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Abstract: This research paper investigates ultra-wideband (UWB) localization systems by focusing
on the use of average filter (AVG), Kalman filter (KF), and extended Kalman filter (EKF) algorithms,
as well as a novel integrated filtering method that incorporates low-pass filter (LPF) into AVG, KF,
and EKF. The study aims to improve localization loss in indoor environments using a TurtleBot
robot equipped with a camera to observe ground truth positions. To evaluate the effectiveness of
the proposed algorithms, a comprehensive comparison of the raw and filtered data with the camera-
based ground truth observations is performed. Quantitative analyses of the results, including max,
min, max-min, and mean error, are performed to evaluate the localization performance of the
algorithms and the integrated filtering method. The results reveal that the integrated filtering
method has performed better accuracy in comparison with existing methods.

Keywords: ultra-wideband (UWB); average filter (AVG); Kalman filter (KF); extended Kalman
filter (EKF); robot operating system (ROS); LiDAR; robot navigation

1. Introduction

In recent years, localization and positioning systems for wireless sensor networks (WSNs) have
gained popularity, being successfully utilized in various applications, such as product tracking in
warehouses and equipment localization in hospitals [1]. Indoor positioning systems require accurate
and low-cost estimation schemes due to the unique characteristics of indoor channels. Unlike outdoor
positioning systems, such as the Global Positioning System (GPS), no general scheme for indoor
positioning exists. Thus, a well-designed solution considering the limited capacity, low infrastructure
cost, and energy constraints of a wireless sensor network (WSN) is required [2]. Various techniques
have been utilized for indoor positioning systems, including measuring the distance or range
between the target and the anchor sensor using methods such as the angle of arrival (AOA), received
signal strength (RSS), time of arrival (TOA), time difference of arrival (TDOA), and time of flight
(TOF) [3]. TOF, which measures the round-trip time of packets and averages the results, is a
promising low-cost solution to real-time applications. Location algorithms such as trilateration,
location fingerprinting, and proximity algorithms are designed to calculate the position based on
distance measurements. Trilateration is preferred for its simplicity and high processing speed [4].

However, the accuracy of position estimation is compromised by measurement noise. Modeling
radio propagation and time delay for WSNs in indoor environments, while considering factors such
as low signal-to-noise ratio (SNR), severe multipath effects, reflections, and link failures, presents
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challenges that lead to measurement errors and data loss. To overcome these challenges, the KF has
been introduced in WSN systems. KF, a recurve linear filtering model, is widely used for estimating
tracks through noisy measurements. It has been successful in smoothing random deviations from the
true target path [5]. Despite its advantages, KF is still liable to errors when the measurement noise is
excessive. The distributed Kalman filter has been proposed to reduce noise, but it requires global
information, which is not feasible in real-world positioning systems, where sensors can only provide
partial range values. RADAR systems utilize KFs but do not strongly consider environmental
changes, making them unsuitable for real-world applications [6]. Additionally, KF assumes that noise
conforms to additive white Gaussian distribution and linear systems, which is challenging to model
in indoor environments where wireless channels frequently change with object movement and
surface reflections. This paper seeks to address the above issues through the following contributions:

1. To implement a real-time tracking system, the method provides robot localization to perform
ground truth observations captured by a camera using a visual tracking system.

2. The data processing component applies by localization methods to obtain two-dimensional
positions, but some noise remains. To filter out this noise, the AVG, KF, and EKF are
implemented.

3. Anintegrated filtering method has been proposed combining LPF as (LPF+AVG), (LPF+KF), and
(LPF+EKF) to reduce the loss and improve the trajectory accuracy.

Experiments are conducted to compare the performance of each method, and the results reveal
that the integrated method exhibit different performance in different trajectories, suggesting the
superiority of LPF+EKF for indoor positioning.

Section 2 begins with a comprehensive review of previous research in the field of indoor
localization and filtering algorithms. We analyze the strengths and weaknesses of existing
approaches and highlight how the proposed method addresses some of these challenges. Section 3
delves into the methodology used, in particular the system architecture involving the integration of
ultra-wideband (UWB) technology with a visual tracking system. Section 4 then explains the ROS
ecosystem and flowchart. Section 5, presents the core of the research, introducing the proposed
method for accurate localization. The method comprises AVG, KF, and EKF, as well as a novel
integrated model that incorporates UWB sensors. The integrated model is designed to improve
localization accuracy and reliability [7]. To provide practical insights, Section 6 presents detailed
information on the experimental setup and the various components used during the evaluations.
Finally, Section 7, concludes the paper by discussing the obtained data results and potential directions
for future research. We highlight the importance of improving the accuracy and loss of robotic
localization using UWB sensors, paving the way for further advancements in this field.

2. Related Works

Ultra-wideband (UWB) localization systems utilize UWB signals to estimate the position of an
object or person in an environment. UWB signals have some advantages for localization, such as high
accuracy, resolution, and data rate, as well as robustness to multipath effects [8]. However, UWB
localization systems also face some challenges, such as noise, interference, non-line-of-sight (NLOS)
propagation, and high time resolution [9].

