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Abstract: We classify all the topologically non-equivalent phase portraits of the quadratic polynomial

differential system ẋ = (1 − 2x)(y − x), ẏ = y

(

2 − γy − 5γ − 4
γ − 1

x

)

, in the Poincaré disc for

all the values of the parameter γ ∈ R \ {1}. The differential system dx
dt = y − x, dy

dt =
y

1 − 2x

(

2 − γy − 5γ − 4
γ − 1

x

)

, when the parameter γ ∈ (1, 2] models the structure equations of a

static star in general relativity in the case of the existence of a homologous family of solutions, being
x = m(r)/r where m(r) ≥ 0 is the mass inside the sphere of radius r of the star, y = 4πr2ρ where ρ

is the density of the star, and t = ln(r/R) where R is the radius of the star. We classify the possible
values of m(r)/r and 4πr2ρ when r → 0.

Keywords: static star; polynomial vector fields; evolution

2010 Mathematics Subject Classification: 34C05

1. Introduction and the Main Results

The structure equations of a static star in general relativity in the case of the existence of a
homologous family of solutions are

ẋ = y − x,

ẏ =
y

1 − 2x

(

2 − γy − 5γ − 4
γ − 1

x

)

,
(1)

where the parameter γ varies in the interval (1, 2], and the dot denotes derivative with respect to the
variable t = ln(r/R) being R the radius of the star. Therefore, from the physical point of view we are
interested in the solutions defined in the interval t ∈ (−∞, 0). Here x = m(r)/r where m(r) ≥ 0 is
the mass inside the sphere of radius r of the star, y = 4πr2ρ being ρ the density of the star. For more
details on the differential system (4) see [3–5,7,8,10].

We remark that from the physical point of view and since x > 0 and y > 0 we are mainly
interested in the dynamics of the differential system (4) with γ ∈ (1, 2] in the set Q∗ formed by the
positive quadrant Q = {(x, y) ∈ R2 : x > 0, y > 0} of R2 without the straight line x = 1/2 where the
differential system (4) is not defined.

Note that the straight line y = 0 is invariant because when y = 0 we have that ẏ = 0. Therefore,
since ẋ|x=0 = y the set Q∗ is positively invariant, i.e. orbits of system (4) can enter in Q∗ through the
positive y-axis but never orbits of the quadrant Q can exit from Q∗.

Doing the change of the independent variable t → s, where dt = (1− 2x)ds the differential system
(4) becomes the polynomial differential system

ẋ = (1 − 2x)(y − x) = p(x, y),

ẏ = y

(

2 − γy − 5γ − 4
γ − 1

x

)

= q(x, y),
(2)
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where now the dot denotes derivative with respect to the variable s.
The differential system (2) is a polynomial differential system of degree 2 because the maximum

of the degrees of the polynomials p(x, y) and q(x, y) is 2. The polynomial differential systems of degree
2 are called simply quadratic systems and they have been intensively studied, see for instance the books
[1,11,13], the paper [5], and the hundreds of references quoted therein.

The domain of definition of the differential system (2) is the whole plane R2. The decomposition
of R2 as union of the orbits of system (2) is the phase portrait of the differential system (2). In particular a
phase portrait shows where each orbit is born and where each orbit dies, if they are equilibrium points,
periodic orbits, ... In summary a phase portrait provides all the qualitative information about the
orbits of a differential system. For more information about the phase portraits of the planar differential
systems see for instance [6].

The phase portraits of the polynomial differential systems in R2 are usually described in the
Poincaré disc. Roughly speaking the Poincaré disc is the unit closed disc D2 whose interior has been
identified with the plane R2 and whose boundary, the circle S1 is identified with the infinity of R2.
Note that in the plane R2 we can go to infinity in as many directions as points has the circle S1. For
more details on the Poincaré disc see Chapter 5 of [6] or the Appendix.

As usual two phase portraits in the Poincaré disc D2 are topologically equivalent if there is a
homeomorphism of D2 which sends orbits of the first phase portrait into orbits of the second phase
portrait preserving or reversing the sense of all the orbits.

