following unconstrained convex optimization problem, for all

1, , 1n N= −
. 

 

1
2 2

1, , , , ,
1

1
2 21 2

3

1

1
min ( ) ( )

2 2

)
2 2

n n n

N

n n nF FU V L Z X
n

N
H

n n n n n FF
n

X U V Z

X U V DX Z L

βτ α

ρ βρα

−

ΩΛ
=

−

=

+ + +

+ Φ − + Λ + − +

∑

∑




 

(16) 

By applying ADMM, each sub-problem is performed at each iteration . Lastly, we obtain X

by
1*

1

N

n nn
X Xα− ∗

=
=∑ , where nX

∗

represents the optimal solution of the nth subproblem. The whole 

algorithm for solving the model (16) is shown in Table 4. 

  

t
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Table 4. Algorithm 3. 

Input: 1 2, , , ,Y β ρ ρΩ , the maximum number of iteration maxt , convergence condition tolη . 

Initialization: (0)

nU , (0)

nV  by the LMaFit method [43]; (0)

nΛ , (0)

nL , (0)Z . 

For n=1 to N-1 do 

t=0. 

While maxt t<  and maxη η<  do 

QA scheme: permute image to order-N tensor 3XΦ . 

Update 
( 1) 1 2

11
3arg min ( )

2

t H tt t

n n n n n
X F

X X X U V
ρτ

− −−
Ω= + Φ − + Λ


  

Update 
22 ( 1) 11

3arg min
2n

t t t H t

n n n n n nF FU
U U X U V

ρ − −= + Φ − + Λ


  

Update 
22 11

3arg min
2n

t t t H t

n n n n n nF FV
V V X U V

ρ −= + Φ − + Λ


  

Update 
2

12

1
arg min

2

t t t

FZ
Z Z DX Z L

ρ −= + − +


  

Update 1 ( )

3

t t t t t H

n n n n nT X U V−Λ = Λ + Φ − , 1t t t tL L DX Z−= + −  

Update 
1

1

(:) (:)

(:)

t t

n n F
t t

n F

X X

X
η

+

+

−
= , 1t t= + . 

End while 

End for 

Output: 1* *

1

N

n nn
X Xα−

=
=∑ . 

4. Experimental results and analyses 

In this section, we conduct the above methods 1-3 for solving image inpainting problems. For 

simplicity, we denote methods 1-3 which only exploit low unfolding matrix rank, low tensor tubal 

rank, and low tensor train rankness as UfoldingLR, TTLR, and tSVDLR methods respectively. The 

methods that enhance the low rank and total variation constraints simultaneously are denoted as 

UnfoldingLRTV, tSVDLRTV, and TTLRTV methods respectively. We denote the low matrix-rank 

completion method which is solved by the model (17) and ADMM algorithm as the MatrixLR 

method. 

 
min ( ) subject to (i, j) = (i, j), (i, j)
X

rank X X Y ∀ ∈Ω
 (17) 

We denote the method that only exploits sparsity in the gradient domain and is solved by the 

ADMM algorithm as the TV method. Besides, we conduct the following numerous close methods for 

comparison, some of their codes are available online.  

STDC: the method exploited the images into three factor matrices and one core tensor for image 

inpainting [7,19,20]2.  

HaLRTC: the method constrained the low rankness of the three mode-n matrices caused by 

decomposition of a color image for inpainting and which was solved by the ADMM [21,22]3. 

SPCTV4: the smooth PARAFAC tensor completion and total variation method [23], which used 

the PD (PARAFAC decomposition, a derivation of Tucker decomposition) framework and 

constrained the TV on every factor matrix of PD respectively.   

LRTV: the methods combined the constraints of the low rankness of every mode-n matrix and 

the TV regularization on every mode-n matrix for color image inpainting [24,25]5.  

 
2 http://mp.cs.nthu.edu.tw/module/publications/ 

3 https://www.cs.rochester.edu/u/jliu/publications.html 

4 https://sites.google.com/site/yokotatsuya/home/software 

5 https://sites.google.com/site/yokotatsuya/home/software/lrtv_pds 
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FBCP: the inpainting methods based on Bayesian tensor completion [26–29]6.   