Various algorithms have been proposed to address these challenges and improve the
localization accuracy and robustness of UWB systems. Some common methods are based on time-of-
arrival (TOA), angle-of-arrival (AOA), or phase-difference-of-arrival (PDoA) measurements. These
methods can be further classified as deterministic or probabilistic, depending on whether they use
geometric or statistical models to estimate position [10]. Among the deterministic approaches AVG,
KF, and EKF are widely used to reduce the noise and interference effects on UWB measurements.
However, these algorithms may not perform well in NLOS scenarios where the UWB signals are
obstructed by obstacles and reflect from multiple paths [11-13].

Among the probabilistic approaches, the particle filter (PF), Bayesian filter (BF), and support
vector machine (SVM) are popular algorithms for dealing with the NLOS problem by incorporating
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prior knowledge or learning from data [14,15]. However, these algorithms may suffer from high
computational complexity or low generalization ability. The integrated model involves applying LPF
to the raw UWB data before feeding it to the AVG, KF, or EKF algorithms [16]. The LPF is used to
smooth the UWB data and reduce the high-frequency noise and interference effects. The AVG, KF,
and EKF algorithms are used to further reduce the noise and interference effects and estimate the
position based on the filtered UWB data [17].

To overcome the limitations of single algorithms, some integrated methods have been proposed,
which involve combining different algorithms or models to achieve better localization performance.
For example, an integrated method based on CNN-SVM and a integrated localization algorithm were
proposed to classify and mitigate NLOS errors using convolutional neural networks (CNNs) and
SVMs and then estimate the position using a weighted least squares (WLS) method [18]. Another
integrated method based on particle swarm optimization (PSO) and a integrated localization
algorithm has been proposed to optimize the PSO and a combination of TOA and AOA
measurements.

Thus far, we have explored different types of indoor localization systems. While these systems
have reduced localization errors and solved localization challenges, further positioning accuracy
improvements are needed to improve indoor localization and accuracy. In this paper, we propose
UWSB localization approaches using an integrated filtering methods for indoor localization, tracking,
and navigation.

3. Working Methodology

This section explains the ultra-wideband (UWB) system architecture, the vision tracking system,
and the ROS ecosystem. The UWB system architecture is designed to enable robot positioning and
localization. The vision tracking system utilizes camera vision techniques to track and monitor the
movement of the robot to find the ground truth [19]. ROS is a software framework that allows
communication between software and hardware, thus providing tools for building, testing, and
deploying in localization.

3.1. System Architecture

As shown in Figure 1, the robot positioning system consists of a UWB positioning subsystem, a
remote computer, and a mobile robot. The UWB positioning subsystem consists of UWB anchors
fixed in the environment and a UWB robot tag [20]. By measuring the distance between the UWB tag
and the anchors, the computer executes positioning algorithms to determine the robot's position and
coordinates. The remote computer communicates wirelessly with the robot, processes positioning
data, calculates the robot's coordinates, and controls its motion. The system performs various
functions such as interactive communication, robot control, position estimation, and robot position
display [21]. A single sensor cannot achieve high accuracy due to errors or instability. The combined
use of UWB tags and anchor sensors can improve positioning accuracy and stability. In this study, a
position estimation and error correction method based on the EKF algorithm was proposed. The
robot positioning system can simultaneously acquire and integrate the data from UWB tags and
anchors, as shown in Figure 1.
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Figure 1. Working architecture.

The UWB positioning, mobile robot, and computer control systems are the three main blocks of
the proposed system architecture. The first block consists of multiple UWB tags and anchors. The
next block consists of the robot development system, which is a mobile robot system. TurtleBot 3 was
used as the mobile robot for the initial position experiment. The system consists of a motor for
locomotion, a driver unit for controlling the motor, and a LiDAR sensor for scanning and detecting
obstacles. A Raspberry Pi processor was used to control all these systems, which are connected to a
power supply. Finally, a computer control system with the ROS environment installed and the
POZYX library was used, which communicates through Raspberry Pi as a read-and-write device.
Different algorithms can be tested and simulated to improve localization and positioning [22].
TurtleBot3 is equipped with UWB tag nodes that can be integrated into the ROS ecosystem. These
sensor measurements are used in the EKF along with wheel odometry and LPF algorithm output for
localization, and the LiDAR-based navigation stack is initialized with UWB ranging and LiDAR
scanning. In addition, the TurtleBot3 ROS library facilitates the implementation of a simulation
environment.

