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Abstract: Changes in sea level exhibit nonlinearity, non-stationarity, and multivariable
characteristics, making traditional time series forecasting methods less effective in producing
satisfactory results. To enhance the accuracy of the predictions of changes in sea level, this study
introduced an improved VMD-EEMD-LSTM hybrid model. This model decomposes satellite
altimetry data from near the Dutch coast using VMD, resulting in components of the Intrinsic Mode
Function (IMF) with various frequencies and a residual sequence. EEMD further dissects the
residual sequence obtained from VMD into second-order components. These IMFs decomposed by
VMD and EEMD are utilized as features in the LSTM model for making predictions, culminating in
the final forecasted results. The experimental results demonstrated significant improvements in the
predictive performance compared with the VMD-LSTM model. The RMSE decreased by an average
of 58.68%, the MAE reduced by an average of 59.96%, and the R? increased by an average of 49.85%
compared with the VMD-LSTM model. In comparison with the EEMD-LSTM model, the RMSE
decreased by an average of 26.95%, the MAE decreased by an average of 28.00%, and the R?
increased by an average of 6.53%. The VMD-EEMD-LSTM model exhibited significantly improved
predictive performance. The proposed VMD-EEMD-LSTM model significantly improves the
forecast on GSMSL with the test on the Dutch coast.

Keywords: sea level change; deep learning; time series prediction; VMD; EEMD; LSTM

1. Introduction

In recent years, the continual rise in sea-level has had severe social impacts on coastal areas,
including the degradation of freshwater resources, damage to infrastructure, and the depletion of
agricultural resources [1-5]. The Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC) highlighted that under the influence of human activities, the rate of the rise in sea
level has been steadily accelerating. Between 1901 and 1971, the average rate of the rise in sea level
was 1.3 millimeters per year, which increased to 1.9 millimeters per year between 1971 and 2006, and
rose further to 3.7 millimeters per year between 2006 and 2018 [6-8]. To address the threats posed by
rising sea-level, accurate predictions of future changes in sea level are of paramount importance for
the sustainable development of coastal regions [7-9].

Currently, time series forecasting methods for predicting sea-level primarily fall into two
categories: statistical methods and machine learning methods [10-16]. Statistical methods are widely
used in time series forecasting and are rooted in the core concept of conducting statistical analyses
on historical data to capture the patterns and trends for predictive purposes [17-20]. Representative
models in this category include ARIMA (auto-regressive integrated moving average) and exponential
smoothing [21-26]. However, these models face challenges when dealing with complex nonlinear
data, as they require manual selection of the features and adjustments of the model’s parameter,
leading to some degree of systematic bias and limitations [27-29]. Traditional machine learning
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methods, while capable of automatically extracting features and adjusting the model’s parameters,
may not adequately extract the features when dealing with large-scale and highly complex data,
resulting in limited predictive performance [30,31]. In contrast, deep learning, as an emerging
machine learning technology, has demonstrated a strong capacity for generalization and adaptability
to complex data through specific neural network architectures and training methods. It is becoming
increasingly prevalent in time series data of sea-level characterized by nonlinearity, non-stationarity,
and multivariable attributes. Makarynskyy et al. (2004) utilized artificial neural networks (ANN) to
perform multistep predictions based on measured sea level data from a tidal station in Australia,
affirming the feasibility of using neural network methods in prediction sea-level [32]. Balogun and
Adebisi (2021) conducted comprehensive predictions and comparisons of changes in sea level along
the west coast of Peninsular Malaysia using three models: ARIMA, support vector regression (SVR),
and long short-term memory (LSTM). Their research findings validated the superiority of the LSTM
model in predicting sea-level [33].

With the continued advancement of deep learning methods in the field of time series forecasting,
various domains of time series prediction have witnessed the superior predictive accuracy achieved
by combining data decomposition techniques with deep learning, as supported by research findings
[34-36]. Song et al. (2022) conducted multifaceted comparisons of various data decomposition
methods, such as complementary ensemble empirical mode decomposition (CEEMD), time-varying
filtering-based empirical mode decomposition (TFV-EMD), wavelet transform (WT), and the fusion
of these methods with the Elman neural network (ENN) in minute-scale time series predictions of
sea level. Their study confirmed that the TVF-EMD-ENN model exhibits the best predictive
performance [37]. Wang et al. (2021) incorporated time series of wind speed that had been secondarily
decomposed using CEEMD and wavelet packet decomposition (WPD) into a gated recurrent unit
(GRU) for making predictions. Their experiments demonstrated that this hybrid model significantly
improved the accuracy of short-term wind speed predictions [38]. Variational mode decomposition
(VMD), as an emerging data decomposition technique, has stood out among the various
decomposition methods due to its unique non-recursive variational approach and exceptional
decomposition capability. It has been widely applied in the field of mixed deep learning time series
prediction [39,40]. Wang et al. (2020) combined the VMD-LSTM model and used an improved
particle swarm optimization algorithm (IPSO) to optimize model parameters, confirming the higher
predictive accuracy of the VMD-LSTM model in photovoltaic short-term power time series
prediction [41]. Huang et al. (2022) conducted a comparison between Empirical Mode Decomposition
(EMD) and VMD, revealing that VMD exhibited stronger noise removal capabilities. They also
verified the higher precision of the VMD-LSTM model in predicting variations in coal thickness [42].
Han et al. (2019) performed multifaceted comparisons of various prediction models, including VMD-
LSTM, Persistence (PER), Wavelet (WT), and BP neural networks. Their research validated that the
VMD-LSTM model exhibited higher accuracy in wind power prediction [43].

