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Abstract: Sensor-based human activity recognition is now well developed, but there are still many 

chal-lenges, such as insufficient accuracy in recognising similar activities.In response to this 

question, We mainly collected data related to three-axis acceleration as well as gyroscope, based on 

these data we developed a model capable of classifying activities similar to human behavior and 

evaluated the effectiveness and generalization capabilities of this model. The data underwent initial 

preprocessing, including standardization and normalization. Additionally, recognizing the inherent 

similarities between human activity behaviors, we introduced a multi-layer classifier model. The 

first layer is a random forest model based on stepwise regression, which may encounter reduced 

accuracy for similar activities. The second layer employs a Support Vector Machine (SVM) model 

based on Kernel Fisher Discrimi-nant Analysis (KFDA). KFDA is used to reduce the dimensionality 

of data points with potential confusion, followed by SVM for classification. The model was 

experimentally evaluated and ap-plied to four benchmark datasets: UCI DSA, UCI HAR, WISDM, 

and IM-WSHA. The experimental results demonstrate that our approach achieved recognition 

accuracies of 99.71%, 98.71%, 99.12%, and 97.6% on these datasets than the best model respectively 

0.75%, 0.34%, 0.11% and 6.15%, indicating excellent recognition performance. Fur-thermore, to 

assess the model's generalization ability, we performed K-fold cross-validation on the random forest 

model and utilized ROC curves for the SVM classifier. The results indicate that our multi-layer 

classifier model exhibits robust generalization capabilities. 

Keywords: body-worn sensors; multi layer classifier; random forest; kernel fisher discriminant 

analysis; SVM; stepwise regression 

 

1. Introduction and Related Work 

Human Activity Recognition (HAR) involves identifying various human behaviors through a 

series of observations of individuals and their surrounding environment [39]. HAR has been 

generally applied in many fields, such as Security and Surveillance[40], sports and fitness[41], 

industry and manufacturing[42], autonomous driving[44],and the references therein.  

A novel IoT-perceptive human activity recognition (HAR) approach using multihead 

convolutional attention in [1].Hand-crafted and deep convolutional neural network features fusion 

and selection strategy in [2].In [3], authors consider smart homes environments using Lstm 

networks.In [4], using A federated learning system with enhanced feature extraction to Human 

Activity Recognition and using Bi-LSTM network for multimodal continuous human activity 
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recognition and fall detection [5].In the field of industry and manufacturing, Utilizing time factor 

analysis in conjunction with human action recognition for worker operating time [6] and  applying 

deep learning to human activity recognition [7] etc., they rely heavily on HAR technology which 

improves the accuracy of targeting criminals [8].In the field of autonomous driving [9], the 

recognition of human activities will help to develop a suitable autonomous driving system. 

Human activity recognition (HAR) methods can be broadly categorized into two main 

directions: 1) vision-based HAR and 2) wearable sensor-based HAR. It is well-known that vision-

based HAR is generally considered more advanced compared to wearable sensor-based HAR [10]. 

but, vision-based HAR also faces several challenges. For one thing, there are privacy concerns related 

to the potential leakage of video data, and image processing demands significant computational 

power and substantial storage resources. For another, factors such as the observer's position and 

angle, the subject's physique, attire, background color, and light intensity can all impact the accuracy 

of vision-based HAR [11].In contrast, inertial sensor technology is typically cost-effective and offers 

greater robustness and portability in various environmental conditions [12]. Currently, sensor-based 

recognition technology has gained widespread attention due to its superior confidentiality and 

relatively lower computational requirements. Therefore, in [13], the authors discussed the role of 

sensor placement in the design of HAR systems to optimize their availability. Leveraging these 

advantages, wearable sensor-based HAR has garnered increasing interest in recent years. 

In recent years, wearable sensor-based HAR has gained widespread attention. The earliest 

research on sensor-based recognition of human behavior can be traced back to the 1990s, with studies 

by researchers such as F. Foerster [21] and O. X. Schlmilch [22]. Nowadays, wearable sensor research 

has yielded many high-accuracy models. For example, Bao and his team achieved an overall accuracy 

of 84% through effective data collection and decision tree classification [23]. The Centinela system 

developed by D. Lara and colleagues achieved an overall accuracy of 95.7% [24]. However, at the 

same time, a problem has been identified where single classification models can lead to significant 

confusion when distinguishing similar activities (such as ascending stairs and descending stairs).In 

the study by JANSIR et al. [14], they employed chaotic mapping to compress raw tri-axial 

accelerometer data and extracted 38 time-domain and frequency-domain features, including mean, 

standard deviation, root mean square, dominant frequency coefficient, spectral energy, and others. 

