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Abstract: Accurate climate data at fine spatial resolution are essential for scientific research and the
development and planning of crucial social systems, such as energy and agriculture. Among them, sea surface
temperature plays a critical role as the associated El Nifio-Southern Oscillation (ENSO) is considered a
significant signal of global interannual climate system. In this paper, we propose an implicit neural
representation-based interpolation method with temporal information (T_INRI) to reconstruct climate data of
high spatial resolution, with sea surface temperature as the research object. Traditional deep learning models
for generating high-resolution climate data are only applicable to fixed resolution enhancement scales. In
contrast, the proposed T_INRI method is not limited to the enhancement scale provided during the training
process and its results indicate that it can enhance low-resolution input by arbitrary scale. Additionally, we
discuss the impact of temporal information on the generation of high-resolution climate data, specifically,
which month the low-resolution sea surface temperature data is from. Our experimental results indicate that
T_INRI is advantageous over traditional interpolation methods under different enhancement scales, and the
temporal information can improve T_INRI performance for a different calendar month. We also examined the
potential capability of T_INRI in recovering missing grid value. These results demonstrate that the proposed
T_INRI is a promising method for generating high-resolution climate data and has significant implications for
climate research and related applications.

Keywords: deep learning; implicit neural representation; sea surface temperature; super resolution; satellite
retrieval climate data; temporal information

1. Introduction

EI Nino-Southern Oscillation (ENSO) is the strongest signal of interannual variability in the
climate system. Research on ENSO is crucial for understanding the complex interactions between the
oceans, atmosphere, and climate, as well as for developing strategies to mitigate the potential impacts
of climate variability and change because it not only directly causes extreme weather events such as
droughts in the tropical Pacific and its surrounding areas, but also indirectly affects the weather and
climate in other parts of the world through teleconnections, triggering meteorological disasters [1-3].
Currently, many studies have been conducted to investigate the teleconnections of ENSO and its
predictive capabilities regarding other climate factors [4-7]. In these studies, ENSO is typically
described by various indices, which are mainly calculated based on sea surface temperature (SST) in
different regions. For instance, the calculation of the NINO 3.4 index is primarily based on SST in the
range of 170 °W-120 °W and 5 °S-5 °N.

In recent years, related research has gone beyond the use of scalar indices such as NINO 3.4 to
characterize ENSO. On one hand, the use of scalar indices often leads to a loss of information on the
spatial distribution of SST, which may be critical in understanding the relationship between ENSO
and other climate factors. On the other hand, recent ENSO events have shown strong anomalies in
SST regions within the subtropical Pacific that are different from the traditional regions [8]. The
limitations of scalar indices in capturing the full complexity of ENSO dynamics have spurred interest
in alternative methods for describing ENSO events. For example, some studies have used empirical
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orthogonal functions of SST in the Pacific Ocean as indices, rather than NINO3.4 [9]. Others have
employed a non-homogeneous hidden Markov model (NHMM) to simulate the monthly-scale
tropical Pacific SST and defined five different hidden states for each month [10]. Prior work[8] uses
this approach to investigate the potential predictive power of the five hidden states on global rainfall.

Commonly used SST data are climate model outputs or satellite-derived data. The accuracy and
richness of information in these grid-type representations are controlled by their resolution. Not only
SST data, high-resolution (HR) climate data are of great significance for climate simulations,
agriculture, and other fields. Traditional methods for obtaining HR climate data mainly rely on
interpolation, such as bicubic and bilinear interpolation [11]. These methods do not require training
data, but often result in over-smoothed outcomes. With the development of deep learning techniques,
an increasing number of deep learning models have been applied to generate HR climate data and
address the issue of over-smooth in the process. For example, Vandal et al. [12] used Super-Resolution
Convolutional Neural Networks (SRCNN) to generate HR rainfall data. Ducournau et al. [13] also
used SRCNN to increase the resolution of satellite-derived SST data. Stengel et al. [14], based on
SRGAN, enhanced the resolution of wind and solar data by a factor of 50. Wang et al. [15] explored
the applicability of SInGAN in generating HR climate data. However, a common limitation of these
models is that their enhancement scales are fixed. Once trained, they can only be used for
reconstructing HR data at a pre-defined gridded structure, whereas the climate analysis often require
HR data at arbitrary locations over different scales.