All simulations were carried out on Windows 10 and MATLAB R2019a running on a PC with an 

Intel Core i7 CPU 2.8GHz and 16GB of memory. For a fair comparison, every method is conducted 

with its optimal parameters to ensure every method has the best performance. The reconstruction 

quality is quantified using the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)7 

[37]. The original color images (from the standard image database) and missing patterns used in the 

experiments are shown in Figure 8.  

 

Figure 8. Original color images and missing patterns. 

We set the maximum number of iterations max =100t and convergence condition 
-6=10tolη in all our 

methods (UnfoldingLRTV, tSVDLRTV, and TTLRTV). The pixel range of all the images is normalized 

to 0-1. In UnfoldingLR, tSVDLR, and TTLR methods, we set 1 =ρ 0.04, 0.002, and 0.6 respectively. In 

UnfoldingLRTV, Tsvdlrtv, and TTLRTV methods, we set the parameter set 1 2( , , )ρ β ρ
 as (0.4, 0.004, 

2), (0.6, 0.07, 0.1), and (0.7, 0.03, 0.1) respectively. 

4.1. Analyses of the three flexible QA schemes 

Next, we call the first, second, and third flexible QA schemes QA scheme briefly. The PSNRs 

(dB)/SSIMs of the UnfoldingLR, tSVDLR, and TTLR methods with and without the QA scheme are 

shown in Table 5. The red numerical values correspond to the worst results. We can see that, without 

the QA scheme, Lena and Airplane cannot be recovered. The UnfoldingLR, tSVDLR, and TTLR 

methods with the QA scheme have better numerical results than those without the QA scheme. In 

the low matrix-rank completion method (i.e. MatrixLR), no QA scheme is applied, i.e. the color image 

is dealt with as three-channel matrices directly.  

Due to the support of the QA scheme, the low tensor-rank based methods (TTLR, tSVDLR, and 

UnfoldingLR) with the QA scheme provide better results than the traditional low matrix-rank 

completion method (i.e. MatrixLR method). So, the QA scheme is successful to be used as the first 

step to deeply explore the low tensor rank prior to an image. 

 
6 https://github.com/qbzhao/BCPF 

7 http://www.ece.uwaterloo.ca/ z70wang/research/ssim/ 
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Figure 9. Comparison of KA and QA scheme under the corresponding TMac-TTKA method [21] and 

our TTLR method respectively. The first row lists the painted images with a random missing pattern 

and the missing ratio is 80%. The second row lists the recovered images by TMac-TTKA method. The 

last row lists the recovered images by LRTT method. 

The KA scheme and the third flexible QA scheme both can rearrange an image into a high-order 

tensor. However, our QA scheme is different from the KA scheme used in [21]. The KA scheme 

maintains the local block similarity of the image, while the third flexible QA scheme uses adjacent 

pixels to maintain the global similarity of the image. We conduct the comparison of KA and the third 

flexible QA scheme under the corresponding TMac-TTKA [21] and TTLR methods. As shown in 

Figure 9, the small blocks are obvious in the recovered images by the TMac-TTKA method. The 

images recovered by the TTLR method preserve more details and without the obvious blocks. 

4.2. Analyses of the methods exploiting both low rankness and sparsity 

In this section, we analyze the recovery results of the methods both exploiting low rankness and 

sparsity. Figure 10-12 show the visual comparisons of the eleven methods for recovering the House, 

Lena, and Baboon images respectively. Table 6 shows the PSNR (dB)/SSIM results of the nine 

methods for recovering different color images under different missing patterns. Figure 13 depicts the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 October 2023                   doi:10.20944/preprints202310.1523.v1

https://doi.org/10.20944/preprints202310.1523.v1


 14 

 

PSNR curves of the inpainting results of the different methods, the missing ratio ranges from 10% to 

70% under a random missing pattern. 

 

Figure 10. The missing patterns and inpainting results of House image solved by different methods. 

 

Figure 11. The missing patterns and inpainting results of Lena image solved by different methods. 