The objective of this paper is double. First we study the phase portraits of the quadratic systems
(2) from a mathematical point of view, i.e. for all the values of parameter γ ∈ R \ {1} where the system
is defined. These phase portraits are described in the Poincaré disc, in this way we control the orbits
which escape or come from the infinity. Second we describe the whole dynamics of the static star in
general relativity in the case of the existence of a homologous family of solutions modelled by the
differential system (4) for 1 < γ ≤ 2 in the positive quadrant taking into account the orbits which
could escape or come from the infinity.

Our main results are described in the next two theorems.

Theorem 1. The quadratic system (4) when γ varies in R \ {1} has 11 topologically non-equivalent phase

portraits in the Poincaré disc. These are the phase portraits γ1, γ2, γ3, γ4, γ5, γ8, γ9, γ12, γ13, γ15 and γ16

given in Figure 1.

Theorem 1 is proved in section 2.
In Figure 1 appear other few phase portraits which are needed to complete the bifurcation diagram

as it is described in the proof of Theorem 1.
We define Q1 = Q∗ ∩ {x < 1/2} and Q2 = Q∗ ∩ {x > 1/2}.
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Figure 1. Phase portraits of the quadratic systems (2).

Theorem 2. The static star in general relativity in the case of the existence of a homologous family of solutions

modelled by the differential system (4) with 1 < γ ≤ 2 verifies the following statements.

(a) The region Q1 is positively invariant, and the region Q2 is invariant, i.e if an orbit of the system has a

point in Q2 the whole orbit is contained in Q2.
(b) The orbits in Q2 when r → 0 verify that 4πr3ρ → 0 and m(r)/r → ∞.
(c) If

m(R)

R
= 4πR2ρ = − 2 (γ − 1)

γ2 + 4γ − 4
,

then
m(r)

r
= 4πr2ρ = − 2 (γ − 1)

γ2 + 4γ − 4
,

for all r ∈ (0, R].

(d) For every initial condition

(

m(R)

R
, 4πR2ρ

)

in Q1 distinct from

(

− 2 (γ − 1)
γ2 + 4γ − 4

,− 2 (γ − 1)
γ2 + 4γ − 4

)

,
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the orbit determined for this condition when r tends to some finite value r0 < R (which depends on the

initial condition) satisfies
m(r)

r
→ 0 and 4πr2ρ → k ≥ 0,

where k can take any non-negative value when the initial condition varies.

Theorem 2 is proved in section 3.
The techniques used for studying this 2-dimensional polynomial differential system, can be

extended to higher dimensions, see for instance [9].

2. Proof of Theorem 1

Even the study of the bifurcation diagram of this system is not complicate because it has just one
parameter, we will make use of the Theory of Invariants developed by the Sibirskii school, and fully
developed for quadratic systems in the book [1]. The invariants (and also the comitants) allow to easily
determine all the geometric features provided by the system in a methodic and consistent way. These
geometric features may even exceed the most simple topological features to which later we will reduce
the classification.

Each one of these geometric features is characterized using some of the following 10 invariant
polynomials:

{

µ0, µ1, µ2, µ3, µ4, D, W4, B1, B2, B3, η
}

. (3)

The invariants B1 to B3 can be found in page 14 of [12]. The rest of invariants can be found in pages
121-128 of [1].

Apart from the geometric properties of the singularities, there may also exist bifurcations due to
separatrix connections. If these connections are invariant straight lines or polynomial curves, they may
also be determined by means of algebraic invariants. But they may also be of non-algebraic nature in
which case, only an analytical and numerical study may detect them. Anyway we will not meet any of
them in this family.

The first important detail to be remarked of this system is that it is not defined for γ = 1. Thus
the bifurcation diagram will show a jump from cases with γ < 1 to cases with γ > 1 and no continuity
or coherence must be expected from ones to the others.

Next we detect that for every γ the straight lines y = 0 and x = 1/2 are invariant. For some
values of γ we may have more invariant straight lines. It is a known result that quadratic systems
having two invariant lines cannot have limit cycles (see [2]), so systems (2) has no limit cycles.