3.2. UWB System

UWB technology has traditionally been used for wireless communications but has recently
gained popularity in positioning applications. Its wide bandwidth makes it resistant to interference
from other radio frequency signals and allows the signal to penetrate obstacles and walls, making it
a reliable positioning technology in non-line-of-sight and multipath environments [23]. In addition,
the unique identification of tags in a UWB system automatically solves data association problems. To
determine distances, the technology transmits radio signals from a mobile transceiver (tag) to a group
of known anchors, measures the time of flight (TOF), and calculates distances. This study used the
POZYX system, a UWB-based hardware solution for precise position and motion sensing. The UWB
configuration settings can be customized based on four different parameters that can affect the overall
performance of the system. However, the presence of noise and uncertainty in the measurement data
collected by UWB sensors requires advanced filtering techniques for accurate position estimation,
including KF and EKF, which can improve the accuracy of indoor localization systems based on UWB
technology.
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3.3. Visual Tracking System

Visual tracking is a computer vision technique that involves tracking and estimating the motion
of objects in a sequence of images or video frames captured by a webcam. It is a fundamental task in
various applications, including surveillance, robotics, augmented reality, and human computer
interaction [24]. Visual tracking methods aim to accurately and robustly locate and track objects of
interest despite changes in appearance, scale, orientation, and occlusion, as shown in Figure 2.
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Figure 2. Testing environment structure.

The following steps present a basic process for visual tracking using a webcam installed and
tested at the IRRI laboratory of Sun Moon University, South Korea, as shown in Figure 2. We installed
a webcam in a suitable location while ensuring that all corners of the tracking area on the webcam
were visible. We captured and saved four positions in a 2D projected coordinate system based on the
webcam capture. Using the saved positions, we created a perspective transformation matrix that
maps the view of the webcam to the desired tracking area. We then computed the image matrix and
the perspective transformation matrix using a 512 x 512 resolution for optimal tracking performance.

The visual tracking process began after applying the perspective transformation. We selected a
high-contrast area of the robot for tracking. An appropriate tracking algorithm, such as the
discriminative correlation filter with a channel and spatial reliability (CSRT) algorithm was
implemented to track the robot within the 512 x 512 image [25]. The tracking data provide the position
within the 512 x 512 image and are is converted to the corresponding position in the real environment,
which may have different dimensions. By scaling the tracked position using Equation (1), the tracked
position is mapped to the 4000 mm X 4000 mm environment in X and Y, where ¥ and y represent
the positions within the 512 x 512 image.

x

_y
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To ensure accuracy, it is important to eliminate any bias in the tracking system. The robot was
moved to known positions, such as [1000, 2000], [2000, 2000], [3000, 2000], [2000, 1000], and [2000,
3000], and the tracking data were observed. Figure 3 shows the line of sight of the webcam, which is
represented by a dotted line, and the real position, webcam position, and tracking point are
represented by green, pink, and purple dots, respectively. The bias length is the distance between the
green and pink dots.
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Figure 3. Webcam line of sight.

If the bias is consistently the same along the axis, an average is used to correct the bias.
Alternatively, if the bias has a linear pattern, a one-dimensional polynomial fit is performed to
estimate the bias and adjust the tracked positions accordingly [26]. The visual tracking method was
implemented in this study using a webcam to provide accurate and reliable tracking information
over the following steps.

3.4. ROS Ecosystem

In this section, we focus on the ROS ecosystem and its components, including nodes, topics, and
messages, and how the UWB sensors can be integrated with ROS. We also discuss how UWB sensors
are used to measure the distance between a robot and its environment and how this information can
be used to improve the robot's localization and mapping capabilities.

Position information is the most important information for navigation systems. UWB sensors
are an excellent choice for robot localization because they provide low-noise-range information that
is resistant to multipath interference [27]. Fusing their information with odometry data provides a
robust solution for challenging environmental conditions. The POZYX system utilizes UWB
technology to achieve centimeter-level accuracy, which is far superior to that of traditional
positioning systems based on Wi-Fi and Bluetooth. The algorithm calculates the position of the robot;
applies the KF, which utilizes odometry data to set the motion model; and updates the pose using
UWB range measurement pose information. The GUI displays the map and the current robot
position, and the navigation stack can be fed with KF-based pose information on demand. Several
ROS packages are available for collecting and processing IMU sensor data in mobile robots, such as
the ROS IMU package, which provides an implementation of an IMU sensor driver and a filter for
estimating the orientation of the robot using sensor data [28]. Other packages include robot
localization, which provides an implementation of EKF for fusing data from multiple sensors,
including IMU data, to estimate the position and orientation of the robot [29].

In addition, the UWB node-based source localization algorithm determines the location of a
robot but cannot determine its orientation with respect to a map. To solve this problem, a map and
LiDAR scan matching technique are introduced. Once the initial heading is estimated, the robot's
pose can be published to the initial pose topic. Figure 4 illustrates the difference in the robot's pose
before and after the initialization process. Before autonomous initialization, the robot's pose is
incorrect and the scan data do not match the real map, as shown in Figure 4a, but after initialization,
the scan data and map are aligned, as shown in Figure 4b.
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Figure 4. (a) Robot poses and LiDAR scans before the automatic initialization; (b) Robot poses and
LiDAR scans after the automatic initialization.

Once the robot's starting position has been determined, the robot starts moving to point A using
the move-base algorithm available in the ROS navigation stack. The final position of the robot is then
determined, both on the map and in the real world, after starting with a precise initialization. The
accuracy of the robot's arrival at its destination is confirmed by analyzing the LiDAR scans on the
map.

