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Article 
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Abstract: Changes in sea level exhibit nonlinearity, non-stationarity, and multivariable 
characteristics, making traditional time series forecasting methods less effective in producing 
satisfactory results. To enhance the accuracy of the predictions of changes in sea level, this study 
introduced an improved VMD–EEMD–LSTM hybrid model. This model decomposes satellite 
altimetry data from near the Dutch coast using VMD, resulting in components of the Intrinsic Mode 
Function (IMF) with various frequencies and a residual sequence. EEMD further dissects the 
residual sequence obtained from VMD into second-order components. These IMFs decomposed by 
VMD and EEMD are utilized as features in the LSTM model for making predictions, culminating in 
the final forecasted results. The experimental results demonstrated significant improvements in the 
predictive performance compared with the VMD–LSTM model. The RMSE decreased by an average 
of 58.68%, the MAE reduced by an average of 59.96%, and the R2 increased by an average of 49.85% 
compared with the VMD–LSTM model. In comparison with the EEMD–LSTM model, the RMSE 
decreased by an average of 26.95%, the MAE decreased by an average of 28.00%, and the R2 
increased by an average of 6.53%. The VMD–EEMD–LSTM model exhibited significantly improved 
predictive performance. The proposed VMD–EEMD–LSTM model significantly improves the 
forecast on GSMSL with the test on the Dutch coast. 

Keywords: sea level change; deep learning; time series prediction; VMD; EEMD; LSTM 
 

1. Introduction 

In recent years, the continual rise in sea-level has had severe social impacts on coastal areas, 
including the degradation of freshwater resources, damage to infrastructure, and the depletion of 
agricultural resources [1–5]. The Sixth Assessment Report of the Intergovernmental Panel on Climate 
Change (IPCC) highlighted that under the influence of human activities, the rate of the rise in sea 
level has been steadily accelerating. Between 1901 and 1971, the average rate of the rise in sea level 
was 1.3 millimeters per year, which increased to 1.9 millimeters per year between 1971 and 2006, and 
rose further to 3.7 millimeters per year between 2006 and 2018 [6–8]. To address the threats posed by 
rising sea-level, accurate predictions of future changes in sea level are of paramount importance for 
the sustainable development of coastal regions [7–9]. 

Currently, time series forecasting methods for predicting sea-level primarily fall into two 
categories: statistical methods and machine learning methods [10–16]. Statistical methods are widely 
used in time series forecasting and are rooted in the core concept of conducting statistical analyses 
on historical data to capture the patterns and trends for predictive purposes [17–20]. Representative 
models in this category include ARIMA (auto-regressive integrated moving average) and exponential 
smoothing [21–26]. However, these models face challenges when dealing with complex nonlinear 
data, as they require manual selection of the features and adjustments of the model’s parameter, 
leading to some degree of systematic bias and limitations [27–29]. Traditional machine learning 
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methods, while capable of automatically extracting features and adjusting the model’s parameters, 
may not adequately extract the features when dealing with large-scale and highly complex data, 
resulting in limited predictive performance [30,31]. In contrast, deep learning, as an emerging 
machine learning technology, has demonstrated a strong capacity for generalization and adaptability 
to complex data through specific neural network architectures and training methods. It is becoming 
increasingly prevalent in time series data of sea-level characterized by nonlinearity, non-stationarity, 
and multivariable attributes. Makarynskyy et al. (2004) utilized artificial neural networks (ANN) to 
perform multistep predictions based on measured sea level data from a tidal station in Australia, 
affirming the feasibility of using neural network methods in prediction sea-level [32]. Balogun and 
Adebisi (2021) conducted comprehensive predictions and comparisons of changes in sea level along 
the west coast of Peninsular Malaysia using three models: ARIMA, support vector regression (SVR), 
and long short-term memory (LSTM). Their research findings validated the superiority of the LSTM 
model in predicting sea-level [33]. 

With the continued advancement of deep learning methods in the field of time series forecasting, 
various domains of time series prediction have witnessed the superior predictive accuracy achieved 
by combining data decomposition techniques with deep learning, as supported by research findings 
[34–36]. Song et al. (2022) conducted multifaceted comparisons of various data decomposition 
methods, such as complementary ensemble empirical mode decomposition (CEEMD), time-varying 
filtering-based empirical mode decomposition (TFV–EMD), wavelet transform (WT), and the fusion 
of these methods with the Elman neural network (ENN) in minute-scale time series predictions of 
sea level. Their study confirmed that the TVF–EMD–ENN model exhibits the best predictive 
performance [37]. Wang et al. (2021) incorporated time series of wind speed that had been secondarily 
decomposed using CEEMD and wavelet packet decomposition (WPD) into a gated recurrent unit 
(GRU) for making predictions. Their experiments demonstrated that this hybrid model significantly 
improved the accuracy of short-term wind speed predictions [38]. Variational mode decomposition 
(VMD), as an emerging data decomposition technique, has stood out among the various 
decomposition methods due to its unique non-recursive variational approach and exceptional 
decomposition capability. It has been widely applied in the field of mixed deep learning time series 
prediction [39,40]. Wang et al. (2020) combined the VMD–LSTM model and used an improved 
particle swarm optimization algorithm (IPSO) to optimize model parameters, confirming the higher 
predictive accuracy of the VMD–LSTM model in photovoltaic short-term power time series 
prediction [41]. Huang et al. (2022) conducted a comparison between Empirical Mode Decomposition 
(EMD) and VMD, revealing that VMD exhibited stronger noise removal capabilities. They also 
verified the higher precision of the VMD–LSTM model in predicting variations in coal thickness [42]. 
Han et al. (2019) performed multifaceted comparisons of various prediction models, including VMD–
LSTM, Persistence (PER), Wavelet (WT), and BP neural networks. Their research validated that the 
VMD–LSTM model exhibited higher accuracy in wind power prediction [43]. 