They achieved a recognition accuracy of 83.22% in human activity recognition. However, the results 

showed significant confusion between activities such as running, ascending stairs and descending 

stairs. In the research by VANRELLS et al. [15], they extracted a 91-dimensional feature vector from 

single-axis accelerometer data, including cepstral coefficients, time-domain features, and periodicity 

features. They achieved a recognition accuracy of 91.21% in a classification task involving ten 

different human activities. However, the results also indicated substantial confusion between 

activities such as cycling on an exercise bike in horizontal, cycling on an exercise bike in vertical 

positions, ascending stairs and descending stairs. The reasons for the confusion between similar 

activities can be summarized in two aspects. Firstly, within the same individual, different activities 

may share similar activity cycles or amplitudes, leading to activity recognition confusion and a 

decrease in overall accuracy. 

Kernel Fisher Discriminant Analysis (KFDA) is a powerful extension of Fisher Discriminant 

Analysis (FDA) [45] that has proven to be highly effective in various pattern recognition and 

classification tasks. While traditional FDA is primarily designed for linearly separable data, KFDA 

extends its capabilities by allowing the analysis of nonlinearly separable data through the use of 

kernel functions.It serves as a robust nonlinear classifier suitable for tackling pattern recognition, 

classification, and regression analysis tasks[46].The KFDA method is capable of reflecting the 

nonlinear relationships between the input and output variables of the dataset, and shows good 

generalisation performance in many practical problems. 

We have noticed the success of Shaoqun Dong and colleagues [43] in addressing similar 

Lithofacies identification problems, and we also intend to employ kernel Fisher discriminant analysis 

to preprocess similar issues before proceeding with data classification. Nowadays, there are 
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numerous applications of kernel Fisher discriminant analysis in the field of machine learning as well. 

For instance, Liu et al. [47] have used this technique to enhance tasks like face recognition. 

To address the issue of confusion between similar activities in single-model human activity 

recognition and enhance the overall recognition accuracy of multi-class activities, we drew 

inspiration from the success of Shaoqun Dong [43] and others in solving similar Lithofacies 

identification problems. We decided to leverage KFDA to preprocess the similar activity data before 

performing classification. In this paper, we propose a multi-layer neural network model based on 

Kernel Fisher Discriminant Analysis. This approach comprises preprocessing steps, followed by 

initial classification using Random Forest. Subsequently, KFDA is applied to process the data. Finally, 

SVM are employed for detailed classification of ambiguous actions. The end result is a robust neural 

network classification model that effectively addresses the challenge of distinguishing similar 

activities. 

Therefore, the main contributions of this paper can be summed up as follows: 

1) We propose a model design aimed at addressing the issue of confusion between similar 

activities. 

2) To tackle the problem of similar activity feature similarity, we introduce an SVM neural network 

classification approach based on Kernel Fisher Discriminant Analysis, which effectively 

classifies similar activities. 

3) Additionally, we conducted classification experiments on four common benchmark datasets and 

performed detailed analyses on these datasets. We compared our model with mainstream 

classification models. Experimental results demonstrate that our model exhibits excellent 

classification performance. 

The remaining sections of this paper are organized as follows. Section II provides a brief 

introduction to the work carried out in this paper, along with details about the dataset used. Section 

III conducts a basic data analysis and employs appropriate data preprocessing techniques. Section IV 

introduces our proposed human motion approach based on a multi-layer classifier. Section V 

presents the experimental setup, provides results for our proposed method on multiple datasets, and 

offers an analysis and discussion of these results. Finally, in Section VI, we summarize the insights 

gathered from these experiments and outline future directions. 

2. Word 

In the field of HAR research, various datasets have been previously published. Notable among 

them is the UCI (University of California, Irvine) HAR dataset, recognized for its widespread 

utilization in numerous studies and comparisons [48]. Additionally, the WISDM (Wireless Sensor 

Data Mining) dataset [17] is also prominently featured. Furthermore, datasets such as UCI DSA [16] 

and IM-WSHA [18], which are both accessible through UCI, have been employed. In addition to 

these, there exist several other datasets that are not individually detailed within this article. 

Subsequent sections will provide a comparative analysis of the strengths and weaknesses of these 

three primary datasets, as presented in Table 1. 

To highlight these differences, a qualitative comparison between these three datasets is 

presented in Table 1. 

While the data collected from UCI DSA may appear simpler in comparison to WISDM and UCI 

ADL, UCI HAR captures a wide range of 19 different human activities. Unlike other datasets, it better 

represents complex human activities and serves as a more comprehensive showcase for our model in 

this paper. We conducted experiments using the four aforementioned databases, but in the following 

sections, we focus our narrative on UCI DSA. 
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Table 1. Comparison between datasets: UCI DSA,UCI HAR, WISDM and UCI ADL. 