3.5. System Flow chart

The flow chart of an indoor UWB localization system is a visual representation of the steps and
processes involved in the operation of the system. It outlines the sequence of events that occur from
start to finish, providing a comprehensive view of how the system works. A flow chart outlines the
entire process in this system. The system provides both simulation and real-world test environments
for different tasks [30]. The user chooses whether to run the application in a simulation or the real
world. If the application is run in a simulation, the Gazebo and POZYX simulations are started, and
synthetic sensor data and map data are obtained. If the application is running in the real world, real
sensor data are obtained [31]. The initialization package then utilizes the UWB range and LiDAR scan
data to complete the autonomous initialization process, regardless of whether the data are synthetic
or real. Figure 5 shows a system flowchart of the UWB localization system, which outlines the various
components involved in the system and how they interact with each other.

The flowchart first initializes the program. Either the mobile tag mode or the anchor mode is
selected. If the mobile tag mode is chosen, the program will start sending messages and wait for a
response from the anchor. Once a response is received, the program processes the data and sends
time data to the tag mode as the receiving data mode. The data distance is then calculated, which
involves calculating the distance between the mobile tag and the anchor.
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Figure 5. System flow-chart.

When the anchor mode is selected, the program waits for a message from the mobile tag. Once
the message is received, the program processes the data and responds to the mobile tag. The
flowchart in Figure 5 shows a high-level overview of the UWB indoor localization system. It clarifies
the steps involved in the operation of the system and how the different components interact to
achieve the desired result.

4. Filtering Algorithm

In this section, we discuss the filtering algorithm and provide an example code for implementing
the filtering process [32-34]. The filtering algorithm aims to extract relevant information from noisy
or incomplete data by applying mathematical techniques.

4.1. Average Filtering

The average filter is a simple method used to smooth data by calculating the sampled average
and eliminating noise [35]. The average equation is as follows

k
)Tk — Zn:kl Xn (2)
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The equation represents the conventional method of calculating the average of a given set of values.
In this equation, variable k denotes the size of the acquired data, whereas X, represents the resulting
average value [33]. Equation (2) can be expressed differently as follows:

X = aXy_1 + (1 — )X, 3)

_ k-1
Where, a =(1—-1/k) and X;,_; = 2’%;” Equation (3) represents the main function of a recursive

average filter.

4.2. Kalman Filtering

The KF is a mathematical framework that includes estimation and correction steps and consists
of a set of equations divided into two main steps: prediction (estimation equations) and correction
(measurement equations), as described in the references. In the prediction step, the estimated value
is determined and can be represented by equations.

Xi+1 = Axy + gy 4)

A A 1T A
Here, the state vectors x;, = [X 0 Xio Yio Yk] are the positions X, and Y, and the velocities X, and
Y, at sample k. The state transition matrix A in Equation (1) is time-invariant and given by

1 At 0 O
o 1 0 o0

A_001At ()
0 0 0 1

The transition matrix is responsible for predicting the next state based on the previous state
using a constant movement model, element At is the sample period of each step, and x;, =

- 1T . R . . . . .
[Xi, X, Vi, Vi is a probabilistic vector of processing errors and noise due to estimation uncertainty.
Elements Xeyor and Yenor are transition position errors, and Xe.o and Y. are the velocity
errors. The correction step (measurement equations) can be expressed as

Zk=ka+T'k (6)

Matrix H is a projection to transform x; into a position, as shown in Equation (7)

H=(3 0 1 o 7)

Te = [Xerror 1» Yerror 117 is the measurement noise vector, and the final filtered result £, can be
expressed as

J%k = Xk + Kk(Zk - ka). (8)

4.3. Extended Kalman Filtering

EKF is a popular localization algorithm used in robotics, navigation, and autonomic systems. It
is an extension of traditional KF and provides a recursive solution to the problem of estimating the
state of a system over time. EKF works by incorporating nonlinear functions of the system state into
a linear approximation, which can then be updated using a recursive Bayesian filter [36]. The
algorithm utilizes a set of linearized system models and measurements to estimate the system state
over time, considering both model uncertainty and measurement noise. The operation of the
algorithm involves two steps, typically prediction and correction. In the prediction step, the EKF
predicts the system state at the next time step based on the current state and control inputs. In the
correction step, the algorithm updates the prediction using the latest measurement. EKF is widely
used in various fields (e.g., robotic navigation and autonomous systems) because of its ability to
handle nonlinear systems and provide accurate estimates even in the presence of measurement noise.
It is also computationally efficient, making it suitable for real-time applications [36,37].