The aforementioned studies across various time series domains have consistently demonstrated 
the superior predictive accuracy of the VMD–LSTM model. However, in practical applications, due 
to variations in VMD parameter settings and data characteristics, incomplete VMD decomposition 
may occur. This results in residual components that still contain a certain level of fluctuations and 
nonwhite noise elements. This inadequately processed information can potentially have a 
detrimental impact on the predictive accuracy of the VMD–LSTM model, particularly in forecasting 
complex nonlinear and irregular time series. In light of these challenges, this study proposed a deep 
learning hybrid model based on the VMD–LSTM model, known as the VMD–EEMD–LSTM model, 
which incorporates both VMD and ensemble empirical mode decomposition (EEMD). This model 
aims to enhance the predictive accuracy of the VMD–LSTM model for sea level time series by further 
processing the residual sequences obtained from VMD decomposition. Evaluation of the VMD–
EEMD–LSTM model's predictive performance was conducted with multiple models, various 
perspectives, and multiple monitoring stations for a comprehensive validation. 
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2. Principles and Methods 

2.1. Signal Processing Methods 

VMD, EMD, EEMD, and CEEMDAN (Conformal Empirical Mode Decomposition with 
Adaptive Noise) are all widely used adaptive methods of data decomposition in the fields of signal 
processing and data analysis [44–46]. Among them, VMD is a completely non-recursive modal 
decomposition method. Its core idea involves modeling a signal as a variational problem and 
subsequently seeking the optimal solution through iterative transformations. Ultimately, this process 
decomposes nonstationary signals into a series of standard orthogonal modal functions. The 
corresponding principles are as follows [47,48].  

(1) With the objective of minimizing the summation of the estimated bandwidths for each modal 
component ( )K

tµ , a constrained variational problem model aimed at identifying the optimal 

solution. The specific formulation of the constrained variational problem model is provided below.  

{ } { }
( ) ( )

2

, 2

. .

min K

K K

j t

t K

K

K
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j
d t u t e
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s t f
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δ
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      + ∗         
 =




 (1) 

In Equation 1, 2 1j = − , ( )tδ  represents the Dirac function, { }K
µ  corresponds to the modal 

functions obtained after decomposition, { }K
ω  denotes the central frequencies associated with each 

mode, and f  represents the original signal. 

To attain the optimal solution for the constrained variational problem, the introduction of 
quadratic penalty factors α and Lagrange multiplier operators 

t
λ  transforms the problem into an 

unconstrained variational problem.  

{ } { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

22

, , ,Kj t

K K t K K K

K K K

j
L t t e f t t t f t t

t

ωµ ω λ α δ µ µ λ µ
π

−  
= ∂ + ∗ + − + −    
    (2)

where (*)L  represents the augmented Lagrangian function, ( ) ( )K

K

f t tµ−  is the quadratic 

penalty term. Subsequently, an alternatively direction method with multiplier operators is used to 
solve the unconstrained variational problem, and the optimal solution is obtained by alternating 
updating 1n

K
µ + , 1n

K
ω + , and 1nλ + .  

As a recursive method, the EMD method decomposes the data into a finite number of intrinsic 
mode functions (IMF) that reflect the inherent properties of the time series signals, along with a 
"residual sequence" [49,50]. However, the EMD may suffer from the mode-mixing problem in the 
IMF sequences. To overcome this challenge, this study introduced the EEMD method. EEMD 
gradually introduces normally distributed white noise into the original signal and then offsets this 
noise through multiple averaging calculations. This process leads to more precise decomposition of 
the signal and effectively avoids the mode mixing phenomenon that can occur during the EMD 
decomposition process [51–53]. The specific process is as follows: 

(1) Initially, white noise denoted as ( )tω  is introduced into the original signal ( )x t . 
( ) ( ) ( ), 1, 2,...,

i i
x t x t t i mω= + =  (3) 

(2) Subsequently, the EMD method is employed to decompose the initial noisy signal, resulting 
in n IMF, represented as ( )

i
C t , and a residual sequence represented as ( )

i
r t . 

1
( ) ( ) ( )n

i ij ij
x t C t r t

=
= +  (4) 
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(3) Steps (1) and (2) are iteratively executed for a total of m  times, in which white noise is added 
and IMF components are obtained through decomposition in each iteration. Finally, all the IMF 
components thus obtained are integrated and averaged to obtain the ultimate result of EEMD signal 
decomposition. 

CEEMDAN introduces an adaptive noise complete set to automatically construct noise 
components, enabling more effective extraction of modal components in the signal compared to 
EEMD. This enhances the accuracy and robustness of data decomposition [54]. 

2.2. Long Short-Term Memory 

LSTM is an improved type of recurrent neural network (RNN). Its distinctive memory module 
is beneficial for handling long-term dependencies and mitigating the challenges related to vanishing 
and explosion gradients [55]. Compared with traditional neural networks, LSTM networks exhibit 
pronounced advantages when addressing tasks pertaining to the prediction of lengthy time series 
data. Consequently, LSTM networks find extensive applications in domains such as time series 
forecasting [56,57]. 

