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Abstract: Sensor-based human activity recognition is now well developed, but there are still many
chal-lenges, such as insufficient accuracy in recognising similar activities.In response to this
question, We mainly collected data related to three-axis acceleration as well as gyroscope, based on
these data we developed a model capable of classifying activities similar to human behavior and
evaluated the effectiveness and generalization capabilities of this model. The data underwent initial
preprocessing, including standardization and normalization. Additionally, recognizing the inherent
similarities between human activity behaviors, we introduced a multi-layer classifier model. The
first layer is a random forest model based on stepwise regression, which may encounter reduced
accuracy for similar activities. The second layer employs a Support Vector Machine (SVM) model
based on Kernel Fisher Discrimi-nant Analysis (KFDA). KFDA is used to reduce the dimensionality
of data points with potential confusion, followed by SVM for classification. The model was
experimentally evaluated and ap-plied to four benchmark datasets: UCI DSA, UCI HAR, WISDM,
and IM-WSHA. The experimental results demonstrate that our approach achieved recognition
accuracies of 99.71%, 98.71%, 99.12%, and 97.6% on these datasets than the best model respectively
0.75%, 0.34%, 0.11% and 6.15%, indicating excellent recognition performance. Fur-thermore, to
assess the model's generalization ability, we performed K-fold cross-validation on the random forest
model and utilized ROC curves for the SVM classifier. The results indicate that our multi-layer
classifier model exhibits robust generalization capabilities.

Keywords: body-worn sensors; multi layer classifier; random forest; kernel fisher discriminant
analysis; SVM; stepwise regression

1. Introduction and Related Work

Human Activity Recognition (HAR) involves identifying various human behaviors through a
series of observations of individuals and their surrounding environment [39]. HAR has been
generally applied in many fields, such as Security and Surveillance[40], sports and fitness[41],
industry and manufacturing[42], autonomous driving[44],and the references therein.

A novel IoT-perceptive human activity recognition (HAR) approach using multihead
convolutional attention in [1].Hand-crafted and deep convolutional neural network features fusion
and selection strategy in [2].In [3], authors consider smart homes environments using Lstm
networks.In [4], using A federated learning system with enhanced feature extraction to Human
Activity Recognition and using Bi-LSTM network for multimodal continuous human activity

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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recognition and fall detection [5].In the field of industry and manufacturing, Utilizing time factor
analysis in conjunction with human action recognition for worker operating time [6] and applying
deep learning to human activity recognition [7] etc., they rely heavily on HAR technology which
improves the accuracy of targeting criminals [8].In the field of autonomous driving [9], the
recognition of human activities will help to develop a suitable autonomous driving system.

Human activity recognition (HAR) methods can be broadly categorized into two main
directions: 1) vision-based HAR and 2) wearable sensor-based HAR. It is well-known that vision-
based HAR is generally considered more advanced compared to wearable sensor-based HAR [10].
but, vision-based HAR also faces several challenges. For one thing, there are privacy concerns related
to the potential leakage of video data, and image processing demands significant computational
power and substantial storage resources. For another, factors such as the observer's position and
angle, the subject's physique, attire, background color, and light intensity can all impact the accuracy
of vision-based HAR [11].In contrast, inertial sensor technology is typically cost-effective and offers
greater robustness and portability in various environmental conditions [12]. Currently, sensor-based
recognition technology has gained widespread attention due to its superior confidentiality and
relatively lower computational requirements. Therefore, in [13], the authors discussed the role of
sensor placement in the design of HAR systems to optimize their availability. Leveraging these
advantages, wearable sensor-based HAR has garnered increasing interest in recent years.

In recent years, wearable sensor-based HAR has gained widespread attention. The earliest
research on sensor-based recognition of human behavior can be traced back to the 1990s, with studies
by researchers such as F. Foerster [21] and O. X. Schlmilch [22]. Nowadays, wearable sensor research
has yielded many high-accuracy models. For example, Bao and his team achieved an overall accuracy
of 84% through effective data collection and decision tree classification [23]. The Centinela system
developed by D. Lara and colleagues achieved an overall accuracy of 95.7% [24]. However, at the
same time, a problem has been identified where single classification models can lead to significant
confusion when distinguishing similar activities (such as ascending stairs and descending stairs).In
the study by JANSIR et al. [14], they employed chaotic mapping to compress raw tri-axial
accelerometer data and extracted 38 time-domain and frequency-domain features, including mean,
standard deviation, root mean square, dominant frequency coefficient, spectral energy, and others.
They achieved a recognition accuracy of 83.22% in human activity recognition. However, the results
showed significant confusion between activities such as running, ascending stairs and descending
stairs. In the research by VANRELLS et al. [15], they extracted a 91-dimensional feature vector from
single-axis accelerometer data, including cepstral coefficients, time-domain features, and periodicity
features. They achieved a recognition accuracy of 91.21% in a classification task involving ten
different human activities. However, the results also indicated substantial confusion between
activities such as cycling on an exercise bike in horizontal, cycling on an exercise bike in vertical
positions, ascending stairs and descending stairs. The reasons for the confusion between similar
activities can be summarized in two aspects. Firstly, within the same individual, different activities
may share similar activity cycles or amplitudes, leading to activity recognition confusion and a
decrease in overall accuracy.

