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Abstract: Employing low tensor rank decompositions in image inpainting has attracted increasing attention.
This paper exploits a novel tensor-augmentation schemes to transform an image (a low-order tensor) to a
higher-order tensor without changing the total number of pixels. The developed augmentation schemes
enhance the low-rankness of an image under three tensor decompositions: matrix SVD, tensor train (TT)
decomposition, and tensor singular value decomposition (t-SVD). By exploiting the schemes, we solve the
image inpainting problem with three low-rank constrained models which use the matrix rank, TT rank, and
tubal rank as constrained priors respectively. The tensor tubal rank and tensor train multi-rank are developed
from t-SVD and TT decomposition respectively. We exploit efficient ADMM algorithms for solving the three
models. Experimental results demonstrate that our methods are effective for image inpainting and superior to
numerous close methods.

Keywords: image inpainting; tensor decomposition; rearrangement scheme; unfolding matrix;
alternating direction multiplier method

1. Introduction

Image inpainting refers to the process of completing missing entries or restoring damaged
regions of an image. It is a typical ill-posed inverse problem, generally solved by exploiting the image
priors [1,2], such as smoothness, sparsity, and low rankness. In recent years, tensor analysis including
tensor low-rank decomposition and tensor completion, has attracted increasing attention [3-6]. A
color image itself is an order-3 tensor, or it can be used to construct a high order (greater than 3)
tensor, then the image inpainting problem becomes a tensor completion problem. A tensor is more
challenging to analyze than a matrix due to the complicated nature of higher-order arrays [7]. We can
constrain the low tensor rank to recover the missing pixels. The effectiveness relies on the tensor rank.
The lower the tensor rank is, the better the recovery results are. Thus, finding ways to decrease the
tensor rank is essential in the tensor completion problem. Unlike matrix rank, the definition of tensor
rank is not unique, and relates to the tensor decomposition scheme.

Low tensor-rank completion methods can be categorized according to the tensor decomposition
frameworks they use [8]. The traditional tensor decomposition tools include
CANDECOMP/PARAFAC (CP), and Tucker decomposition [8,9]. The recently proposed
decomposition frameworks include tensor singular value decomposition (t-SVD) [10-12], tensor train
(TT) decomposition [13,14], tensor tree (TTR) decomposition [6,15] etc. As we know, CP rank is hard
to estimate. Tucker rank is multi-rank, whose elements are the ranks of mode-n matrices which are
highly unbalanced. TT rank is also multi-rank, whose elements are the ranks of TT matrices. For a
high-order tensor, the most TT matrices are more balanced than the mode-n matrices. Since the matrix
rank minimization is only efficient when the matrix is balanced, TT decomposition is more suitable
for describing global information of high-order tensors than Tucker decomposition. T-SVD defines
the tubal rank of the high order tensor, which can be easily estimated according to a fast Fourier-
based method. The tubal rank has been shown more efficient than the matrix-rank and Tucker multi-
rank in video applications [16-18]. TTR rank is essentially equivalent to Tucker multi-rank.
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Many popular tensor-completion methods have applied the traditional CP or Tucker
decomposition on color image inpainting. Some recent works exploited the sparse Tucker core tensor
and nonnegative Tucker factor matrices for image restoration [7,19,20]. Some works constrained the
low rankness of the mode-n matrix caused by decomposition of a color image for inpainting [21,22].
Since low-tensor-rank constraint cannot fully capture the local smooth and global sparsity priors of
tensors, some works combine Tucker and total variation (TV). The SPCTV (smooth PARAFAC tensor
completion & total variation) method [23] used the PD (PARAFAC decomposition, a derivation of
Tucker decomposition) framework, and constrained the TV (total variation) on every factor matrix of
PD respectively. Some works combined the constraints of the low rankness of every mode-n matrix
and the TV regularization on every mode-n matrix for color image inpainting [24,25]. Some works
proposed data restoration methods based on Bayesian tensor completion [26-29].

The afore-mentioned methods all take the color image as an order-3 tensor directly and haven't
deeply explored the potential low-rank prior to a color image. Since TT decomposition is efficient for
higher-order tensors, the TMac-TTKA method [30] first used the Ket augmentation (KA) scheme to
permute the image to a high order data, then proposed the optimal models by enforcing low TT
rankness. The KA scheme is proven to be efficient for improving the accuracy of color image/video
inpainting and dynamic MR image reconstruction in TT rank based completion methods [30-33]. As
far as we know, the KA scheme is the only one used to permute data into a high order data.

This paper aims to deeply explore the potential low-rank structure of the image and to find an
efficient way to apply the SVD, t-SVD, and TT decomposition in the image inpainting problems. The
contributions of our work are summarized as follows:
® First, we developed a novel rearrangement named as quarter augmentation (QA) scheme for

permuting the image into three flexible forms of data. The first flexible QA scheme can permute

an image into an unfolding matrix (with a low matrix rank structure). The second and the third
flexible QA schemes can permute the color image into a balanced 3-order form of data (with low
tubal rank structure) and a higher-order form of data (with low TT rank structure) respectively.

Since those developed schemes are designed to exploit the internal structure similarity of the

original data as much as possible, the rearranged data has the corresponding kind of low-rank

structure.

® Second, based on the above QA scheme, we developed three image inpainting models that
exploit the unfolding matrix rank, tensor tubal rank, and TT multi-rank of the rearranged data
respectively for solving the image inpainting problem.

® Lastly, three efficient ADMM algorithms were developed for solving the above three models.

Compared with numerous close image inpainting methods, the experimental results

demonstrated the superior performance of our methods.