The architectural framework of LSTM network comprises an input layer, intermediate hidden 
layers, and an output layer. Each hidden layer controls storage and access of the data through input 
gates, forget gates, and output gates, as visually depicted in Figure 1. 

 

Figure 1. Basic structure of LSTM. 

As illustrated in the figure, LSTM processes the input of high-temporal data related to sea 
surface elevation and the previous moment's hidden state output using three gates. The primary 
process is as follows: 

(1) LSTM, through the forget gate (denoted as 
t

f ), determines whether to discard or retain 

information related to 
t

X  and 1t
h − is governed by the activation function σ  of the forget gate. 

1( [ , ] )t f t t ff W h X bσ −= ⋅ +  (5) 

In the equations, W  and b  represent the weight matrices and biases, respectively. 
t

f  is a 

vector with values in the range of 0 to 1, where the values within the vector indicate whether 
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information in the cell state 1t
C −  is preserved. A value of 0 implies no preservation, while 1 implies 

full preservation. 
(2) The cell state is updated through the input gate by passing 

t
X  and 1t

h −  to the activation 

function σ  to determine the information update. 
t

X  and 1t
h −  are passed to the tanh function to 

create a new candidate value vector '
t

C  (where '
t

C  is a vector in the range of -1 to 1), and the tanh 

output is multiplied by σ  output. 

1( [ , ] )
t i t t i
i W h X bσ −= ⋅ +  (6) 

1' tanh( [h , ] )
t c t t c

C W X b−= ⋅ +  (7) 

(3) The cell state from the previous layer is element-wise multiplied with the forget vector, and 
then this value is element-wise added to the output of the input gate, resulting in the updated cell 
state. 

1* * '
t t t t t

C f C i C−= +  (8) 

In the equations, 1*
t tf C −  determines the forgetting of information in 1t

C − , while * '
t t
i C  

determines the addition of information in '
t

C  to the new memory cell state 
t

C . 

(4) Through the output gate 
t

O , the value of the next hidden state 
t

h  is determined, and this 

hidden state contains information from previous inputs. 

1( [ , ] )
t O t t O

O W h X bσ −= ⋅ +  (9) 

* tanh( )
t t t

h O C=  (10) 

2.3. The VMD–EEMD–LSTM Hybrid Second-Order Decomposition Prediction Model 

VMD and EEMD, as two classical data processing methods, have been widely applied in hybrid 
modeling. Their effectiveness in enhancing the predictive accuracy of deep learning models has been 
well-established [58–61]. The VMD–LSTM model, as a prevalent hybrid deep learning approach, has 
been widely employed in the realm of time series forecasting. Its applications encompass load 
forecasting and wind speed prediction, where it has showcased remarkable performance [62,63]. The 
VMD–LSTM model leverages VMD to perform decomposition of the initial data into a sequence of 
IMF sequence and a residual sequence. Subsequently, the model individually forecasts each IMF 
sequence and the residual sequence using the LSTM model. Ultimately, the predicted outcomes of 
each sequence are aggregated to derive the final model prediction. During the prediction process, as 
the standard normal mode functions obtained through VMD decomposition are stationary signals, 
predicting each IMF separately can achieve higher prediction accuracy. However, in practical VMD 
decomposition, the residual sequence still contains some fluctuating characteristics and high-
frequency noise, and their values are relatively large. If these parts of the data are not appropriately 
processed, they will adversely affect the overall predictive accuracy of the model [64–66]. In contrast, 
the EEMD–LSTM model is a recursive decomposition method, and its main predictive errors are 
concentrated in the IMF components, which perform well in predicting the residual sequence and 
overall data. Based on this, this study proposed a deep learning hybrid model called VMD–EEMD–
LSTM. This model employs VMD for the initial data decomposition and then utilizes EEMD to 
further break down the residual components with lower prediction accuracy resulting from the VMD 
decomposition. Subsequently, each IMF obtained through both VMD and EEMD decomposition is 
used as a feature used as input into the LSTM model for making predictions. Ultimately, the 
forecasted outcomes of each IMF are aggregated to yield the model's comprehensive prediction. This 
approach augments the overall predictive precision of the model by handling the residual 
components produced by VMD. The detailed procedure is elucidated in Figure 2. 
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Figure 2. The mixed VMD–EEMD–LSTM second-order decomposition model. 

The specific prediction process of the mixed VMD–EEMD–LSTM second-order decomposition 
model is as follows. 

Step 1: Preprocess the time series data on sea level from each station and then input them into 
the VMD model (with K as the number of components in the model) for decomposition. 

Step 2: Take the residual sequence "Residual 1" obtained from the VMD decomposition, and 
input it into the EEMD model for further decomposition. This will yield various model components 
as well as "Residual 2". 

Step 3: Through extensive experiments, it has been determined that among the IMF components 
obtained through EEMD decomposition, the IMFs after IMFK (IMF K+1 to IMF n) and "Residual 2" have 
smaller prediction errors. To mitigate experimental intricacies and guarantee the precision of the 
model's predictions, the IMF components beyond IMF K and 'Residual 2' are combined and utilized as 
input features for the LSTM model to facilitate the prediction process. 