EKF was proposed to solve the localization problem in robotic applications. In these
applications, the motion and observation models are defined as follows
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Xe = g(Xem1,Up, V), )
z¢ = h(x, Wy). (10)

The motion and observation noise are represented by v;_; and w,, respectively. If the motion
and observation models are linear and the noise is independent and identically distributed (i.i.d.)
Gaussian distributions, then KF is the optimal filter. Thus, if the initial belief, bel(x,), has a Gaussian
distribution, with variance o, and p, being the peak position distribution, then,

Xo~N(o, 05) (11)

1 1
bel(xo) = p(xo) = det(z‘r[o-o)_i Exp |- E (XO - :uo)To-o_l(Xo - ﬂo) (12)

If the motion model is linear and the resulting noise is an additive, independent, and identically
distributed Gaussian distribution then,

X = A¢ Xe1 + By up + vy, vi~N(0,Ryp), (13)

1
P(x¢|x¢1,uy) = det(2mRy) "2 Exp [_ % (¢ = Ap X1 — Btut)TRt_l(Xt —AX, — Btut)]/ (14)

where R, is a positive definite matrix.
If the observation model is linear and the resulting noise is an additive, independent, and
identically distributed Gaussian distribution, then,

Zt = CtXt + Wt’ WtNN(OJ Qt)' (15)

P(zix) = det(ant)_% Exp [‘%(Zt - Ctxt)TQt_l(Zt - Ctxt)]., (16)

The motion model used in this study utilizes odometry information to estimate the motion of
the robot. Odometry information refers to the data obtained from the robot's sensors, such as wheel
encoders, which provide estimates of the robot's distance traveled and orientation changes. The
motion model incorporates this information to estimate the robot's position and velocity at each time
step shown in proposed Algorithm 3.

5. Proposed Algorithm

5.1. Low-Pass Filter in Average Filter (LPF+AVG)

The “LPF+AVG” algorithm is specifically designed for indoor localization systems. It starts by
collecting measurements, such as TOF data, from the UWB or a similar technology. AVG is applied
to these measurements to reduce noise and improve accuracy. Trilateration is then performed to
estimate the position of the target based on processed TOF data and reference point locations.

The Algorithm 1 introduces an LPF+AVG to further refine the position estimates by removing
noise and improving the results. By combining these filtering techniques, the LPF+AVG algorithm
achieves a balance between noise reduction and responsiveness, ensuring accurate and reliable
position estimates even in complex indoor environments. Based on this algorithm, the robot's input
position is mapped to the ground truth position according to the LPF+AVG from the robot's data
point for smoothing the trajectories.

Algorithm 1 LPF+AVG

1: Input: data = [(xraW/ yraw)' (xtruthr ytruth)]
2:  LPF-Averaging filter (data)

3:  filtered_data=1]
4

For i in range (len(data));
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5 Measurement (TOF ());
6: Lateration ();
7 LPF-Averaging filter ()
8 {
9 if no valid data, then
10: return state: link failure or system failure
11: else
12: Averaging (); \\calculate the expected value of the range
13: average_value = np.mean(data[start:end])
14: filtered_data = filtered_data.append(average_value)
15: return: filtered_data
16: end if
17: }
18: Lateration ();
19: LPE-Averaging filter ();
20: Print (filtered_data)

21: End for

5.2. Low-Pass Filter in Kalman Filter (LPF+KF)

LPF+KEF is a localization algorithm that uses indoor region information, such as room size, to
correct measurements. It acts as a integrated filter that behaves like a KF when the data are within
the boundaries of the indoor region. In this case, it calculates positions using prediction and
correction steps. However, when data fall outside the bounds or the system encounters disturbance
information, it behaves like a low-pass filter, relying on the predicted value from the previous state.
Algorithm 2 outlines the operation of the LPF+KF to provide accurate and reliable indoor position
estimates. In the presence of significant measurement noise, LPF+KF tends to rely on its predicted
value. The algorithm is particularly suited for tracking motion within a confined area because such
motion typically involves low speeds and generally follows simple, straight paths. This makes
LPF+KF well suited for scenarios where the motion is slow and does not involve complex and
tortuous paths. LPF+KF is processed by providing the estimated state of the position of the robot, and
also it will calculate the effect of noise. Next step, the LPF+KF is to correct the step for the next state.

Algorithm 2 LPF+KF
1:  Input:data= [(Xraw, Yraw) (Keruens Yeruen)]
2 LPF-Kalman filter (data)
3 filtered_data=1]
4 For i in range (len(data));
5: Measurement(TOF());
6 LPF-Kalman filter ()
7 {
8 if (Positions out of bound then
9 return [%, 7]
10: else
11: LPF-Kalman filter ();\ \calculate the expected value of
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12: the range
13: State Estimate = [, 7]
14: Process Noise
15: R = xx + K (2, — Hxy,)
16: Correction Step
17: zx = Hxy + 1y
18: Predict Step
19: Xer1 = AXpe + Gy
20: filtered_data
21: return: filtered_data
22: end if
23: }
24: LPF-Kalman filter ();
25: Print (filtered_data)
26: End for

5.3. Low-Pass Filter in Extended Kalman Filter (LPF+EKF)

LPF+EKF is similar to LPF+KF, except for the trilateration in Algorithm 2. In Algorithm 3,
LPF+EKF exhibits similar principles as those of the EKF and utilizes range values as observation
inputs instead of calculating measurement positions [38]. This eliminates the need for position
calculations, and the algorithm directly utilizes the range values in its filtering process. LPF+EKF can
provide a more dynamic filtering method, as we can input the velocity of the robot linearly and its
velocity in angle, which can provide more accuracy than other methods. The process of LPF+EKF is
just more promising than LPF+KF by adding the robot's velocity to predict the next trajectory. It
works well with environments that have high noise.