 UCI DSA UCI HAR WISDM IM-WSHA 

Type of activity studied Short-time Short-time Short-time Short-time 

Different volunteers Yes Yes Yes Yes 

Volunteers Number 4 30 36 10 

Fixed sensor frequency Yes Yes Yes Yes 

Instances 9120 10299 1098207 125955 

Sensors Acc. and gyro. Acc. and gyro. Acc Acc. and gyro. 
Sensor data collection Comprehensively Comprehensively Selectively Selectively 

Sensor type Phone Phone Phone IMU 

Sensor number 3 3 1 3 

Activities type 19 6 6 11 

The UCI DSA data in this paper were obtained from measurements of human activity by 

miniature inertial sensors and magnetometers in different parts of the body. Sensor data were 

collected from a total of 8 subjects performing 19 different activities. The total signal duration for each 

subject for each activity was 5 minutes. The sensor unit was calibrated to acquire data at a 25 Hz 

sampling frequency. The 5-minute signal was divided into 5-second segments, resulting in 480 (=60 

× 8) signal segments for each activity. 

A total of eight volunteers participated, resulting in a collection of 9120 instances. This dataset 

elaborately describes the data captured from various sensors, measuring activities performed by 

different subjects within the same time intervals. We consolidated this textual dataset into a CSV file 

comprising two columns: subject ID and activity type. 

After data pre-processing, based on the filtered features, our team designed a feasible 

algorithmic solution to classify 19 human behaviors. Due to the particularly large amount of data and 

the inherent similarity of human activities, direct classification of the 19 human behaviors using a 

single machine learning algorithm would easily result in confusion of similar behaviors and lead to 

degradation of classification accuracy. 

To provide a clearer presentation of our solution, our team utilizes Figure 2.1 and employs a 

flowchart to illustrate the framework of our approach. 

 

Figure 1. Overview of the system workflow. 

After data preprocessing and based on the selected features, our team devised a viable 

algorithmic solution. Initially, all activity data underwent a first-level classification using Random 

Forest. Subsequently, kernel Fisher discriminant analysis was applied to reduce dimensionality for 

activities prone to confusion, followed by further fine-grained classification using Support Vector 
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Machines (SVM). This iterative process continued until no more instances of confounding activities 

were encountered. 

In order to provide a more detailed overview of our efforts in addressing similar activities and 

how we distinguish other actions within confusing scenarios, we have created the following diagram 

to illustrate our Model: 

 

Figure 2. Model Workflow Diagram. 

3. Method and data preprocessing 

3.1. Intuitive Data Processing 

In this section, the preprocessing work, to avoid unnecessary complexity in the article, is 

illustrated using the UCI DSA dataset as an example. We downloaded the dataset from the official 

UCI website [16] and found it to be somewhat disorganized. To streamline the dataset, we 

consolidated the original files into a CSV file. Additionally, to simplify the lengthy labels under the 

"Behavior" column in the dataset, as discrete information such as IDs and names are not needed for 

the actual experiments, we adopted an abbreviated format. This processing aligns with the original 

dataset, for instance, replacing "sitting" with "A1." For detailed information, please refer to Table 2. 

Table 2. Table of Specific Actions and Corresponding Codes in the Text. 

Behavior Codes Behavior Codes 

sitting A1 
walking on a treadmill with a speed of 4 

km/h (15 deg inclined positions) 
A11 

standing A2 
running on a treadmill with a speed of 8 

km/h 
A12 

lying on back A3 exercising on a stepper A13 

lying on right side A4 exercising on a cross trainer A14 

ascending stairs A5 cycling on an exercise bike in horizontal A15 

descending stairs A6 
cycling on an exercise bike in vertical 

positions 
A16 

standing in an elevator still A7 rowing A17 
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moving around in an 

elevator 
A8 jumping A18 

walking in a parking lot A9 playing basketball A19 

walking on a treadmill with 

a speed of 4 km/h (in flat) 
A10   

3.2. Standardisation and normalisation 

we examined the data samples by randomly selecting a metric and presenting it alongside 19 

different activities. As shown below, we preprocessed the data through standardization and 

normalization methods. In Figure 3(a), the original data for this metric, comprising 60,000 sample 

points across various activities, is displayed. After our preprocessing, as depicted in Figure 3(b), it is 

evident that all data now falls within the range of 0 to 1, while preserving the fundamental 

characteristics of the data. 

 

(a) Original data 
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(b) The data after preprocessing 

Figure 3. Pre- and post-data pre-processed to correspond to 19 human activities. 

4.1. Random Forest initial classification model base on stepwise regression 

Firstly, the SR-Random Forest model is proposed by combining the stepwise regression analysis 

with the Random Forest model. Then, the KFDA-SVM Model is proposed by combining the kernel 

Fisher discriminant analysis with SVM. In this section, firstly, the stepwise regression algorithm and 

the Random Forest Model are introduced and the SR-Random Forest Model is proposed, and 

furthermore, the kernel Fisher discriminant analysis model and SVM model and gives their combined 

model. 