The aforementioned studies across various time series domains have consistently demonstrated
the superior predictive accuracy of the VMD-LSTM model. However, in practical applications, due
to variations in VMD parameter settings and data characteristics, incomplete VMD decomposition
may occur. This results in residual components that still contain a certain level of fluctuations and
nonwhite noise elements. This inadequately processed information can potentially have a
detrimental impact on the predictive accuracy of the VMD-LSTM model, particularly in forecasting
complex nonlinear and irregular time series. In light of these challenges, this study proposed a deep
learning hybrid model based on the VMD-LSTM model, known as the VMD-EEMD-LSTM model,
which incorporates both VMD and ensemble empirical mode decomposition (EEMD). This model
aims to enhance the predictive accuracy of the VMD-LSTM model for sea level time series by further
processing the residual sequences obtained from VMD decomposition. Evaluation of the VMD-
EEMD-LSTM model's predictive performance was conducted with multiple models, various
perspectives, and multiple monitoring stations for a comprehensive validation.
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2. Principles and Methods

2.1. Signal Processing Methods

VMD, EMD, EEMD, and CEEMDAN (Conformal Empirical Mode Decomposition with
Adaptive Noise) are all widely used adaptive methods of data decomposition in the fields of signal
processing and data analysis [44—46]. Among them, VMD is a completely non-recursive modal
decomposition method. Its core idea involves modeling a signal as a variational problem and
subsequently seeking the optimal solution through iterative transformations. Ultimately, this process
decomposes nonstationary signals into a series of standard orthogonal modal functions. The
corresponding principles are as follows [47,48].

(1) With the objective of minimizing the summation of the estimated bandwidths for each modal
component u, (1), a constrained variational problem model aimed at identifying the optimal

solution. The specific formulation of the constrained variational problem model is provided below.
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In Equation 1, j>=-1, J(t) represents the Dirac function, {uy} corresponds to the modal
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functions obtained after decomposition, {a)K} denotes the central frequencies associated with each
mode, and f represents the original signal.

To attain the optimal solution for the constrained variational problem, the introduction of
quadratic penalty factors « and Lagrange multiplier operators A, transforms the problem into an
unconstrained variational problem.
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where L(*) represents the augmented Lagrangian function, is the quadratic
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penalty term. Subsequently, an alternatively direction method with multiplier operators is used to
solve the unconstrained variational problem, and the optimal solution is obtained by alternating
updating "', """, and A"".

As a recursive method, the EMD method decomposes the data into a finite number of intrinsic
mode functions (IMF) that reflect the inherent properties of the time series signals, along with a
"residual sequence" [49,50]. However, the EMD may suffer from the mode-mixing problem in the
IMF sequences. To overcome this challenge, this study introduced the EEMD method. EEMD
gradually introduces normally distributed white noise into the original signal and then offsets this
noise through multiple averaging calculations. This process leads to more precise decomposition of
the signal and effectively avoids the mode mixing phenomenon that can occur during the EMD
decomposition process [51-53]. The specific process is as follows:

(1) Initially, white noise denoted as a(t) is introduced into the original signal x() .

x)=x()+w(),i=12,.,m 3)

(2) Subsequently, the EMD method is employed to decompose the initial noisy signal, resulting
in n IMF, represented as C,(¢), and a residual sequence represented as r(t).

50 =20, GO +5() @)
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(3) Steps (1) and (2) are iteratively executed for a total of m times, in which white noise is added
and IMF components are obtained through decomposition in each iteration. Finally, all the IMF
components thus obtained are integrated and averaged to obtain the ultimate result of EEMD signal
decomposition.

CEEMDAN introduces an adaptive noise complete set to automatically construct noise
components, enabling more effective extraction of modal components in the signal compared to
EEMD. This enhances the accuracy and robustness of data decomposition [54].

2.2. Long Short-Term Memory

LSTM is an improved type of recurrent neural network (RNN). Its distinctive memory module
is beneficial for handling long-term dependencies and mitigating the challenges related to vanishing
and explosion gradients [55]. Compared with traditional neural networks, LSTM networks exhibit
pronounced advantages when addressing tasks pertaining to the prediction of lengthy time series
data. Consequently, LSTM networks find extensive applications in domains such as time series
forecasting [56,57].

The architectural framework of LSTM network comprises an input layer, intermediate hidden
layers, and an output layer. Each hidden layer controls storage and access of the data through input
gates, forget gates, and output gates, as visually depicted in Figure 1.
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Figure 1. Basic structure of LSTM.