Algorithm 3 LPF+EKF

1: Input: data = [(xraw, yraw): (xtruth: ytruth): (xraw: yraw)]
2:  LPF- Extended Kalman filter (data)

3. filtered_data =1 ]

4. For i in range (len(data));

5: Measurement(TOF());

6: LPF-Extended Kalman filter ()

7 {

8: if (Positions out of bound then
9: return [(X, ¥),(%,7)]
10: else
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11: LPF- Extended Kalman filter ();\\calculate the
12: expected
13: robot's position and velocity range
14- State Estimate = [(X, ), (x,7)]
15: Process Noise
16: 7= Cx + W, W,~N(0,Q,),
17:
Correction Step
18:
Zr = H Xk + 1%
19:
Predict Step
20:
xe = g(xp_1, Uy Ve_y)
21:
z, = h(x, Wy)
22:
filtered_data
return: filtered_data
23: end if
24: }
25: LPF- Extended Kalman filter ();
26: Print (filtered_data)
27:  End for

The proposed method is suitable for specific indoor localization scenarios. LPF+KF excels in
high-noise environments and simple motions; LPF+AVG provides adaptability and robustness in
various indoor environments; and LPF+EKF utilizes direct range values for accurate position
estimates, as shown in the proposed algorithm [39].

6. Experimental Setup

6.1. Hardware setup

In our test, we used the TurtleBot 3 robot, a Raspberry Pi onboard processor, a UWB tag module,
and four POZYX anchors attached to the sensor stand in the experimental area. Ethernet cables and
PoE switches connect the anchors to the computer. A UWB localization software package is installed
on the computer [40]. The details of the components used in the experiment are listed in Table 1.

Table 1. Hardware Specification.

Hardware Components Description

POZYX UWB localization system

Consists of UWB anchors and tags

Operates in the frequency range of 3.5 GHz to 6.5 GHz
Supports precise indoor positioning

Range of up to 100 meters

High-resolution RGB camera

Minimum resolution of 1080p

Wide field of view (FOV) of at least 90°

Interfaces with the computer/processing unit via USB 3.0

UWB Localization
System

Camera
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e  TurtleBot 3 Burger model
e Equipped with a Raspberry Pi 4 single-board
TurtleBot e  Features a differential drive system with two DC motors
e Includes encoders for odometry calculations
e  Equipped with a 360-degree LiDAR sensor
e Intel Core i7 processor-based computer
Computer/Processing e 8GBRAM
Unit e  256GB SSD storage
e  Runs on Ubuntu or ROS (Robot Operating System
e  Four UWB anchor nodes
UWB Anchors and Tags e One UWB tag
p Suppl e Input voltage: 100-240V AC
ower supply e Output voltage: 12V DC
—r e  Gigabit Ethernet interface for high-speed data transfer
;;Ot:lrfl;::lcahon . Co%nmunication between the corgnpurt)er and processing unit, UWB

system, and Turtle Bot
e In-house 3D printed mounting brackets and fixtures for the camera,
UWB anchors, and tags

Mounting Hardware

6.2. Environment

A relatively large indoor area with a clear line of sight between the anchors and the tag on the
robot has been set up for operation. There are no large metal obstacles or reflective surfaces to
interfere with the UWB signals. The environment is well lit to allow the robot to move safely, as
shown in Figure 6.

Figure 6. Indoor environment.

6.2.1. Calibration

Before starting the experiment, the UWB localization was calibrated to obtain accurate distance
measurements between the anchors and the tag. The ROS software package is used for the calibration.
The calibration process typically involves collecting measurements between the anchors and the tag
at various distances and angles [41].

6.2.2 Localization

After UWB, the system was calibrated, and the localization algorithm was run on the computer
to estimate the position of the robot in real time. The estimated position was then displayed on a 2D
map of the environment and used for navigation tasks.
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7. Experiment and Results

To evaluate the accuracy and efficiency of the UWB indoor localization technology proposed in
this study, an experimental scenario was considered. By leveraging the time difference and angle of
arrival of the UWB pulses transmitted by the tags, the sensors were able to measure the position of
the tag. The experiments were conducted under line-of-sight conditions between the tag and the
wired sensors, and the system was used to measure of the position of the tag, which was then used
by the developed algorithms to determine the distance between the measured position and the
position of the wireless sensors based on the range measurements.

7.1. Experiment

We conducted three different trajectory path experiments (T1, T2, and T3), as shown in Figure 16.
Trajectories T1, T2, and T3 are square, circular, and free paths, respectively, with UWB tags placed at
fixed positions. Filtering techniques, such as AVG, KF, and EKF, were used to filter the data. We then
applied our proposed integrated techniques (AVG+LPF, KF+LPF, EKF+LPF). The comparative
analysis evaluated the accuracy and precision by comparing the filtered data with the ground-truth
positions. The results provide valuable insights for optimizing UWB localization algorithms in real-
world applications, considering accuracy, noise reduction, and handling of nonlinear motion.