To overcome this limitation, we propose to develop a new approach for continuous HR data
reconstruction based on the Implicit Neural Representation (INP) method [16,17]. The idea is to
represent an object as a multi-layer perceptron (MLP) that maps coordinate to signals. It has been
extensively used in 3D tasks, such as simulating 3D surfaces [18,19] or structures [20,21]. INP is also
widely used in research on image reconstruction [22-24]. One improvement to this approach is to use
a encoder to construct a shared feature space that can be used to represent every sample with an
implicit representation [25,26]. For example, Chen et al. [27] constructed a continuous image
representation using implicit neural representation to overcome the limitation of implicit sample-
specific neural representation.

In this study, we introduce an interpolation method that integrates temporal information based
on implicit neural representation (T_INRI). By fusing deep learning models with interpolation
technique, this method can produce HR climate data at arbitrary scales. After model's training, our
method is capable of not only enhancing the resolution based on the scales used during training but
also enhancing the resolution of climate data based on scales not seen in the training phase. While
implicit neural representations have proven successful in 3D and image tasks, their application in
climate research has yet to be explored. This paper addresses this gap by focusing on a specific use
case: reconstructing HR SST data from low-resolution (LR) samples. We regard the reconstructing
HR SST data as a problem of estimating unknown values (HR sample positions) based on known
values (LR sample positions). Within the proposed interpolation approach, LR SST samples undergo
an encoding process to attain corresponding implicit neural representations for each grid cell. These
representations act as anchors for predicting the values at positions in the HR result. The method
establishes a relationship between the implicit neural representations at these anchor sites and
unknown positions, factoring in grid size, central point coordinates, and other parameters. A decoder
then infers the values at these unknown positions, yielding a comprehensive HR climate data result.
Additionally, we incorporate temporal information, specifically the calendar month during which
samples are acquired. The model employs one-hot encoding to capture the sample's calendar month
and leverages a learnable matrix to enhance its capability to process intricate temporal information.
Our results suggest that the proposed interpolation method outperforms conventional interpolation
methods at different enhancement scales. Compared to CNN-based approaches for generating HR
climate data, the proposed method's advantage lies in its flexibility. Comparisons between results
with and without temporal information underscore the merit of incorporating temporal information,
as it elevates the quality of the generated HR SST data. Additionally, we explore the method's
potential in recovering missing data by setting the enchantment scale to be 1.
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The paper’s contributions are: (1) introducing a novel interpolation method based on implicit
neural representation which, after training, can provide arbitrary HR SST climate data; (2) embedding
temporal information into the process of generating HR SST climate data and demonstrating its
effectiveness.

The paper is organized as follows. Section 2 describes the data used in the study and Section 3
introduces the details of the proposed T_INRI method and the network setup. Section 4 discuss the
results. Section 5 gives conclusions and discusses future research directions.

2. Dataset

We use the GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis dataset
(MUR SST) in our experiments [28]. MUR SST is one of the current highest-resolution SST analysis
datasets, providing global daily SST from May 31, 2002 to the present. The spatial resolution of MUR
SST is 0.01° X 0.01°, roughly at 1 km intervals. MUR SST combines three types of satellite SST
datasets: HR infrared SST data of about 1 km, medium-resolution AVHRR (infrared) SST data of 4 to
8.8 km, and microwave SST data with a sampling interval of 25 km [29]. In addition to these three
satellite derived data, MUR also assimilates two types of in-situ SST measurements to enhance the
estimation of the underlying temperature. Due to computational burden of using the entire dataset,
we extracted the SST in the region 180°W-90°W and 5°S-5°N as the study area, shown in Figure 1.
The daily sample from June 1, 2002 to December 31, 2016 serves as the training data for the model,
while the daily data from January 1, 2017 to December 31, 2022 with a total of 2188 samples serves as
the validation dataset. For testing, in addition to the MUR SST validation dataset described above,
we also report results for MUR SST Monthly Mean dataset as a external validation. MUR SST Monthly
Mean dataset is created by NOAA NMFS SWESC ERD based on the GHRSST Level 4 MUR SST daily
dataset mentioned above. It has the same spatial resolution as daily data. We use the same study area
as the one used for the MUR SST dataset. The MUR SST Monthly Mean dataset is comprised of
monthly samples spanning from 2003 to 2020.
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Figure 1. Region of SST data retrieval for th study area.
3. Method

3.1. Overview of Proposed Method

The essence of obtaining HR climate data using interploation based method is to derive the
climate values of HR grid cells based on the values of LR grid cells. Traditional spatial interpolation
methods are based on information from the original data domain. For example, bicubic interpolation
computes the value of an unknown grid cell by taking the weighted average of the surrounding 16
grid cells. In our proposed method, instead of directly interpolating from the original data domain,
the interpolation occurs in the implicit representation domain. Essentially, the model is comprised of
two parts: building implicit representation domain and interpolation. We first introduce the two deep
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learning models employed in this method, and then provide a detailed description of the specific
steps within the proposed T_INRI method.