As illustrated in the figure, LSTM processes the input of high-temporal data related to sea
surface elevation and the previous moment's hidden state output using three gates. The primary
process is as follows:

(1) LSTM, through the forget gate (denoted as f,), determines whether to discard or retain

information related to X, and #,_,is governed by the activation function o of the forget gate.

fi=0W, [h_,X,]+b,) 5)

In the equations, W and b represent the weight matrices and biases, respectively. f, is a

vector with values in the range of 0 to 1, where the values within the vector indicate whether
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information in the cell state C,_, is preserved. A value of 0 implies no preservation, while 1 implies

full preservation.
(2) The cell state is updated through the input gate by passing X, and 4,_, to the activation

function o to determine the information update. X, and A _, are passed to the tanh function to
create a new candidate value vector C', (where C', isa vector in the range of -1 to 1), and the tanh

output is multiplied by o output.
i,=0W,[h_,X]1+b) (6)

C', =tanh(W_-[h,_,X,]+b.) (7)

(3) The cell state from the previous layer is element-wise multiplied with the forget vector, and
then this value is element-wise added to the output of the input gate, resulting in the updated cell
state.

Cl:f;*clfl-l_il*cvl (8)

In the equations, f,*C,, determines the forgetting of information in C_, , while i *C"
determines the addition of informationin C', to the new memory cell state C,.
(4) Through the output gate O,, the value of the next hidden state 54, is determined, and this

hidden state contains information from previous inputs.

O,=0cW,-[h_,X,]1+b,) 9)

h, =0, *tanh(C,) (10)

2.3. The VMD-EEMD-LSTM Hybrid Second-Order Decomposition Prediction Model

VMD and EEMD, as two classical data processing methods, have been widely applied in hybrid
modeling. Their effectiveness in enhancing the predictive accuracy of deep learning models has been
well-established [58-61]. The VMD-LSTM model, as a prevalent hybrid deep learning approach, has
been widely employed in the realm of time series forecasting. Its applications encompass load
forecasting and wind speed prediction, where it has showcased remarkable performance [62,63]. The
VMD-LSTM model leverages VMD to perform decomposition of the initial data into a sequence of
IMF sequence and a residual sequence. Subsequently, the model individually forecasts each IMF
sequence and the residual sequence using the LSTM model. Ultimately, the predicted outcomes of
each sequence are aggregated to derive the final model prediction. During the prediction process, as
the standard normal mode functions obtained through VMD decomposition are stationary signals,
predicting each IMF separately can achieve higher prediction accuracy. However, in practical VMD
decomposition, the residual sequence still contains some fluctuating characteristics and high-
frequency noise, and their values are relatively large. If these parts of the data are not appropriately
processed, they will adversely affect the overall predictive accuracy of the model [64-66]. In contrast,
the EEMD-LSTM model is a recursive decomposition method, and its main predictive errors are
concentrated in the IMF components, which perform well in predicting the residual sequence and
overall data. Based on this, this study proposed a deep learning hybrid model called VMD-EEMD-
LSTM. This model employs VMD for the initial data decomposition and then utilizes EEMD to
further break down the residual components with lower prediction accuracy resulting from the VMD
decomposition. Subsequently, each IMF obtained through both VMD and EEMD decomposition is
used as a feature used as input into the LSTM model for making predictions. Ultimately, the
forecasted outcomes of each IMF are aggregated to yield the model's comprehensive prediction. This
approach augments the overall predictive precision of the model by handling the residual
components produced by VMD. The detailed procedure is elucidated in Figure 2.

doi:10.20944/preprints202310.1457.v1
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Figure 2. The mixed VMD-EEMD-LSTM second-order decomposition model.

The specific prediction process of the mixed VMD-EEMD-LSTM second-order decomposition
model is as follows.

Step 1: Preprocess the time series data on sea level from each station and then input them into
the VMD model (with K as the number of components in the model) for decomposition.

Step 2: Take the residual sequence "Residual 1" obtained from the VMD decomposition, and
input it into the EEMD model for further decomposition. This will yield various model components
as well as "Residual 2".

Step 3: Through extensive experiments, it has been determined that among the IMF components
obtained through EEMD decomposition, the IMFs after IMFx (IMF k+ to IMF n) and "Residual 2" have
smaller prediction errors. To mitigate experimental intricacies and guarantee the precision of the
model's predictions, the IMF components beyond IMFk and 'Residual 2" are combined and utilized as
input features for the LSTM model to facilitate the prediction process.

Step 4: Utilizing the distinct IMF components acquired from both VMD decomposition and the
EEMD decomposition as distinct features, these components are fed into the LSTM model for
prediction purposes. This process yields a total of 2K+1 predictions.

Step 5: Aggregate and amalgamate the 2K+1 predictions to derive the ultimate prediction
generated by the VMD-EEMD-LSTM model.

2.4. Evaluation index

To evaluate the precision and dependability of the diverse deep learning models in predicting
performance, this study employs the subsequent assessment metrics: RMSE (root mean square error),
MAE (mean absolute error), and R2 (Coefficient of determination). The definitions of these three-
evaluation metrics are elaborated as per references [67-69]:

(1) RMSE

Bl

1 .
RMSE= |- Y (y,=3,) (11)
n

i=1

) MAE

1 .
MAE :;Z|(yi _yi) (12)
P
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where y, represents the actual values of sea level, J, represents the values predicted by each
model, y isthe mean of the actual values of sea level, and n denotes the total number of data points

related to sea level. For RMSE and MAE, smaller values indicate higher predictive accuracy, while
for R?, values closer to 1 indicate accurate predictions, and values closer to 0 suggest that the model
has weaker explanatory power.