In order to obtain a higher initial classification accuracy for subsequent improvement in the 

second classification stage . In [58], it is mentioned that the use of feature selection algorithms will be 

able to effectively improve the efficiency of machine learning, so we first extract the relevant metrics 

using stepwise regression to calculate the importance of the input metrics. Random forest is an 

ensemble classifier that uses multiple decision trees to train samples and make predictions. In this 

section, the SR -RF model is shown in Figure 4. 
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Figure 4. Presentation of the Random Forest Model base on Stepwise regression algorithm 

Workflow. 

4.1.1. Stepwise regression algorithm 

Stepwise regression analysis algorithms can be traced back to the 19th century statistician and 

mathematician Francis Galton, however, the formal development and promotion of stepwise 

regression can be traced back to the 20th century statisticians and mathematicians, especially R. A. 

Fisher, In this paper, we use stepwise regression analysis to analyse the 45 indicators in the UCI DSA 

( ) rows of stepwise regressions. analyses, and we also chose a variable  as the response 

variable. It is assumed that the indicators satisfy equation (1): 

 (1) 

Assuming that there is a linear relationship between  and  , , and 

substituting it into equation (1), we get 

 (2) 

Suppose that Eq: 

 (3) 

The estimation of model (3) is 

  

The sum of squared residuals for model (3) is 

 (4) 

The sum of squared residuals for model (1) is 

 (5) 
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Comparing and , , it is possible to eliminate  . The stepwise regression 

method can effectively reduce the number of features in the data, improving the fitting performance 

of the model. 

4.1.1. Stepwise regression algorithm 

The main features that can classify human behavior have been extracted in the above steps. 

Considering the relationship between these data and the fact that the samples used for training are 

discrete and the amount of data is huge, the random forest algorithm is considered for network 

training, and its general algorithmic flow is shown in Figure 5. In order to initially identify multi-

class activities, the random forest classification algorithm with excellent performance in supervised 

learning is chosen for the layer 1 classifier.  

 

Figure 5. Random forest algorithm flow chart. 

4.1.2. Random forest base on Stepwise regression algorithm 

Random Forest is a composite classification model composed of many decision tree classification 

models  , and the parameter set  is a collection of independently and 

identically distributed random vectors. Under the given independent variables , each decision tree 

classification model selects the optimal classification result through a majority vote. The basic idea is 

to first use bootstrap sampling to extract    samples from the original training set, with each 

sample having the same sample size as the original training set. Then,  decision tree models are 

built for the  samples, resulting in  different classification results. Finally, based on these  

classification results, a majority vote is used to determine the final classification result for each record. 

The final classification decision in a random forest is made by training through     rounds, 

obtaining a sequence of classification models  , and using them to create 

a multi-classification model system. The ultimate classification result of this system is determined 

using a simple majority voting method: 

 (6) 

where,  is a multi-classification model,  is an individual decision tree classification model, 

and represents the output variable. 

The specific implementation of the above ideas, as illustrated in Algorithm 1, combines stepwise 

regression and random forest modeling to create a novel classification model. Its advantage lies in 

the ability to select features from the classification dataset effectively. 
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Algorithm 1: Random Forest Model base on Stepwise regression algorithm 

Input: Let  denote the training data, with number 

of 

trees . 

Output: Prediction of the random forest at  and random forest Model. 

1： Construct  decision trees. 

2： For  do 

3：   Step-by-step substitution calculations for each indicator, replacing the old model 

with the new model if the new model is better. 

4： End  

5： Output  metrics and replace them with metrics from the  dataset. 

6： Randomly divide  into train data  and test data  in a certain ratio. 

7： Setting the objective function ,using train data  and test data . 

8： For  do 

9：   Find Suitable  and , meet:  

10：   For  do 

11：   if  then 

12：    

13：   else if  then 

14：    

15：   End 

16： End  

17： Adjustment to Test set . 

18： Getting the optimal , . 

19： For  do 

20：   Train the kth tree based on the test set and the training set.get . 

21： End 

22： Classification of new samples is based on grown decision trees, utilizing a 

majority vote mechanism to determine the final classification result. 

23： . 

4.2. Second layer SVM classification Base kernel Fisher discriminant analysis 

To address the issue of similarity between two easily confused types of actions, we employed 

two key steps. First, we utilized KFDA for feature dimensionality reduction, effectively separating 

similar activities. This step aims to increase the distance between different actions in the data space, 

thereby facilitating subsequent SVM classification. Let's delve into the principles and workflow of 

these two steps in more detail. Firstly, we will introduce KFDA, and then we will provide a deeper 

explanation of SVM. This process's workflow is analogous to the one depicted in Figure 6. 
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Figure 6. SVM model workflow based on kernel Fisher discriminant analysis. 