The remainder of this paper is organized as follows. In section II, we give the related work. In
section III, we mainly introduce the proposed methods. Section IV the experimental results and
analyses. The conclusion is given in section V.

2. Related work

In this section, we briefly introduce the KA scheme, the t-SVD decomposition, and tensor train
decomposition. Notations and definitions are summarized in Table 1.

Table 1. Notations and definitions.

Symbols Notations and definitions
fiber A vector defined by fixing every index but one of a tensor.
slice A matrix defined by fixing all but two indices of a tensor.

Al k) The *” frontal slice of a 3-order tensor - .

Mode-n matrix, the result of unfolding tensor 4 by reshaping its mode-n fibers to the

A

A
columns of =™ .
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Order-3 tensor 4 is called f-diagonal if each frontal slice > is a diagonal matrix

[10].

Tensor 4 with the size of """ "3 is called orthogonal tensor if A* A"=1 where?
)
I

f-diagonal tensor

orthogonal tensor stands for identity tensor if the first frontal slice Z" " is the ” " identity matrix and all

k=12,

. k .
other frontal slices ¢ )( ""3) are zero.

2.1. Ket augmentation

The Ket Augmentation (KA) scheme was originally introduced by Latorre in [34] for casting a
grayscale image into the real ket state of a Hilbert space. Bengua etc. [30] used KA to reshape a low-
order tensor e.g. a color image to a higher-order tensor and proved that KA is efficient in improving
the accuracy of the recovered image in TT-based completion.

Figure 1 shows the operation of KA for an 8 x 8 matrix [31-34]. By the KA scheme, the 8 x 8
matrix can be turned into a 3-order tensor of size 4 x 4 x4. As well, the KA scheme can turn a 3-order

. Nx ¥ . N+1 . .
tensor size of * * ¥ * Minto anV ) ~order tensor with a size of %X XWX N,

=l | =2 | =1 | i=2 I&
| ot s | f=
=3 | i i= ! 1—3 ¥
| =1
S k=2 - S
=7l =2 =25 ||:ia | k=2
| ("".'; P f=l =] =1 =]
i=1 =i =3 _.'—l,,r ! 1 S |
= =3 =3 f=1 s
k=3 k=4 =4 =t (=t | i
f. L - - 1 |
v F=L /= =

Figure 1. Example of KA for an 8 x 8 matrix. The order-2 M can be rearranged to a higher-order tensor

T (order = 3) without changing the total number of entries.

2.2. T-SVD decomposition

Definition 1 t-product [35]. For A€ R"™™ and BeR*™™ the t-productA*B=C s a tensor of

CW 7o) i given by 2 AGk) B ) )
.:1,2,"'3’1] j=1,2,---,n4

nXn,Xn . .
17T ° denotes the circular convolution

size where

between the two vectors, and’
The t-SVD of A € R"™™ js given by
A=U*S*V"

XA XA Ny XNy X n : .
where U and V are orthogonal tensors of size "'~ """ and 2”2”3 respectively. S is a

rectangular f-diagonal tensor of size XXM and * denote t-product [35], T denotes tensor

transpose defined in [35].
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I

Figure 2. The t-SVD of a tensor of size [ixI2xIs.

Figure 2 depicts the t-SVD of an order-3 tensor [36][4]. Tensor rank defined in t-SVD is tensor
tubal rank, which is the number of nonzero singular tubes in S . [36] proposed the fast Fourier-based
method to calculate the tubal rank, and used tensor nuclear norm (TNN) as the convex relaxation of
the tensor tubal rank.

Al =[ptockdiag (A)|

TNN

A=fft(A,[1,3)

where is the tensor obtained by applying the 1D FFT along the third dimension of

A ,| * denotes nuclear norm, and

7"
. —@
blockdiag(A)=

— ()

2.3. Tensor train decomposition

A(il’iz""in""iN) = ul(:ril’:)uz(:si2>:)'"Un(:’in’:)'"UN(:>iN’:)

IixlyxIy . .- .
Given a tensor A € R , tensor train (TT) decomposition [13,14] can decompose it to Norder-

U e RS Sm 1. N . . . . .
3 tensors " ," 727 The tensor rank defined in TT decomposition is a multi-rank i.e.

(SI’S””"SN”), which is combined with the second-dimensional size of each % . The details of TT

decomposition are shown in the following formula and Figure 3 [31-33].

High order tensor Order-3 tensors

I; Iz u1 ul L{u u\
I3 S=1 S S;  Sa Spir | Sw Syir=1
Ix ) T T T
i I; 1, I, Ix

Figure 3. The tensor train decomposition of an order-N tensor with the size of Iix2x...xInx...xIN.

The widely used way to find TT rank is to estimate the rank of each TT matrix [37] as the element

1,2,-++,n)

of 50S258v)  The TT matrix = ("= N=1y with rank 5. is the mode—( matricization of

N

mzf[l, h=111

the tensor with the size of M*" , where = I=n+1
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3. Methods

3.1. Quarter Augmentation

To deeply explore the more efficient low-rank structure of an image, we develop a novel
rearrangement scheme named as quarter augmentation (QA) scheme to turn a color image into other
forms of data. The QA schemes can maintain the internal similarity of the original image in the
rearranged data.

The basic QA scheme: For example, as shown in Figure 4 (a), M is a 2D matrix (8%8). We first
extract the entries of M every other row and column to get four smaller matrices. Each smaller matrix
with a size of 4x4 . Then we place these four smaller matrices along the third dimension in a designed

order. Lastly, a 3D tensor of size 4x4x4 is obtained from the8*8 matrix M without changing the
total number of entries. The entries in the four smaller matrices are labeled as the MATLAB notation

G 652) 0 Gn3) ang 609 respectively. If M is smooth (most images satisfy), the four smaller
matrices are similar in structure due to the adjacent entries.