The first relevant invariant is

µ0 =
4γ

(

γ2 + 4γ − 4
)

γ − 1

which if it vanishes (for some γ), will determine if a finite singularity escapes to infinity. For one of the
possible solution of µ0 = 0 we will have that µ1 = µ2 = µ3 = µ4 = 0 implying then that the system
has an infinite number of finite singularities, see Lemma 5.2 (iii) in [1] .

One usual generic invariant is D which determines (when it vanishes) that two finite singularities

have collided, but for these systems D = − 192γ6

(γ−1)4 and γ = 0 is exactly the value mentioned above
for which the systems degenerate. By degenerate system we mean that there is an infinite number of
finite singular points (real or complex), which is equivalent to say that the two equations defining the
differential system have a non constant common factor.

We will also need the invariant η = (γ−2)2(7γ−6)2

(γ−1)2 which if equal to zero, determines if two infinite
singularities coalesce.

Another interesting geometric feature to capture is whether the system has or not invariant
straight lines. Sometimes these lines will not imply a separatrix connection and thus, breaking them
will not produce a different phase portrait. However, other times, on these lines we will find separatrix
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connections and they must be included in the bifurcation diagram. The invariants/comitants that will
help us to find those invariant straight lines are B1, B2 and B3. Since B1 = B2 = 0 for this family we
must just concentrate on B3 which is

B3 = −3γ(3γ − 2)2x2y2

(γ − 1)2 .

We normally add one more invariant in every study which is W4. This invariant detects the
transition from a node to a strong focus when the invariant changes its sign. This does not produces
a topological change in the phase portrait. Since the fact that an antisaddle is a node or a focus may
have some physical interest, we have preferred to include it.

In summary, extracting from the different invariant/comitants the equations that must be solved
for obtaining the mentioned qualitative informations are

γ
(

γ2 + 4γ − 4
)

= 0,
(γ − 2)2(7γ − 6)2 = 0,

γ(3γ − 2)2 = 0.
(4)

Then easy computations determine that the bifurcations points are the values

γ2 = −2(1 +
√

2), γ4 = 0, γ6 = 2/3,
γ8 = 2(

√
2 − 1), γ12 = 6/7, γ14 = 1,

γ16 = 2.
(5)

We have numerated them with even numbers and leaving some gaps in order to leave space for
intermediate generic cases and the values where W4 = 0. We have also assigned a place for the case
γ = 1 even knowing that the differential system is undefined there so to maintain the coherence in the
numeration between generic cases (odd) and singular (even).

The invariant

W4 =
9γ6(3γ − 2)2 (γ2 − 44γ + 36

)

(γ − 1)6

only changes sign on the roots of the non multiple component of degree 2. We must solve it. And now
we add intermediate values between each singular values. So in order to obtain all the bifurcation
diagram of the differential system (2) we must study it for the following values of the parameters:

γ1 = −5, γ2 = −2(1 +
√

2), γ3 = −2,
γ4 = 0, γ5 = 1/3, γ6 = 2/3,
γ7 = 7/10, γ8 = 2(

√
2 − 1), γ9 = 83/100,

γ10 = 2(11 − 4
√

7), γ11 = 84/100, γ12 = 6/7,
γ13 = 88/100, γ14 = 1, γ15 = 3/2,
γ16 = 2, γ17 = 4, γ18 = 2(11 + 4

√
7),

γ19 = 50.

(6)

Now using the program P4 (see [6]) we obtain a picture of every phase portrait and we describe
briefly the bifurcations, explaining what has happened when we move from a case to another one. In
fact we additionally have verified that all the local phase portraits of the finite and infinite equilibrium
points of the differential system (4) are the ones obtained by the program P4. Thus the local phase
portraits of the hyperbolic equilibrium points (i.e. the ones such that the eigenvalues of the linear
part of the system evaluated on them have real part non-zero) have been computed with Theorem
2.15 of [6]. The local phase portraits of the semi-hyperbolic or also called semi-elemental equilibrium
points (i.e. the ones such that one and only one of the eigenvalues of the linear part of the system
evaluated on them is zero) have been computed with Theorem 2.19 of [6]. The local phase portraits
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of the nilpotent equilibrium points (i.e. the ones such that both eigenvalues of the linear part of the
system evaluated on them are zero but the linear part is not identically zero) have been computed with
Theorem 3.5 of [6].