4.2.1. Principle of kernel Fisher discriminant analysis 

KFDA is a pattern recognition and classification method based on kernel techniques and is an 

extension of Fisher Discriminant Analysis. KFDA is designed to handle nonlinearly separable data 

by mapping the data to a high-dimensional feature space, thereby improving classification 

performance. We describe KFDA in conjunction with [43] Kernel Fisher Discriminant Analysis 

(KFDA) was first proposed by Schölkopf et al. in 1997 [52] and can be expressed as the maximisation 

equation (7): 

 (1) 

wherein, represents the within-class scatter matrix,  is the between-class scatter matrix, and 

denotes the projection vector. 

The above problem can be equated to finding the generalised eigenvectors of the eigenvalue 

problem: 

 (8) 

where the eigenvalues  represent the discriminative power of each projection vector. Once we 

obtain the projected vector , it can be used for classification instead of the original vectors with a 

linear classifier. 
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Figure 7. Transformation process illustration of a KFD model. A nonlinear mapping function  

converts a nonlinear problem in the original (low dimensional) input space to a linear problem in a 

(higher dimensional) feature space (from [43]). 

The limitations of the LDA method are primarily due to its inherent linearity, especially for 

nonlinear problems [56]. In contrast, the KFDA method, an improved version of LDA that uses a 

kernel trick, overcomes these shortcomings. KFDA is better suited for the analysis of high-

dimensional data and complex systems. It is easy to implement and is characterised by its 

adaptability and generalisation. 

The core concept of KFDA is to map the original input data by a nonlinear mapping function  

into a high-dimensional feature space F, typically a nonlinear space (see Figure 4.4). Through this 

transformation, non-linear relationships within the input data are indirectly transformed into linear 

relationships. LDA is then applied to extract the most significant discriminating features in this 

feature space. To overcome the computational challenges of calculating  directly, Adding kernel 

parameters to express functional relationships for nonlinear mappings. 

The goal of KFDA is to find a set of projection vectors that maximises the inter-class distance 

while minimising the intra-class distance within the feature space. This is achieved by maximising 

the following kernel Fisher criterion: 

 (2) 

where α represents the projection vector,  represents the kernel between-class scatter matrix and 

is the kernel within-class scatter matrix in the feature space. 

The described in Equation (9) can be reformulated as solving the generalized feature equation, 

thus reducing redundancy: 

 (3) 

where  is the nonzero eigenvalue of projection vector . Let be the optimal 

projection vector, It is also the maximum eigenvalue from Equation (4). are the eigenvalue 

of  respectively, and . The number of vectors is by the cumulative 

contribution rate  

If  knows, the nonlinear decision function  of KFDA as: 

 (4) 

where  is the coefficient vector by  the i kernel,  is the i one in all the input samples, and  is 

the kernel function. 
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4.2.2. Kernel parameter optimization 

Among these kernel functions, the Gaussian kernel stands out due to its strong generalization 

capability and the fact that it requires fewer parameters to be set. This makes it particularly effective 

at capturing nonlinear relationships. Therefore, In [43], the Gaussian kernel function was chosen as 

the kernel function and is expressed as shown in Equation (12): 

 (5) 

where  is the width parameter of Gaussian kernel. 

The kernel parameter  is very important and plays a crucial role in the KFDA-SVM model 

appearing in this paper, which can adjust the position and distribution of the data in the feature space, 

and largely affects the classification efficiency and the generalisation ability of the later SVM 

classification model, therefore, choosing the correct The kernel parameter  Value is a very 

important step. 

4.2.2. SVM Model base on kernel Fisher discriminant analysis 

In order to further subdivide the confusion action into a specific action, this paper introduces 

SVM vector machine as a sub-classification model to divide the confusion action. The principle of 

SVM classifier is to take the hyperplane to maximize the feature distance between different categories 

so as to achieve the classification effect. As shown in the figure, the wider the width of the 

classification interval (i.e., maximizing), the lower the impact caused by the local interference in the 

training set. Therefore, it can be considered that the last classification method has the best 

generalization performance and generality. The model of SVM can be formulated as: 

 (6) 

where, is the feature vector,  is the weight vector, is the marker vector, and  is the sign 

function. 

When , the sample is positive; when , the sample is negative, i.e. 

 (7) 

As shown in Figure 8, SVM usually finds the optimal classification hyperplane by maximizing 

the classification interval. Assuming that the input of the training set is the set of  vectors and 

the output is the set of  vectors, the classification interval is twice the minimum distance from 

the full set of samples to the hyperplane, i.e., where  is the number of samples 

 (8) 

 

Figure 8. Vector machine classification flow chart. 
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Mathematically, all sample points that meet the requirements of equation (15) (i.e., sample points 

with the smallest Euclidean distance to the classification hyperplane) will be defined as support 

vectors, then the set of samples must satisfy the following two cases: if the samples are positive, then 

 If the samples are negative, then , as shown in Figure 9. 