Applying the basic QA scheme on the single Lena image, the Lena image can be divided into 4
smaller Lena images, and as shown in Figure 4 (b) the four smaller Lena images are similar to each
other. In Figure 4 (c), the pixel values curves of the four smaller images have overlapped into one
curve. We can say that the similarity of local image structure is mainly maintained by the basic QA
scheme.

Under this basic QA scheme, three flexible QA schemes are proposed for permuting the image
into three flexible forms of data. The three flexible QA schemes can enhance the low-rankness for an
image by matrix SVD, tensor train decomposition, and tensor-SVD respectively. Then, by exploiting
the flexible QA schemes, three low-rank constrained methods which use the TT rank, tubal rank, and
matrix rank as constrained priors respectively are exploited for image inpainting.

The three flexible QA schemes and methods are described in detail in the following three
sections.

-

w
E (1)
go8 - (2)
o5 —(:53)
o - (i,4)
S04
]
£02
o
Z
0o 1 2 3 4 5
i x10%

(©)

Figure 4. (a) Examples of the basic QA. By the basic QA scheme, the matrix M size of 8 X8 can be
turned into an order-3 tensor with a size of 4 X4 X 4. (b) By the basic QA, the Lena image can be divided
into 4 small Lena images. (c) The four-pixel values curves of the four smaller Lena images have
overlapped into one curve.
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3.2. Method 1: The low unfolding matrix rank-based method

B (.13
B &40 !
[ (:.:, 7:9)
B .00 "
B Unfolding "
256x256%3 l% i
RGB image E E L
IW [ 1024x192 ° * '“’
128=128x4>3 g Low rank matrix !

GAxGAxdxdxd  32x32x192
(a) (b)

Figure 5. (a) The first flexible QA scheme to obtain the unfolding matrix. Take the Lena RGB image
as an example, we first permute the image size of 256X256 X3 to order-3 tensor with the size of
32x32x192 by the basic QA scheme. Then this order-3 tensor is reshaped into the unfolding matrix of
size 1024 X92. (b) The singular values of this unfolding matrix.

The unfolding method is widely used to permute the order-3 video or dynamic magnetic
resonance images into an unfolding matrix, and then exploit the low rankness of this matrix for data
reconstruction [21,38]. The unfolding matrix has a low-rank structure because of the similarity of
every slightly changed slice along the time dimension.

We try to dig out the potential low unfolding-matrix rankness of a color image by a flexible QA
scheme, and we call this scheme the first flexible QA scheme.

Take a 256x256x3 Lena image as an example, as shown in Figure 5 (a), we first permute the image
into the 3-order tensor size of 32x32x192 by the basic QA scheme, then unfold the similar slices of this
3-order. Lastly, the balanced! unfolding matrix size of 1024x192 is obtained. Since the slices (32x32)
in the 3-order tensor are similar, the unfolding matrix is low rank, as shown in Figure 5 (b). In practice,
the size of the designed unfolding matrix should be balanced such that the minimization of the
unfolding matrix rank is efficient.

We exploit the low unfolding matrix rank in image inpainting and give the low unfolding
matrix-rank-based model as follows.

min [M(@,X)|, subjectto X(i,j)=Y(,j), V(i j)eQ 1)

where X denotes the image to be recovered, P\ denotes the operator of permuting the image into
a suitable 3-order tensor by multiple basic QA schemes. M denotes the operator of the unfolding

process, which unfolding every slice along the third dimension of the 3-order tensor PX Qs the

position without painting, Y is the painted image with damaged entries at the positions Q"
To reduce the computational complexity, in the model (1), the following SVD-free approach

[39,40] is exploited to constrain the low rankness of the unfolding matrix M(®,X) instead of the

nuclear norm.

. 1 2 2
min —(JU [ 71} ) =M@, )

U vt =M(®,X) 2

! The context of ‘balanced’ is that the size changes from the unbalanced 256x3 to the more balanced
size of 1024x192.
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Besides, since total variation (TV) has been proved as an effective constraint of smooth prior
[41,42], incorporate model (1) with 2D TV to exploit the local smooth priors of visual image data.
Then, the image inpainting model (1) turns to the following.

- B
min 2101 +1#1:)+ 2141,

1
U.v.X )

®)
subject to X (@, j) =Y, j), V(i, j) e Q, Md X =UV"
where # is the regularization parameter.
We conduct the algorithm by alternating direction method of multipliers (ADMM) for solving
the low unfolding matrix rank and TV-based image inpainting model (3). Firstly, introduce an
auxiliary variable Z=DX , where D is the finite difference operator, and then rewrite (3) as the
unconstrained convex optimization problem (4).
. 1 2 2 P H 2
L min 7 (X)+ E("U"F +72 ) +?1||M<I)]X —Ur” A,
Bry . e : @
+Lz) + 22 px -7+ 1],
7,(X) .. .
where "2’ denotes the indicator function:
0,XeQ
7o (X)= .
o0, otherwise
H
L and A are the Lagrangian multipliers for variables Z and ur respectively. The regularization
parameter B is used to balance the low rankness and sparsity constraints (i.e. TV), the penalty
parameters ”! >0 and#:>0 generally affect the convergence of the algorithm. By applying ADMM,
each sub-problem is performed at each iteration ! as follows:
X' =argminz, (X) + % Mo X -U 7" 4 A" ’ (5)
t : 2 P t - 1|2
U' = argmin|lU |[; +7‘"M®1X ARV (6)
t : 2, P ' ' -1
V' =argmin|y [ +7‘||MCDIX U A @)
7' =argmin|z| + 22| px" -z + 7] 8)
z 19 F
A =AT+MO X -UTV" )
L=L"+DX'-Z' (10)
The initial Y and ¥ can be determined by solving the following optimization problem using the
LMaFit method [43].
Um}px||U - MCDIX"F subjectto X(i,))=Y(,]), V(, j) € Q (11)

The whole algorithm for solving the model (3) is shown in Table 2.
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Table 2. Algorithm 1.