Kernel Fisher Discriminant Analysis (KFDA) is a powerful extension of Fisher Discriminant
Analysis (FDA) [45] that has proven to be highly effective in various pattern recognition and
classification tasks. While traditional FDA is primarily designed for linearly separable data, KFDA
extends its capabilities by allowing the analysis of nonlinearly separable data through the use of
kernel functions.It serves as a robust nonlinear classifier suitable for tackling pattern recognition,
classification, and regression analysis tasks[46].The KFDA method is capable of reflecting the
nonlinear relationships between the input and output variables of the dataset, and shows good
generalisation performance in many practical problems.

We have noticed the success of Shaoqun Dong and colleagues [43] in addressing similar
Lithofacies identification problems, and we also intend to employ kernel Fisher discriminant analysis
to preprocess similar issues before proceeding with data classification. Nowadays, there are
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numerous applications of kernel Fisher discriminant analysis in the field of machine learning as well.
For instance, Liu et al. [47] have used this technique to enhance tasks like face recognition.

To address the issue of confusion between similar activities in single-model human activity
recognition and enhance the overall recognition accuracy of multi-class activities, we drew
inspiration from the success of Shaoqun Dong [43] and others in solving similar Lithofacies
identification problems. We decided to leverage KFDA to preprocess the similar activity data before
performing classification. In this paper, we propose a multi-layer neural network model based on
Kernel Fisher Discriminant Analysis. This approach comprises preprocessing steps, followed by
initial classification using Random Forest. Subsequently, KFDA is applied to process the data. Finally,
SVM are employed for detailed classification of ambiguous actions. The end result is a robust neural
network classification model that effectively addresses the challenge of distinguishing similar
activities.

Therefore, the main contributions of this paper can be summed up as follows:

1)  We propose a model design aimed at addressing the issue of confusion between similar
activities.

2)  To tackle the problem of similar activity feature similarity, we introduce an SVM neural network
classification approach based on Kernel Fisher Discriminant Analysis, which effectively
classifies similar activities.

3) Additionally, we conducted classification experiments on four common benchmark datasets and
performed detailed analyses on these datasets. We compared our model with mainstream
classification models. Experimental results demonstrate that our model exhibits excellent
classification performance.

The remaining sections of this paper are organized as follows. Section II provides a brief
introduction to the work carried out in this paper, along with details about the dataset used. Section
III conducts a basic data analysis and employs appropriate data preprocessing techniques. Section IV
introduces our proposed human motion approach based on a multi-layer classifier. Section V
presents the experimental setup, provides results for our proposed method on multiple datasets, and
offers an analysis and discussion of these results. Finally, in Section VI, we summarize the insights
gathered from these experiments and outline future directions.

2. Word

In the field of HAR research, various datasets have been previously published. Notable among
them is the UCI (University of California, Irvine) HAR dataset, recognized for its widespread
utilization in numerous studies and comparisons [48]. Additionally, the WISDM (Wireless Sensor
Data Mining) dataset [17] is also prominently featured. Furthermore, datasets such as UCI DSA [16]
and IM-WSHA [18], which are both accessible through UCI, have been employed. In addition to
these, there exist several other datasets that are not individually detailed within this article.
Subsequent sections will provide a comparative analysis of the strengths and weaknesses of these
three primary datasets, as presented in Table 1.

To highlight these differences, a qualitative comparison between these three datasets is
presented in Table 1.

While the data collected from UCI DSA may appear simpler in comparison to WISDM and UCI
ADL, UCI HAR captures a wide range of 19 different human activities. Unlike other datasets, it better
represents complex human activities and serves as a more comprehensive showcase for our model in
this paper. We conducted experiments using the four aforementioned databases, but in the following
sections, we focus our narrative on UCI DSA.
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Table 1. Comparison between datasets: UCI DSA,UCI HAR, WISDM and UCI ADL.

UCI DSA UCI HAR WISDM IM-WSHA
Type of activity studied Short-time Short-time Short-time Short-time
Different volunteers Yes Yes Yes Yes
Volunteers Number 4 30 36 10
Fixed sensor frequency Yes Yes Yes Yes
Instances 9120 10299 1098207 125955
Sensors Acc. and gyro. Acc. and gyro. Acc Acc. and gyro.
Sensor data collection =~ Comprehensively =~ Comprehensively Selectively Selectively
Sensor type Phone Phone Phone IMU
Sensor number 3 3 1 3
Activities type 19 6 6 11

The UCI DSA data in this paper were obtained from measurements of human activity by
miniature inertial sensors and magnetometers in different parts of the body. Sensor data were
collected from a total of 8 subjects performing 19 different activities. The total signal duration for each
subject for each activity was 5 minutes. The sensor unit was calibrated to acquire data at a 25 Hz
sampling frequency. The 5-minute signal was divided into 5-second segments, resulting in 480 (=60
x 8) signal segments for each activity.