 

Figure 9. Vector machine classification schematic. 

Therefore, the characteristic samples in the sample set should satisfy when the discriminant 

equation is multiplied by the corresponding coefficients. 

 (9) 

5. Experimental 

5.1. Experimental setting 

The experiments were conducted on the same computer with the following specifications: an 

AMD Ryzen 7 4800H processor with Radeon Graphics, operating at 2.90 GHz, 16GB of RAM, and an 

NVIDIA GeForce GTX 1660 Ti graphics card. The operating system used was Windows 10. We 

utilized both Matlab and Python tools for conducting the experiments and performed validations on 

four different datasets, namely UCI DSA,  UCI HAR, WISDM, and UCI ADL. We also conducted a 

relevant evaluation of our approach. To maintain the conciseness of the paper, the following 

experiments are illustrated using the UCI DSA dataset as an example. 

5.2. Extraction of important features 

By employing the Stepwise regression algorithm to analyze the 45 features in the dataset, we can 

assess the varying importance of each feature. We select those features with an importance score 

exceeding 0.02 to be used as crucial features for the subsequent multi-layer classifier based on 

Generalized Discriminant Analysis. For features with lower importance, we filter them out to 

mitigate potential interference with our classification accuracy. 

The histograms plotted for the weights of the significant characteristics are as Follows: 

Firstly, using the random forest model in Matlab, a plot illustrating the relationship between the 

number of decisions as the independent variable and the error as the dependent variable was 

generated, as depicted in Figure 10. Specific results can be found in Table 3. 
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Figure 10. Weights of important features chart. 

Table 3. Number of decisions and error rate. 

Number of decisions tree Error rate 

1 63.1% 

5 10.5% 

10 2.8% 

20 1.2% 

35 0.8% 

50 0.3% 

5.3. Extraction of random forest base on stepwise regression algorithm 

From the above Figure 12, it can be observed that, in this dataset, based on an analysis of 

computer performance, model accuracy, and the reliability of the model, the number of decision trees 

was determined to be 50. To better assess the classification performance of the Random Forest model, 

we established a test dataset. Using MATLAB, we conducted experiments where we uniformly 

partitioned the overall data into different ratios based on various human activities and different 

volunteers. The results for different ratios and their impact on the accuracy of both the training and 

test sets are presented in Table 4. 
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Figure 11. Plot of the number of decisions versus error in the random forest model. 

  

(a) Radom forest model by train set (b)Radom forest model by test set 

Figure 12. Random forest model recognition results comparison chart. 

To better analyze the above random forest identification results, a confusion matrix plot of the 

above two results was made using MATLAB as follows. 

Table 4. This is a table. Tables should be placed in the main text near to the first time they are cited. 

Ratio (training:testing) 
UCI DSA 

Training data Testing data 

9:1 99.6555% 99.5789% 

8:2 99.6043% 99.5689% 

7:3 99.66% 99.5269% 

6:4 99.6756% 99.5445% 

5:5 99.6656% 99.5040% 

4:6 99.6706% 99.3753% 
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(a) Confusion matrix of Radom forest model by 

train set 

(b) Confusion matrix of Radom forest model 

by test set 

Figure 13. Confusion matrix of test set and training set random forest training. 

We also performed Random Forest classification on data from the other three databases 

separately, following a similar experimental setup. The experimental results obtained are presented 

in Table 5. 

Table 5. Random forest Result table between datasets: UCI DSA,UCI HAR, WISDM and UCI ADL. 

 Ratio (training: 

testing) 

UCI DSA WISDM IM-WSHA 

Training data Testing 

data 
Training data Testing data Training data Testing data 

9:1 99.6555% 99.5789% 99.9415% 99.1819% 99.9973% 97.5342% 

8:2 99.6043% 99.5689% 99.9543% 98.6841% 99.9982% 96.9773% 

7:3 99.66% 99.5269% 99.6646% 98.5631% 99.9977% 96.8102% 

6:4 99.6756% 99.5445% 99.6326% 98.4698% 99.9973% 96.4045% 

5:5 99.6656% 99.5040% 99.6061% 98.3741% 99.9984% 95.9813% 

4:6 99.6706% 99.3753% 99.5841% 98.2694% 99.996% 95.3001% 

Observing the four charts above and drawing upon real-world judgment, this study suggests 

that the primary reason for the inconsistency between action recognition results and actual results is 

the similarity in features among these actions, making them easily confusable during the algorithmic 

recognition process. For instance, actions such as walking up and down stairs, walking or standing 

in an elevator, exhibit such similarities. Apart from these mentioned actions, the predictive accuracy 

for all other actions approaches 100%. This indicates that these actions can be recognized and 

classified as genuine actions at this layer of the classification model. 