Input: Y,Q,p,f,p,, maximum number of iteration ¢, , convergence condition 7, .

Initialization: initial U, 7™ by solving the matrix completion problem (11), A", %,z t=0.
While (< toox and 7n< M max do

The first flexible QA scheme: Turn an image into an order-N tensor @, , then unfold it.
Solve (5)-(10) for x~, where * represents the optimal solution.

X=X,
X0,

, t=t+1.

t+1

Update 7, =

End while
Output: X'.

3.3. Method 2: The low tubal-rank-based method

256x256%3
RGB image

128x128x4x3 )
w
’ 64x64>48
l@ l@ |@ 2 PO R R @ Order-3 tensor
=,
(a) (b)

Figure 6. (a) The second flexible QA scheme to permute the image into a balanced order-3 tensor.
Take the Lena image size of 256x256x3 as an example, we obtain the balanced order-3 tensor size of
64x64x48 by multiple QA schemes. This balanced order-3 tensor is more suitable for the t-SVD
decomposition than the original image size of 256x256x3. (b) The low tubal rankness of the balanced
order-3 tensor.

Tensor-SVD decomposition has been efficiently used in the video image completion and
dynamic MR image reconstruction problem [16,44—46]. Since the color image is highly unbalanced in
the size of three dimensions, which is not suitable for the low tubal rank constraint, we exploit the
second flexible QA scheme to deeply dig out the potential low tubal-rank prior information.

Considering that tubal rank minimizations are more efficient for the balanced tensor [10], we
first turn the unbalanced image into the balanced order-3 data by the second flexible QA scheme.

Take the color image size of 256x256x3 as an example, as shown in Figure 6 (a), we can obtain
the order-4 tensor size of 128x128x4x3 by the basic QA schemes, and then multiplying the basic QA
schemes we can obtain the order-4 tensor size of 64x64x4x4x3. Lastly, we reshape the order-4 tensor
into the balanced order-3 tensor size of 64x64x48. Here, the context of ‘balanced’ is that the size
changes from the unbalanced 256x256x3 to the more balanced size of 64x64x48. In practice, the size
of the designed order-3 tensor should be as balanced as possible. We call the above the second flexible
QA scheme.

In Figure 6 (b), we show the low tubal rankness of the balanced order-3 data (with the size of

X1y X 1, =64 64x 48 here) by plotting % which is defined as follows.

é‘j:izT(i, i’ J)a i= 15 29 RS} min(nl’ }’lz)

Ny =i

Then, TNN is used to enforce the tensor tubal rank in the image inpainting model as follows.
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m}nH@z)(HTNN subject to X (i, j) = Y (i, j), V(i, j) e Q (12)
where ®2 denotes the operator of permuting the color image into a more ‘balanced” order-3
tensor by the second flexible QA scheme. Combining the low tubal rank and sparsity, we introduce

auxiliary variables B=0.X

optimization problem.

, and Z=DX , then rewrite (12) as the following unconstrained convex

Lo
minz, (X) + ZHZ( )H + guq)zx —zZ+AlL
5 1,3 (13)
0 2
+5 1zl + = px -z + L,

q)Z

where  is the third size of the 3-order tensor *>* . We conduct the algorithm by ADMM for

solving model (13) as shown in Table 3.

Table 3. Algorithm 2.

Input: Y,Q,p,,8.p,, the maximum number of iteration ¢

max /
Initialization: A, [, B®, Z© 0.
While 1<t .« and 1 <Max do

convergence condition 7,,.

QA scheme: Turn an image into the balanced order-3 tensor @,x .

Update X'=arg rrg(in 7, (X) +§H(D2X -B" + A"

2
-

=0 . 2
Update B =argmjn =l

B" H + chDZX’ —B+A"

Update Z'=arg né]p qul +§HDX/ _Z+LHH2F

Update A'=A"+0,X'-2' [=1"+DX'-Z'
X10-X,0),

Update M = ‘ ‘X,(:)H

, t=t+1.

End while
Output: X' .

3.4. Method 3: the low TT-rank-based method

TT decomposition works better on higher-order tensors than Tucker decomposition. To fulfill
TT decomposition efficiently, we first exploit the third flexible QA scheme to permute the 3-order
image into a higher-order tensor. Based on the basic QA scheme, high-order tensors can be obtained
flexibly.