Step 4: Utilizing the distinct IMF components acquired from both VMD decomposition and the 
EEMD decomposition as distinct features, these components are fed into the LSTM model for 
prediction purposes. This process yields a total of 2K+1 predictions. 

Step 5: Aggregate and amalgamate the 2K+1 predictions to derive the ultimate prediction 
generated by the VMD–EEMD–LSTM model. 

2.4. Evaluation index 

To evaluate the precision and dependability of the diverse deep learning models in predicting 
performance, this study employs the subsequent assessment metrics: RMSE (root mean square error), 
MAE (mean absolute error), and R2 (Coefficient of determination). The definitions of these three-
evaluation metrics are elaborated as per references [67–69]:  
(1) RMSE 

( )
2

1

1 ˆ 
n

i i

i

RMSE y y
n =

= −  (11) 

(2) MAE 

( )
1

1 ˆ
n

i i

i

MAE y y
n =

= −  (12) 

(3) R2 
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R
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=

=

−

= −

−




 (13) 

 
where 

i
y  represents the actual values of sea level, ˆ

i
y  represents the values predicted by each 

model, y  is the mean of the actual values of sea level, and n denotes the total number of data points 

related to sea level. For RMSE and MAE, smaller values indicate higher predictive accuracy, while 
for R2, values closer to 1 indicate accurate predictions, and values closer to 0 suggest that the model 
has weaker explanatory power. 

To visually assess the enhanced performance of the VMD–EEMD–LSTM model in comparison 
to other hybrid models across diverse accuracy evaluation metrics, this study introduces the concept 
of an improvement ratio (I). Through the computation of I, the degree of enhancement achieved by 
the VMD–EEMD–LSTM model in terms of accuracy can be precisely quantified. The formula for 
calculating I is defined as follows: 

ˆ
ˆ-

yy

y y
I

y
=  (14) 

where y and ŷ  signify diverse evaluation metrics, y represents the evaluation metric of the 

hybrid models compared against the VMD–EEMD–LSTM model, while ŷ  represents the 

evaluation metric of the VMD–EEMD–LSTM model. If ˆyyI  is greater than 0, it indicates a decreasing 

trend in the accuracy. If ˆyyI  is less than 0, it indicates an increasing trend. The greater the absolute 

value of ˆyyI , the greater the improvement in that evaluation metric for the hybrid model and vice 

versa. 

3. Data and experiments 

3.1. Data Preprocessing 

The satellite altimetry grid data used in this study were obtained from the European Union's 
Copernicus Earth Observation Program, specifically from the GLORYS12V1 product 
(GLOBAL_MULTIYEAR_PHY_001_030). The data have a spatial resolution of 0.083° × 0.083° and a 
temporal resolution of 1 day [70]. The GLORYS12V1 product is a reanalysis of the global ocean with 
a 1/12° horizontal resolution and 50 vertical levels, covering sea level measurements from 1993 
onwards. It has undergone the necessary standard corrections. To ensure the fairness of the 
experiments, this study utilized data from six satellite altimetry grid points near the coast of the 
Netherlands. All the selected data have a consistent temporal coverage, spanning from early 1993 to 
the end of 2020, totaling 28 years. The distribution of the data is presented in Table 1. 

Table 1. Details the of satellite altimetry data. 

Site ID Longitude (°) Latitude (°) Time span(years) 

Maassluis 0009 4.25 51.92 1993–2020 
Vlissingen 0020 3.60 51.44 1993–2020 

Hoek Van Holland 0022 4.12 51.98 1993–2020 
Delfzijl 0023 4.75 52.96 1993–2020 

Harlingen 0025 5.41 53.18 1993–2020 
Ijmuiden 0032 4.56 52.46 1993–2020 
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3.2. Experimental pretreatment 

3.2.1. Parameter Settings of VMD 

Unlike EMD and EEMD, VMD allows for the autonomous selection of the number of mode 
components obtained during decomposition.  

Therefore, in the context of utilizing VMD for data decomposition, the choice of an appropriate 
number of mode components, denoted as K, is of paramount importance to attain high-quality 
decomposition outcomes. Opting for a K value that is excessively large may lead to over-
decomposition, whereas selecting one that is overly small may result in under-decomposition. To 
ascertain the optimal K value for the sea level height time series post-decomposition, this 
investigation employs the signal-to-noise ratio (SNR) as an evaluative criterion for decomposition 
quality. A higher SNR corresponds to a more distinct signal decomposition and improved noise 
removal. Following comprehensive experimental inquiry and empirical observations, this study 
confines the selection of K values to the range of 2 to 10, and identifies the K value within this range 
that yields the highest SNR as the optimal K value for each individual time series [71,72]. 

2

1

2

1

( )
SNR 10lg

[ ( ) ( )]

N

i

N

i

m i

m i n i

=

=

=

−




 (15) 

where ( )m i  represents the original signal, and ( )n i  represents the reconstructed signal. In 

VMD, the penalty factor α also exerts a certain influence on the decomposition outcomes. Given that 
the optimal range for the penalty factor α is typically between 1.5 and 2 times the size of the 
decomposed data [73], and to ensure experimental consistency while considering the size of the 
decomposed data in the experiments, this study set the penalty factor to 15,000 for all decomposition 
processes. 