The remaining unrecognized actions fall into two main categories. For instance, the model 

classifies A6, A18, and A19 as A5 and confuses A7 and A8 with each other. To facilitate subsequent 

fine-grained classification models, these similar actions are divided into two main categories, as 

illustrated in the Table 6. 
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Table 6. Confusion action classification table. 

Confusion category Easily confused actions 

Confusion Ⅰ category A5,A6,A18,A19 

Confusion Ⅱ category A7,A8 

5.3. Extraction of SVM Model base on kernel fisher discrimi-nant analysis 

Taking the four Behaviors classes (A5, A6, A18, A19) as an example of Confusion Type I, we first 

extracted three of the most important features from the dataset and created a scatter plot as shown 

on the left side of Figure 14. It can be observed that these four Behaviors classes have a relatively 

short spatial distribution in these three original features, indicating a small inter-class distance and a 

large intra-class distance. This is not conducive to the activity recognition by the classifier. 

Subsequently, we applied Principal Component Analysis (PCA) for dimensionality reduction, 

as illustrated on the right side of Figure 14. It represents three randomly selected nonlinear 

discriminative features extracted from the original features of these four similar activities. In this 

study, we find that the mapping results of PCA are not particularly favorable, as the intra-class 

distance remains small. 

 
 

(a)  primary feature (b) PCA feature 

Figure 14. primary feature and PCA feature. 

Therefore, in this study, we employed Kernel Fisher Discriminant Analysis for dimensionality 

reduction, focusing on the points that were previously confused in the upper layer of Random Forest. 

Kernel Fisher Discriminant Analysis has a parameter denoted as , which can vary. Typically, this 

parameter's range is set within [0, 10]. We experimented with different parameter settings and 

obtained various images, as shown in Figure 15. 
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(a)   (b)  

  
(c)   (d)  
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(e)  

Figure 15. The Result of Kernel Fisher Discriminant Analysis with varying parameter . 

Based on the above experimental results, we can see that in this scenario, upon observing the 

three-dimensional scatter plot, the data has been categorized into four classes. In order to obtain a 

clearer visual representation, we selected the two features that performed best in the three-

dimensional space and generated a two-dimensional scatter plot, as shown in Figure 16. 

In this paper, we use MATLAB to sub-classify the above model, and input the indicators that 

have been generalized discriminant analysis into SVM as the original data, taking the confusion Ⅰ 
class as an example, because A5 and A6 are more closely connected, and A18 and A19 are also more 

closely connected, so we first subdivide the confusion Ⅰ class into two large classes A5, A6, and A18, 

A19, and then a second subdivision, we can subdivide the confusion Ⅰ class into the more A5, A6, 

A18, and A19 classes by a two-layer SVM vector machine. A5, A6, A18, and A19 which are the four 

classes of activities,As shown in the Figure 17. 

  

(a) 3-axial of data (b) 2-axial of data 

Figure 16. kernel Fisher discriminant analysis feature. 
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(a) SVM model by train set (b)SVM model by test set 

Figure 17. SVM preliminary segmentation obfuscation I class result graph. 

Through the above steps, the data of the confusion I class has been classified into two major 

classes A1, A2 and A7, A8 by SVM vector machine, and in order to classify them more carefully, this 

paper then performs a fine classification of these two major classes into specific activity classes. As 

shown in the figure 6.8 and Figure 18 and Figure 19.  

  

(a) SVM model by train set (b)SVM model by test set 

Figure 18. SVM preliminary segmentation obfuscation I class result graph. 
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(a) SVM model by train set (b)SVM model by test set 

Figure 19. SVM preliminary segmentation obfuscation I class result graph. 

Through the steps related to figure, we are able to classify all the data of the confusion I class 

into specific active classes by the above SVM vector machine meticulous classification, although the 

effect of SVM vector machine fine classification A18, A19 is not significant as shown in Figure 19, but 

it is much better than the initial random forest classification effect has been much better than the 

initial random forest. Similarly, we conducted various experiments as shown in Table 7. 

Table 7. Random forest Result table between datasets: UCI DSA,UCI HAR, WISDM and UCI ADL. 

 Ratio (training: 

testing) 

A5、A6 and A18、A19 Accuracy 
(%)  

 A5 and A6 Accuracy 
(%) 

A18 and A19 Accuracy 
(%) 

Training data Testing data Training data Testing data Training data Testing data 

9:1 99.90 99.75 95.11 90.98 78.10 66.77 

8:2 98.96 98.41 95.12 90.56 81.00 78.75 

7:3 96.56 95.83 95.28 91.04 75.33 74.70 

6:4 95.75 95.06 95.33 91.25 68.25 69.30 

5:5 94.90 95.35 94.80 90.65 73.20 64.80 

4:6 93.91 94.62 90.56 85.34 77.16 70.65 

In this paper, the same operation was also performed on the confusion II class, which was input 

to the second layer of the classification vector machine to obtain the recognition probabilities of the 

four similar actions, and the final recognition results of the four similar activities were obtained by 

weighted average with the recognition probabilities of the first layer classifier. The confusion matrix 

is shown in figure, and it can be seen that the original confusion-prone actions are improved a lot, 

and the overall correct rate is improved from 99.57% to 99.71%. 
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(a) SVM model by train set (b)SVM model by test set 

Figure 20. Confusion matrix diagram for two-level classifier. 

