Pre prints.org

Article Not peer-reviewed version

Dynamics of the static star
differential system from the
mathematical and physical point
of views

Joan C. Artés , Jaume Llibre *, Nicolae Vulpe
Posted Date: 24 October 2023
doi: 10.20944/preprints202310.1482.v1

Keywords: Static star, polynomial vector fields, evolution

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3001615

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2023 doi:10.20944/preprints202310.1482.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Dynamics of the Static Star Differential System from
the Mathematical and Physical Point of Views

Joan Carles Artés !, Jaume Llibre ! and Nicolae Vulpe 2

1 Departament de Matematiques, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia,

Spain; JoanCarles.Artes@uab.cat (J.C.A.); jaume.llibre@uab.cat (J.L.)

2 Vladimir Andrunakievichi Institute of Mathematics and Computer Science, Moldova; nvulpe@gmail.com

Abstract: We classify all the topologically non-equivalent phase portraits of the quadratic polynomial

—4
il 1 x) , in the Poincaré disc for

differential system x = (1 -2x)(y —x), y =y (2 — 7y —

all the values of the parameter v € R\ {1}. The differential system ’fi—’t‘ = y—x % =

—4
1 _]/ P <2 — Yy — 5;/ 1 x> , when the parameter v € (1,2] models the structure equations of a

static star in general relativity in the case of the existence of a homologous family of solutions, being
x = m(r)/r where m(r) > 0 is the mass inside the sphere of radius r of the star, y = 47tr%p where p
is the density of the star, and t = In(r/R) where R is the radius of the star. We classify the possible
values of m(r)/r and 47tr?p when r — 0.
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1. Introduction and the Main Results

The structure equations of a static star in general relativity in the case of the existence of a
homologous family of solutions are

X=y—x

, y 5y —4 @

y:1—2x<2_7y_17—1x>’
where the parameter <y varies in the interval (1, 2], and the dot denotes derivative with respect to the
variable t = In(r/R) being R the radius of the star. Therefore, from the physical point of view we are
interested in the solutions defined in the interval t € (—o0,0). Here x = m(r)/r where m(r) > 0 is
the mass inside the sphere of radius r of the star, y = 4717%p being p the density of the star. For more
details on the differential system (4) see [3-5,7,8,10].

We remark that from the physical point of view and since x > 0 and y > 0 we are mainly
interested in the dynamics of the differential system (4) with ¢ € (1,2] in the set Q* formed by the
positive quadrant Q = {(x,y) € R?: x > 0,y > 0} of R? without the straight line x = 1/2 where the
differential system (4) is not defined.

Note that the straight line y = 0 is invariant because when y = 0 we have that iy = 0. Therefore,
since ¥|y—o = y the set Q* is positively invariant, i.e. orbits of system (4) can enter in Q* through the
positive y-axis but never orbits of the quadrant Q can exit from Q*.

Doing the change of the independent variable t — s, where dt = (1 — 2x)ds the differential system
(4) becomes the polynomial differential system

x=(1-2x)(y —x) =p(x,y),

R SO Gk B
y—y<2 Ty 7_1x>—Q@ﬂL

)
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where now the dot denotes derivative with respect to the variable s.

The differential system (2) is a polynomial differential system of degree 2 because the maximum
of the degrees of the polynomials p(x,y) and g(x, y) is 2. The polynomial differential systems of degree
2 are called simply quadratic systems and they have been intensively studied, see for instance the books
[1,11,13], the paper [5], and the hundreds of references quoted therein.

The domain of definition of the differential system (2) is the whole plane R?. The decomposition
of R? as union of the orbits of system (2) is the phase portrait of the differential system (2). In particular a
phase portrait shows where each orbit is born and where each orbit dies, if they are equilibrium points,
periodic orbits, ... In summary a phase portrait provides all the qualitative information about the
orbits of a differential system. For more information about the phase portraits of the planar differential
systems see for instance [6].