Once we now all the local phase portraits of the finite and infinite equilibrium points in order
to determine the global phase portraits in the Poincaré disc for the different values of the parameter
γ we only need to control where start and end the separatrices of the differential system. For the
differential systems (4) the separatrices are all the orbits of the infinity, the finite equilibrium points
and the separatrices of the hyperbolic sectors of the finite and infinite equilibrium points, for more
details see section 1.9 of [6]. The limit cycles, when they exist, also are separatrices but the differential
systems (4) has no separatrices for the reason previously explained.

For γ1 we see two saddles on the x-axis and a finite node. The infinite singularity N1 = [1 : 0 : 0]
is an elemental node. There is another infinite singularity at N2 = [0 : 1 : 0] which is also an elemental
node. On these two singularities we have the ends of the finite invariant straight lines. And there
is a third equilibrium point at infinity (on first and third quadrant) N3 which is an elemental saddle.
The phase portrait is completely determined by the invariant straight line and the distribution of
singularities. We draw in wide solid black the separatrices and in thin black the orbits. The parts of the
invariant straight lines which are not separatrices, we draw with dashes.

For γ2 we see that the finite node in the third quadrant has coalesced with the infinite singularity

N3 producing a semi-elemental saddle-node (1
1)SN (see notation in Section 3.7 or Appendix A of [1]).

For γ3 the infinite singularity N3 ejects a saddle into the first quadrant and remains as a node.
At γ4 the system degenerates. The invariant straight line x = 1/2 becomes fulfilled with

singularities. While other bifurcations normally need simply the change of one property of the
system, this type of bifurcation usually implies several important changes and the next phase portrait
needs to be completely described.

At γ5 the saddle that we had before on the intersection of the two invariant straight lines, now
reappears as a node. And the infinite singularity N2 which was before a node, now is a saddle. Again,
the strong restrictions produced by the splitting of the phase plane in four regions because of the
invariant straight lines makes very simple to complete the phase portrait.

At γ6 we have that the invariant B3 = 0 and the system has a new invariant straight line in a
different direction from the other two. However, this straight line does not produce any separatrix
connection and then the phase portrait is equivalent to the previous case, and it is also equivalent to
the case γ7.

At γ8 the saddle we had in the first quadrant coalesces back with N2 producing again a

semi-elemental saddle-node (1
1)SN

For γ9 the infinite singularity N3 ejects again a node into the third quadrant.
At γ10 the node in the third quadrant turns into a focus. So the phase portrait is equivalent to the

previous one and also to the case γ11.
At γ12 the infinite singularity N3 coalesces with N1 producing a semi-elemental saddle-node

(0
2)SN.

For γ13 the infinite singularity breaks. The singularity N3 is now in the second-fourth quadrant
as a node. N1 keeps the saddle behavior. It is as if a billiard ball had collided with N1 occupying its
position and sending the node in N1 to the fourth quadrant.

For γ14 we have γ = 1 and the system is undefined. No continuity, no coherence may be expected
from what we had before and to what we will meet after.

For γ15 we must start describing the phase portrait from zero. We have again two saddles on the
x-axis as when γ < γ2. We also have two finite nodes, but different from case γ1 they are in different
relative positions. Moreover, N2 is now a saddle and N3 a node which makes this phase portrait
different from the case γ1.

For γ16 we have again coalescence between infinite singularities. The point N3 coalesces with N2

producing a semi-elemental saddle-node (0
2)SN.
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For γ17 the infinite singularity breaks. The singularity N3 is now in the second-fourth quadrant as
a saddle. N2 keeps the node behavior that N3 had before. But now one must notice that this phase
portrait is topologically equivalent to the case with γ1.