3.2. Enhanced Deep Super-Resolution Network and Multilayer Perceptron

The proposed method integrates two distinct deep learning architectures. The first architecture
is from the Enhanced Deep Super-Resolution Network (EDSR) [30], and we use the initial segment
before the upsample layer, as depicted in Figure 2A. Within our method, EDSR is constructed with a
convolutional layer, succeeded by 16 residual blocks. The addition of multiple residual blocks equips
the network with the capability to discern complex patterns from the training process. Each of these
blocks consists of convolutional layers, succeeded by a ReLU activation function. The essence of these
residual blocks is to ascertain the residual between the input and output, eschewing direct output
learning. This design implies that the network predominantly learns variations from identity
mapping, promoting training stability. We utilize this structure as an encoder to transition the input
data from its original data domain to an implicit representation domain. Rather than modifying the
spatial dimensions of the input, the encoder enhances the depth at each location, yielding this implicit
representation. The second architecture is a five-layer multilayer perceptron (MLP), depicted in
Figure 2B. Each hidden layer processes inputs from its preceding layer, undergoes a weighted
summation, and produces outputs via the ReLU activation function. In our design, the hidden layers
possess a dimensionality of 256, with the output layer dimensioned at 1. This MLP, in our method,
functions as a decoder, determining the value at a specific location based on relevant input
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Figure 2. The main architecture of the network used in the proposed method: (A) a partial structure
of EDSR, serving as the encoder in the proposed interpolation method; (B) is a multi-layered MLP,
functioning as the decoder in the proposed interpolation method.

3.3. Implicit Neural Representation Based Interpolation with Temporal Information

3.3.1. Implicit Neural Representation Based Interpolation

An implicit representation domain is achieved through the utilization of convolutional neural
network-based encoder, which outputs the feature map and retains the same size as the input sample.
At each location in the input sample, the corresponding feature vector constitutes the implicit
representation of that location. Each grid cell can be represented by its centre position. We
hypothesize that the value of each grid cell in the sample can be obtained by inputting the grid cell's
implicit representation, coordinates, and size into a decoder:

V = D5(z2,[p1,p2]) @™

where z represents the implicit representation of the target position, and [p;,p,] represents the
coordinates of the center point of the grid. Dj is the decoder, which is the MLP we described in
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section 3.2. We assume that the implicit representation is uniformly distributed in the feature map
domain, so the value of the grid cell at an arbitrary location in the domain can be obtained through
the following function D:

Vunknown = D(z%,Ad, [s1,52], [x1, x2]) )

where z*is the implicit representation of the nearest known grid to the predicted unknown grid,
[s1,s,] represents the length and width of the unknown grid, [x;,x;] represents the coordinates of
the center of the unknown grid, and Ad is the euclidean distance between the two grids which is
calculated by:

Ad = \/(x1 —p1)? + (x2 — pp)? ©)

The model represents the length and width of the grid through s; and s,, thus providing the
information of grid size. We take grid size into consideration because grids of different sizes might
share the same central point. However, grids of varying sizes often represent distinct values due to
the differences in the areas they cover. By incorporating information about grid size, we enhance the
decoder's ability to differentiate situations with the same grid center but differing resolutions. For
HR climate data projection task, the implicit representation of each grid cell in the LR input data can
be obtained through a shared encoder among all samples. Every grid cell with implicit representation
in the LR input can be used as anchor point for generating the corresponding HR data. In Figure 3,
blue grid cells represent LR input data, and the values of red grid cells which represent one grid cell
of HR data can be obtained by the nearest anchor points Anchory,; and Equation 2.

Anchory | Anchory,

lt[ lt?'
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[ ]
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Figure 3. Relative position of unknown grid cell in HR data and anchors in LR input.

However, based on the First Law of Geography: the closer the points are in space, the higher the
probability they have similar feature values, and the farther the points are, the lower the probability
they have similar feature values. For any unknown grid cell, we can compute its vaule in the latent
feature domain based on its nearest grid cell at the coarse resolution. However, this way remains
limited as it ignores the valuable information from other surrounding known grids. Furthermore, just
using one nearest anchor point can result in discontinuous patterns in the generated HR output
because the anchor point (i.e., the nearest grid cell) might abruptly shift from one to another when
the target grid cell moves gradually over space. The proposed method eliminates the discontinuity
of the result through the weighted average of interploated results from multiple anchor points
around the unknown grid cell, where the weights are based on the distance between anchor points
and the target grid cell.