The third flexible QA scheme is shown below. We take a 16x16 matrix as an example, as shown
in Figure 7 (a). We first turn a 2-order matrix into a 3D tensor via the basic QA scheme and then
repeat the basic QA to obtain the final 4D tensor with the size of 4x4x4x4_ The entry comes from
the it smaller matrix of the first basic QA scheme, and the jt smaller matrix of the second basic QA

scheme is labeled as the MATLAB notation (+»/). By analogy, the third flexible QA scheme can
. 4dx4x---x4
permute a matrix with the size of 4" *4° to order- mintP.0} tensor with the size of ™% . An

min{P, 0}+1 tensor with the size

RGB image with the size of 4"x4%%3 can be permuted into an order-
4xdx---x4x3
%/—/

of "™ The third flexible QA scheme should ensure that the designed tensor has a higher

order.
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—k=1
"] —k=2
Sost . k=3
[
AR R R ; ----r:ﬁ
= 506 Y
- g) ---- k=6
"-mm G —k=7
= T —k=8
= uw .1 3) g
" =m 5
Emm £
c 0.2
z
(ond) ﬁ
0

0 50 100 150 200 250 300

8x8x4 4x4x4x4 X .
|=1:m|n(mk,nk)

3D 4D

(@ (b)

Figure 7. (a) Examples of the third flexible QA scheme. By the third flexible QA, the matrix size of
16x16 can be permuted into an order-4 tensor size of 4x4x4x4. (b) Singular values of TT matrices. We
permute the order-3 Lena RGB image size of 256x256x3 into an 8-order tensor with the size of
4x4x4x4x4x4x4x4x3 by the third flexible QA scheme. Then eight different TT matrices are obtained
from this higher-order tensor. We labeled those TT matrices as k=1, 2, ..., 8.

We permute the Lena image into a high-order tensor via the third flexible QA scheme, and then
obtain the TT matrices of the augmented tensor. We name those TT matrices as QA-TT matrices, and
their singular values are shown in Figure 7 (b), which demonstrates the low TT rankness of the
rearranged tensor.

Then, we enforce the low TT rankness to improve the inpainting accuracy. The third model is as
follows.

T.0,X

subject to X(i, )= Y, j), V(i, j) € Q (14)

N
m)}nnzz;an A

where ®3 stands for the third flexible QA used to permute image X into a high-dimensional
tensor. We name the tensor obtained by the third flexible QA scheme as a QA tensor. s the
operator that converts a tensor into the n# TT matrix, n=12N The order of QA tensor is V. The

_ -1
inverse operators corresponding to ® and Zrare® and 7 respectively. The weight % is given by:

9’, . n N
a, =72N719 6, =min([ [7. ] 1) (15)
n=1 1N With =1 I1=k+1
I xI x--x1I,. .
where ! "2 Vis the size of the QA tensor.

Combining the low TT rank and sparsity constraints, we introduce auxiliary variables Z=PX and
Uy =T,0.X
n=l,-,N-1

, rewrite (14) as the following unconstrained convex optimization problem, for all

N-1
min rQ(X)+%Za”( 2F+
n=1

UiV sy L Z, X

&N,l
+ 5 ;an

Uﬂ

Vﬂ

N}
F) + 5"2"1
(16)

"y Prypx _z i
F F

TOX-UV"+A, 5

By applying ADMM, each sub-problem is performed at each iteration !. Lastly, we obtain X

by X=X , where X, represents the optimal solution of the nth subproblem. The whole
algorithm for solving the model (16) is shown in Table 4.
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Table 4. Algorithm 3.

Input: 7.,Q,8.p.p,, the maximum number of iteration ¢

max /

convergence condition 7,,.

Initialization: U®, 7 by the LMaFit method [43]; A®, 1, Z“.
For n=1 to N-1 do

t=0.

While <

QA scheme: permute image to order-N tensor ®,X .

and p<n,, do

‘max

(t-)H 1|2

Update X, =argminzo(X) + %HT o X-UT" 4 A

n

2

Update U; =argmin|U, |} + % ToX UV "+ A

T.0.X' -UVE+ A"

2
F

2
Vnp

Update 7 =arg min + %

2
F

Update 7' =argmin|Z|, + %HDX' —Z+1"
Update A, =A7"+T0.X -UV", L=L"+DX'-Z'
X16-x,0),
X0,

Update 7, =

, t=t+1.

End while
End for

Output: x =Y""a x’

n=l on it

4. Experimental results and analyses

In this section, we conduct the above methods 1-3 for solving image inpainting problems. For
simplicity, we denote methods 1-3 which only exploit low unfolding matrix rank, low tensor tubal
rank, and low tensor train rankness as UfoldingLR, TTLR, and tSVDLR methods respectively. The
methods that enhance the low rank and total variation constraints simultaneously are denoted as
UnfoldingLRTV, tSVDLRTV, and TTLRTV methods respectively. We denote the low matrix-rank
completion method which is solved by the model (17) and ADMM algorithm as the MatrixLR
method.

min rank(X) subjectto  X(i, =Y, j), V(i, j) € Q (17)

We denote the method that only exploits sparsity in the gradient domain and is solved by the
ADMM algorithm as the TV method. Besides, we conduct the following numerous close methods for
comparison, some of their codes are available online.

STDC: the method exploited the images into three factor matrices and one core tensor for image
inpainting [7,19,20]2.

HaLRTC: the method constrained the low rankness of the three mode-n matrices caused by
decomposition of a color image for inpainting and which was solved by the ADMM [21,22]3.

SPCTV*: the smooth PARAFAC tensor completion and total variation method [23], which used
the PD (PARAFAC decomposition, a derivation of Tucker decomposition) framework and
constrained the TV on every factor matrix of PD respectively.

LRTV: the methods combined the constraints of the low rankness of every mode-n matrix and
the TV regularization on every mode-n matrix for color image inpainting [24,25]5.

2 http://mp.cs.nthu.edu.tw/module/publications/
3 https://www.cs.rochester.edu/u/jliu/publications.html
4 https://sites.google.com/site/yokotatsuya/home/software

5 https://sites.google.com/site/yokotatsuya/home/software/Irtv_pds
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FBCP: the inpainting methods based on Bayesian tensor completion [26-29]¢.

