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Abstract: This research paper investigates ultra-wideband (UWB) localization systems by focusing 

on the use of average filter (AVG), Kalman filter (KF), and extended Kalman filter (EKF) algorithms, 

as well as a novel integrated filtering method that incorporates low-pass filter (LPF) into AVG, KF, 

and EKF. The study aims to improve localization loss in indoor environments using a TurtleBot 

robot equipped with a camera to observe ground truth positions. To evaluate the effectiveness of 

the proposed algorithms, a comprehensive comparison of the raw and filtered data with the camera-

based ground truth observations is performed. Quantitative analyses of the results, including max, 

min, max-min, and mean error, are performed to evaluate the localization performance of the 

algorithms and the integrated filtering method. The results reveal that the integrated filtering 

method has performed better accuracy in comparison with existing methods. 

Keywords: ultra-wideband (UWB); average filter (AVG); Kalman filter (KF); extended Kalman  

filter (EKF); robot operating system (ROS); LiDAR; robot navigation 

 

1. Introduction 

In recent years, localization and positioning systems for wireless sensor networks (WSNs) have 

gained popularity, being successfully utilized in various applications, such as product tracking in 

warehouses and equipment localization in hospitals [1]. Indoor positioning systems require accurate 

and low-cost estimation schemes due to the unique characteristics of indoor channels. Unlike outdoor 

positioning systems, such as the Global Positioning System (GPS), no general scheme for indoor 

positioning exists. Thus, a well-designed solution considering the limited capacity, low infrastructure 

cost, and energy constraints of a wireless sensor network (WSN) is required [2]. Various techniques 

have been utilized for indoor positioning systems, including measuring the distance or range 

between the target and the anchor sensor using methods such as the angle of arrival (AOA), received 

signal strength (RSS), time of arrival (TOA), time difference of arrival (TDOA), and time of flight 

(TOF) [3]. TOF, which measures the round-trip time of packets and averages the results, is a 

promising low-cost solution to real-time applications. Location algorithms such as trilateration, 

location fingerprinting, and proximity algorithms are designed to calculate the position based on 

distance measurements. Trilateration is preferred for its simplicity and high processing speed [4]. 

However, the accuracy of position estimation is compromised by measurement noise. Modeling 

radio propagation and time delay for WSNs in indoor environments, while considering factors such 

as low signal-to-noise ratio (SNR), severe multipath effects, reflections, and link failures, presents 
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challenges that lead to measurement errors and data loss. To overcome these challenges, the KF has 

been introduced in WSN systems. KF, a recurve linear filtering model, is widely used for estimating 

tracks through noisy measurements. It has been successful in smoothing random deviations from the 

true target path [5]. Despite its advantages, KF is still liable to errors when the measurement noise is 

excessive. The distributed Kalman filter has been proposed to reduce noise, but it requires global 

information, which is not feasible in real-world positioning systems, where sensors can only provide 

partial range values. RADAR systems utilize KFs but do not strongly consider environmental 

changes, making them unsuitable for real-world applications [6]. Additionally, KF assumes that noise 

conforms to additive white Gaussian distribution and linear systems, which is challenging to model 

in indoor environments where wireless channels frequently change with object movement and 

surface reflections. This paper seeks to address the above issues through the following contributions: 

1. To implement a real-time tracking system, the method provides robot localization to perform 

ground truth observations captured by a camera using a visual tracking system.  

2. The data processing component applies by localization methods to obtain two-dimensional 

positions, but some noise remains. To filter out this noise, the AVG, KF, and EKF are 

implemented.  

3. An integrated filtering method has been proposed combining LPF as (LPF+AVG), (LPF+KF), and 

(LPF+EKF) to reduce the loss and improve the trajectory accuracy. 

Experiments are conducted to compare the performance of each method, and the results reveal 

that the integrated method exhibit different performance in different trajectories, suggesting the 

superiority of LPF+EKF for indoor positioning.  