We consider the four points around the unknown grid as anchor points. As seen in Figure 3,
they are located at points Anchory;, Anchory,, Anchory;, and Anchory,, respectively, on the upper left,
upper right, lower left, and lower right of the unknown grid cell. T_INRI first obtains the
interpolation results vy,xnown i Pased on each anchor point for the unknown grid through Equation
2. Then, the final prediction value of the unknown grid is obtained by weighed average of the four
results according to the inverse distance.
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Vunknown = Wi * Vunknown_i (4)
i€(br,bl,tr,tl)
1
d;
Wi=——"—7 )

Zie(br,bl,tr,tl) d_l

where d; represents the distance between the center of the unknown grid cell and each of the four
anchor points.

3.3.2. Temporal Information Embedding

The process of getting HR data from LR counterpart is commonly considered to be an ill-posed
problem, as one LR pattern can correspond to multiple different HR patterns, and the model's
training process tries to average all plausible solutions. In this LR to HR projection process, additional
information is considered to be useful, as it helps the model choose the most appropriate HR pattern
among all plausible solutions. For example, in the case of climate data such as sea surface
temperature, temporal information, i.e., the time period the sample was taken from, can be utilized.
Climate variables may exhibit a relatively uniform spatial distribution at one time period and a non-
uniform distribution at another time period, and these two different HR data may correspond to the
same LR sample. Adding temporal labels helps the model lock onto the most appropriate HR
solution. In our research, the calendar month from which a SST sample was taken was considered as
temporal information. Our hypothesis is that HR SST samples from different months (e.g., January
and July) can correspond to the same LR sample. By providing the LR sample’s calendar month
information, the model can more robustly find the corresponding HR pattern by using implicit neural
representation.

In order to handle temporal information, the calendar month of each sample is first encoded as
a 12-dimensional one-hot vector. The vector consists of Os in all cells with only one cell with a value
of 1 uniquely identifying the calendar month of the sample. This one-hot vector is then projected into
an 12 dimensional embedding space by multiplying it with a learned parameter matrix W, as
follows:

Tiaper = Wy X t (6)

where Tupe € R'*! is a vector representing the temporal information of a sample, W, € R12X12 jg
a learnable matrix, and t € R'?*! is a one-hot vector. The updated version of Equation 2 is:

Vunknown = D (27, Ad, [s1, 521, [x1, %21, Tigper) @)

3.4. Training and Setup

In this section, we discuss the training procedure of T_INIRI. Figure 4 shows how T_INIRI
works and its training steps. Our main goal during training is to estimate the parameters of the
encoder and the MLP using our training data. For each LR input, the encoder provides a implict
representation for every grid in the LR sample. For every unknown grid in the HR data, our method
looks for the four closest known points using as anchors. Using the MLP, we then figure out the value
of this unknown grid. After repeating this for every unknown grid in the HR, we get the HR result
for the given LR input. As previously discussed, we expect the model to be used to obtain HR data
at any enhancement factor after training.

The training process of the model employs self-supervised learning. For each HR input sample,
the enhancement factor k is randomly selected from uniform distribution from 1 to 5. We follow the
previous research on the encoder and use a 48 X 48 patch as the input size for the encoder during
the training process. This way, for the HR input sample, the model first cuts out a 48k X 48k size
patch. The patch is divided into separate grid cells as unknow cells. Each grid cell contains the grid
value as the ground truth, length and width of the grid as the grid size, the center point coordinates
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of the grid as the target coordinates, and the temporal information of the grid (for the grid cells on
the same sample, their temporal information is consistent). The 48k x 48k size patch is down-scaled
toa 48 x 48 LR data by a factor of k using nearest neighbor interpolation. The LR data then input
into the encoder to obtain an feature map with size (64 x 48 X 48) , where 64 is the length of
implicit representation. Afther we get the implicit representation for each known grid in the LR input,
the propsed method searches for the nearest four anchors for each target coordinate based on the
feature map. The propsed method calculates the value of the target grid for each of the four anchors,
then takes the IDW weighted average to get the final target grid value. After searching and computing
for every unknown grid in the HR sample, our method combines the results of all these unknown
grids to form the generated HR result. This result is then compared with the ground truth to calculate
the loss. Based on this loss, the parameters of both the encoder and the MLP are updated.
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Figure 4. Workflow and training steps of the proposed interpolation method.