All simulations were carried out on Windows 10 and MATLAB R2019a running on a PC with an
Intel Core i7 CPU 2.8GHz and 16GB of memory. For a fair comparison, every method is conducted
with its optimal parameters to ensure every method has the best performance. The reconstruction
quality is quantified using the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)”
[37]. The original color images (from the standard image database) and missing patterns used in the
experiments are shown in Figure 8.

House Lena

R =\
' B e |
[T 7 S o
[8 | T
T o

d 0 IR .. AW
i PEw. S AT
o

oy

N BN e A
1 ¥

i

Random 50% Text Lines Random lines Blocks Random 80%

Figure 8. Original color images and missing patterns.

— _106
We set the maximum number of iterations ™~ 1% and convergence condition 7 1%n all our

methods (UnfoldingLRTV, tSVDLRTV, and TTLRTV). The pixel range of all the images is normalized
to 0-1. In UnfoldingLR, tSVDLR, and TTLR methods, we set A170.04, 0.002, and 0.6 respectively. In

UnfoldingLRTV, Tsvdlrtv, and TTLRTV methods, we set the parameter set (P 5. ) as (0.4, 0.004,
2), (0.6, 0.07, 0.1), and (0.7, 0.03, 0.1) respectively.

4.1. Analyses of the three flexible QA schemes

Next, we call the first, second, and third flexible QA schemes QA scheme briefly. The PSNRs
(dB)/SSIMs of the UnfoldingLR, tSVDLR, and TTLR methods with and without the QA scheme are
shown in Table 5. The red numerical values correspond to the worst results. We can see that, without
the QA scheme, Lena and Airplane cannot be recovered. The UnfoldingLR, tSVDLR, and TTLR
methods with the QA scheme have better numerical results than those without the QA scheme. In
the low matrix-rank completion method (i.e. MatrixLR), no QA scheme is applied, i.e. the color image
is dealt with as three-channel matrices directly.

Due to the support of the QA scheme, the low tensor-rank based methods (TTLR, tSVDLR, and
UnfoldingLR) with the QA scheme provide better results than the traditional low matrix-rank
completion method (i.e. MatrixLR method). So, the QA scheme is successful to be used as the first
step to deeply explore the low tensor rank prior to an image.

¢ https://github.com/qbzhao/BCPF

7 http://www.ece.uwaterloo.ca/ z70wang/research/ssim/


https://doi.org/10.20944/preprints202310.1523.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2023 doi:10.20944/preprints202310.1523.v1

13

Painted  images
with 50% random

missing ratio

House Pepper Lena

TMac-TTEA

PSNR(dE)/S5IM=24.85/0.7977 TPSNE(dB)/55IM=18.06/0.6510 PSNR(dB)/S5IM=23.62/0.7636

TTLR

PSNR(dB)/55IM=24.15/0.7737 PSNR(dB)/55IM=2414/0.8514 P5NR(dB)/S5IM=24.43/0.7932

Figure 9. Comparison of KA and QA scheme under the corresponding TMac-TTKA method [21] and
our TTLR method respectively. The first row lists the painted images with a random missing pattern
and the missing ratio is 80%. The second row lists the recovered images by TMac-TTKA method. The
last row lists the recovered images by LRTT method.

The KA scheme and the third flexible QA scheme both can rearrange an image into a high-order
tensor. However, our QA scheme is different from the KA scheme used in [21]. The KA scheme
maintains the local block similarity of the image, while the third flexible QA scheme uses adjacent
pixels to maintain the global similarity of the image. We conduct the comparison of KA and the third
flexible QA scheme under the corresponding TMac-TTKA [21] and TTLR methods. As shown in
Figure 9, the small blocks are obvious in the recovered images by the TMac-TTKA method. The
images recovered by the TTLR method preserve more details and without the obvious blocks.

4.2. Analyses of the methods exploiting both low rankness and sparsity

In this section, we analyze the recovery results of the methods both exploiting low rankness and
sparsity. Figure 10-12 show the visual comparisons of the eleven methods for recovering the House,
Lena, and Baboon images respectively. Table 6 shows the PSNR (dB)/SSIM results of the nine
methods for recovering different color images under different missing patterns. Figure 13 depicts the
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PSNR curves of the inpainting results of the different methods, the missing ratio ranges from 10% to
70% under a random missing pattern.

SiLRTC HaLRTC FBCP-MP

Missing pattern MatrixLR

TMac-TTKA SPCTV LRTV TTLRTV tSVDLRTV UnfoldingLRTV

Figure 10. The missing patterns and inpainting results of House image solved by different methods.
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Figure 11. The missing patterns and inpainting results of Lena image solved by different methods.

As shown in Figure 10-13 and Table 6, compared to the numerous close STDC, HaLRTC, FBCP,
TMac-TTKA, SPCTV, and LRTV methods, the UnfoldingLRTV, tSVDLRTV, and TTLRTV methods
have the super performance on both visual and quantity results. The SPCTV and LRTV methods also
enhance the low rankness and sparsity simultaneously, but the results are worse than our methods.
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Figure 12. The missing patterns and inpainting results of Baboon image solved by different

methods.
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Figure 13. The PSNR curves of the inpainting results of the six images solved by different methods.

The missing ratio ranges from10% to 70% under random missing pattern.