Because the range of sites covered in this study was relatively small, the frequency of fluctuation 
and the amplitude of the sequences of sea level height were quite similar. Therefore, the optimal 
parameters obtained in the experiments were consistent, all indicating that K=5 was the best number 
of components for decomposition (Figure 4 in Section 4.2 shows the results VMD decomposition for 
K=5). To reduce the complexity of the subsequent experiments and ensure experimental consistency, 
this study combined the data with a K greater than 5 from the IMF obtained by EMD and EEMD 
decomposition with the residual term for a better predictive analysis. 

To further validate the reliability of the selected K value, the LSTM model was employed to 
conduct comparative experiments for sea level data prediction at the Maassluis station. The 
experimental results are presented in Table 2. 

Table 2. Prediction accuracy of VMD-LSTM model under different K-value decomposition. (VMDK-
LSTM (K=3,4,5,6,7,) is a prediction model obtained by VMD decomposition under this K value.) 

Model Series 
RMSE 
(mm) 

MAE 
(mm) 

R2 Model Series 
RMSE 
(mm) 

MAE 
(mm) 

R2 

VMD3-
LSTM 

IMF1 0.48 0.37 1.00 

VMD6-
LSTM 

IMF1 0.44 0.34 1.00 
IMF2 0.87 0.64 1.00 IMF2 0.56 0.42 1.00 
IMF3 1.26 0.95 1.00 IMF3 0.77 0.56 1.00 

Residual 125.61 91.01 0.29 IMF4 1.74 1.31 1.00 
ALL 125.42 90.84 0.53 IMF5 1.15 0.87 1.00 

VMD4-
LSTM 

IMF1 0.48 0.36 1.00 IMF6 0.67 0.51 1.00 
IMF2 0.59 0.45 1.00 Residual 115.09 85.26 0.16 
IMF3 1.72 1.30 0.99 ALL 114.95 85.12 0.61 
IMF4 1.03 0.78 1.00 VMD7-

LSTM 
IMF1 0.46 0.35 1.00 

Residual 118.53 86.06 0.22 IMF2 0.57 0.43 1.00 
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ALL 118.30 85.81 0.58 IMF3 0.57 0.43 1.00 

VMD5-
LSTM 

IMF1 0.46 0.35 1 IMF4 0.74 0.55 1.00 
IMF2 0.55 0.41 1 IMF5 1.67 1.27 0.99 
IMF3 0.81 0.59 1 IMF6 0.96 0.72 1.00 
IMF4 1.58 1.21 0.99 IMF7 0.56 0.42 1.00 
IMF5 0.69 0.53 1 Residual 111.77 83.78 0.03 

Residual 114.71 83.48 0.21 ALL 114.81 86.10 0.61 
ALL 114.33 83.11 0.61  

As presented in Table 2, distinct values of K in VMD decomposition produce residual sequences 
that manifest substantial predictive errors, constituting the primary source of discrepancies within 
the VMD-LSTM model. A comparative analysis of predictive outcomes across varying K values 
reveals that with the escalation of K, the R2 for residual sequence predictions gradually diminishes, 
while the cumulative errors for each IMF increase. This observation implies that the selection of an 
excessively diminutive K value may result in an inadequate decomposition of the signal, ultimately 
yielding inferior predictive performance. Conversely, opting for an excessively large K value may 
lead to an exorbitant decomposition of the signal, which is also not conducive to model prediction. 

When K is set at 5, the VMD-LSTM model attains the highest level of predictive accuracy. This 
reaffirms that, in the context of time series prediction for sea level data, K=5 represents the optimal 
number of decompositions for VMD. 

3.2.2. Parameter Settings of the Model 

In deep learning prediction models, a variety of different parameters are involved, and the sizes 
of the parameters have different degrees of influence on the model’s predictive accuracy. In order to 
ensure the reliability, this study conducted an experiment by setting the same model parameters. The 
configuration details of each model are presented in Table 3. In this experimental setup, the 
parameters for the LSTM model and the hybrid models were set to identical sizes. 

Table 3. Hyperparameter settings for each model. 

Model ANN RNN GRU LSTM Instructions 

Training set 7305 7305 7305 7305 
Training data for model training 

(1993–2012) 

Validation 
set 

1095 1095 1095 1095 
Validation data for tuning the 

hyperparameters and preventing 
overfitting (2012–2015) 

Test set 1827 1827 1827 1827 
Testing data for evaluating the 

model’s performance (2015–2020) 
Epochs 50 50 50 50 Number of iterations of the model 

Learning 
rate 

0.001 0.001 0.001 0.001 
Hyperparameter controlling the step 

size of the updates of the model’s 
parameters 

Input_size 1 1 1 1 Dimensionality of the input layer 
Output_size 1 1 1 1 Dimensionality of the output layer 
Hidden_size 256 256 256 256 Dimensionality of the hidden layer 

Seq_len 12 12 12 12 Length of each sliding data window 

Batch_size 16 16 16 16 
Batch size for one-time input in the 

time series data 

According to Table 3, all models employed a uniform data partitioning scheme in this research: 
the data spanning from early 1993 to the end of 2012 constituted the training set, data from the end 
of 2012 to the end of 2015 served as the validation set, and data from the end of 2015 to the end of 
2020 comprised the test set. This data splitting approach was adopted with the intention of ensuring 
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that the models had access to a sufficient volume of training data to thoroughly grasp the underlying 
data characteristics. Additionally, employing a substantial dataset for testing purposes enabled a 
more comprehensive assessment of the model's predictive performance. 