Section 2 begins with a comprehensive review of previous research in the field of indoor 

localization and filtering algorithms. We analyze the strengths and weaknesses of existing 

approaches and highlight how the proposed method addresses some of these challenges. Section 3 

delves into the methodology used, in particular the system architecture involving the integration of 

ultra-wideband (UWB) technology with a visual tracking system. Section 4 then explains the ROS 

ecosystem and flowchart. Section 5, presents the core of the research, introducing the proposed 

method for accurate localization. The method comprises AVG, KF, and EKF, as well as a novel 

integrated model that incorporates UWB sensors. The integrated model is designed to improve 

localization accuracy and reliability [7]. To provide practical insights, Section 6 presents detailed 

information on the experimental setup and the various components used during the evaluations. 

Finally, Section 7, concludes the paper by discussing the obtained data results and potential directions 

for future research. We highlight the importance of improving the accuracy and loss of robotic 

localization using UWB sensors, paving the way for further advancements in this field. 

2. Related Works 

Ultra-wideband (UWB) localization systems utilize UWB signals to estimate the position of an 

object or person in an environment. UWB signals have some advantages for localization, such as high 

accuracy, resolution, and data rate, as well as robustness to multipath effects [8]. However, UWB 

localization systems also face some challenges, such as noise, interference, non-line-of-sight (NLOS) 

propagation, and high time resolution [9]. 

Various algorithms have been proposed to address these challenges and improve the 

localization accuracy and robustness of UWB systems. Some common methods are based on time-of-

arrival (TOA), angle-of-arrival (AOA), or phase-difference-of-arrival (PDoA) measurements. These 

methods can be further classified as deterministic or probabilistic, depending on whether they use 

geometric or statistical models to estimate position [10]. Among the deterministic approaches AVG, 

KF, and EKF are widely used to reduce the noise and interference effects on UWB measurements. 

However, these algorithms may not perform well in NLOS scenarios where the UWB signals are 

obstructed by obstacles and reflect from multiple paths [11–13]. 

Among the probabilistic approaches, the particle filter (PF), Bayesian filter (BF), and support 

vector machine (SVM) are popular algorithms for dealing with the NLOS problem by incorporating 
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prior knowledge or learning from data [14,15]. However, these algorithms may suffer from high 

computational complexity or low generalization ability. The integrated model involves applying LPF 

to the raw UWB data before feeding it to the AVG, KF, or EKF algorithms [16]. The LPF is used to 

smooth the UWB data and reduce the high-frequency noise and interference effects. The AVG, KF, 

and EKF algorithms are used to further reduce the noise and interference effects and estimate the 

position based on the filtered UWB data [17].  

To overcome the limitations of single algorithms, some integrated methods have been proposed, 

which involve combining different algorithms or models to achieve better localization performance. 

For example, an integrated method based on CNN-SVM and a integrated localization algorithm were 

proposed to classify and mitigate NLOS errors using convolutional neural networks (CNNs) and 

SVMs and then estimate the position using a weighted least squares (WLS) method [18]. Another 

integrated method based on particle swarm optimization (PSO) and a integrated localization 

algorithm has been proposed to optimize the PSO and a combination of TOA and AOA 

measurements. 

Thus far, we have explored different types of indoor localization systems. While these systems 

have reduced localization errors and solved localization challenges, further positioning accuracy 

improvements are needed to improve indoor localization and accuracy. In this paper, we propose 

UWB localization approaches using an integrated filtering methods for indoor localization, tracking, 

and navigation. 

3. Working Methodology 

This section explains the ultra-wideband (UWB) system architecture, the vision tracking system, 

and the ROS ecosystem. The UWB system architecture is designed to enable robot positioning and 

localization. The vision tracking system utilizes camera vision techniques to track and monitor the 

movement of the robot to find the ground truth [19]. ROS is a software framework that allows 

communication between software and hardware, thus providing tools for building, testing, and 

deploying in localization. 