To visually assess the enhanced performance of the VMD-EEMD-LSTM model in comparison
to other hybrid models across diverse accuracy evaluation metrics, this study introduces the concept
of an improvement ratio (I). Through the computation of I, the degree of enhancement achieved by
the VMD-EEMD-LSTM model in terms of accuracy can be precisely quantified. The formula for
calculating I is defined as follows:

Iy = (14)

~

where y and j signify diverse evaluation metrics, y represents the evaluation metric of the
hybrid models compared against the VMD-EEMD-LSTM model, while J represents the
evaluation metric of the VMD-EEMD-LSTM model. If 1

trend in the accuracy. If [

I,v,w”'

,» 1s greater than 0, it indicates a decreasing

% is less than 0, it indicates an increasing trend. The greater the absolute

value of

, the greater the improvement in that evaluation metric for the hybrid model and vice

versa.
3. Data and experiments

3.1. Data Preprocessing

The satellite altimetry grid data used in this study were obtained from the European Union's
Copernicus Earth Observation Program, specifically from the GLORYS12V1 product
(GLOBAL_MULTIYEAR PHY_001_030). The data have a spatial resolution of 0.083° x 0.083° and a
temporal resolution of 1 day [70]. The GLORYS12V1 product is a reanalysis of the global ocean with
a 1/12° horizontal resolution and 50 vertical levels, covering sea level measurements from 1993
onwards. It has undergone the necessary standard corrections. To ensure the fairness of the
experiments, this study utilized data from six satellite altimetry grid points near the coast of the
Netherlands. All the selected data have a consistent temporal coverage, spanning from early 1993 to
the end of 2020, totaling 28 years. The distribution of the data is presented in Table 1.

Table 1. Details the of satellite altimetry data.

Site ID Longitude (°) Latitude (°) Time span(years)
Maassluis 0009 4.25 51.92 1993-2020
Vlissingen 0020 3.60 51.44 1993-2020

Hoek Van Holland 0022 412 51.98 1993-2020
Delfzijl 0023 4.75 52.96 1993-2020
Harlingen 0025 5.41 53.18 1993-2020

Ijmuiden 0032 4.56 52.46 1993-2020
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3.2. Experimental pretreatment

3.2.1. Parameter Settings of VMD

Unlike EMD and EEMD, VMD allows for the autonomous selection of the number of mode
components obtained during decomposition.

Therefore, in the context of utilizing VMD for data decomposition, the choice of an appropriate
number of mode components, denoted as K, is of paramount importance to attain high-quality
decomposition outcomes. Opting for a K value that is excessively large may lead to over-
decomposition, whereas selecting one that is overly small may result in under-decomposition. To
ascertain the optimal K value for the sea level height time series post-decomposition, this
investigation employs the signal-to-noise ratio (SNR) as an evaluative criterion for decomposition
quality. A higher SNR corresponds to a more distinct signal decomposition and improved noise
removal. Following comprehensive experimental inquiry and empirical observations, this study
confines the selection of K values to the range of 2 to 10, and identifies the K value within this range
that yields the highest SNR as the optimal K value for each individual time series [71,72].

> m* (i)
SNR =10lg—=—— (15)
> [m(i)—n())

i=1

where m(i) represents the original signal, and n(i) represents the reconstructed signal. In

VMD, the penalty factor a also exerts a certain influence on the decomposition outcomes. Given that
the optimal range for the penalty factor « is typically between 1.5 and 2 times the size of the
decomposed data [73], and to ensure experimental consistency while considering the size of the
decomposed data in the experiments, this study set the penalty factor to 15,000 for all decomposition
processes.

Because the range of sites covered in this study was relatively small, the frequency of fluctuation
and the amplitude of the sequences of sea level height were quite similar. Therefore, the optimal
parameters obtained in the experiments were consistent, all indicating that K=5 was the best number
of components for decomposition (Figure 4 in Section 4.2 shows the results VMD decomposition for
K=5). To reduce the complexity of the subsequent experiments and ensure experimental consistency,
this study combined the data with a K greater than 5 from the IMF obtained by EMD and EEMD
decomposition with the residual term for a better predictive analysis.

To further validate the reliability of the selected K value, the LSTM model was employed to
conduct comparative experiments for sea level data prediction at the Maassluis station. The
experimental results are presented in Table 2.

Table 2. Prediction accuracy of VMD-LSTM model under different K-value decomposition. (VMDx-
LSTM (K=3,4,5,6,7,) is a prediction model obtained by VMD decomposition under this K value.)