A total of eight volunteers participated, resulting in a collection of 9120 instances. This dataset
elaborately describes the data captured from various sensors, measuring activities performed by
different subjects within the same time intervals. We consolidated this textual dataset into a CSV file
comprising two columns: subject ID and activity type.

After data pre-processing, based on the filtered features, our team designed a feasible
algorithmic solution to classify 19 human behaviors. Due to the particularly large amount of data and
the inherent similarity of human activities, direct classification of the 19 human behaviors using a
single machine learning algorithm would easily result in confusion of similar behaviors and lead to
degradation of classification accuracy.

To provide a clearer presentation of our solution, our team utilizes Figure 2.1 and employs a
flowchart to illustrate the framework of our approach.
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Figure 1. Overview of the system workflow.

After data preprocessing and based on the selected features, our team devised a viable
algorithmic solution. Initially, all activity data underwent a first-level classification using Random
Forest. Subsequently, kernel Fisher discriminant analysis was applied to reduce dimensionality for
activities prone to confusion, followed by further fine-grained classification using Support Vector
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Machines (SVM). This iterative process continued until no more instances of confounding activities
were encountered.

In order to provide a more detailed overview of our efforts in addressing similar activities and
how we distinguish other actions within confusing scenarios, we have created the following diagram
to illustrate our Model:
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Figure 2. Model Workflow Diagram.
3. Method and data preprocessing

3.1. Intuitive Data Processing

In this section, the preprocessing work, to avoid unnecessary complexity in the article, is
illustrated using the UCI DSA dataset as an example. We downloaded the dataset from the official
UCI website [16] and found it to be somewhat disorganized. To streamline the dataset, we
consolidated the original files into a CSV file. Additionally, to simplify the lengthy labels under the
"Behavior" column in the dataset, as discrete information such as IDs and names are not needed for
the actual experiments, we adopted an abbreviated format. This processing aligns with the original
dataset, for instance, replacing "sitting" with "A1." For detailed information, please refer to Table 2.

Table 2. Table of Specific Actions and Corresponding Codes in the Text.

Behavior Codes Behavior Codes
walking on a treadmill with a speed of 4

itti Al All
SIHNg km/h (15 deg inclined positions)
standing A2 running on a treadmill with a speed of 8 ALD
km/h
lying on back A3 exercising on a stepper Al3
lying on right side A4 exercising on a cross trainer Al4
ascending stairs A5 cycling on an exercise bike in horizontal Al5
descending stairs A6 cycling on an exercise bike in vertical Al6
positions

standing in an elevator still A7 rowing Al17
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moving around in an A8 jumping Al8
elevator

walking in a parking lot A9 playing basketball A19
walking on a treadmill with

a speed of 4 km/h (in flat) A10

3.2. Standardisation and normalisation

we examined the data samples by randomly selecting a metric and presenting it alongside 19
different activities. As shown below, we preprocessed the data through standardization and
normalization methods. In Figure 3(a), the original data for this metric, comprising 60,000 sample
points across various activities, is displayed. After our preprocessing, as depicted in Figure 3(b), it is
evident that all data now falls within the range of 0 to 1, while preserving the fundamental
characteristics of the data.
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(a) Original data
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(b) The data after preprocessing

Figure 3. Pre- and post-data pre-processed to correspond to 19 human activities.

4.1. Random Forest initial classification model base on stepwise regression

Firstly, the SR-Random Forest model is proposed by combining the stepwise regression analysis
with the Random Forest model. Then, the KFDA-SVM Model is proposed by combining the kernel
Fisher discriminant analysis with SVM. In this section, firstly, the stepwise regression algorithm and
the Random Forest Model are introduced and the SR-Random Forest Model is proposed, and
furthermore, the kernel Fisher discriminant analysis model and SVM model and gives their combined
model.

In order to obtain a higher initial classification accuracy for subsequent improvement in the
second classification stage . In [58], it is mentioned that the use of feature selection algorithms will be
able to effectively improve the efficiency of machine learning, so we first extract the relevant metrics
using stepwise regression to calculate the importance of the input metrics. Random forest is an
ensemble classifier that uses multiple decision trees to train samples and make predictions. In this
section, the SR -RF model is shown in Figure 4.
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Figure 4. Presentation of the Random Forest Model base on Stepwise regression algorithm
Workflow.

4.1.1. Stepwise regression algorithm

Stepwise regression analysis algorithms can be traced back to the 19th century statistician and
mathematician Francis Galton, however, the formal development and promotion of stepwise
regression can be traced back to the 20th century statisticians and mathematicians, especially R. A.
Fisher, In this paper, we use stepwise regression analysis to analyse the 45 indicators in the UCI DSA
(91,925 -++»gas ) Tows of stepwise regressions. analyses, and we also chose a variable ¥ as the response
variable. It is assumed that the indicators satisfy equation (1):

y:ao+algl+azgz+'“+6, (1)

Assuming that there is a linear relationship between ¢i and ¢. , ¢>=agi+b+v, and
substituting it into equation (1), we get

y=op+ba, +(oy+aa)g +-+e+ v, 2)
Suppose that Eq:
y=PBo+ Bigit -+ p (3)
The estimation of model (3) is
Bo = dw + bas,
By =y + ade,

The sum of squared residuals for model (3) is

n

Q= [u= (BB +-)]

i=1

s @)

= Z[yl 7(&0 + bdz +(CA¥1 —+ a’d2)xit + “_)] 2,
i=1

The sum of squared residuals for model (1) is
- / e ~ 2
Ql - Z [yz - (/80 + ﬁlx“ + /321:1‘2 + .._)]
=1
@)

B i[yi7(30+b/32+<131 +aBz> Z; +vlﬂz+...)]2.
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Comparing (;and @5, Q —Q;=0,itis possible to eliminate g, .The stepwise regression
method can effectively reduce the number of features in the data, improving the fitting performance
of the model.