The phase portraits of the polynomial differential systems in R? are usually described in the
Poincaré disc. Roughly speaking the Poincaré disc is the unit closed disc D? whose interior has been
identified with the plane R? and whose boundary, the circle S! is identified with the infinity of R2.
Note that in the plane R? we can go to infinity in as many directions as points has the circle S!. For
more details on the Poincaré disc see Chapter 5 of [6] or the Appendix.

As usual two phase portraits in the Poincaré disc D? are topologically equivalent if there is a
homeomorphism of D? which sends orbits of the first phase portrait into orbits of the second phase
portrait preserving or reversing the sense of all the orbits.

The objective of this paper is double. First we study the phase portraits of the quadratic systems
(2) from a mathematical point of view, i.e. for all the values of parameter v € R\ {1} where the system
is defined. These phase portraits are described in the Poincaré disc, in this way we control the orbits
which escape or come from the infinity. Second we describe the whole dynamics of the static star in
general relativity in the case of the existence of a homologous family of solutions modelled by the
differential system (4) for 1 < ¢ < 2 in the positive quadrant taking into account the orbits which
could escape or come from the infinity.

Our main results are described in the next two theorems.

Theorem 1. The quadratic system (4) when vy varies in R\ {1} has 11 topologically non-equivalent phase
portraits in the Poincaré disc. These are the phase portraits v1, Y2, Y3, Y4, Y5, Y8, Y9, Y12, Y13, Y15 and Y16
given in Figure 1.

Theorem 1 is proved in section 2.

In Figure 1 appear other few phase portraits which are needed to complete the bifurcation diagram
as it is described in the proof of Theorem 1.

We define Q1 = Q*N{x <1/2}and Q> = Q*N{x > 1/2}.
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Figure 1. Phase portraits of the quadratic systems (2).

Theorem 2. The static star in general relativity in the case of the existence of a homologous family of solutions
modelled by the differential system (4) with 1 < v < 2 verifies the following statements.

(a) The region Qq is positively invariant, and the region Qy is invariant, i.e if an orbit of the system has a
point in Qy the whole orbit is contained in Q.
(b) The orbits in Q, when r — 0 verify that 47tr3p — 0 and m(r) /r — co.

(c) If
mR) _ o 2(r=1)
R RS
then ") 20y 1)
mir - 2. Y —
yo A= Y2 +4y—4’

forallr € (0,R].
(d) For every initial condition <m§<R),4rcR2p> in Qq distinct from

(_ 2(y=1) _ 2(y-1) >
Y2y —4" PP Hdy-4)’
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the orbit determined for this condition when r tends to some finite value ry < R (which depends on the
initial condition) satisfies
m(r)

T—>0 and 47tr2p—>k20,

where k can take any non-negative value when the initial condition varies.

Theorem 2 is proved in section 3.
The techniques used for studying this 2-dimensional polynomial differential system, can be
extended to higher dimensions, see for instance [9].

2. Proof of Theorem 1

Even the study of the bifurcation diagram of this system is not complicate because it has just one
parameter, we will make use of the Theory of Invariants developed by the Sibirskii school, and fully
developed for quadratic systems in the book [1]. The invariants (and also the comitants) allow to easily
determine all the geometric features provided by the system in a methodic and consistent way. These
geometric features may even exceed the most simple topological features to which later we will reduce
the classification.

Each one of these geometric features is characterized using some of the following 10 invariant
polynomials:

{,uOr Wi, U2, U3, Ha, Dr W4/ Bl/ BZ/ B3/ 77} (3)

The invariants B; to B3 can be found in page 14 of [12]. The rest of invariants can be found in pages
121-128 of [1].

Apart from the geometric properties of the singularities, there may also exist bifurcations due to
separatrix connections. If these connections are invariant straight lines or polynomial curves, they may
also be determined by means of algebraic invariants. But they may also be of non-algebraic nature in
which case, only an analytical and numerical study may detect them. Anyway we will not meet any of
them in this family.