As shown in Figure 10-13 and Table 6, compared to the numerous close STDC, HaLRTC, FBCP, 

TMac-TTKA, SPCTV, and LRTV methods, the UnfoldingLRTV, tSVDLRTV, and TTLRTV methods 

have the super performance on both visual and quantity results. The SPCTV and LRTV methods also 

enhance the low rankness and sparsity simultaneously, but the results are worse than our methods. 
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Figure 12. The missing patterns and inpainting results of Baboon image solved by different 

methods. 

 

Figure 13. The PSNR curves of the inpainting results of the six images solved by different methods. 

The missing ratio ranges from10% to 70% under random missing pattern. 

Table 7 shows the PSNR (dB)/SSIM results of the eight methods: MatrixLR method only 

constrains the low matrix rank; TV method only exploits the TV prior; The UnfoldingLR, tSVDLR, 

and TTLR methods only constrain the low unfolding matrix rank, low tubal rank and low TT rank 

respectively; The UnfoldingLRTV, tSVDLRTV, and TTLRTV methods combine both sparsity and low 

tensor rankness. As shown in Table 7, the combination of sparsity and low tensor rankness constraints 

can yield better inpainting results than enforcing sparsity or low rankness alone. TTLR method is 

more efficient than the MatrixLR, and TV methods. The results of the tSVDLR method and TTLR 

method are comparable. The UnfoldingLR method provides the best results among the TTLR, 

tSVDLR, TuckerLR, MatrixLR, and TV methods. UnfoldingLRTV, tSVDLRTV, and TTLRTV methods 

have improved numerical results than the corresponding UnfoldingLR, tSVDLR, and TTLR methods, 

which demonstrates that TV prior is efficient in improving the accuracy of low-rank based inpainting 

methods. 
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The visual and numerical PSNR (dB)/SSIM comparisons of our methods for recovering the 

pepper image under 80% random missing patterns are shown in Figure 14. In the first row of Figure 

14, the methods only exploit low-rank constraints. As shown in the color box, there are small blocky 

errors in the recovered image, these are caused by the QA scheme. This phenomenon can be solved 

by combining the constraints of low rank and sparsity (TV), as shown in the second row of Figure 14. 

 

Figure 14. The visual and numerical PSNR (dB)/SSIM comparisons of our methods for recovering the 

pepper image under 80% random missing patterns. In the first row, the methods only exploit low-

rank constraints. As shown in the color box, there are small blocky errors in the repaired image, this 

is caused by the QA scheme. This phenomenon can be solved by combining the constraints of low 

rank and sparsity (TV) as shown in the second row. 

All in all, due to the support of the QA scheme and the efficient TV prior, the low tensor-rank 

based methods (UnfoldingLRTV, tSVDLRTV, and TTLRTV) are superior to other close low tensor-

rank based methods. The UnfoldingLRTV method provides the best results among all the methods 

conducted in this paper. 

4.3. Analyses of TTLR and TTLRTV methods 

In this section, we mainly focus on the analyses of the TT based methods (i.e. TTLR and TTLRTV) 

in detail. Since TT rank is multi-rank, how does every TT matrix rank affect the final result? We 

answer this question with the below experimental results. 

We conducted the experiments on recovering House, Lena, and Airplane images with a size of 

256×256×3. The random missing patterns have four missing ratios: 10%, 30%, 50%, and 70% 

respectively. We label the 8 TT matrices as k=1, 2, …, 8. Then the PSNR (dB) results of *

nX (the optimal 

solution of the nth subproblem which exploits the nth TT matrix rank) in TTLR and TTLRTV methods 

are shown in Figure 15. 

From Figure 15, we can see that, the PSNR (dB) results of each subproblem is steeply different 

in the TTLR method, which demonstrates that each TT matrix rank contributes different PSNR result. 

Since there are no rules to find which TT matrix rank meets the best PSNR result, we should combine 
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each solution of
*

nX to obtain the final
*X , i.e. 

1* *

1

N

n nn
X Xα−

=
=∑ . Comparing the PSNR curves of TTLR and 

TTLRTV method in Fig. 15, the PSNR (dB) results of each subproblem is slightly different in the 

TTLRTV method which demonstrates that the combination of TT and TV can make the PSNR more 

balanced among all k. 

 

Figure 15. PSNR (dB) results contributed by each TT matrix in TTLR method and TTLRTV method. 