4.1.1. Stepwise regression algorithm

The main features that can classify human behavior have been extracted in the above steps.
Considering the relationship between these data and the fact that the samples used for training are
discrete and the amount of data is huge, the random forest algorithm is considered for network
training, and its general algorithmic flow is shown in Figure 5. In order to initially identify multi-
class activities, the random forest classification algorithm with excellent performance in supervised
learning is chosen for the layer 1 classifier.

( Doricon tres 1)
Decision tree 1
Random forest
Training | | ﬁcga\ Decision tree
Datasets 1 Results 1
Decision tree 2
8 — oy
& Training Decision tree Vote for the
-g classification
]
[~
Training Decision tree
Datasets n Results 3
Decision tree 3

Figure 5. Random forest algorithm flow chart.

4.1.2. Random forest base on Stepwise regression algorithm

Random Forest is a composite classification model composed of many decision tree classification
models {h(X,0,),k=1,...} , and the parameter set {®,} is a collection of independently and
identically distributed random vectors. Under the given independent variables X, each decision tree
classification model selects the optimal classification result through a majority vote. The basic idea is
to first use bootstrap sampling to extract £k samples from the original training set, with each
sample having the same sample size as the original training set. Then, k decision tree models are
built for the k samples, resulting in k different classification results. Finally, based on these k
classification results, a majority vote is used to determine the final classification result for each record.

The final classification decision in a random forest is made by training through & rounds,
obtaining a sequence of classification models {h(X),h, (X)), ,h(X)} , and using them to create
a multi-classification model system. The ultimate classification result of this system is determined
using a simple majority voting method:

H(z) :argm)gXZI(hi(x):Y), (6)

where, H(z) is a multi-classification model, A; is an individual decision tree classification model,
and Y represents the output variable.

The specific implementation of the above ideas, as illustrated in Algorithm 1, combines stepwise
regression and random forest modeling to create a novel classification model. Its advantage lies in
the ability to select features from the classification dataset effectively.
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Algorithm 1: Random Forest Model base on Stepwise regression algorithm

[nput: Let 2 = (z1,41),...,(Zx,yn) denote the training data, with z; = (,,...,Z;) number

of

trees M >0.

Output: Prediction of the random forest at z; and random forest Model.

1: Construct M decision trees.

2: For a=1,....k do

3 :  Step-by-step substitution calculations for each indicator, replacing the old model
with the new model if the new model is better.

: End

H~

: Output m metrics and replace them with metrics from the 2 dataset.

Randomly divide 2 into train data % and test data < in a certain ratio.

5
5
7. Setting the objective function wz” 4 b=0,using train data % and test data Z.
8: For ¢=1,...,.M do

9 Find Suitable w and b, meet:

10 : For j=1,--,J do

11: if y;=+1 then

12 : wz; +b=+1

13 : elseif y,=—1 then
14 : wr; +0=—1

15 : End

16 : End

17:  Adjustment to Test set £.

18:  Getting the optimal w,b.

19: For k=1,....,M do

20 : Train the kth tree based on the test set and the training set.get h;(z).
21: End

22 : Classification of new samples is based on grown decision trees, utilizing a

majority vote mechanism to determine the final classification result.
23 . f(z,) = majority vote {h;(z)} (i=1,2, k).

4.2. Second layer SVM classification Base kernel Fisher discriminant analysis

To address the issue of similarity between two easily confused types of actions, we employed
two key steps. First, we utilized KFDA for feature dimensionality reduction, effectively separating
similar activities. This step aims to increase the distance between different actions in the data space,
thereby facilitating subsequent SVM classification. Let's delve into the principles and workflow of
these two steps in more detail. Firstly, we will introduce KFDA, and then we will provide a deeper
explanation of SVM. This process's workflow is analogous to the one depicted in Figure 6.
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(a) Original features (b) kernel Fisher discriminant analysis
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- )
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Figure 6. SVM model workflow based on kernel Fisher discriminant analysis.