The first important detail to be remarked of this system is that it is not defined for v = 1. Thus
the bifurcation diagram will show a jump from cases with v < 1 to cases with v > 1 and no continuity
or coherence must be expected from ones to the others.

Next we detect that for every <y the straight lines y = 0 and x = 1/2 are invariant. For some
values of ¥ we may have more invariant straight lines. It is a known result that quadratic systems
having two invariant lines cannot have limit cycles (see [2]), so systems (2) has no limit cycles.

The first relevant invariant is

4y (72 44y —4)
Ho = y—1
which if it vanishes (for some <), will determine if a finite singularity escapes to infinity. For one of the
possible solution of g = 0 we will have that i1 = o = p3 = p4 = 0 implying then that the system
has an infinite number of finite singularities, see Lemma 5.2 (iii) in [1] .

One usual generic invariant is D which determines (when it vanishes) that two finite singularities
have collided, but for these systems D = — % and 7 = 0 is exactly the value mentioned above
for which the systems degenerate. By degenerate system we mean that there is an infinite number of
finite singular points (real or complex), which is equivalent to say that the two equations defining the

differential system have a non constant common factor.

(7=2)%(77=6)?
(v—1)?

We will also need the invariant 7 = which if equal to zero, determines if two infinite
singularities coalesce.

Another interesting geometric feature to capture is whether the system has or not invariant
straight lines. Sometimes these lines will not imply a separatrix connection and thus, breaking them

will not produce a different phase portrait. However, other times, on these lines we will find separatrix
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connections and they must be included in the bifurcation diagram. The invariants/comitants that will
help us to find those invariant straight lines are By, B and Bs. Since By = By = 0 for this family we
must just concentrate on B3 which is

37(37 —2)*%y?
(ry=1%
We normally add one more invariant in every study which is Wy4. This invariant detects the

transition from a node to a strong focus when the invariant changes its sign. This does not produces
a topological change in the phase portrait. Since the fact that an antisaddle is a node or a focus may

By=—

have some physical interest, we have preferred to include it.
In summary, extracting from the different invariant/comitants the equations that must be solved
for obtaining the mentioned qualitative informations are

Y(+4y—4)= 0,

(v =27y —6)*= 0, 4)
7By -2)*= 0.
Then easy computations determine that the bifurcations points are the values
12=-2014V2), 14=0,  7=2/3,
15 =2(v2-1), 112=6/7, yu=1, (5)

Y16 = 2.

We have numerated them with even numbers and leaving some gaps in order to leave space for
intermediate generic cases and the values where Wy = 0. We have also assigned a place for the case
v = 1 even knowing that the differential system is undefined there so to maintain the coherence in the
numeration between generic cases (odd) and singular (even).
The invariant
976 (3y —2)2 (7> — 44y + 36)
(y=1)°

only changes sign on the roots of the non multiple component of degree 2. We must solve it. And now

W, =

we add intermediate values between each singular values. So in order to obtain all the bifurcation
diagram of the differential system (2) we must study it for the following values of the parameters:

71 = -5 Y2 =-21+V2), 73=-2

72 =0, 5 =1/3, Y6 =2/3,

v7 =7/10, 18 =2(V2—1), 79 =83/100,

Y10 = 2(11 = 4v/7), 11 = 84/100, Y12 =6/7, (6)
713 = 88/100, T14 =1, 715 =3/2,

Y16 = 2, 117 = 4, Y18 = 2(11 +4/7),

Y19 = 50.

Now using the program P4 (see [6]) we obtain a picture of every phase portrait and we describe
briefly the bifurcations, explaining what has happened when we move from a case to another one. In
fact we additionally have verified that all the local phase portraits of the finite and infinite equilibrium
points of the differential system (4) are the ones obtained by the program P4. Thus the local phase
portraits of the hyperbolic equilibrium points (i.e. the ones such that the eigenvalues of the linear
part of the system evaluated on them have real part non-zero) have been computed with Theorem
2.15 of [6]. The local phase portraits of the semi-hyperbolic or also called semi-elemental equilibrium
points (i.e. the ones such that one and only one of the eigenvalues of the linear part of the system
evaluated on them is zero) have been computed with Theorem 2.19 of [6]. The local phase portraits
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of the nilpotent equilibrium points (i.e. the ones such that both eigenvalues of the linear part of the
system evaluated on them are zero but the linear part is not identically zero) have been computed with
Theorem 3.5 of [6].