We use Charbonnier Loss as the loss function for optimization [31],32]. The batch size used in
our experiment is 16. The training is performed for a total of 1000 epochs, with the initial learning
rate set to 0.0001. The learning rate is adjusted after every 200 epochs, decreasing by a factor of 0.5.

3.5. Validation

We conducted evaluation on multiple scales, including the scales used for training and higher
spatial resolutions. For the MUR SST dataset and SST Monthly Mean dataset, we evaluated the
performance of the models on out-of-training enhancement scales of 8, 12, 14, 16, and 20, in addition
to the in-training enhancement scales of 2 to 5. We used the original resolution MUR SST and SST
Monthly Mean dataset as the ground truth. For each enhancement scale k, we first down-sampled
the original resolution samples to the corresponding LR inputs using the nearest neighbour
interpolation by a scale of (1/k), then applied different models to increase the resolution to the
original resolution and compared with the ground truth. Root mean squared error (RMSE) between
ground truth HR data and generated HR data was used to evaluate performance.
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4. Results and Discussion

4.1. Comparison of Results Generated by Different Models for Arbitrary Scale HR

To verify the effectiveness of the proposed model in generating HR SST data of different scales,
we compared the results obtained by the proposed T_INRI with those obtained by other
interpolation methods, including two traditional interpolation methods, bicubic interpolation and
bilinear interpolation, as well as two deep learning models, SRCNN and SRGAN. As mentioned
previously, SRCNN and SRGAN were used to improve resolution with a fixed enhancement scale.
Once trained, they cannot be used for arbitrary multiple resolution enhancements. In our results, we
only compared two enhancement scales, 4 and 8 for SRCNN and SRGAN. The training process of
SRCNN follows [12], and the training process of SRGAN follows [14]. For each enhancement scale,
the original resolution serves as the ground truth. We down-sampled the original data to the
corresponding size as LR input for each scale using an average pooling, respectively. To analyze the
impact of temporal information on the proposed interpolation method, we also trained a decoder and
MLP for interpolation without incorporating time information. The method without embedded
temporal information is denoted as INRI.

The results of the comparison are shown in Table 1. We not only emphasize the enhancement
scales observed during the training phase, specifically scales 2 to 5, but also consider the scales
beyond training scales, termed as 'out-of-training-scale' in the table. The table also delineates results
for both versions: one with temporal information and one without. It is evident from the data that
across various enhancement scales, the performance of the propsed method, irrespective of with or
without temporal information, markedly surpasses that of traditional interpolation methods. For
instance, when the enhancement scale is 2, both Bicubic and Bilinear have an RMSE of 0.014 and the
RMSE corresponding to T_INRI achieves merely 0.004, which is a 71% improvement compared to
the previous two methods. When the enhancement scale is 5, the RMSE for Bilinear is 0.050, while for
the same scale, T_INRI's RMSE is 0.019, denoting a 62% enhancement. For the out-of-training-scale,
the superiority of T_INRI remains evident. Specifically, when the enhancement scales were 8, 10, 12,
14, 16, and 20, respectively, the HR results produced by T_INRI exhibit approximately 53%, 49%,
45%, 50%, 42%, and 39% enhancement compared to Bilinear. For SRCNN and SRGAN, when the
enhancement scale is 4, the results from SRCNN and SRGAN are close to those of T_INRI. However,
when the enhancement scale is 8§, SRCNN and SRGAN slightly outperform T_INRI. As previously
discussed, the architectures of these two models are specifically designed and trained for a certain
enhancement scale, hence it is anticipated that their performance under specific resolution conditions
would be comparable to that of T_INRI. More intricate model structures can be formulated based on
SRCNN and SRGAN to boost the performance of the HR outputs. However, their network
architectures and parameters are defined for specific enhancement scales, making it infeasible to
compare them with other models under arbitrary enhancement conditions.

From the performance comparison between T_INRI and INRI across varying enhancement
scales, the beneficial impact of temporal information on the results becomes evident. For in-training-
scales, the advantage conferred by temporal information tends to diminish as the scale increases. For
instance, at an enhancement scale of 2, INRI registers an RMSE of 0.013°C, aligning with the results
from Bicubic and Bilinear methods. The RMSE of 0.004°C demonstrated by T_INRI underscores the
substantial benefits derived from incorporating temporal information. As the enhancement scale
progresses from 3 to 5, the improvements observed with AW are 0.006°C, 0.003°C, and 0.002°C,
respectively, indicating a declining trend. Considering out-of-training-scales, T_INRI consistently
outperforms INRI, albeit with a slight margin, and this superiority remains stable across different
enhancement scales. Enhancing the resolution of LR input by a significant scale is inherently
challenging, particularly for scales not encountered during training. Under such circumstances, the
influence of temporal information on the model is relatively diminished.
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Table 1. Quantitative comparison of different methods on MUR SST validation dataset.