4.2.1. Principle of kernel Fisher discriminant analysis

KFDA is a pattern recognition and classification method based on kernel techniques and is an
extension of Fisher Discriminant Analysis. KFDA is designed to handle nonlinearly separable data
by mapping the data to a high-dimensional feature space, thereby improving classification
performance. We describe KFDA in conjunction with [43] Kernel Fisher Discriminant Analysis
(KFDA) was first proposed by Scholkopf et al. in 1997 [52] and can be expressed as the maximisation
equation (7):

w’ S,w
wlS,w’

J(w)= M

wherein, Sy represents the within-class scatter matrix, S p 1is the between-class scatter matrix, and

W denotes the projection vector.
The above problem can be equated to finding the generalised eigenvectors of the eigenvalue
problem:

Sb'Ui:AiSw’Ui. (8)
where the eigenvalues A; represent the discriminative power of each projection vector. Once we

obtain the projected vector w, it can be used for classification instead of the original vectors with a
linear classifier.
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Figure 7. Transformation process illustration of a KFD model. A nonlinear mapping function ¢ (IL‘)
converts a nonlinear problem in the original (low dimensional) input space to a linear problem in a
(higher dimensional) feature space (from [43]).

The limitations of the LDA method are primarily due to its inherent linearity, especially for
nonlinear problems [56]. In contrast, the KFDA method, an improved version of LDA that uses a
kernel trick, overcomes these shortcomings. KFDA is better suited for the analysis of high-
dimensional data and complex systems. It is easy to implement and is characterised by its
adaptability and generalisation.

The core concept of KFDA is to map the original input data by a nonlinear mapping function ¢
into a high-dimensional feature space F, typically a nonlinear space (see Figure 4.4). Through this
transformation, non-linear relationships within the input data are indirectly transformed into linear
relationships. LDA is then applied to extract the most significant discriminating features in this
feature space. To overcome the computational challenges of calculating ¢ directly, Adding kernel
parameters to express functional relationships for nonlinear mappings.

The goal of KFDA is to find a set of projection vectors that maximises the inter-class distance
while minimising the intra-class distance within the feature space. This is achieved by maximising
the following kernel Fisher criterion:

o’K,o
J(a):m, (2)

where a represents the projection vector, K, represents the kernel between-class scatter matrix and
K, is the kernel within-class scatter matrix in the feature space.

The described in Equation (9) can be reformulated as solving the generalized feature equation,
thus reducing redundancy:

K,a=)K,a, ®)
where A is the nonzero eigenvalue of projection vector a. Let @, = (a,...,0n,)be the optimal
projection vector, It is also the maximum eigenvalue from Equation (4). Aj,..., Ay are the eigenvalue
of a,...,ap respectively, and A =--= XAy . The number of vectors m is by the cumulative

m M
contribution rate Z Ai/ z A =90%.
i=1 i=1
If @, knows, the nonlinear decision function f(z) of KFDA as:

f(@) =D ak(w,m), 4)

where «; is the coefficient vector by theikernel, &; istheione in all the input samples, and k is
the kernel function.
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4.2.2. Kernel parameter optimization

Among these kernel functions, the Gaussian kernel stands out due to its strong generalization
capability and the fact that it requires fewer parameters to be set. This makes it particularly effective
at capturing nonlinear relationships. Therefore, In [43], the Gaussian kernel function was chosen as
the kernel function and is expressed as shown in Equation (12):

k(w,y):eXpC %) 5)

where o is the width parameter of Gaussian kernel.

The kernel parameter o is very important and plays a crucial role in the KFDA-SVM model
appearing in this paper, which can adjust the position and distribution of the data in the feature space,
and largely affects the classification efficiency and the generalisation ability of the later SVM
classification model, therefore, choosing the correct The kernel parameter o Value is a very
important step.

4.2.2. SVM Model base on kernel Fisher discriminant analysis

In order to further subdivide the confusion action into a specific action, this paper introduces
SVM vector machine as a sub-classification model to divide the confusion action. The principle of
SVM classifier is to take the hyperplane to maximize the feature distance between different categories
so as to achieve the classification effect. As shown in the figure, the wider the width of the
classification interval (i.e., maximizing), the lower the impact caused by the local interference in the
training set. Therefore, it can be considered that the last classification method has the best
generalization performance and generality. The model of SVM can be formulated as:

y =sign(w”z +1b), (6)
where,  is the feature vector,w is the weight vector, y is the marker vector, and sign (y) is the sign
function.

When y =1, the sample is positive; when §¥ = — 1, the sample is negative, i.e.

wiz+b>0,y=1,

. B @)
w'r+b<0,y=—1.

As shown in Figure 8, SVM usually finds the optimal classification hyperplane by maximizing
the classification interval. Assuming that the input of the training set is the set of T (2 ) vectors and

the output is the set of ¥ (Z ) vectors, the classification interval is twice the minimum distance from

the full set of samples to the hyperplane, i.e.,, where M is the number of samples

T,.(i)
R o(w z +b
L ( Tl ) (8)
A A
, ® ‘ ®.
SRR ¢ L] . 2. e °
) e O gk
=\ 5 : ™ )
i [ V‘;,n =] B T
m | g m | g
> >

Figure 8. Vector machine classification flow chart.
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Mathematically, all sample points that meet the requirements of equation (15) (i.e., sample points
with the smallest Euclidean distance to the classification hyperplane) will be defined as support
vectors, then the set of samples must satisfy the following two cases: if the samples are positive, then

w” 2 +b =1 If the samples are negative, thenw” ") + b =1, as shown in Figure 9.