4. Results and analysis 

4.1. Analysis of the predictions of a single deep learning model 

In this section, the predictive performance of four different models, namely ANN [74,75], RNN 
[76,77], gated recurrent units (GRU) [78,79], and LSTM, was comprehensively evaluated and 
compared using three different sequences of sea level height. The goal was to determine the best-
performing model in terms of time series forecasting, providing a reliable foundation for constructing 
the subsequent hybrid models. The precise evaluation metrics for the predictions of each model are 
shown in Figure 3. 

 
Figure 3. Comparison of the evaluation indicators of each model at different sites 

As shown in Figure 3, for the three different time series datasets of sea level height, the ANN 
model exhibited the poorest predictive performance, with an average RMSE of 150.85 mm, an average 
MAE of 114.06 mm, and an average R2 of 0.28 across the different monitoring stations. In contrast, 
the LSTM model performed the best, with an average RMSE of 137.92 mm, an average MAE of 100.13 
mm, and an average R2 of 0.40 across the different monitoring stations. LSTM outperformed ANN, 
RNN, and GRU, demonstrating its superiority. However, since LSTM is a single model, it failed to 
fully extract the features of the data during training, resulting in a relatively high RMSE and MAE 
and a relatively low R2 for the predictions. This phenomenon highlights the challenge that single 
models face in accurately capturing all the fluctuations and trends in time series data, especially in 
complex time series forecasting tasks. Therefore, in the subsequent work of constructing the hybrid 
models, it is necessary to combine the characteristics of the data decomposition methods to further 
improve the predictive accuracy of the models. 

4.2. Analysis of the hybrid deep learning first-order decomposition model 

In response to the issue of insufficient extraction of the features of the data by single models in 
complex time series forecasting, this study introduced and compared four different data 
decomposition methods: VMD, EMD, EEMD, and CEEMDAN. Taking the original sea level data 
from the MAASSLUIS station as an example, these methods decomposed the data into multiple IMFs 
and a residual sequence. Subsequently, the decomposed sequences were used as the model’s features 
and individually fed into the LSTM model for making predictions. The results for each IMF and 
residual sequence are shown in Figures 4 and 5. This experiment aimed to gain a deeper 
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understanding of how the different data decomposition methods impact the performance of the 
LSTM model, and evaluated their potential for improving the accuracy of time series predictions.  

  

Figure 4. Predictions of IMF and residual series under VMD (a) and EMD (b) decomposition. 

  

Figure 5. Predictions of IMF and residual series under EEMD (c) and CEEMDAN (d) decomposition. 

In Figures 4 and 5, the “Residual” presented for EMD, EEMD, and CEEMDAN refers to the 
results obtained by adding up the various IMFs after IMF5 and the residual sequence. From the 
figures, it can be observed that the IMFs obtained after VMD decomposition have well-defined 
frequency signals and waveform characteristics. Therefore, the LSTM model produced excellent 
predictions for each IMF. However, the residual sequence generated after VMD decomposition was 
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relatively large and contained a significant amount of white noise. Consequently, even though there 
were some waveform features and patterns in the residual sequence, they were challenging for the 
LSTM model to capture, resulting in less accurate predictions, subsequently affecting the overall 
accuracy of the VMD–LSTM model’s predictions. In contrast, the EMD, EEMD and CEEMDAN 
methods, while not performing as well as VMD for predicting the various IMFs, yielded better 
prediction results for the residual sequence. To further analyze the accuracy of the predictions, this 
study summarized the evaluation metrics of each hybrid model's results, as shown in Table 4. 

Table 4. Summary of each evaluation index of the accuracy of the time series predictions of different 
decomposition methods. 

Model Series RMSE (mm) MAE (mm) R2 

VMD-LSTM 

IMF1 0.46 0.35 1.00 
IMF2 0.55 0.41 1.00 
IMF3 0.81 0.59 1.00 
IMF4 1.58 1.21 0.99 
IMF5 0.69 0.53 1.00 

Residual 114.71 83.48 0.21 
ALL 114.33 83.11 0.61 

EMD-LSTM 

IMF1 76.58 58.36 0.19 
IMF2 34.27 23.51 0.80 
IMF3 7.31 4.82 0.99 
IMF4 1.06 0.59 1.00 
IMF5 0.44 0.30 1.00 

Residual 0.80 0.46 1.00 
ALL 82.43 61.38 0.80 

EEMD-LSTM 

IMF1 63.03 45.98 0.34 
IMF2 17.58 11.94 0.90 
IMF3 2.67 1.85 1.00 
IMF4 0.50 0.32 1.00 
IMF5 0.29 0.22 1.00 

Residual 12.24 9.68 0.98 
ALL 65.00 47.21 0.87 

CEEMDAM-
LSTM 

IMF1 76.94  58.05  0.19  
IMF2 33.51  23.11  0.80  
IMF3 6.90  4.54  0.99  
IMF4 1.11  0.69  1.00  
IMF5 0.37  0.28  1.00  

Residual 0.44  0.34  1.00  
ALL 82.82  61.16  0.80  

From the data in Table 4, it becomes apparent that the EEMD–LSTM model achieved the highest 
overall predictive accuracy, followed by the EMD–LSTM model and the CEEMDAN model, while 
the VMD–LSTM model exhibited the lowest predictive accuracy. However, it is noteworthy that a 
significant portion of the prediction errors in the VMD–LSTM model stemmed from the predictions 
of the residual sequence, and the prediction errors for the various IMFs were notably lower than those 
of the EMD–LSTM, EEMD–LSTM and CEEMDAN models.  