7.2. Results

7.2.1. Target 1- Square Path with (AVG, KF, EKF and AVG+LPF, KF+LPF, EKF+LPF) Filtering

Figure 7 shows a graphical representation of the T1 square trajectory path with (AVG, KF, EKF)
filtering and (AVG+LPF, KF+LPF, EKF+LPF) integrated filtering, which measures the raw data and
the filtered data collected during the experiment with respect to the ground truth. The trajectory
covers 2 m at a speed of 0.5 m/s. The collected data correspond to the positions along the X and Y
axes, measured in millimeters (mm).

Figure 7. (b)Target 1- Square path with (AVG+LPF, KF+LPF, EKF+LPF) integrated filtering.
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The data in Table 2, obtained from the graph in Figure 8, represent the square trajectory with
(AVG, KF, EKF) filtering and (AVG+LPF, KF+LPF, EKF+LPF) integrated filtering. Both trajectories
cover 2 m and have a speed of 0.5 m/s. The table presents various measurements for these trajectories
in terms of positions along the X and Y axes. For the “trajectory with (AVG, KF, EKF)” the maximum
error position reached along X axis was 180.82 mm and the maximum error position Y axis was 371.07
mm. On the other hand, the minimum error along X axis was 0.12 mm, and the minimum error along

Y was also 0.12 mm. The absolute error difference between the maximum and minimum error values,
denoted as |Max.-Min. |, was 179.9 mm for the X axis and 371.85 mm for the Y axis. In addition, the
mean error position for the X axis was 52.19, and for the Y axis, it was 89.09 mm.

Table 2. Measurement error data for the square trajectory for both algorithms.

Trajectory  Distance Speed Max. (mm) Min. (mm) |Max.-Min. | Mean (mm)
(mm)
X Y Y X Y X Y
Square 2m 0.5m/s  180.82 371.07 0.12 0.12 179.9 371.85 52.19 89.09
Square 2m 0.5m/s  163.81 273.09 0.13  0.09 163.68 273 46.4 70.36
(LPF)
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Figure 8. Error comparison graph of square trajectory path-T1 with (AVG, KF, EKF and AVG+LPF,

KF+LPF, EKF+LPF) filtering.

"Integrated filtering method data with (AVG+LPF, KF+LPF, EKF+LPF) filtering" of the square
error trajectory was collected from Figure 8; the maximum error along X position was 163.81 mm,
and on Y position was 273.09 mm. The minimum error along X position was 0.13 mm, and the
minimum error along Y position was 0.09 mm. The absolute error difference between the maximum

and minimum values was 163.68 mm for the X axis and 273 mm for the Y axis. The average error
position was 46.6 mm for the X-axis and 70.36 mm for the Y-axis. These measurements provide
valuable insight into the characteristics of the two trajectories, revealing the range of positions, the

average position, and the effect of the LPF on the data.
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7.2.2. Target 2- Circular path with (AVG, KF, EKF and AVG+LPF, KF+LPF, EKF+LPF) filtering

Figure 9 shows the graphical measurement of raw and filtered data collected during the circular
trajectory with respect to the ground truth with (AVG, KF, EKF) filtering and (AVG+LPF, KF+LPF,
EKF+LPF) integrated filtering. The trajectory covers a distance of 2.2 m at a speed of 0.5 m/s. The data
collected correspond to the positions along the X and Y axes, measured in millimeters (mm), as
listed in Table 3.

Figure 9. (b)Target 2- circular path with (AVG+LPF, KF+LPF, EKF+LPF) filtering.

Table 3. Measurement error data for the circular trajectory for both algorithms.

Trajectory  Distance Speed Max. (mm) Min. (mm) |Max.-Min. | Mean (mm)
(mm)
X Y X Y X Y X X
Circular 2.2m 0.5m/s  166.38 341.05 0.46 0.58 165.91 34047 56.34 100.5
Circular 2.2m 0.5m/s 158.51 286.22 0.52 0.81 157.99 285.4 157.99 285.4
(LPF)

Table 3 presents the data for the filtering technique from the graph in Figure 9 "circular with
(AVG, KF, EKF) filtering and (AVG+LPF, KF+LPF, EKF+LPF) with ground truth.” Both trajectories
cover 2.2 m at a speed of 0.5 m/s. In the “circular trajectory without integrated filter technique,” we
observed that the maximum error along X position reached was 166.38 mm, and the maximum error
along Y position was 341.05 mm. However, the minimum error along X position was 0.46 mm, and
the minimum error along Y position was 0.58 mm. The absolute difference error between the
maximum and minimum values, called |Max.-Min.|, was 165.91 mm for the X axis and 340.47 mm
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for the Y axis. In addition, the mean error position was 56.34 mm for the X-axis and 100.5 mm for the
Y-axis.