H,
Support vectors

Decision
Variables

0 X
Figure 9. Vector machine classification schematic.

Therefore, the characteristic samples in the sample set should satisfy when the discriminant
equation is multiplied by the corresponding coefficients.

y D (wz +b)=1. 9)

5. Experimental

5.1. Experimental setting

The experiments were conducted on the same computer with the following specifications: an
AMD Ryzen 7 4800H processor with Radeon Graphics, operating at 2.90 GHz, 16GB of RAM, and an
NVIDIA GeForce GTX 1660 Ti graphics card. The operating system used was Windows 10. We
utilized both Matlab and Python tools for conducting the experiments and performed validations on
four different datasets, namely UCI DSA, UCI HAR, WISDM, and UCI ADL. We also conducted a
relevant evaluation of our approach. To maintain the conciseness of the paper, the following
experiments are illustrated using the UCI DSA dataset as an example.

5.2. Extraction of important features

By employing the Stepwise regression algorithm to analyze the 45 features in the dataset, we can
assess the varying importance of each feature. We select those features with an importance score
exceeding 0.02 to be used as crucial features for the subsequent multi-layer classifier based on
Generalized Discriminant Analysis. For features with lower importance, we filter them out to
mitigate potential interference with our classification accuracy.

The histograms plotted for the weights of the significant characteristics are as Follows:

Firstly, using the random forest model in Matlab, a plot illustrating the relationship between the
number of decisions as the independent variable and the error as the dependent variable was
generated, as depicted in Figure 10. Specific results can be found in Table 3.
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Figure 10. Weights of important features chart.

Table 3. Number of decisions and error rate.

Number of decisions tree Error rate
1 63.1%
5 10.5%
10 2.8%
20 1.2%
35 0.8%
50 0.3%

5.3. Extraction of random forest base on stepwise regression algorithm

From the above Figure 12, it can be observed that, in this dataset, based on an analysis of
computer performance, model accuracy, and the reliability of the model, the number of decision trees
was determined to be 50. To better assess the classification performance of the Random Forest model,
we established a test dataset. Using MATLAB, we conducted experiments where we uniformly
partitioned the overall data into different ratios based on various human activities and different
volunteers. The results for different ratios and their impact on the accuracy of both the training and
test sets are presented in Table 4.
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Figure 11. Plot of the number of decisions versus error in the random forest model.
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Figure 12. Random forest model recognition results comparison chart.

To better analyze the above random forest identification results, a confusion matrix plot of the
above two results was made using MATLAB as follows.

Table 4. This is a table. Tables should be placed in the main text near to the first time they are cited.

Ratio (trainine-testi UCIDSA
atio (fraining:testing) Training data Testing data
9:1 99.6555% 99.5789%
8:2 99.6043% 99.5689%
7:3 99.66% 99.5269%
6:4 99.6756% 99.5445%
5:5 99.6656% 99.5040%

4:6 99.6706% 99.3753%
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Confission Matrix for Train Data Confusion Matrix for Test Data

1 2 3 4 5 L 7 a 9 1 n 12 13 14 16 18 1T 1B 18 1 2 3 4 5 L 7 a 9 m N 12 13 14 i 18 17 18 19

(a) Confusion matrix of Radom forest model by  (b) Confusion matrix of Radom forest model
train set by test set

Figure 13. Confusion matrix of test set and training set random forest training.

We also performed Random Forest classification on data from the other three databases
separately, following a similar experimental setup. The experimental results obtained are presented

in Table 5.

Table 5. Random forest Result table between datasets: UCI DSA,UCI HAR, WISDM and UCI ADL.

) . UCIDSA WISDM IM-WSHA
Ratio (trammg:'raining data Testing

testing) data Training data Testing data ‘raining data Testing data
9:1 99.6555% 99.5789%  99.9415%  99.1819%  99.9973% 97.5342%
8:2 99.6043% 99.5689%  99.9543%  98.6841%  99.9982% 96.9773%
7:3 99.66%  99.5269%  99.6646%  98.5631%  99.9977% 96.8102%
6:4 99.6756% 99.5445%  99.6326%  98.4698%  99.9973% 96.4045%
5:5 99.6656% 99.5040%  99.6061%  98.3741%  99.9984% 95.9813%
4:6 99.6706% 99.3753%  99.5841%  98.2694%  99.996% 95.3001%

Observing the four charts above and drawing upon real-world judgment, this study suggests
that the primary reason for the inconsistency between action recognition results and actual results is
the similarity in features among these actions, making them easily confusable during the algorithmic
recognition process. For instance, actions such as walking up and down stairs, walking or standing
in an elevator, exhibit such similarities. Apart from these mentioned actions, the predictive accuracy
for all other actions approaches 100%. This indicates that these actions can be recognized and
classified as genuine actions at this layer of the classification model.

The remaining unrecognized actions fall into two main categories. For instance, the model
classifies A6, A18, and A19 as A5 and confuses A7 and A8 with each other. To facilitate subsequent
fine-grained classification models, these similar actions are divided into two main categories, as
illustrated in the Table 6.
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Table 6. Confusion action classification table.