Once we now all the local phase portraits of the finite and infinite equilibrium points in order
to determine the global phase portraits in the Poincaré disc for the different values of the parameter
v we only need to control where start and end the separatrices of the differential system. For the
differential systems (4) the separatrices are all the orbits of the infinity, the finite equilibrium points
and the separatrices of the hyperbolic sectors of the finite and infinite equilibrium points, for more
details see section 1.9 of [6]. The limit cycles, when they exist, also are separatrices but the differential
systems (4) has no separatrices for the reason previously explained.

For 71 we see two saddles on the x-axis and a finite node. The infinite singularity Ny = [1:0: 0]
is an elemental node. There is another infinite singularity at N, = [0 : 1 : 0] which is also an elemental
node. On these two singularities we have the ends of the finite invariant straight lines. And there
is a third equilibrium point at infinity (on first and third quadrant) N3 which is an elemental saddle.
The phase portrait is completely determined by the invariant straight line and the distribution of
singularities. We draw in wide solid black the separatrices and in thin black the orbits. The parts of the
invariant straight lines which are not separatrices, we draw with dashes.

For 7y, we see that the finite node in the third quadrant has coalesced with the infinite singularity

N3 producing a semi-elemental saddle-node (%)S N (see notation in Section 3.7 or Appendix A of [1]).

For 73 the infinite singularity N3 ejects a saddle into the first quadrant and remains as a node.

At 74 the system degenerates. The invariant straight line x = 1/2 becomes fulfilled with
singularities. While other bifurcations normally need simply the change of one property of the
system, this type of bifurcation usually implies several important changes and the next phase portrait
needs to be completely described.

At 75 the saddle that we had before on the intersection of the two invariant straight lines, now
reappears as a node. And the infinite singularity N, which was before a node, now is a saddle. Again,
the strong restrictions produced by the splitting of the phase plane in four regions because of the
invariant straight lines makes very simple to complete the phase portrait.

At 76 we have that the invariant B3 = 0 and the system has a new invariant straight line in a
different direction from the other two. However, this straight line does not produce any separatrix
connection and then the phase portrait is equivalent to the previous case, and it is also equivalent to
the case 7.

At g the saddle we had in the first quadrant coalesces back with N, producing again a

semi-elemental saddle-node (%)SN

For 79 the infinite singularity N3 ejects again a node into the third quadrant.

At 719 the node in the third quadrant turns into a focus. So the phase portrait is equivalent to the
previous one and also to the case 1.

At 717 the infinite singularity N3 coalesces with N; producing a semi-elemental saddle-node

For 713 the infinite singularity breaks. The singularity N3 is now in the second-fourth quadrant
as anode. Nj keeps the saddle behavior. It is as if a billiard ball had collided with Nj occupying its
position and sending the node in Nj to the fourth quadrant.

For 714 we have v = 1 and the system is undefined. No continuity, no coherence may be expected
from what we had before and to what we will meet after.

For 15 we must start describing the phase portrait from zero. We have again two saddles on the
x-axis as when 7y < 7. We also have two finite nodes, but different from case ; they are in different
relative positions. Moreover, N; is now a saddle and N3 a node which makes this phase portrait
different from the case 7.

For 714 we have again coalescence between infinite singularities. The point N3 coalesces with Np

producing a semi-elemental saddle-node (3)SN.
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For 717 the infinite singularity breaks. The singularity N3 is now in the second-fourth quadrant as
a saddle. N, keeps the node behavior that N3 had before. But now one must notice that this phase
portrait is topologically equivalent to the case with ;.