3.1. System Architecture 

As shown in Figure 1, the robot positioning system consists of a UWB positioning subsystem, a 

remote computer, and a mobile robot. The UWB positioning subsystem consists of UWB anchors 

fixed in the environment and a UWB robot tag [20]. By measuring the distance between the UWB tag 

and the anchors, the computer executes positioning algorithms to determine the robot's position and 

coordinates. The remote computer communicates wirelessly with the robot, processes positioning 

data, calculates the robot's coordinates, and controls its motion. The system performs various 

functions such as interactive communication, robot control, position estimation, and robot position 

display [21]. A single sensor cannot achieve high accuracy due to errors or instability. The combined 

use of UWB tags and anchor sensors can improve positioning accuracy and stability. In this study, a 

position estimation and error correction method based on the EKF algorithm was proposed. The 

robot positioning system can simultaneously acquire and integrate the data from UWB tags and 

anchors, as shown in Figure 1. 
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Figure 1. Working architecture. 

The UWB positioning, mobile robot, and computer control systems are the three main blocks of 

the proposed system architecture. The first block consists of multiple UWB tags and anchors. The 

next block consists of the robot development system, which is a mobile robot system. TurtleBot 3 was 

used as the mobile robot for the initial position experiment. The system consists of a motor for 

locomotion, a driver unit for controlling the motor, and a LiDAR sensor for scanning and detecting 

obstacles. A Raspberry Pi processor was used to control all these systems, which are connected to a 

power supply. Finally, a computer control system with the ROS environment installed and the 

POZYX library was used, which communicates through Raspberry Pi as a read-and-write device. 

Different algorithms can be tested and simulated to improve localization and positioning [22]. 

TurtleBot3 is equipped with UWB tag nodes that can be integrated into the ROS ecosystem. These 

sensor measurements are used in the EKF along with wheel odometry and LPF algorithm output for 

localization, and the LiDAR-based navigation stack is initialized with UWB ranging and LiDAR 

scanning. In addition, the TurtleBot3 ROS library facilitates the implementation of a simulation 

environment. 

3.2. UWB System 

UWB technology has traditionally been used for wireless communications but has recently 

gained popularity in positioning applications. Its wide bandwidth makes it resistant to interference 

from other radio frequency signals and allows the signal to penetrate obstacles and walls, making it 

a reliable positioning technology in non-line-of-sight and multipath environments [23]. In addition, 

the unique identification of tags in a UWB system automatically solves data association problems. To 

determine distances, the technology transmits radio signals from a mobile transceiver (tag) to a group 

of known anchors, measures the time of flight (TOF), and calculates distances. This study used the 

POZYX system, a UWB-based hardware solution for precise position and motion sensing. The UWB 

configuration settings can be customized based on four different parameters that can affect the overall 

performance of the system. However, the presence of noise and uncertainty in the measurement data 

collected by UWB sensors requires advanced filtering techniques for accurate position estimation, 

including KF and EKF, which can improve the accuracy of indoor localization systems based on UWB 

technology. 
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3.3. Visual Tracking System 

Visual tracking is a computer vision technique that involves tracking and estimating the motion 

of objects in a sequence of images or video frames captured by a webcam. It is a fundamental task in 

various applications, including surveillance, robotics, augmented reality, and human computer 

interaction [24]. Visual tracking methods aim to accurately and robustly locate and track objects of 

interest despite changes in appearance, scale, orientation, and occlusion, as shown in Figure 2.  

 

Figure 2. Testing environment structure. 

The following steps present a basic process for visual tracking using a webcam installed and 

tested at the IRRI laboratory of Sun Moon University, South Korea, as shown in Figure 2. We installed 

a webcam in a suitable location while ensuring that all corners of the tracking area on the webcam 

were visible. We captured and saved four positions in a 2D projected coordinate system based on the 

webcam capture. Using the saved positions, we created a perspective transformation matrix that 

maps the view of the webcam to the desired tracking area. We then computed the image matrix and 

the perspective transformation matrix using a 512 × 512 resolution for optimal tracking performance. 