Confusion category Easily confused actions
Confusion I category A5,A6,A18,A19
Confusion II category A7,A8

5.3. Extraction of SVM Model base on kernel fisher discrimi-nant analysis

Taking the four Behaviors classes (A5, A6, A18, A19) as an example of Confusion Type I, we first
extracted three of the most important features from the dataset and created a scatter plot as shown
on the left side of Figure 14. It can be observed that these four Behaviors classes have a relatively
short spatial distribution in these three original features, indicating a small inter-class distance and a
large intra-class distance. This is not conducive to the activity recognition by the classifier.

Subsequently, we applied Principal Component Analysis (PCA) for dimensionality reduction,
as illustrated on the right side of Figure 14. It represents three randomly selected nonlinear
discriminative features extracted from the original features of these four similar activities. In this
study, we find that the mapping results of PCA are not particularly favorable, as the intra-class
distance remains small.

Theee-Dimensional Scatter Plot after PCA Dimension Reduction
Primary Feature

Zaxis
Z axis

¥ axis 2 °

o8 = 4

X axes Y axis 2 1] 2
X axis

(a) primary feature (b) PCA feature

Figure 14. primary feature and PCA feature.

Therefore, in this study, we employed Kernel Fisher Discriminant Analysis for dimensionality
reduction, focusing on the points that were previously confused in the upper layer of Random Forest.
Kernel Fisher Discriminant Analysis has a parameter denoted as ¢ , which can vary. Typically, this
parameter's range is set within [0, 10]. We experimented with different parameter settings and
obtained various images, as shown in Figure 15.
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Figure 15. The Result of Kernel Fisher Discriminant Analysis with varying parameter .

Based on the above experimental results, we can see that in this scenario, upon observing the
three-dimensional scatter plot, the data has been categorized into four classes. In order to obtain a
clearer visual representation, we selected the two features that performed best in the three-
dimensional space and generated a two-dimensional scatter plot, as shown in Figure 16.

In this paper, we use MATLAB to sub-classify the above model, and input the indicators that
have been generalized discriminant analysis into SVM as the original data, taking the confusion I
class as an example, because A5 and A6 are more closely connected, and A18 and A19 are also more
closely connected, so we first subdivide the confusion I class into two large classes A5, A6, and A18,
A19, and then a second subdivision, we can subdivide the confusion I class into the more A5, A6,
A18, and A19 classes by a two-layer SVM vector machine. A5, A6, A18, and A19 which are the four
classes of activities,As shown in the Figure 17.

Three-Dimensional Scatter Plot after GDA Dimension Reduction

©  Bonavior A0S
©  Bohavior AD6
©  BehaviorA18 12 +
©  Behavior A19

Behavior A0S
Behavior AO6
Behavior A18
Behavior A19
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5 ) - 7S Y axis .
10 = X axis
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(a) 3-axial of data (b) 2-axial of data

Figure 16. kernel Fisher discriminant analysis feature.
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Figure 17. SVM preliminary segmentation obfuscation I class result graph.

Through the above steps, the data of the confusion I class has been classified into two major
classes Al, A2 and A7, A8 by SVM vector machine, and in order to classify them more carefully, this
paper then performs a fine classification of these two major classes into specific activity classes. As
shown in the figure 6.8 and Figure 18 and Figure 19.
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Figure 18. SVM preliminary segmentation obfuscation I class result graph.
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Figure 19. SVM preliminary segmentation obfuscation I class result graph.

Through the steps related to figure, we are able to classify all the data of the confusion I class
into specific active classes by the above SVM vector machine meticulous classification, although the
effect of SVM vector machine fine classification A18, A19 is not significant as shown in Figure 19, but
it is much better than the initial random forest classification effect has been much better than the
initial random forest. Similarly, we conducted various experiments as shown in Table 7.

Table 7. Random forest Result table between datasets: UCI DSA,UCI HAR, WISDM and UCI ADL.

. .. A5, A6and A18. Al19 Accuracy A5 and A6 Accuracy A18 and A19 Accuracy
Ratio (training:

. (%) (%) (%)
festing) Training data Testing data ‘raining data'esting data raining data ‘esting data
9:1 99.90 99.75 95.11 90.98 78.10 66.77
8:2 98.96 98.41 95.12 90.56 81.00 78.75
7:3 96.56 95.83 95.28 91.04 75.33 74.70
6:4 95.75 95.06 95.33 91.25 68.25 69.30
5:5 94.90 95.35 94.80 90.65 73.20 64.80
4:6 93.91 94.62 90.56 85.34 77.16 70.65

In this paper, the same operation was also performed on the confusion II class, which was input
to the second layer of the classification vector machine to obtain the recognition probabilities of the
four similar actions, and the final recognition results of the four similar activities were obtained by
weighted average with the recognition probabilities of the first layer classifier. The confusion matrix
is shown in figure, and it can be seen that the original confusion-prone actions are improved a lot,
and the overall correct rate is improved from 99.57% to 99.71%.
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Figure 20. Confusion matrix diagram for two-level classifier.

We also compared our approach with those of others on three datasets: UCI HAR, WISDM, and
IM-WSHA, as shown in Table 8.