Table 7 shows the PSNR (dB)/SSIM results of the eight methods: MatrixLR method only
constrains the low matrix rank; TV method only exploits the TV prior; The UnfoldingLR, tSVDLR,
and TTLR methods only constrain the low unfolding matrix rank, low tubal rank and low TT rank
respectively; The UnfoldingLRTV, tSVDLRTV, and TTLRTV methods combine both sparsity and low
tensor rankness. As shown in Table 7, the combination of sparsity and low tensor rankness constraints
can yield better inpainting results than enforcing sparsity or low rankness alone. TTLR method is
more efficient than the MatrixLR, and TV methods. The results of the tSVDLR method and TTLR
method are comparable. The UnfoldingLR method provides the best results among the TTLR,
tSVDLR, TuckerLR, MatrixLR, and TV methods. UnfoldingLRTV, tSVDLRTV, and TTLRTV methods
have improved numerical results than the corresponding UnfoldingLR, tSVDLR, and TTLR methods,
which demonstrates that TV prior is efficient in improving the accuracy of low-rank based inpainting

methods.
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The visual and numerical PSNR (dB)/SSIM comparisons of our methods for recovering the
pepper image under 80% random missing patterns are shown in Figure 14. In the first row of Figure
14, the methods only exploit low-rank constraints. As shown in the color box, there are small blocky
errors in the recovered image, these are caused by the QA scheme. This phenomenon can be solved
by combining the constraints of low rank and sparsity (TV), as shown in the second row of Figure 14.

TTLRTV 25.63/0.91 tSVDLRTV  26.85//0.95 Unfoldingl RTV  28.30/0.96

Figure 14. The visual and numerical PSNR (dB)/SSIM comparisons of our methods for recovering the
pepper image under 80% random missing patterns. In the first row, the methods only exploit low-
rank constraints. As shown in the color box, there are small blocky errors in the repaired image, this
is caused by the QA scheme. This phenomenon can be solved by combining the constraints of low
rank and sparsity (TV) as shown in the second row.

All in all, due to the support of the QA scheme and the efficient TV prior, the low tensor-rank
based methods (UnfoldingLRTV, tSVDLRTV, and TTLRTV) are superior to other close low tensor-
rank based methods. The UnfoldingLRTV method provides the best results among all the methods
conducted in this paper.

4.3. Analyses of TTLR and TTLRTV methods

In this section, we mainly focus on the analyses of the TT based methods (i.e. TTLR and TTLRTV)
in detail. Since TT rank is multi-rank, how does every TT matrix rank affect the final result? We
answer this question with the below experimental results.

We conducted the experiments on recovering House, Lena, and Airplane images with a size of
256x256x3. The random missing patterns have four missing ratios: 10%, 30%, 50%, and 70%
respectively. We label the 8 TT matrices as k=1, 2, ..., 8. Then the PSNR (dB) results of X, (the optimal
solution of the n» subproblem which exploits the nt" TT matrix rank) in TTLR and TTLRTV methods
are shown in Figure 15.

From Figure 15, we can see that, the PSNR (dB) results of each subproblem is steeply different
in the TTLR method, which demonstrates that each TT matrix rank contributes different PSNR result.
Since there are no rules to find which TT matrix rank meets the best PSNR result, we should combine
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each solution of X, to obtain the final X, i.e. X =2k, . Comparing the PSNR curves of TTLR and
TTLRTV method in Fig. 15, the PSNR (dB) results of each subproblem is slightly different in the
TTLRTV method which demonstrates that the combination of TT and TV can make the PSNR more
balanced among all k.
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Figure 15. PSNR (dB) results contributed by each TT matrix in TTLR method and TTLRTV method.
We permute the image size of 256x256x3 to an order-9 tensor by the QA scheme. Then we labeled the
TT matrices of this order-9 tensor as k=1, 2, ..., 8. We use the random missing patterns with four
missing ratios: 10%, 30%, 50%, and 70% respectively. The tested color images for the PSNR curves in
(a)-(c) are House, Lena and Airplane images respectively.

4.4. Runtime and complexity analysis

From a high-dimensional curse perspective, converting an image to a higher-order tensor can
result in increased complexity, which inevitably leads to a longer runtime. We compare our methods
(UnfoldingLRTV, tSVDLRTV, and TTLRTV) with the traditional MatrixLR method and the close
STDC, HaLRTC, FBCP, SPCQV, and LRTV methods in running time, as shown in Table 8.
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Table 5. PSNR (dB)/SSIM and SSIM of the seven methods without rearrangement and with

rearrangement.
PSNR (dB)/SSIM of different color images under different missing
patterns
Methods House Lena Airplane Boats
Random 50% Lines Random line Random 80%
MatrixLR 9.38/0.8970 13.34/0.5850 7.118/0.1308 19.18/0.5680
TTLR 28.61/0.871 13.34/0.585 7.11/0.130 19.25/0.519
Without Rearrangement  tSVDLR 32.30/0.932 13.34/0.585 7.11/0.130 21.60/0.707
UnfoldingLR 7.83/0.093 13.34/0.585 7.11/0.130 6.32/0.102
TTLR 30.21/0.9251 31.79/0.9559 25.77/0.8796 21.44/0.7144
With Rearrangement tSVDLR 29.79/0.8989 31.20/0.9561 18.91/0.8386 21.34/0.6879
UnfoldingLR 32.58/0.9416 33.45/0.9771 28.75/0.9464 23.46/0.8139

Table 6. PSNR (dB)/SSIM and SSIM of the nine methods.