The visual tracking process began after applying the perspective transformation. We selected a 

high-contrast area of the robot for tracking. An appropriate tracking algorithm, such as the 

discriminative correlation filter with a channel and spatial reliability (CSRT) algorithm was 

implemented to track the robot within the 512 × 512 image [25]. The tracking data provide the position 

within the 512 × 512 image and are is converted to the corresponding position in the real environment, 

which may have different dimensions. By scaling the tracked position using Equation (1), the tracked 

position is mapped to the 4000 𝑚𝑚 × 4000 𝑚𝑚 environment in X and Y, where 𝑥̅ and 𝑦̅ represent 

the positions within the 512 × 512 image. 𝑥 = 𝑥̅512. × 4000,    𝑦 = 𝑦̅512 × 4000 (1) 

To ensure accuracy, it is important to eliminate any bias in the tracking system. The robot was 

moved to known positions, such as [1000, 2000], [2000, 2000], [3000, 2000], [2000, 1000], and [2000, 

3000], and the tracking data were observed. Figure 3 shows the line of sight of the webcam, which is 

represented by a dotted line, and the real position, webcam position, and tracking point are 

represented by green, pink, and purple dots, respectively. The bias length is the distance between the 

green and pink dots. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 October 2023                   doi:10.20944/preprints202310.1371.v1

https://doi.org/10.20944/preprints202310.1371.v1


 6 

 

 

Figure 3. Webcam line of sight. 

If the bias is consistently the same along the axis, an average is used to correct the bias. 

Alternatively, if the bias has a linear pattern, a one-dimensional polynomial fit is performed to 

estimate the bias and adjust the tracked positions accordingly [26]. The visual tracking method was 

implemented in this study using a webcam to provide accurate and reliable tracking information 

over the following steps. 

3.4. ROS Ecosystem 

In this section, we focus on the ROS ecosystem and its components, including nodes, topics, and 

messages, and how the UWB sensors can be integrated with ROS. We also discuss how UWB sensors 

are used to measure the distance between a robot and its environment and how this information can 

be used to improve the robot's localization and mapping capabilities. 

Position information is the most important information for navigation systems. UWB sensors 

are an excellent choice for robot localization because they provide low-noise-range information that 

is resistant to multipath interference [27]. Fusing their information with odometry data provides a 

robust solution for challenging environmental conditions. The POZYX system utilizes UWB 

technology to achieve centimeter-level accuracy, which is far superior to that of traditional 

positioning systems based on Wi-Fi and Bluetooth. The algorithm calculates the position of the robot; 

applies the KF, which utilizes odometry data to set the motion model; and updates the pose using 

UWB range measurement pose information. The GUI displays the map and the current robot 

position, and the navigation stack can be fed with KF-based pose information on demand. Several 

ROS packages are available for collecting and processing IMU sensor data in mobile robots, such as 

the ROS IMU package, which provides an implementation of an IMU sensor driver and a filter for 

estimating the orientation of the robot using sensor data [28]. Other packages include robot 

localization, which provides an implementation of EKF for fusing data from multiple sensors, 

including IMU data, to estimate the position and orientation of the robot [29]. 

In addition, the UWB node-based source localization algorithm determines the location of a 

robot but cannot determine its orientation with respect to a map. To solve this problem, a map and 

LiDAR scan matching technique are introduced. Once the initial heading is estimated, the robot's 

pose can be published to the initial pose topic. Figure 4 illustrates the difference in the robot's pose 

before and after the initialization process. Before autonomous initialization, the robot's pose is 

incorrect and the scan data do not match the real map, as shown in Figure 4a, but after initialization, 

the scan data and map are aligned, as shown in Figure 4b. 
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(a) 

 
(b) 

Figure 4. (a) Robot poses and LiDAR scans before the automatic initialization; (b) Robot poses and 

LiDAR scans after the automatic initialization. 