Table 8. Comparison of recognition accuracy of the proposed method with other state-of-the-art
methods over UCI DSA, UCI HAR, WISDM and IM-WSHA datasets.

Method UCI DSA UCI HAR WISDM IM-WSHA
MS-DLDJ[25] 88.3%[25]
HPAR[26] 91.83%[26] 90.18%[26]
HDAR[27] 91.45%[27]
RPLBJ[28] 83.18%[28]
Kinematics features
withkernel sliding 81.47%[29]
perceptron[29]

Estimation
algorithm[30] 80.49[30]
Accelerometer and
Gyroscope 96.33%][31]
Sensors[31]
Deep CNN-
LSTM[32]
Deep CNN-GRU[33] 96.20%[33] 97.21%[33]
EdgeHARNet[34] 94.036%(34]
MarNASNet-b[35] 94.20%[35] 90.62%[35]
DMEFAM][36] 96%[36] 97.9%[36]
BLSTM[37] 98.37%[37] 99.01%[37]
CAEL-HAR[38] 96.45%[38] 98.57%[38]
2D CNN-LSTM[49]  92.95%[49]
MVTS[50] 98.96%[50]
SR-KS 99.71% 98.71% 99.12% 97.6%

93.11%[32]
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Below, we validate the aforementioned model. First, we conducted experiments using K-fold
cross-validation on the random forest. In this study, we set K=5 for validation. The experimental
results are shown in Figure 21, demonstrating the strong generalization capability of our model.

Caonfusion Matrix for Train Data Confusion Matrix for Test Data

Actual class

Actual class

1z 3 4 5 6 7 8 8 10 1 12 13 14 B W 17 18 19
Pradict class

2 3 4 5 @8 7 B 8 W 11 12 13 4 15 1@ 17 18 18
Predict class

(a) First split training set confusion matrix (b) First split testing set confusion matrix
Confusion Matrix for Test Data " o E Cn_nfuslur_ﬂ Mgl(m(_f_ar Tlalr_| Da_[:l

Actual class

Actual class

T ‘

2 3 4 5 & 7T B 8 40 11 12 13 14 15 16 AT 18 19
Predict class

12 3 4 5 8 T B 8 10 11 12 13 14 15 8 17 B 19
Predict class

(c) Second split training set confusion matrix ~ (d) Second split testing set confusion matrix
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Confusion Matrix for Train Data

BB 0 11 12 13 14 15 16 7 18 19
Predict class

(e) Third split training set confusion matrix

Confusion Matrix for Test Data

12z 3 4 5 8 T B 8 0 11 12 13 14 5 16 17 18 18
Predict class

(g) Fourth split training set confusion matrix

Confusion Matrix for Test Data

Actual class

213 14 15 16 17 18 19
Predict class

(i) Fifth split training set confusion matrix

12 3 4 5 8 7 8 9 10 1

Actual class

12 3 4 5 6 7 B B 0 1 12 13 14 15 16 17 18 18

Predict diass

(f) Third split testing set confusion matrix

Confusion Matrix for Train Data

7 0B B 10 11 12 13 M 15 16 17 18 19
Predict class

(h) Fourth split testing set confusion matrix

Confusion Matrix for Train Data

304 5 6 7 8 8 10 11 12 13 14 15 16 17 16 19
Predict class

(j) Fifth split testing set confusion matrix

Figure 21. Let k be the cross-validation result for 5.
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Immediately after that, the SVM model was validated using ROC curves as well as AUC values
with the following results:
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(a) SVM preliminary segmentation obfuscation
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Figure 22. SVM Model ROC Curve and AUC value.

6. Conclusion

SVM preliminary segmentation obfuscation III class result graph’s ROC Curve and

This study proposes an approach to the problem of identifying similar activities, in which a
multilayer model called "SR-KS" is introduced, where all the features of the data are firstly filtered
using Stepwise Regression Analysis, and a part of the features are selected for Random Forest
Classification, which will improve the efficiency of classification effectively. Based on the above
classification results, we screened out the data points that were confusing in terms of identification,
and then used the SVM model based on Kernel Fisher Discrimi-nant Analysis to identify them, which
firstly utilised the Kernel Fisher Discriminant Analysis to separate the similar activities from data
perspective, followed by using SVM model to classify the above data, and finally get a good
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recognition result, we also used k cross validation as well as ROC curves to validate the above model
respectively, and the result proved that our model has a good generalisation ability. Our method can
identify similar human activities very well, but at the same time, we also found that the recognition
effect of A18,A19 is not very good, we shall investigate a more suitable model and its simulation
algorithm to obtain high accuracy for human activity in A18 or A19. Our future research work can
be focused on the following two points:

e  Extending the proposed technique to cope with classification tasks under more similar activity
data, such as typing and handwriting. Extending the proposed technique to cope with
generative tasks under more demanding driving conditions, such as datasets with few features
and insufficient data sample;

e  Starting from the data collection, designing and implementing a sound and specific sensor data
collection scheme and collection algorithm design, for example, we consider the removal of noise
in data collection as well as the collection of data conducive to the identification of human
activity.
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