In-training-scale RMSE (°C) Out-of-training-scale RMSE (°C)
X2 X3 x4 X5 X8 Xx10 x12 x14 X16 %20
Bicubic  0.014 0.027 0.040 0.051 0.082 0.099 0112 0129 0.135 0.154
Bilinear 0.014 0.027 0.039 0.050 0.079 0.095 0.107 0.124 0.130 0.148
SRCNN - - 0.015 - 0.035 - - - - -
SRGAN - - 0.014 - 0.033 - - - - -
T_INRI 0004 0.009 0.014 0.019 0.037 0.048 0.058 0.063 0.075 0.090
INRI 0.013 0.015 0.017 0021 0.038 0.049 0.059 0.065 0.077 0.092

Method

The qualitative comparison results are illustrated in Figure 5 and Figure 6. To better showcase
the discrepancies in the HR results generated by different models, we display the outcomes derived
from subtracting the ground truth from the HR results produced by the various models. As can be
seen from Figure 5, when the enhancement scale is set to 2, the spatial distribution of T_INRI's results
aligns closely with the ground truth. Observing the top-left segment of the right-side figure reveals
that most regions are white, indicating that the difference between T_INRI's output and the ground
truth is nearly zero. The error distribution patterns of INRI, Bicubic, and Bilinear are similar,
corroborating the results presented in Table 1. Comparing the error distributions of INRI, Bicubic,
and Bilinear, we find that traditional interpolation models tend to overestimate SST in areas where
INRI typically underestimates, and vice versa. These differences may arise because traditional
methods interpolate in the original data space, while the proposed interpolation takes place in the
implicit neural space. Comparing INRI and T_INRI highlights the significant advantages that
temporal information offers in enhancing the quality of the resulting HR output. However, when the
enhancement scale is set to 5, as depicted in Figure 6, despite the observation that the proposed
models with and without temporal information still outperform Bicubic and Bilinear in terms of
spatial error distribution, the influence of spatial information on the proposed models becomes
marginal. The spatial distributions between the two are largely consistent across most regions.
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Figure 5. Qualitative comparison of generated HR SST data from different models. The sample is
from MUR SST validation dataset with time label 20180603. The enhancement scale is X2.
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Figure 6. Qualitative comparison of generated HR SST data from different models. The sample is
from MUR SST validation dataset with time label 20170924. The enhancement scale is x5.

To further validate the robustness and applicability of the propsed method, an additional dataset
was utilized. Specifically, the MUR monthly mean SST dataset was employed, which shares an
identical spatial resolution with the MUR daily dataset. For evaluation purposes, the original spatial
resolution was treated as the ground truth. Corresponding LR inputs were derived using average
pooling across differnet scales. From Table 2, we observe the results based on the additional dataset.
The proposed interpolation method, which embeds temporal information, consistently exhibits
superior performance across various enhancement scales. When comparing results with and without
temporal information, it is evident that for the MUR monthly mean SST dataset, the embedding of
temporal information contributes to a more substantial performance improvement compared to the
previous validation dataset. For instance, at an enhancement scale of 5, the improvement between
with and without temporal information in the additional dataset is 0.008°C. This gap narrows to
0.004°C at an enhancement scale of 16. In contrast, for the same enhancement scales, the validation
dataset shows a consistent improvement of only 0.002°C. This indicates that embedding temporal
information enhances the generalization capability of the proposed interpolation method.

Table 2. Quantitative comparison of different methods on MUR SST monthly dataset.

In-Training-Scale RMSE (°C) Out-of-Training-Scale RMSE (°C)
X2 x3 x4 x5 x8 x10 x12 x14 x16 %20
Bicubic  0.014 0.028 0.041 0.053 0.084 0.100 0115 0.128 0.138 0.157
Bilinear  0.014 0.028 0.040 0052 0.081 0.097 0111 0.123 0.132 0.151
T_INRI  0.005 0.010 0.015 0.020 0.038 0.050 0.060 0.069 0.077  0.092
INRI 0.014 0.021 0.023 0.028 0.044 0.055 0064 0.073 0.081 0.09