It must be remarked that this kind of studies must normally be done in a family of systems whose
parameter space may be compactified in a projective space. In this way, one can control also what
may happen when one parameter escapes to infinity. Somehow, we may even study the phase portrait
when one parameter is co. Normally there we find some kind of bifurcation which links with both
sides (positive and negative of the parameter). Then by confirming the coherence between the phase
portrait at co and the largest (and smallest) ¥ of our bifurcation, one may be quiet that one has not
forgotten any other large singular value of the bifurcation diagram. In general, one cannot affirm that
he has found all possible phase portraits, but one can be certain that the whole set is complete and
coherent, and that no new bifurcation value is needed to get the full picture of the diagram. If some
other bifurcation occurs, this may not be related with singular points, and whatever occurs, must be
undone by another unfound singular bifurcation value. And this may theoretically occur in very small
part of the parameter space although we have never found yet such a phenomena.

In the current family it seems that the case v = co is not a bifurcation since the phase portrait we
obtain for v > 117 is topologically equivalent to the case ¥y < 7,. However we have the problem with
the undefined case v = 1 which will produce a similar phenomena as the described case when y — oo.
That is, we have detected the biggest singular value for  lower than 1 and the lowest greater than 1.
But in general we cannot know for sure if there are other phantom singular values of 7y very close to 1.

Anyway, as this family has a two permanent invariant straight line, and there are so few
separatrices, it is not hard to see that the phase portrait in every one of the parts that we have
divided the straight line, is the corresponding one of Figure 1.

This completes the proof of Theorem 1.

3. Proof of Theorem 2

The phase portrait of the differential system (2) when v € (1,2) is topologically equivalent to the
phase portrait 15, and when 7 = 2 is topologically equivalent to the phase portrait 14. In order to
pass from the phase portraits of system (2) to system (4) we must take into account the change in the
time dt = (1 — 2x)ds. Then the positive quadrants of the phase portraits 715 and 14 of system (2),
pass to the positive quadrants of system (4) changing the direction of orbits in the region x > 1/2, and
omitting the straight line x = 1/2 where system (4) is not defined. In summary, the phase portraits in
the positive quadrant Q of system (4) are shown in Figure 2.

(a) (b)

Figure 2. Phase portrait in the positive quadrant of the quadratic systems (2): (a) for v € (1,2), and (b)
for y = 2.

Since t = In(r/R) and r varies on the interval (0, R], f varies in the interval (—co,0]. Taking into
account that the meaning of the variables x and y are x = m(r) /r > 0 and y = 47r?p > 0, from Figure
2 it follows that all the orbits which are in Q1 are positively invariant, and the ones which are in Q, are
invariant. So statement (a) is proved.
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From Figure 2 all the orbits which are in Q; satisfy that
@ oo and 472 — 0, @)

when t — —co,i.e. when r — 0. This proves statement (b).

In Qq there is the equilibrium point P = (2(y — 1)/ (7% + 47 —4),2(y — 1)/ (¥* + 47 — 4)). So
if (m(R)/R,47tR?p) = P, then for all r € (0, R] we have that (m(r)/r,47r?p) = P. So statement (c) is
proved.

From Figure 2 all the orbits which are in Q;, with the exception of the equilibrium point P, satisfy
that

@ —0 and 4mr%0 — k>0, (8)
for some finite negative value of ¢, i.e. there is a positive value » = ry < R for which (8) holds. This
completes the proof of statement (d). Hence Theorem 2 is proved.

Appendix: Poincaré Compactification

In order to classify the global dynamics of a polynomial differential system the first crucial step is
to characterize their finite and infinite equilibrium points in the Poincaré compactification. The second
main step for determining the global dynamics in the Poincaré disc of a polynomial differential system
is the characterization of their separatrices. For the polynomial differential systems in the Poincaré
disc it is known that the separatrices are the infinite orbits, the finite equilibrium points, the separatrices
of the hyperbolic sectors of the finite and infinite equilibrium points, and the limit cycles.