We also compared our approach with those of others on three datasets: UCI HAR, WISDM, and 

IM-WSHA, as shown in Table 8. 

Table 8. Comparison of recognition accuracy of the proposed method with other state-of-the-art 

methods over UCI DSA, UCI HAR, WISDM and IM-WSHA datasets. 

Method UCI DSA UCI HAR WISDM IM-WSHA 

MS-DLD[25]    88.3%[25] 
HPAR[26]  91.83%[26]  90.18%[26] 
HDAR[27]    91.45%[27] 
RPLB[28]    83.18%[28] 

Kinematics features 
withkernel sliding 

perceptron[29] 

 

  81.47%[29] 

Estimation 
algorithm[30] 

 
  80.49[30] 

Accelerometer and 
Gyroscope 
Sensors[31] 

 

96.33%[31]   

Deep CNN-
LSTM[32] 

 
93.11%[32]   

Deep CNN-GRU[33]  96.20%[33] 97.21%[33]  

EdgeHARNet[34]   94.036%[34]  

MarNASNet-b[35]  94.20%[35] 90.62%[35]  

DMEFAM[36]  96%[36] 97.9%[36]  

BLSTM[37]  98.37%[37] 99.01%[37]  

CAEL-HAR[38]  96.45%[38] 98.57%[38]  

 2D CNN-LSTM[49] 92.95%[49]    

MVTS[50] 98.96%[50]    

SR-KS 99.71% 98.71% 99.12% 97.6% 
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Below, we validate the aforementioned model. First, we conducted experiments using K-fold 

cross-validation on the random forest. In this study, we set K=5 for validation. The experimental 

results are shown in Figure 21, demonstrating the strong generalization capability of our model. 

  

(a)  First split training set confusion matrix (b) First split testing  set confusion matrix 

  
(c)  Second split training set confusion matrix (d) Second split testing  set confusion matrix 
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(e)  Third split training set confusion matrix (f) Third split testing  set confusion matrix 

  
(g)  Fourth split training set confusion matrix (h) Fourth split testing  set confusion matrix 

  
(i)  Fifth split training set confusion matrix  (j) Fifth split testing  set confusion matrix 

Figure 21. Let k be the cross-validation result for 5. 
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Immediately after that, the SVM model was validated using ROC curves as well as AUC values 

with the following results: 

  

(a) SVM preliminary segmentation obfuscation 

I class result graph’s ROC Curve and AUC 
value 

(b) SVM preliminary segmentation obfuscation 

Ⅱ class result graph’s ROC Curve and AUC 
value 

 
(c) SVM preliminary segmentation obfuscation Ⅲ class result graph’s ROC Curve and 

AUC value 

Figure 22. SVM Model ROC Curve and AUC value. 

6. Conclusion 

This study proposes an approach to the problem of identifying similar activities, in which a 

multilayer model called "SR-KS" is introduced, where all the features of the data are firstly filtered 

using Stepwise Regression Analysis, and a part of the features are selected for Random Forest 

Classification, which will improve the efficiency of classification effectively. Based on the above 

classification results, we screened out the data points that were confusing in terms of identification, 

and then used the SVM model based on Kernel Fisher Discrimi-nant Analysis to identify them, which 

firstly utilised the Kernel Fisher Discriminant Analysis to separate the similar activities from data 

perspective, followed by using SVM model to classify the above data, and finally get a good 
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recognition result, we also used k cross validation as well as ROC curves to validate the above model 

respectively, and the result proved that our model has a good generalisation ability. Our method can 

identify similar human activities very well, but at the same time, we also found that the recognition 

effect of A18,A19 is not very good, we shall investigate a more suitable model and its simulation 

algorithm to obtain high accuracy for human activity in  A18 or A19. Our future research work can 

be focused on the following two points: 

• Extending the proposed technique to cope with classification tasks under more similar activity 

data, such as typing and handwriting. Extending the proposed technique to cope with 

generative tasks under more demanding driving conditions, such as datasets with few features 

and insufficient data sample; 

• Starting from the data collection, designing and implementing a sound and specific sensor data 

collection scheme and collection algorithm design, for example, we consider the removal of noise 

in data collection as well as the collection of data conducive to the identification of human 

activity. 
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