Although the EEMD-LSTM model may have lower predictive accuracy for the residual sequence 
compared to the EMD-LSTM and CEEMDAN models, it excels in IMF prediction accuracy and 
overall accuracy. The CEEMDAN decomposition method, despite its enhanced robustness and 
applicability compared to EMD, yields predictive accuracy similar to that of the EMD-LSTM model. 
This indicates that the CEEMDAN-LSTM model does not significantly improve predictive 
performance in high-resolution sea level data compared to the EMD-LSTM model. 
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While the EEMD–LSTM model did not perform as strongly as the EMD–LSTM model in 
forecasting the residual sequence, it outperformed the EMD–LSTM model in forecasting the IMFs. 
As a result, the VMD–LSTM model excelled in IMFs prediction, whereas the EEMD–LSTM model 
exhibited the highest overall predictive accuracy. Building upon these insights, this study introduced 
the VMD–EEMD–LSTM model, which enhances overall predictive accuracy by reprocessing the 
residual components obtained from VMD decomposition with EEMD in addition to the VMD–LSTM 
model. 

5. Discussion 

5.1. Analysis of the predictions of the mixed VMD–EEMD–LSTM second-order decomposition model 

To comprehensively evaluate the predictive performance of the VMD–EEMD–LSTM model 
relative to the VMD–LSTM and EEMD–LSTM models, this study conducted comparative 
experiments using sea level data from six different monitoring stations (Maasluis, Vlissingen, Hoek 
Van Holland, Delfzijl, Harlingen, Ijmuiden). In this section, Maaluis station is taken as an example to 
analyze the differences in the predictions of the hybrid models. To distinguish the models’ results 
more clearly, this section introduces the prediction error R and analyzes the differences between the 
original data and the predictions of each hybrid model. The comparative results are shown in Figure 
6. 

 

 

Figure 6. Predictions and errors of each mixed model (TURE in the figure is the original time series 
of sea-level high. (a) represents the prediction results for the mixed models at the Maassluis station 
sea-level high; and (b) represents the prediction error R by the mixed models at the Maassluis station 
sea-level high.) 

As depicted in Figure 6, the VMD–LSTM model, while reasonably aligning with the overall trend 
of sea level fluctuations, exhibited suboptimal performance near extreme points, particularly in 
proximity to local maxima. This observation suggests that the VMD–LSTM model struggled to 
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capture the nuanced characteristics of sea level fluctuations, leading to notable prediction errors. In 
contrast, the EEMD-LSTM model's predictions closely match the original data, notably in capturing 
the amplitude of fluctuations, which significantly outperformed those of the VMD–LSTM model. 
Nevertheless, on a comprehensive scale, the results achieved by the EEMD–LSTM model still lagged 
behind those of the VMD–EEMD–LSTM model. This indicates that the VMD–EEMD–LSTM model 
not only represents an enhancement over the VMD–LSTM model but also surpasses the EEMD–
LSTM model in predictive accuracy. It underscores the effectiveness of this hybrid model in 
combining the predictive strengths of the VMD–LSTM and EEMD–LSTM models, resulting in 
superior outcomes and overall improved predictive performance. 

5.2. Analysis of the accuracy of the predictions of the mixed VMD–EEMD–LSTM second-order 

decomposition model 

To gain a more precise insight into the enhancement achieved by the VMD–EEMD–LSTM model 
in comparison to the VMD–LSTM and EEMD–LSTM models across diverse time series, this section 
scrutinizes the RMSE, MAE, and R2 of the predictions made by the three hybrid models for sea level 
time series data collected from six different stations. The evaluation metrics used to gauge the 
precision of each hybrid model's predictions are depicted in Figure 7, while the improvement ratios 
of the VMD–EEMD–LSTM model relative to the VMD–LSTM and EEMD–LSTM models for various 
evaluation metrics are detailed in Table 4. 

 

Figure 7. Accuracy evaluation indexes of the predictions of each mixed model (The units for RMSE 
and MAE are both (mm).  

Figure 7 clearly demonstrates that both the VMD-EEMD-LSTM model and the EEMD-LSTM 
model exhibit markedly superior predictive accuracy in comparison to the VMD-LSTM model. 
Furthermore, the VMD-EEMD-LSTM model showcases a noticeable degree of enhancement over the 
EEMD-LSTM model. The three hybrid models consistently demonstrated similar performance when 
predicting accuracy across various stations. This suggests that the sea level heights observed at the 
selected stations in the Netherlands displayed a degree of consistency, resulting in relatively minor 
variations in prediction accuracy. However, in comparison to the VMD–EEMD–LSTM model, the 
EEMD–LSTM model exhibited some fluctuations in the evaluation metrics across different time series 
predictions. This signifies that the stability and accuracy of the EEMD–LSTM model in forecasting 
results for diverse time series are not as robust as those of the VMD–EEMD–LSTM model. This result 
underlines the superiority of the VMD–EEMD–LSTM model in handling time series from different 
stations and, to some extent, validates its ability to adapt more stably to various requirements and 
scenarios of prediction. 