We permute the image size of 256×256×3 to an order-9 tensor by the QA scheme. Then we labeled the 

TT matrices of this order-9 tensor as k=1, 2, …, 8. We use the random missing patterns with four 

missing ratios: 10%, 30%, 50%, and 70% respectively. The tested color images for the PSNR curves in 

(a)-(c) are House, Lena and Airplane images respectively. 

4.4. Runtime and complexity analysis 

From a high-dimensional curse perspective, converting an image to a higher-order tensor can 

result in increased complexity, which inevitably leads to a longer runtime. We compare our methods 

(UnfoldingLRTV, tSVDLRTV, and TTLRTV) with the traditional MatrixLR method and the close 

STDC, HaLRTC, FBCP, SPCQV, and LRTV methods in running time, as shown in Table 8. 
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Table 5. PSNR (dB)/SSIM and SSIM of the seven methods without rearrangement and with 

rearrangement. 

 

Methods 

PSNR (dB)/SSIM of different color images under different missing 

patterns 

House Lena Airplane Boats 

Random 50% Lines Random line Random 80% 

 

Without Rearrangement 

MatrixLR 9.38/0.8970 13.34/0.5850 7.118/0.1308 19.18/0.5680 

TTLR 28.61/0.871 13.34/0.585 7.11/0.130 19.25/0.519 

tSVDLR 32.30/0.932 13.34/0.585 7.11/0.130 21.60/0.707 

UnfoldingLR 7.83/0.093 13.34/0.585 7.11/0.130 6.32/0.102 

 

With Rearrangement 

TTLR 30.21/0.9251 31.79/0.9559 25.77/0.8796 21.44/0.7144 

tSVDLR 29.79/0.8989 31.20/0.9561 18.91/0.8386 21.34/0.6879 

UnfoldingLR 32.58/0.9416 33.45/0.9771 28.75/0.9464 23.46/0.8139 

Table 6. PSNR (dB)/SSIM and SSIM of the nine methods. 

 No. Methods 

PSNR (dB)/SSIM of different color images under different missing patterns 

House Peppers Lena Airplane Baboon Boats 

Random 50% Text Lines Random line Blocks Random 80% 

 

Other 

methods 

 

 

1 STDC 32.04/0.9300 33.61/0.9813 28.56/0.8995 23.49/0.7756 27.01/0.9293 21.88/0.7340 

2 HaLRTC 32.07/0.9423 25.84/0.9496 13.34/0.5850 19.94/0.6334 28.04/0.9397 20.56/0.6858 

3 FBCP 26.41/0.8701 NAN 14.56/0.5242 10.25/0.1954 18.71/0.5546 20.91/0.6947 

4 TMac-TTKA 23.18/0.8113 29.47/0.9681 29.93/0.9462 20.82/0.7521 28.04/0.9429 8.83/0.1229 

5 SPCTV 29.56/0.9133 23.38/0.9154 16.02/0.6107 18.58/0.6894 24.21/0.9144 20.98/0.7254 

6 LRTV 30.93/0.9382 36.98/0.9945 34.07/0.9724 26.82/0.9228 27.10/0.9319 21.62/0.7541 

Our 

methods 

1 TTLRTV 33.02/0.9579 37.27/0.9945 34.94/0.9823 28.82/0.9561 29.46/0.9559 22.37/0.7487 

2 tSVDLRTV 32.20/0.9550 37.49/0.9950 34.70/0.9818 28.03/0.9507 29.56/0.9574 22.86/0.8021 

3 UnfoldingLRTV 35.61/0.9689 37.72/0.9952 34.87/0.9821 29.55/0.9639 29.59/0.9556 25.43/0.8863 

Table 7. PSNR (dB)/SSIM and SSIM of the eight methods. 