Method

4.2. Analysis of the Impact of Temporal Information

To further investigate the influence of temporal information on the results, we compared the
performance with and without temporal information embedded. Figure 7 depicts the error density
between HR data generated based on different calendar months and the ground truth observations,
with an enhancement scale set to 3. Notably, results incorporating temporal information consistently
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exhibit smaller errors than those without, and this improvement remains stable across different
calendar months. The difference in average monthly error between the two approaches is
approximately 0.005°C. Comparing results across various months, December manifests the smallest
average error at 0.009°C. Meanwhile, August has the lowest standard deviation in error, amounting
to 0.003°C. For results without temporal information, December similarly yields the smallest average
error, recorded at 0.013°C, while July has the lowest error standard deviation, standing at 0.004°C.
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Figure 7. Density plot of error between with and without temporal information. The enhancement
scale is 3.

In order to better illustrate the impact of temporal information, we present in Figure 8 the
improvement in results obtained with temporal information at different scales and seasons. It is
apparent that the figure reflects the same trend observed in Table 1. Specifically, as the enhancement
scale increases (here represented as 2, 3, 4, and 8), the difference between results with and without
temporal information diminishes. This diminishing trend with respect to enhancement scale is
consistent across each calendar month. For instance, at an enhancement scale of 3, the average
difference between results with and without temporal information for every calendar month is
approximately 0.005°C. When the enhancement scale is increased to 8, this average difference
narrows to about 0.003°C. From the analysis of the impact of temporal information, we can conclude
that incorporating temporal data can enhance the HR SST results obtained for each calendar month.
However, as the enhancement scale increases, the positive influence of temporal information
consistently diminishes for every month.

To clarify how temporal information affects the results of each sample, we computed the spatial
standard deviation for every ground truth. Subsequently, we plotted the relationship between the
error of each sample and its corresponding spatial standard deviation across different enhancement
scales. Figure 9 shows our results. Across varied enhancement scales, the slope of the trend for results
with temporal information is consistently less compared to the one without temporal information.
Notably, at enhancement scales of 8 or 12, the trend for results with temporal information exhibits a
negative slope. Although the quantitative relationship between errors and spatial standard
deviations remains ambiguous due to varying sample sizes corresponding to different spatial
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standard deviations, a qualitative comparison between RMSE and standard deviation trends
suggests that embedding temporal information aids in reducing errors for samples with larger spatial

standard deviations.
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Figure 8. Mean error for the proposed interpolation method with and without temporal information

under different calendar months and enhancement scales.
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temporal information, across different enhancement scales.

4.3. Analysis of Using Proposed Method for Recovering Missing Value

The idea of the proposed interpolation method based on implicit neural representation for
obtaining HR results lies in the ability to infer values at unknown locations from known values. In
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this section, we explore the applicability of the proposed method, with an enhancement scale set to
1, to recover missing values in measurement data. Addressing missing values in remote sensing
measurement data holds significant relevance in climate research. For instance, SST derived from
infrared sensors can achieve a resolution as fine as 1 km. However, IR-based measurements are
susceptible to cloud contamination. Such cloud interference can result in missing values in the data
for certain regions. These inherently constrain the utility of the data to some extent. We assessed the
efficacy of our proposed method in addressing this challenge.

We employed our pre-trained encoder and MLP for these experiments. Our input data consists
of patches from the MUR SST validation dataset, each of size 200x200. Different proportions of
missing data were introduced. Initially, we filled these missing data points with the average value of
the known data. Subsequently, these filled patches were input into the encoder to obtain the implicit
representation. For each missing data point, we also identified the four nearest known points and, in
conjunction with temporal information, utilized the MLP to simulate the value at that position.
Results for various proportions can be observed in Table 3. As the proportion of missing data ranges
from 5% to 60%, we note that the proposed interpolation method, which embeds temporal
information, consistently outperforms other conventional interpolation techniques. For instance, at a
5% missing data ratio, the error for T_INRI stands at 0.007°C, slightly superior to Bicubic and Linear
methods, both registering an error of 0.008°C. When the missing ratio is at 40%, the error for T_INRI
is 0.011, whereas INRI, Bicubic, and Linear yield errors of 0.014°C. At a 60% missing ratio, T_INRI
exhibits more stable outcomes. The errors for the method with and without temporal information are
0.012°C and 0.013°C, respectively. In contrast, Bicubic, Linear, and Nearest interpolation techniques
present errors of 0.017°C, 0.019°C, and 0.021°C, respectively. Broadly, T_INRI demonstrates a
pronounced advantage, particularly as the missing data proportion escalates. While the
incorporation of temporal information enhances T_INRI's performance in recovering missing values,
the extent of improvement remains modest. The visual outcomes of these experiments can also be
seen in Figure 10.