For the “circular trajectory with integrated filter technique” method, the maximum error along
X position was 158.51 mm, and the maximum error along Y position was 286.22 mm. The minimum
error along X position was 0.52 mm, and the minimum error along Y position was 0.81 mm. The
absolute error difference between the maximum and minimum values was 157.99 mm along the X
axis and 285.4 mm along the Y axis. The average error position along the X axis was 50.63 mm and
for the Y axis, it was 88.44 mm.

This calculated value hints at the valuable data characteristics of the two filtering algorithms,
with the range of positions, the average position, and the effect of the LPF (low-pass filter) on the
data. The raw data improved significantly after adding the low-pass integrated filtering technique to
the filtered data. The error graph reveals how the LPF as integrated with existing filters (AVG, KF,
EKF) improves the accuracy of the trajectory data, effectively reducing error and noise, as shown in

Figure 10.
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Figure 10. Error comparison graph of circular trajectory path-T2 with (AVG, KF, EKF and AVG+LPF,
KF+LPF, EKF+LPF) filtering.

7.2.3. Target 3- free path with (AVG, KF, EKF and AVG+LPF, KF+LPF, EKF+LPF) filtering

Figure 11 is T-3 for the free path trajectory with respect to the ground truth using an integrated
filtering technique and a non-integrated technique with a distance of 5 m and a constant velocity of
0.5m/s.
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Figure 11. (b) Target 3- free path with (AVG+LPF, KF+LPF, EKF+LPF) filtering.

Table 4 presents the error comparison data of the free path trajectory with (AVG, KF, EKF)
filtering and (AVG+LPF, KF+LPF, EKF+LPF) integrated filtering with a ground truth of a distance of
5 m at a constant velocity of 0.5 m/s. The table provides measurements for the maximum and
minimum error positions along the X and Y axes, as well as the absolute difference (IMax.-Min. )
and mean positions.

Table 4. Measurement error data of free trajectory path for both algorithms.

Trajectory  Distance Speed Max. (mm) Min. (mm) |Max.-Min. | Mean (mm)
(mm)
X Y X Y X Y X X
Free 5m 0.5m/s  310.84 19799 0.3 0.2 310.55  197.78 88.84 84.36
Free (LPF) 5m 0.5m/s  256.74 16650 0.74 0.36 255.99 166.13 76.25 74.07

The graphical representation of (AVG, KF, EKF) filtering in Figure 12 reveals that the maximum
error along X position was 310.84 mm, and the maximum error along Y position was 197.99 mm. The
minimum error along X position was 0.3 mm, and the minimum error along Y position was 0.20 mm.
The absolute difference error between the maximum and minimum was 310.55 mm along X axis and
197.78 mm along the Y axis. The average error position along the X-axis was 88.84 mm, along the Y-
axis, it was 84.36 mm, as presented in the table. Similarly, in the (AVG+LPF, KF+LPF, EKF+LPF)
integrated filtering graph, the maximum error along X position was 256.74 mm, and the maximum
error along Y position was 166.50 mm. The minimum error along X position was 0.74 mm, and the
minimum error along Y position was 0.36 mm. The absolute error difference between the maximum
and minimum values was 255.99 along X axis and 166.13 mm along the Y axis. The mean position for
the X axis was -41.72 mm, and for the Y axis, it was 22.81 mm. The average error position along the
X-axis was 76.25 mm, along the Y-axis, it was 74.07 mm.
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The data presented in all the Tables 1-3 reveal how these filtering techniques affect the trajectory
data, and the integrated filtering (AVG+LPF, KF+LPF, EKF+LPF) adding a LPF to the raw filtered
data.
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Figure 12. Error comparison graph of free trajectory path -T3 with (AVG, KF, EKF and AVG+LPF,
KF+LPF, EKF+LPF) filtering.

8. Conclusions

In this research, we conducted an experiment to evaluate the performance of different filtering
techniques for position estimation in different trajectory scenarios. Our goal was to evaluate the
effectiveness of AVG, KF, and EKF techniques in improving the accuracy and reliability of
measurement data. The experiment comprised three trajectory scenarios: square path, circular path,
and free path, corresponding to distances of 2 m, 2.2 m, and 5 m, respectively, at a speed of 0.5 m/s.
We collected measurement data along the X and Y coordinates and compared the results before and
after applying the filtering techniques. Our results revealed that all three filtering methods improved
the measurement data by reducing noise and fluctuations, resulting in smoother and more consistent
position estimates. However, the integrated filtering method (LPF+EKF) consistently outperformed
the others, demonstrating better accuracy making it a reliable solution for localization and tracking
applications.

Our experiment provides valuable insights into the effectiveness of different filtering techniques
for position estimation. The results contribute to advancing localization and tracking systems and
provide guidance for selecting the most appropriate technique based on specific application
requirements. Future work can explore additional filtering techniques, perform robustness tests,
optimize parameters, and integrate multiple sensors to further improve the performance of position
estimation systems. By addressing these areas, the accuracy and robustness of position estimation
can be improved, and the development of advanced localization and tracking technologies furthered.
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