No. Methods 

PSNR (dB)/SSIM of different color images under different missing patterns 

House Peppers Lena Airplane Baboon Boats 

Random 50% Text Lines Random line Blocks Random 80% 

1 MatrixLR 9.38/0.8970 33.23/0.9814 13.34/0.5850 7.118/0.1308 27.62/0.9343 19.18/0.5680 

2 TV 29.70/0.8816 34.14/0.9913 29.21/0.9107 22.85/0.8463 23.18/0.9066 20.32/0.6103 

3 TTLR 30.21/0.9251 34.86/0.9892 31.79/0.9559 25.77/0.8796 25.42/0.9239 21.44/0.7144 

4 tSVDLR 29.79/0.8989 33.86/0.9840 31.20/0.9561 18.91/0.8386 28.03/0.9373 21.34/0.6879 

5 UnfoldingLR 32.58/0.9416 36.86/0.9938 33.45/0.9771 28.75/0.9464 22.22/0.9238 23.46/0.8139 

6 TTLRTV 33.02/0.9579 37.27/0.9945 34.94/0.9823 28.82/0.9561 29.46/0.9559 22.37/0.7487 

7 tSVDLRTV 32.20/0.9550 37.49/0.9950 34.70/0.9818 28.03/0.9507 29.56/0.9574 22.86/0.8021 

8 UnfoldingLRTV 35.61/0.9689 37.72/0.9952 34.87/0.9821 29.55/0.9639 29.59/0.9556 25.43/0.8863 

UnfoldingLRTV methods: In the first step, the QA scheme is used to decompose a single image 

into several small graphs. Because of the similarity of these small graphs, the QA tensor can be 

reduced to a matrix with a low-rank structure in an unfolding way. Ignoring TV constraints, the 

unfoldingLRTV method only needs to solve the low-rank matrix completion problem of an unfolding 

matrix, so the running time is similar to the traditional MatrixLR method, and the accuracy is higher 

than the traditional MatrixLR method. 
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Table 8. Runtimes(s) of the different methods. 

 

Methods 

Runtime (s) 

House Lena Airplane Boats 

Random 50% Lines Random lines Random 80% 

MratrixLR 4.95 0.17 0.16 5.01 

STDC 5.43 5.13 5.17 5.16 

HaLRTC 8.00 0.88 0.84 6.84 

FBCP 188.32 86.45 132.09 219.33 

SPCTV 19.25 16.37 16.03 17.69 

LRTV 19.08 20.17 21.04 21.05 

TTLRTV 145.5 143.2 142.6 142.3 

tSVDLRTV 15.23 15.07 15.17 15.14 

UnfoldingLRTV 9.49 8.53 8.69 8.72 

The tSVDLRTV methods: Since the color image is highly unbalanced in the size of three 

dimensions, which is not suitable for the low tubal rank constraint, we use the QA scheme to 

rearrange an image into a third-order tensor with a more balanced size of every dimension. Then we 

use TNN to constrain the low tubal rank of the rearranged tensor, due to the fast Fourier scheme, it 

is necessary to perform a low-rank matrix constraint on each frontal slice after the third-dimensional 

Fourier transform. At this time, the SVD decomposition process will increase the time consumption. 

TTLRTV methods: TT multi-rank is the combination of the rank of each TT matrix. The TTLRTV 

method essentially completes the same data amount N-1 times, where N is the order of the QA tensor. 

So, although the TITRTV method is effective, it is necessarily more computationally expensive than 

the low matrix-rank completion method. 

In summary, among the three methods, the UnfoldingLRTV method achieves the best 

performance both in accuracy and runtime; The TTLRTV method reaches better accuracy, but it is 

time-consuming; The tSVDLRTV method has moderate performance both in runtime.  

All in all, the above three methods can deeply exploit the potential low-rank prior of an image 

and have been successfully used for image inpainting problems, which demonstrates that the three 

flexible QA schemes are perfect ways to explore the low-rank prior of an image.  

5. Conclusions 

To effectively explore the potential of low tensor rank prior to an image, we first exploited a 

rearrangement scheme (QA) for permuting the color image (3-order) into three flexible 

rearrangement forms (with more efficient low tensor rank structure). Based on the scheme, three 

optimization models by exploiting the low unfolding matrix rank, low tensor tubal rank, and low TT 

multi-rank were proposed to improve the accuracy in image inpainting. Combined with TV 

constraints, we developed efficient ADMM algorithms for solving those three optimization models. 

The experimental results demonstrate that our low tensor-rank-based methods are effective for image 

inpainting, and are superior to the low matrix-rank completion method and numerous close methods. 

The low tensor rank constraint is effective for image inpainting, which is mainly due to the support 

of the QA scheme. 
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