It must be remarked that this kind of studies must normally be done in a family of systems whose
parameter space may be compactified in a projective space. In this way, one can control also what
may happen when one parameter escapes to infinity. Somehow, we may even study the phase portrait
when one parameter is ∞. Normally there we find some kind of bifurcation which links with both
sides (positive and negative of the parameter). Then by confirming the coherence between the phase
portrait at ∞ and the largest (and smallest) γ of our bifurcation, one may be quiet that one has not
forgotten any other large singular value of the bifurcation diagram. In general, one cannot affirm that
he has found all possible phase portraits, but one can be certain that the whole set is complete and
coherent, and that no new bifurcation value is needed to get the full picture of the diagram. If some
other bifurcation occurs, this may not be related with singular points, and whatever occurs, must be
undone by another unfound singular bifurcation value. And this may theoretically occur in very small
part of the parameter space although we have never found yet such a phenomena.

In the current family it seems that the case γ = ∞ is not a bifurcation since the phase portrait we
obtain for γ > γ17 is topologically equivalent to the case γ < γ2. However we have the problem with
the undefined case γ = 1 which will produce a similar phenomena as the described case when γ → ∞.
That is, we have detected the biggest singular value for γ lower than 1 and the lowest greater than 1.
But in general we cannot know for sure if there are other phantom singular values of γ very close to 1.

Anyway, as this family has a two permanent invariant straight line, and there are so few
separatrices, it is not hard to see that the phase portrait in every one of the parts that we have
divided the straight line, is the corresponding one of Figure 1.

This completes the proof of Theorem 1.

3. Proof of Theorem 2

The phase portrait of the differential system (2) when γ ∈ (1, 2) is topologically equivalent to the
phase portrait γ15, and when γ = 2 is topologically equivalent to the phase portrait γ16. In order to
pass from the phase portraits of system (2) to system (4) we must take into account the change in the
time dt = (1 − 2x)ds. Then the positive quadrants of the phase portraits γ15 and γ16 of system (2),
pass to the positive quadrants of system (4) changing the direction of orbits in the region x > 1/2, and
omitting the straight line x = 1/2 where system (4) is not defined. In summary, the phase portraits in
the positive quadrant Q of system (4) are shown in Figure 2.

Figure 2. Phase portrait in the positive quadrant of the quadratic systems (2): (a) for γ ∈ (1, 2), and (b)
for γ = 2.

Since t = ln(r/R) and r varies on the interval (0, R], t varies in the interval (−∞, 0]. Taking into
account that the meaning of the variables x and y are x = m(r)/r > 0 and y = 4πr2ρ > 0, from Figure
2 it follows that all the orbits which are in Q1 are positively invariant, and the ones which are in Q2 are
invariant. So statement (a) is proved.
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From Figure 2 all the orbits which are in Q2 satisfy that

m(r)

r
→ ∞ and 4πr2ρ → 0, (7)

when t → −∞, i.e. when r → 0. This proves statement (b).
In Q1 there is the equilibrium point P = (2(γ − 1)/(γ2 + 4γ − 4), 2(γ − 1)/(γ2 + 4γ − 4)). So

if (m(R)/R, 4πR2ρ) = P, then for all r ∈ (0, R] we have that (m(r)/r, 4πr2ρ) = P. So statement (c) is
proved.

From Figure 2 all the orbits which are in Q1, with the exception of the equilibrium point P, satisfy
that

m(r)

r
→ 0 and 4πr2ρ → k ≥ 0, (8)

for some finite negative value of t, i.e. there is a positive value r = r0 < R for which (8) holds. This
completes the proof of statement (d). Hence Theorem 2 is proved.

Appendix: Poincaré Compactification

In order to classify the global dynamics of a polynomial differential system the first crucial step is
to characterize their finite and infinite equilibrium points in the Poincaré compactification. The second
main step for determining the global dynamics in the Poincaré disc of a polynomial differential system
is the characterization of their separatrices. For the polynomial differential systems in the Poincaré
disc it is known that the separatrices are the infinite orbits, the finite equilibrium points, the separatrices
of the hyperbolic sectors of the finite and infinite equilibrium points, and the limit cycles.

If Σ denotes the set of all separatrices in the Poincaré disc D2, Σ is a closed set and the components
of D2 \ Σ are called the canonical regions. We denote by S and R the number of separatrices and
canonical regions, respectively.