Once the robot's starting position has been determined, the robot starts moving to point A using 

the move-base algorithm available in the ROS navigation stack. The final position of the robot is then 

determined, both on the map and in the real world, after starting with a precise initialization. The 

accuracy of the robot's arrival at its destination is confirmed by analyzing the LiDAR scans on the 

map. 

3.5. System Flow chart 

The flow chart of an indoor UWB localization system is a visual representation of the steps and 

processes involved in the operation of the system. It outlines the sequence of events that occur from 

start to finish, providing a comprehensive view of how the system works. A flow chart outlines the 

entire process in this system. The system provides both simulation and real-world test environments 

for different tasks [30]. The user chooses whether to run the application in a simulation or the real 

world. If the application is run in a simulation, the Gazebo and POZYX simulations are started, and 

synthetic sensor data and map data are obtained. If the application is running in the real world, real 

sensor data are obtained [31]. The initialization package then utilizes the UWB range and LiDAR scan 

data to complete the autonomous initialization process, regardless of whether the data are synthetic 

or real. Figure 5 shows a system flowchart of the UWB localization system, which outlines the various 

components involved in the system and how they interact with each other. 

The flowchart first initializes the program. Either the mobile tag mode or the anchor mode is 

selected. If the mobile tag mode is chosen, the program will start sending messages and wait for a 

response from the anchor. Once a response is received, the program processes the data and sends 

time data to the tag mode as the receiving data mode. The data distance is then calculated, which 

involves calculating the distance between the mobile tag and the anchor. 
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Figure 5. System flow-chart. 

When the anchor mode is selected, the program waits for a message from the mobile tag. Once 

the message is received, the program processes the data and responds to the mobile tag. The 

flowchart in Figure 5 shows a high-level overview of the UWB indoor localization system. It clarifies 

the steps involved in the operation of the system and how the different components interact to 

achieve the desired result. 

4. Filtering Algorithm 

In this section, we discuss the filtering algorithm and provide an example code for implementing 

the filtering process [32–34]. The filtering algorithm aims to extract relevant information from noisy 

or incomplete data by applying mathematical techniques. 

4.1. Average Filtering 

The average filter is a simple method used to smooth data by calculating the sampled average 

and eliminating noise [35]. The average equation is as follows 𝑋𝑘̅̅ ̅ = ∑ 𝑥𝑛𝑘𝑛=1𝑘  (2) 
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The equation represents the conventional method of calculating the average of a given set of values. 

In this equation, variable k denotes the size of the acquired data, whereas 𝑋̅𝑘represents the resulting 

average value [33]. Equation (2) can be expressed differently as follows: 𝑋̅𝑘 = 𝛼𝑋̅𝑘−1 + (1 − 𝛼)𝑋𝑘 (3) 

Where,  𝛼 = (1 − 1/𝑘) and 𝑋̅𝑘−1 = ∑  𝑘−1𝑛=1 𝑥𝑛𝑘−1 . Equation (3) represents the main function of a recursive 

average filter. 

4.2. Kalman Filtering 

The KF is a mathematical framework that includes estimation and correction steps and consists 

of a set of equations divided into two main steps: prediction (estimation equations) and correction 

(measurement equations), as described in the references. In the prediction step, the estimated value 

is determined and can be represented by equations. 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑞𝑘 (4) 

Here, the state vectors 𝑥𝑘 = [𝑋𝑘, 𝑋̂𝑘, 𝑌𝑘 , 𝑌̂𝑘]𝑇
 are the positions 𝑋𝑘 and 𝑌𝑘 and the velocities 𝑋̂𝑘 and 𝑌̂𝑘 at sample 𝑘. The state transition matrix 𝐴 in Equation (1) is time-invariant and given by 

𝐴 = (1 Δ𝑡 0 00 1 0 00 0 1 Δ𝑡0 0 0 1 ) (5) 

The transition matrix is responsible for predicting the next state based on the previous state 

using a constant movement model, element Δ𝑡  is the sample period of each step, and 𝑥𝑘 =[𝑋𝑘, 𝑋𝑘̂, 𝑌𝑘, 𝑌𝑘̂]𝑇  is a probabilistic vector of processing errors and noise due to estimation uncertainty. 