PSNR (dB)/SSIM of different color images under different missing patterns

No. Methods House Peppers Lena Airplane  Baboon Boats
Random 50% Text Lines Random line Blocks Random 80%
1 STDC 32.04/0.9300 33.61/0.9813 28.56/0.8995 23.49/0.7756 27.01/0.9293 21.88/0.7340
Other 2 HalLRTC 32.07/0.9423  25.84/0.9496 13.34/0.5850 19.94/0.6334 28.04/0.9397 20.56/0.6858
methods 3 FBCP 26.41/0.8701 NAN 14.56/0.5242  10.25/0.1954 18.71/0.5546  20.91/0.6947
4  TMac-TTKA 23.18/0.8113  29.47/0.9681 29.93/0.9462 20.82/0.7521 28.04/0.9429 8.83/0.1229
5 SPCTV 29.56/0.9133  23.38/0.9154 16.02/0.6107 18.58/0.6894 24.21/0.9144 20.98/0.7254
6 LRTV 30.93/0.9382  36.98/0.9945 34.07/0.9724 26.82/0.9228 27.10/0.9319 21.62/0.7541
Our 1 TTLRTV 33.02/0.9579  37.27/0.9945 34.94/0.9823 28.82/0.9561 29.46/0.9559 22.37/0.7487
methods 2 tSVDLRTV 32.20/0.9550  37.49/0.9950 34.70/0.9818 28.03/0.9507 29.56/0.9574 22.86/0.8021
3  UnfoldingLRTV 35.61/0.9689 37.72/0.9952 34.87/0.9821 29.55/0.9639 29.59/0.9556 25.43/0.8863
Table 7. PSNR (dB)/SSIM and SSIM of the eight methods.
PSNR (dB)/SSIM of different color images under different missing patterns
No. Methods House Peppers Lena Airplane Baboon Boats
Random 50% Text Lines Random line  Blocks Random 80%
1 MatrixLR 9.38/0.8970 33.23/0.9814  13.34/0.5850  7.118/0.1308  27.62/0.9343  19.18/0.5680
2 TV 29.70/0.8816  34.14/0.9913  29.21/0.9107  22.85/0.8463  23.18/0.9066  20.32/0.6103
3 TTLR 30.21/0.9251  34.86/0.9892  31.79/0.9559  25.77/0.8796  25.42/0.9239  21.44/0.7144
4 tSVDLR 29.79/0.8989  33.86/0.9840  31.20/0.9561  18.91/0.8386  28.03/0.9373  21.34/0.6879
5  UnfoldingLR 32.58/0.9416  36.86/0.9938  33.45/0.9771  28.75/0.9464  22.22/0.9238  23.46/0.8139
6  TTLRTV 33.02/0.9579  37.27/0.9945  34.94/0.9823  28.82/0.9561  29.46/0.9559  22.37/0.7487
7  tSVDLRTV 32.20/0.9550  37.49/0.9950  34.70/0.9818  28.03/0.9507  29.56/0.9574  22.86/0.8021
8 UnfoldingLRTV  35.61/0.9689  37.72/0.9952  34.87/0.9821  29.55/0.9639  29.59/0.9556  25.43/0.8863

UnfoldingLRTV methods: In the first step, the QA scheme is used to decompose a single image
into several small graphs. Because of the similarity of these small graphs, the QA tensor can be

reduced to a matrix with a low-rank structure in an unfolding way. Ignoring TV constraints, the

unfoldingLRTV method only needs to solve the low-rank matrix completion problem of an unfolding

matrix, so the running time is similar to the traditional MatrixLR method, and the accuracy is higher
than the traditional MatrixLR method.
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Table 8. Runtimes(s) of the different methods.

Runtime (s)

House Lena Airplane Boats
Methods Random 50% Lines Random lines Random 80%
MratrixLR 4.95 0.17 0.16 5.01
STDC 5.43 5.13 5.17 5.16
HaLRTC 8.00 0.88 0.84 6.84
FBCP 188.32 86.45 132.09 219.33
SPCTV 19.25 16.37 16.03 17.69
LRTV 19.08 20.17 21.04 21.05
TTLRTV 145.5 143.2 142.6 142.3
tSVDLRTV 15.23 15.07 15.17 15.14
Unfoldingl RTV 9.49 8.53 8.69 8.72

The tSVDLRTV methods: Since the color image is highly unbalanced in the size of three
dimensions, which is not suitable for the low tubal rank constraint, we use the QA scheme to
rearrange an image into a third-order tensor with a more balanced size of every dimension. Then we
use TNN to constrain the low tubal rank of the rearranged tensor, due to the fast Fourier scheme, it
is necessary to perform a low-rank matrix constraint on each frontal slice after the third-dimensional
Fourier transform. At this time, the SVD decomposition process will increase the time consumption.

TTLRTV methods: TT multi-rank is the combination of the rank of each TT matrix. The TTLRTV
method essentially completes the same data amount N-1 times, where N is the order of the QA tensor.
So, although the TITRTV method is effective, it is necessarily more computationally expensive than
the low matrix-rank completion method.

In summary, among the three methods, the UnfoldingLRTV method achieves the best
performance both in accuracy and runtime; The TTLRTV method reaches better accuracy, but it is
time-consuming; The tSVDLRTV method has moderate performance both in runtime.

All in all, the above three methods can deeply exploit the potential low-rank prior of an image
and have been successfully used for image inpainting problems, which demonstrates that the three
flexible QA schemes are perfect ways to explore the low-rank prior of an image.

5. Conclusions

To effectively explore the potential of low tensor rank prior to an image, we first exploited a
rearrangement scheme (QA) for permuting the color image (3-order) into three flexible
rearrangement forms (with more efficient low tensor rank structure). Based on the scheme, three
optimization models by exploiting the low unfolding matrix rank, low tensor tubal rank, and low TT
multi-rank were proposed to improve the accuracy in image inpainting. Combined with TV
constraints, we developed efficient ADMM algorithms for solving those three optimization models.
The experimental results demonstrate that our low tensor-rank-based methods are effective for image
inpainting, and are superior to the low matrix-rank completion method and numerous close methods.
The low tensor rank constraint is effective for image inpainting, which is mainly due to the support

of the QA scheme.
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