If ¥ denotes the set of all separatrices in the Poincaré disc D?, ¥ is a closed set and the components
of D? \ £ are called the canonical regions. We denote by S and R the number of separatrices and
canonical regions, respectively.

We consider the set of all polynomial vector fields in R? of the form

(%,9) = X(x,y) = (P(x,y), Qx,y)), ©

where P and Q are real polynomials in the variables x and y of degrees d; and dj, respectively. Take
d = max{dy,dy}.
Denote by T,,S? be the tangent space to the 2-dimensional sphere

S? = {s = (s1,52,53) €ER®:s7 455 +55 =1}

at the point p. Assume that X is defined in the tangent plane to S? at the point (0,0,1) denoted by
T(O,O,l)Sz = R2. Consider the central projection f: T(O,O,l)SZ — S2. This map defines two copies of X,
one in the open northern hemisphere and the other in the open southern hemisphere. Denote by X’ the
vector field Df o X defined on S? except on its equator S' = {s € S? : s3 = 0}. Clearly S! is identified
to the infinity of R2. If X is a planar polynomial vector field of degree d, then p(X) is the only analytic
extension of sg_lX’ to S?. The vector field p(X) is called the Poincaré compactification of the vector field
X, for more details see ([6] chapter 5).

On the Poincaré sphere S? we use the following six local charts, which are given by U; = {s €
S?:s;>0}and V; = {s € §? : 5; < 0}, fori = 1,2,3, with the corresponding diffeomorphisms

i:ui—>R2, l':VZ'—)]Rz,
? ¥

defined by ¢;(s) = —;(s) = (sm/si,sn/si) = (u,v) for m < nand m,n # i. Thus (u,v) will play
different roles in the distinct local charts. The expressions of the vector field p(X) are

o= (2 (o(bt) () rr (1)) o
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wo= (¢ (2) (2 1)) a(3)) o
(1,0) = (P(u,v),Q(u,v))  in Us.

We note that the expressions of the vector field p(X) in the local chart (V;, ;) is equal to the expression
in the local chart (U;, ¢;) multiplied by (—1)*~! fori = 1,2,3.

The orthogonal projection under 7 (y1,y2,y3) = (y1,Y2) of the closed northern hemisphere of S
onto the plane s3 = 0 is a closed disc D? of radius one centered at the origin of coordinates called the
Poincaré disc. Since a copy of the vector field X on the plane R? is in the open northern hemisphere
of S?, the interior of the Poincaré disc D? is identified with R? and the boundary of D?, the equator
S! of §?, is identified with the infinity of R?. Consequently the phase portrait of the vector field X
extended to the infinity corresponds to the projection of the phase portrait of the vector field p(X) on
the Poincaré disc D?.

The equilibrium points of p(X) in the Poincaré disc lying on S! are the infinite equilibrium points of
the corresponding vector field X. The equilibrium points of p(X) in the interior of the Poincaré disc,
i.e. on S? \ S, are the finite equilibrium points. We note that in the local charts Uy, Uy, V7 and V; the
infinite equilibrium points have their coordinate v = 0.

For a polynomial vector field (9) if s € S! is an infinite equilibrium point, then —s € S! is another
infinite equilibrium point. Thus the number of infinite equilibrium points is even and the local phase
portrait of one is that of the other multiplied by (—1)4*1.

4. Conclusions
The differential system

ax _ . w_ v (., Sr—4
at I dt1—2x<2 Y - x)’

when the parameter v € (1,2] models the structure equations of a static star in general relativity in
the case of the existence of a homologous family of solutions, being x = m(r)/r where m(r) > 0 is
the mass inside the sphere of radius r of the star, y = 471720 where p is the density of the star, and
t = In(r/R) where R is the radius of the star. In Theorem 2 we have classified all the possible values of
m(r)/r and 47tr?p when r — 0.
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