Model Series RMSE - MAE R2  Model Series RMSE - MAE R2
(mm) (mm) (mm) (mm)

IMF1 0.48 0.37 1.00 IMF1 0.44 034 1.00
VMDs- IMF2 0.87 0.64 1.00 IMF2 0.56 042 1.00
LSTM IMF3 1.26 0.95 1.00 IMF3 0.77 056 1.00
Residual 125.61 91.01 029 VMDes- IMF4 1.74 1.31 1.00
ALL 125.42 90.84 0.53 LSTM IMF5 1.15 0.87 1.00
IMF1 0.48 0.36  1.00 IMF6 0.67 0.51 1.00
VMDa- IMF2 0.59 045 1.00 Residual 115.09 85.26 0.16
LSTM IMF3 1.72 1.30 0.99 ALL 114.95 85.12 0.61

IMF4 1.03 0.78 1.00 VMDr- IMF1 0.46 035 1.00
Residual 11853 86.06 0.22 LSTM IMF2 0.57 043 1.00
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ALL 118.30 85.81 0.58 IMF3 0.57 043 1.00

IMF1 0.46 0.35 1 IMF4 0.74 0.55 1.00

IMF2 0.55 0.41 1 IMF5 1.67 1.27 099

VMDs- IMF3 0.81 0.59 1 IMF6 0.96 0.72  1.00
LSTM IMF4 1.58 1.21  0.99 IMF7 0.56 042 1.00
IMF5 0.69 0.53 1 Residual 111.77 83.78 0.03

Residual 114.71 8348 0.21 ALL 114.81 86.10 0.61

ALL 114.33 83.11 0.61

As presented in Table 2, distinct values of K in VMD decomposition produce residual sequences
that manifest substantial predictive errors, constituting the primary source of discrepancies within
the VMD-LSTM model. A comparative analysis of predictive outcomes across varying K values
reveals that with the escalation of K, the R? for residual sequence predictions gradually diminishes,
while the cumulative errors for each IMF increase. This observation implies that the selection of an
excessively diminutive K value may result in an inadequate decomposition of the signal, ultimately
yielding inferior predictive performance. Conversely, opting for an excessively large K value may
lead to an exorbitant decomposition of the signal, which is also not conducive to model prediction.

When K is set at 5, the VMD-LSTM model attains the highest level of predictive accuracy. This
reaffirms that, in the context of time series prediction for sea level data, K=5 represents the optimal
number of decompositions for VMD.

3.2.2. Parameter Settings of the Model

In deep learning prediction models, a variety of different parameters are involved, and the sizes
of the parameters have different degrees of influence on the model’s predictive accuracy. In order to
ensure the reliability, this study conducted an experiment by setting the same model parameters. The
configuration details of each model are presented in Table 3. In this experimental setup, the
parameters for the LSTM model and the hybrid models were set to identical sizes.

Table 3. Hyperparameter settings for each model.

Model ANN RNN GRU LSTM Instructions
Training data for model training
(1993-2012)
Validation data for tuning the
1095 1095 1095 1095 hyperparameters and preventing
overfitting (2012-2015)
Testing data for evaluating the
model’s performance (2015-2020)
Epochs 50 50 50 50 Number of iterations of the model
Hyperparameter controlling the step

Training set 7305 7305 7305 7305

Validation
set

Test set 1827 1827 1827 1827

Le?;?emg 0.001 0.001 0.001 0.001 size of the updates of the model’s
parameters
Input_size 1 1 1 1 Dimensionality of the input layer
Output_size 1 1 1 1 Dimensionality of the output layer
Hidden_size 256 256 256 256 Dimensionality of the hidden layer
Seq_len 12 12 12 12 Length of each sliding data window
Batch._size 16 16 16 16 Batch size for one-time input in the

time series data

According to Table 3, all models employed a uniform data partitioning scheme in this research:
the data spanning from early 1993 to the end of 2012 constituted the training set, data from the end
of 2012 to the end of 2015 served as the validation set, and data from the end of 2015 to the end of
2020 comprised the test set. This data splitting approach was adopted with the intention of ensuring
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that the models had access to a sufficient volume of training data to thoroughly grasp the underlying
data characteristics. Additionally, employing a substantial dataset for testing purposes enabled a
more comprehensive assessment of the model's predictive performance.

4. Results and analysis

4.1. Analysis of the predictions of a single deep learning model

In this section, the predictive performance of four different models, namely ANN [74,75], RNN
[76,77], gated recurrent units (GRU) [78,79], and LSTM, was comprehensively evaluated and
compared using three different sequences of sea level height. The goal was to determine the best-
performing model in terms of time series forecasting, providing a reliable foundation for constructing
the subsequent hybrid models. The precise evaluation metrics for the predictions of each model are
shown in Figure 3.

160, (2)

RMSE(mm)
MAE(mm)

0009 0020 0022 0009 0020 0022 000""0000 0020 0022
Site(ID) Site(ID) Site(ID)

Figure 3. Comparison of the evaluation indicators of each model at different sites

As shown in Figure 3, for the three different time series datasets of sea level height, the ANN
model exhibited the poorest predictive performance, with an average RMSE of 150.85 mm, an average
MAE of 114.06 mm, and an average R? of 0.28 across the different monitoring stations. In contrast,
the LSTM model performed the best, with an average RMSE of 137.92 mm, an average MAE of 100.13
mm, and an average R? of 0.40 across the different monitoring stations. LSTM outperformed ANN,
RNN, and GRU, demonstrating its superiority. However, since LSTM is a single model, it failed to
fully extract the features of the data during training, resulting in a relatively high RMSE and MAE
and a relatively low R? for the predictions. This phenomenon highlights the challenge that single
models face in accurately capturing all the fluctuations and trends in time series data, especially in
complex time series forecasting tasks. Therefore, in the subsequent work of constructing the hybrid
models, it is necessary to combine the characteristics of the data decomposition methods to further
improve the predictive accuracy of the models.