To further evaluate the degree of improvement of the VMD-EEMD-LSTM model over the 
EEMD-LSTM model and the VMD-LSTM model across various accuracy assessment metrics, this 
study introduces the concept of an improvement ratio (I) for in-depth analysis. The results are 
presented in Table 5. 
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Table 5. Improvement ratio of the accuracy of the predictions by the VMD–EEMD–LSTM model 
(the VMD–LSTM column in the table represents the degree of improvement achieved by the VMD–

EEMD–LSTM model compared with the VMD–LSTM model according to the three evaluation 
indices, and likewise for the EEMD–LSTM column). 

Site 
VMD–LSTM EEMD–LSTM 

IRMSE (%) IMAE (%) 2R
I (%) IRMSE (%) IMAE (%) 2R

I (%) 

Maassluis 58.19 59.62 -52.49 26.46 28.91 -6.60 
Vlissingen 58.29 59.28 -54.04 22.52 22.18 -5.17 

Hoek Van Holland 57.69 59.05 -52.45 30.97 32.00 -8.98 
Delfzijl 58.85 60.04 -46.64 22.61 22.81 -4.54 

Harlingen 60.52 61.79 -44.20 27.12 28.28 -5.26 
Ijmuiden 58.56 59.95 -49.26 31.99 33.81 -8.64 

Table 5 provides clear evidence that the VMD–EEMD–LSTM model significantly improved 
prediction accuracy when compared to the EEMD–LSTM model across various stations. On average, 
it achieved a remarkable 26.95% reduction in RMSE, a 28.00% reduction in MAE, and a 6.53% increase 
in R2. The EEMD–LSTM model showed a relatively modest increase of only 6.53% in the R2, indicating 
that it could fit the actual distribution of the data well. The limited improvement in R2 for the EEMD–
LSTM model also indirectly confirmed the high predictive accuracy and superior performance of the 
VMD–EEMD–LSTM model. 

Compared with the VMD–LSTM model, the VMD–EEMD–LSTM model exhibited even more 
significant improvements in the accuracy of its prediction, with an average reduction of 58.68% in 
the RMSE, an average reduction of 59.96% in the MAE, and an average increase of 49.85% in the R2. 
This demonstrates that in practical VMD–LSTM predictions, there is significant room for 
improvement due to the incomplete decomposition of VMD. 

In summary, the VMD–EEMD–LSTM model not only leverages the advantages of the LSTM 
model in handling long-term time series but also optimizes the variational decomposition of VMD 
and the adaptive iterative nature of EEMD. This results in the model demonstrating superior 
performance and producing better predictions in the field of time series forecasting of sea level height. 

In summary, this study utilizes satellite altimetry data to estimate and forecast sea surface height. 
The findings indicate that the VMD-EEMD-LSTM model, which leverages the strengths of both 
hybrid prediction models, substantially enhances both predictive accuracy and the overall 
performance of sea surface height forecasts. Notably, it leads to significant improvements in 
forecasting the GSMSL, as evidenced by tests conducted along the Dutch coast. 

6. Conclusion 

This article discusses a new method for the high-precision time series forecasting of sea level 
height based on VMD–LSTM, named VMD–EEMD–LSTM. It addresses the limitations in the VMD–
LSTM model, such as the insufficient decomposition of VMD, and enhances the robustness compared 
with the EEMD–LSTM model. The method's reliability was validated using multiple experiments 
involving Dutch coastal satellite altimetry data. The key findings are as follows. 

(1) By comparing the predictions of different individual models, it is evident that the LSTM 
model exhibits the best predictive performance. However, the average RMSE remains high at 137.92 
mm, the average MAE is 100.13 mm, and the average R2 is only 0.40 across different measurement 
stations. This indicates that single deep learning predictive models often suffer from insufficient 
feature extraction when dealing with complex time series data, resulting in generally lower predictive 
accuracy. 

(2) Comparing the four hybrid prediction models, VMD-LSTM, EMD-LSTM, EEMD-LSTM, and 
CEEMDAN-LSTM, the VMD-LSTM model has the lowest predictive accuracy across different 
measurement stations, with an average RMSE of 111.35 mm, an average MAE of 80.98 mm, and an 
average R2 of 0.61. In contrast, the EEMD-LSTM model demonstrates the highest predictive accuracy, 
with an average RMSE of 63.82 mm, an average MAE of 45.71 mm, and an average R2 of 0.87. 
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Although the VMD-LSTM model lags EMD-LSTM EEMD-LSTM and CEEMDAN-LSTM models in 
overall predictive accuracy, its individual IMF components exhibit exceptionally high predictive 
accuracy within the LSTM model. While the IMF components of the EEMD-LSTM model may not 
match the VMD-LSTM model in predictive accuracy, the overall predictive accuracy of EEMD-LSTM 
surpasses that of VMD-LSTM. 

(3) The VMD-EEMD-LSTM model, compared to the EEMD-LSTM model, achieves an average 
reduction of 26.95% in RMSE, an average reduction of 28.00% in MAE, and an average increase of 
6.53% in R2. Compared to the VMD-LSTM model, it achieves an average reduction of 58.68% in 
RMSE, an average reduction of 59.96% in MAE, and an average increase of 49.85% in R2. These results 
illustrate that the VMD-EEMD-LSTM model, through the synergistic combination of the strengths 
from both hybrid prediction models, markedly improves both predictive accuracy and the overall 
performance of SSH forecasts. 
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