We consider the set of all polynomial vector fields in R2 of the form

(ẋ, ẏ) = X(x, y) = (P(x, y), Q(x, y)), (9)

where P and Q are real polynomials in the variables x and y of degrees d1 and d2, respectively. Take
d = max{d1, d2}.

Denote by TpS
2 be the tangent space to the 2-dimensional sphere

S
2 = {s = (s1, s2, s3) ∈ R

3 : s2
1 + s2

2 + s2
3 = 1}

at the point p. Assume that X is defined in the tangent plane to S2 at the point (0, 0, 1) denoted by
T(0,0,1)S

2 = R2. Consider the central projection f : T(0,0,1)S
2 → S2. This map defines two copies of X,

one in the open northern hemisphere and the other in the open southern hemisphere. Denote by X′ the
vector field D f ◦ X defined on S2 except on its equator S1 = {s ∈ S2 : s3 = 0}. Clearly S1 is identified
to the infinity of R2. If X is a planar polynomial vector field of degree d, then p(X) is the only analytic
extension of sd−1

3 X′ to S2. The vector field p(X) is called the Poincaré compactification of the vector field
X, for more details see ([6] chapter 5).

On the Poincaré sphere S2 we use the following six local charts, which are given by Ui = {s ∈
S2 : si > 0} and Vi = {s ∈ S2 : si < 0}, for i = 1, 2, 3, with the corresponding diffeomorphisms

ϕi : Ui → R
2, ψi : Vi → R

2,

defined by ϕi(s) = −ψi(s) = (sm/si, sn/si) = (u, v) for m < n and m, n 6= i. Thus (u, v) will play
different roles in the distinct local charts. The expressions of the vector field p(X) are

(u̇, v̇) =

(

vd

(

Q

(

1
v

,
u

v

)

− uP

(

1
v

,
u

v

))

,−vd+1P

(

1
v

,
u

v

))

in U1,
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(u̇, v̇) =

(

vd

(

P

(

u

v
,

1
v

)

− uQ

(

u

v
,

1
v

))

,−vd+1Q

(

u

v
,

1
v

))

in U2,

(u̇, v̇) = (P(u, v), Q(u, v)) in U3.

We note that the expressions of the vector field p(X) in the local chart (Vi, ψi) is equal to the expression
in the local chart (Ui, φi) multiplied by (−1)d−1 for i = 1, 2, 3.

The orthogonal projection under π(y1, y2, y3) = (y1, y2) of the closed northern hemisphere of S2

onto the plane s3 = 0 is a closed disc D2 of radius one centered at the origin of coordinates called the
Poincaré disc. Since a copy of the vector field X on the plane R2 is in the open northern hemisphere
of S2, the interior of the Poincaré disc D2 is identified with R2 and the boundary of D2, the equator
S1 of S2, is identified with the infinity of R2. Consequently the phase portrait of the vector field X

extended to the infinity corresponds to the projection of the phase portrait of the vector field p(X) on
the Poincaré disc D2.

The equilibrium points of p(X) in the Poincaré disc lying on S1 are the infinite equilibrium points of
the corresponding vector field X. The equilibrium points of p(X) in the interior of the Poincaré disc,
i.e. on S2 \ S1, are the finite equilibrium points. We note that in the local charts U1, U2, V1 and V2 the
infinite equilibrium points have their coordinate v = 0.

For a polynomial vector field (9) if s ∈ S1 is an infinite equilibrium point, then −s ∈ S1 is another
infinite equilibrium point. Thus the number of infinite equilibrium points is even and the local phase
portrait of one is that of the other multiplied by (−1)d+1.

4. Conclusions

The differential system

dx

dt
= y − x,

dy

dt
=

y

1 − 2x

(

2 − γy − 5γ − 4
γ − 1

x

)

,

when the parameter γ ∈ (1, 2] models the structure equations of a static star in general relativity in
the case of the existence of a homologous family of solutions, being x = m(r)/r where m(r) ≥ 0 is
the mass inside the sphere of radius r of the star, y = 4πr2ρ where ρ is the density of the star, and
t = ln(r/R) where R is the radius of the star. In Theorem 2 we have classified all the possible values of
m(r)/r and 4πr2ρ when r → 0.
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