4.2. Analysis of the hybrid deep learning first-order decomposition model

In response to the issue of insufficient extraction of the features of the data by single models in
complex time series forecasting, this study introduced and compared four different data
decomposition methods: VMD, EMD, EEMD, and CEEMDAN. Taking the original sea level data
from the MAASSLUIS station as an example, these methods decomposed the data into multiple IMFs
and a residual sequence. Subsequently, the decomposed sequences were used as the model’s features
and individually fed into the LSTM model for making predictions. The results for each IMF and
residual sequence are shown in Figures 4 and 5. This experiment aimed to gain a deeper
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understanding of how the different data decomposition methods impact the performance of the
LSTM model, and evaluated their potential for improving the accuracy of time series predictions.

50 (@) VMD decomposition True — Prediction
200 A b an 1 I| A A/
-200) A .| )\ VJ \ A «1. f
V'”I Lllll rIru’ U)\» \/V J"l:jl V fll'\’ L'."lr k/\llﬂ.l \/ ’I \f |
—450 1 i L !
300 91993 1 09? 20t1 1 2u05 20(]9 2013 2017 2021

IMF (mm)

IMF (mm)

IMF j(mm) IMF y(mm)

IMF imm)

_ (b) EMD decomposition

True — Prediction

900 = 1993 1997 2001 2005 2009 2013 2017 T i Ll el 2001 2005 \ 2009 2013 2017 2021
_ | g - W Y
3 AA Ay bl A A
] 5 200 \ | ﬂJ‘lfp,." M A I A A Lol ML
0 i ?f l‘l"l U'. Vul]l J lr)lwlﬂ Ln I qu i”r‘rlllr“ Ll-"lf'li.uf’w \/ ||Ir l\'ﬂ'ﬂl I'. |I'i i.;" .l J
~900 L 1 1 1 1 1 | 1 1 & 550 L - L - L . 1 . L 1
1993 1997 2001 2005 2009 2013 2017 2021 "”-‘ 1997 2001 2005 2009 2013 2017 2021
data(year) date(year)
Figure 4. Predictions of IMF and residual series under VMD (a) and EMD (b) decomposition.
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Figure 5. Predictions of IMF and residual series under EEMD (c) and CEEMDAN (d) decomposition.

In Figures 4 and 5, the “Residual” presented for EMD, EEMD, and CEEMDAN refers to the
results obtained by adding up the various IMFs after IMF5 and the residual sequence. From the
figures, it can be observed that the IMFs obtained after VMD decomposition have well-defined
frequency signals and waveform characteristics. Therefore, the LSTM model produced excellent
predictions for each IMF. However, the residual sequence generated after VMD decomposition was
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relatively large and contained a significant amount of white noise. Consequently, even though there
were some waveform features and patterns in the residual sequence, they were challenging for the
LSTM model to capture, resulting in less accurate predictions, subsequently affecting the overall
accuracy of the VMD-LSTM model’s predictions. In contrast, the EMD, EEMD and CEEMDAN
methods, while not performing as well as VMD for predicting the various IMFs, yielded better
prediction results for the residual sequence. To further analyze the accuracy of the predictions, this
study summarized the evaluation metrics of each hybrid model's results, as shown in Table 4.

Table 4. Summary of each evaluation index of the accuracy of the time series predictions of different
decomposition methods.

Model Series RMSE (mm) MAE (mm) R2
IMF1 0.46 0.35 1.00
IMF2 0.55 0.41 1.00
IMF3 0.81 0.59 1.00
VMD-LSTM IMF4 1.58 1.21 0.99
IMF5 0.69 0.53 1.00
Residual 114.71 83.48 0.21
ALL 114.33 83.11 0.61
IMF1 76.58 58.36 0.19
IMF2 34.27 23.51 0.80
IMEF3 7.31 4.82 0.99
EMD-LSTM IMF4 1.06 0.59 1.00
IMF5 0.44 0.30 1.00
Residual 0.80 0.46 1.00
ALL 82.43 61.38 0.80
IMF1 63.03 45.98 0.34
IMF2 17.58 11.94 0.90
IMF3 2.67 1.85 1.00
EEMD-LSTM IMF4 0.50 0.32 1.00
IMF5 0.29 0.22 1.00
Residual 12.24 9.68 0.98
ALL 65.00 47.21 0.87
IMF1 76.94 58.05 0.19
IMF2 33.51 23.11 0.80
IMF3 6.90 4.54 0.99
CE?\S/I,E\? M- IMF4 1.11 0.69 1.00
IMF5 0.37 0.28 1.00
Residual 0.44 0.34 1.00
ALL 82.82 61.16 0.80

From the data in Table 4, it becomes apparent that the EEMD-LSTM model achieved the highest
overall predictive accuracy, followed by the EMD-LSTM model and the CEEMDAN model, while
the VMD-LSTM model exhibited the lowest predictive accuracy. However, it is noteworthy that a
significant portion of the prediction errors in the VMD-LSTM model stemmed from the predictions
of the residual sequence, and the prediction errors for the various IMFs were notably lower than those
of the EMD-LSTM, EEMD-LSTM and CEEMDAN models.