Table 3. Comparison of errors corresponding to different methods used to recover missing grid
values under different missing data ratios.

Missing proportion (RMSE (°C))

Method 5% 10% 20% 30% 40% 50% 60%
Bicubic 0.008 0.010 0.013 0.013 0.014 0.014 0.017

linear 0.008 0.008 0.012 0.014 0.014 0.015 0.019
Nearest 0.019 0.019 0.019 0.018 0.019 0.020 0.021
T INRI 0.007 0.008 0.012 0.011 0.011 0.011 0.012

INRI 0.008 0.009 0.014 0.013 0.014 0.013 0.013
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method and bicubic interpolation under different missing ratios.

5. Conclusions

In this study, we presented T_INRI designed for generating HR climate data across various
enhancement scales. Our method focused on SST data, employing daily HR MUR SST datasets to
train the encoder and MLP within T_INRI. For each position in the LR input, the encoder translates
it into an implicit representation. To determine values in unknown HR grids, T_INRI pinpoints the
closest four known anchors from the LR sample. T_INRI garners the information such as implicit
neural representations, distances, grid centroid coordinates, and size of the grid. To bolster
interpolation accuracy, we incorporate temporal information, specifying the originating calendar
month of each LR sample. Using the aggregated information, T_INRI employs the MLP to predict
the value at an unknown location. The values derived from the four anchors undergo an IDW process
for averaging, yielding the final value for the unknown grid. By methodically addressing each
unknown grid in HR, T_INRI consistently produces corresponding HR outputs from the LR inputs.
Unlike methods such as SRCNN or SRGAN, T_INRI strategically harnesses the feature domain to
correlate known and unknown positions using distance. This interpolation strategy empowers
T_INRI to generate HR outputs at arbitrary enhancement scale.

In the training process, T_INRI employs a self-supervised learning approach. The primary
objective is to enable the encoder and MLP to deduce unknown positions using known positions in
the feature domain. This training approach ensures that T_INRI can not only generate HR data
corresponding to enhancement scales encountered during training but also for those scales not
directly addressed during the training phase, such as the results at scales of 5, 8, 12, 14, 16, and 20.
We compared the outcomes from T_INRI with traditional interpolation techniques, namely bicubic
and bilinear interpolation. The findings underscore that T_INRI consistently outperforms the
alternatives across all enhancement scales. For scales of 4 and 8, the results from T_INRI are
comparable to those achieved by SRCNN and SRGAN. However, it is noteworthy that SRCNN and
SRGAN require specific training for specific enhancement scales. In such contexts, the flexibility of
T_INRI emerges as a distinct advantage.

To elucidate the impact of embedding temporal information, we examined the performance of
implicit neural representation-based interpolation both with and without the inclusion of temporal
data. We observed that, across various enhancement scales, the T_INRI incorporating temporal
information consistently outperformed its counterpart, INRI, which lacked such information. The
superiority of T_INRI is particularly pronounced for results corresponding to in-training-scales. As
the enhancement scale increases, generating the corresponding HR results becomes increasingly
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challenging. In particular, in the context of out-training-scale results, the enhancement offered by
adding temporal information to implicit neural representation-based interpolation is marginal. By
categorizing results from different enhancement scales into distinct calendar months, we determined
that the benefits provided by the temporal information are consistent across various months.
Incorporating temporal information has the potential to improve HR results for samples with larger
spatial standard deviations. Moreover, when applying T_INRI to external datasets, we discerned
that the embedding of temporal information can enhance the generalization capabilities of generating
HR climate data.

Given that the essence of T_INRI revolves around estimating unknown locations based on
known ones, we further explored its potential in recovering missing grid data. Our findings suggest
that T_INRI surpasses traditional interpolation techniques in recovering data from missing grids
across different missing ratios. In this particular application, the enhancement attributed to temporal
information remains marginal.

As a direction for future research, we plan to explore the use of learnable weights to compute
the final unknown grid cell values in T_INRI, as opposed to using fixed weights based on inverse
distance. Additionally, we aim to investigate the effectiveness of different encoders and the
application of T_INRI to other climate variables. In this study, we utilized discrete labels to describe
the temporal information of samples. A challenging avenue for future research would be exploring
the use of continuous representations to embed temporal information. These endeavors have the
potential to further enhance the capabilities of our method and provide new insights into the use of
deep learning methods in climate-related research.
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