Although the EEMD-LSTM model may have lower predictive accuracy for the residual sequence
compared to the EMD-LSTM and CEEMDAN models, it excels in IMF prediction accuracy and
overall accuracy. The CEEMDAN decomposition method, despite its enhanced robustness and
applicability compared to EMD, yields predictive accuracy similar to that of the EMD-LSTM model.
This indicates that the CEEMDAN-LSTM model does not significantly improve predictive
performance in high-resolution sea level data compared to the EMD-LSTM model.
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While the EEMD-LSTM model did not perform as strongly as the EMD-LSTM model in
forecasting the residual sequence, it outperformed the EMD-LSTM model in forecasting the IMFs.
As a result, the VMD-LSTM model excelled in IMFs prediction, whereas the EEMD-LSTM model
exhibited the highest overall predictive accuracy. Building upon these insights, this study introduced
the VMD-EEMD-LSTM model, which enhances overall predictive accuracy by reprocessing the
residual components obtained from VMD decomposition with EEMD in addition to the VMD-LSTM
model.

5. Discussion

5.1. Analysis of the predictions of the mixed VMD-EEMD-LSTM second-order decomposition model

To comprehensively evaluate the predictive performance of the VMD-EEMD-LSTM model
relative to the VMD-LSTM and EEMD-LSTM models, this study conducted comparative
experiments using sea level data from six different monitoring stations (Maasluis, Vlissingen, Hoek
Van Holland, Delfzijl, Harlingen, [jmuiden). In this section, Maaluis station is taken as an example to
analyze the differences in the predictions of the hybrid models. To distinguish the models’ results
more clearly, this section introduces the prediction error R and analyzes the differences between the
original data and the predictions of each hybrid model. The comparative results are shown in Figure

6.
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Figure 6. Predictions and errors of each mixed model (TURE in the figure is the original time series
of sea-level high. (a) represents the prediction results for the mixed models at the Maassluis station
sea-level high; and (b) represents the prediction error R by the mixed models at the Maassluis station
sea-level high.)

As depicted in Figure 6, the VMD-LSTM model, while reasonably aligning with the overall trend
of sea level fluctuations, exhibited suboptimal performance near extreme points, particularly in
proximity to local maxima. This observation suggests that the VMD-LSTM model struggled to
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capture the nuanced characteristics of sea level fluctuations, leading to notable prediction errors. In
contrast, the EEMD-LSTM model's predictions closely match the original data, notably in capturing
the amplitude of fluctuations, which significantly outperformed those of the VMD-LSTM model.
Nevertheless, on a comprehensive scale, the results achieved by the EEMD-LSTM model still lagged
behind those of the VMD-EEMD-LSTM model. This indicates that the VMD-EEMD-LSTM model
not only represents an enhancement over the VMD-LSTM model but also surpasses the EEMD-
LSTM model in predictive accuracy. It underscores the effectiveness of this hybrid model in
combining the predictive strengths of the VMD-LSTM and EEMD-LSTM models, resulting in
superior outcomes and overall improved predictive performance.

5.2. Analysis of the accuracy of the predictions of the mixed VMD-EEMD-LSTM second-order
decomposition model

To gain a more precise insight into the enhancement achieved by the VMD-EEMD-LSTM model
in comparison to the VMD-LSTM and EEMD-LSTM models across diverse time series, this section
scrutinizes the RMSE, MAE, and R?of the predictions made by the three hybrid models for sea level
time series data collected from six different stations. The evaluation metrics used to gauge the
precision of each hybrid model's predictions are depicted in Figure 7, while the improvement ratios
of the VMD-EEMD-LSTM model relative to the VMD-LSTM and EEMD-LSTM models for various
evaluation metrics are detailed in Table 4.

MAASSLUIS MAASSLUIS MAASSLUIS VMD-LST™
) - ) EMD-LSTM
" i | VMD-EEMD-LSTM

UMUIDEN VLISSINGEN LMUIDEN ) VLISSINGEN UMUIDEN

“~

VLISSINGEN

HARLINGEN HOER VAN HOLLAND HARLINGEN HOEK ¥AN HOLLAND HARLINGEN HOEK ¥ AN HOLLAND

DELFZUL DELFZUL DELFZUL
{a) RMSE b} MAF <) R2

Figure 7. Accuracy evaluation indexes of the predictions of each mixed model (The units for RMSE
and MAE are both (mm).

Figure 7 clearly demonstrates that both the VMD-EEMD-LSTM model and the EEMD-LSTM
model exhibit markedly superior predictive accuracy in comparison to the VMD-LSTM model.
Furthermore, the VMD-EEMD-LSTM model showcases a noticeable degree of enhancement over the
EEMD-LSTM model. The three hybrid models consistently demonstrated similar performance when
predicting accuracy across various stations. This suggests that the sea level heights observed at the
selected stations in the Netherlands displayed a degree of consistency, resulting in relatively minor
variations in prediction accuracy. However, in comparison to the VMD-EEMD-LSTM model, the
EEMD-LSTM model exhibited some fluctuations in the evaluation metrics across different time series
predictions. This signifies that the stability and accuracy of the EEMD-LSTM model in forecasting
results for diverse time series are not as robust as those of the VMD-EEMD-LSTM model. This result
underlines the superiority of the VMD-EEMD-LSTM model in handling time series from different
stations and, to some extent, validates its ability to adapt more stably to various requirements and
scenarios of prediction.

To further evaluate the degree of improvement of the VMD-EEMD-LSTM model over the
EEMD-LSTM model and the VMD-LSTM model across various accuracy assessment metrics, this
study introduces the concept of an improvement ratio (I) for in-depth analysis. The results are
presented in Table 5.
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Table 5. Improvement ratio of the accuracy of the predictions by the VMD-EEMD-LSTM model
(the VMD-LSTM column in the table represents the degree of improvement achieved by the VMD-
EEMD-LSTM model compared with the VMD-LSTM model according to the three evaluation
indices, and likewise for the EEMD-LSTM column).

. VMD-LSTM EEMD-LSTM

Site Truse (%) Duae (%) 1o (0)  Iruse (%) Iuae(%) L (%)
Maassluis 58.19 59.62 -52.49 26.46 28.91 -6.60
Vlissingen 58.29 59.28 -54.04 22.52 22.18 -5.17
Hoek Van Holland 57.69 59.05 -52.45 30.97 32.00 -8.98
Delfzijl 58.85 60.04 -46.64 22.61 22.81 -4.54
Harlingen 60.52 61.79 -44.20 27.12 28.28 -5.26
[jmuiden 58.56 59.95 -49.26 31.99 33.81 -8.64

Table 5 provides clear evidence that the VMD-EEMD-LSTM model significantly improved
prediction accuracy when compared to the EEMD-LSTM model across various stations. On average,
it achieved a remarkable 26.95% reduction in RMSE, a 28.00% reduction in MAE, and a 6.53% increase
in R2. The EEMD-LSTM model showed a relatively modest increase of only 6.53% in the R?, indicating
that it could fit the actual distribution of the data well. The limited improvement in R? for the EEMD-
LSTM model also indirectly confirmed the high predictive accuracy and superior performance of the
VMD-EEMD-LSTM model.

Compared with the VMD-LSTM model, the VMD-EEMD-LSTM model exhibited even more
significant improvements in the accuracy of its prediction, with an average reduction of 58.68% in
the RMSE, an average reduction of 59.96% in the MAE, and an average increase of 49.85% in the R2.
This demonstrates that in practical VMD-LSTM predictions, there is significant room for
improvement due to the incomplete decomposition of VMD.

In summary, the VMD-EEMD-LSTM model not only leverages the advantages of the LSTM
model in handling long-term time series but also optimizes the variational decomposition of VMD
and the adaptive iterative nature of EEMD. This results in the model demonstrating superior
performance and producing better predictions in the field of time series forecasting of sea level height.

In summary, this study utilizes satellite altimetry data to estimate and forecast sea surface height.
The findings indicate that the VMD-EEMD-LSTM model, which leverages the strengths of both
hybrid prediction models, substantially enhances both predictive accuracy and the overall
performance of sea surface height forecasts. Notably, it leads to significant improvements in
forecasting the GSMSL, as evidenced by tests conducted along the Dutch coast.

6. Conclusion

This article discusses a new method for the high-precision time series forecasting of sea level
height based on VMD-LSTM, named VMD-EEMD-LSTM. It addresses the limitations in the VMD-
LSTM model, such as the insufficient decomposition of VMD, and enhances the robustness compared
with the EEMD-LSTM model. The method's reliability was validated using multiple experiments
involving Dutch coastal satellite altimetry data. The key findings are as follows.

(1) By comparing the predictions of different individual models, it is evident that the LSTM
model exhibits the best predictive performance. However, the average RMSE remains high at 137.92
mm, the average MAE is 100.13 mm, and the average R?is only 0.40 across different measurement
stations. This indicates that single deep learning predictive models often suffer from insufficient
feature extraction when dealing with complex time series data, resulting in generally lower predictive
accuracy.

(2) Comparing the four hybrid prediction models, VMD-LSTM, EMD-LSTM, EEMD-LSTM, and
CEEMDAN-LSTM, the VMD-LSTM model has the lowest predictive accuracy across different
measurement stations, with an average RMSE of 111.35 mm, an average MAE of 80.98 mm, and an
average R? of 0.61. In contrast, the EEMD-LSTM model demonstrates the highest predictive accuracy,
with an average RMSE of 63.82 mm, an average MAE of 45.71 mm, and an average R? of 0.87.
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Although the VMD-LSTM model lags EMD-LSTM EEMD-LSTM and CEEMDAN-LSTM models in
overall predictive accuracy, its individual IMF components exhibit exceptionally high predictive
accuracy within the LSTM model. While the IMF components of the EEMD-LSTM model may not
match the VMD-LSTM model in predictive accuracy, the overall predictive accuracy of EEMD-LSTM
surpasses that of VMD-LSTM.

(3) The VMD-EEMD-LSTM model, compared to the EEMD-LSTM model, achieves an average
reduction of 26.95% in RMSE, an average reduction of 28.00% in MAE, and an average increase of
6.53% in R2. Compared to the VMD-LSTM model, it achieves an average reduction of 58.68% in
RMSE, an average reduction of 59.96% in MAE, and an average increase of 49.85% in R2. These results
illustrate that the VMD-EEMD-LSTM model, through the synergistic combination of the strengths
from both hybrid prediction models, markedly improves both predictive accuracy and the overall
performance of SSH forecasts.
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