Elements 𝑥error  and 𝑦error  are transition position errors, and 𝑥̇error  and 𝑦̇error  are the velocity 

errors. The correction step (measurement equations) can be expressed as 𝑧𝑘 = 𝐻 𝑥𝑘 + 𝑟𝑘 (6) 

Matrix 𝐻 is a projection to transform 𝑥𝑘 into a position, as shown in Equation (7) 𝐻 = (1 0 0 00 0 1 0) (7) 𝑟𝑘 = [𝑥error 1, 𝑦error 1]𝑇 is the measurement noise vector, and the final filtered result 𝑥̂𝑘  can be 

expressed as 𝑥̂𝑘 = 𝑥𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘). (8) 

4.3. Extended Kalman Filtering 

EKF is a popular localization algorithm used in robotics, navigation, and autonomic systems. It 

is an extension of traditional KF and provides a recursive solution to the problem of estimating the 

state of a system over time. EKF works by incorporating nonlinear functions of the system state into 

a linear approximation, which can then be updated using a recursive Bayesian filter [36]. The 

algorithm utilizes a set of linearized system models and measurements to estimate the system state 

over time, considering both model uncertainty and measurement noise. The operation of the 

algorithm involves two steps, typically prediction and correction. In the prediction step, the EKF 

predicts the system state at the next time step based on the current state and control inputs. In the 

correction step, the algorithm updates the prediction using the latest measurement. EKF is widely 

used in various fields (e.g., robotic navigation and autonomous systems) because of its ability to 

handle nonlinear systems and provide accurate estimates even in the presence of measurement noise. 

It is also computationally efficient, making it suitable for real-time applications [36,37].  

EKF was proposed to solve the localization problem in robotic applications. In these 

applications, the motion and observation models are defined as follows 
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𝑥𝑡 =  𝑔(𝑥𝑡−1, 𝑢𝑡 , 𝑣𝑡−1), (9)      zt = ℎ(xt, wt). (10) 

The motion and observation noise are represented by 𝑣𝑡−1 and wt, respectively. If the motion 

and observation models are linear and the noise is independent and identically distributed (i.i.d.) 

Gaussian distributions, then KF is the optimal filter. Thus, if the initial belief, 𝑏el(xo), has a Gaussian 

distribution, with variance σ0 and μ0 being the peak position distribution, then, 

xo~Ɲ(𝜇o, σo) (11) 

𝑏el(xo) = p(xo) = det(2πσo)−12 Exp [− 12 (xo − 𝜇o)𝑇𝜎o
−1(xo − 𝜇o)] (12) 

If the motion model is linear and the resulting noise is an additive, independent, and identically 

distributed Gaussian distribution then, 

xt = At  xt-1 + Bt  ut + vt-1,                vt~Ɲ(0, Rt), (13) 

𝑃(xt|xt-1, ut) = det(2πRt)−12 𝐸𝑥𝑝 [− 12 (xt − 𝐴t xt-1 − Btut)𝑇𝑅t
−1(x𝑡 − Atxt-1 − Bt𝑢t)], (14) 

where 𝑅𝑡 is a positive definite matrix. 

If the observation model is linear and the resulting noise is an additive, independent, and 

identically distributed Gaussian distribution, then, 

zt = Ctxt + Wt,                 Wt~Ɲ(0, Qt), (15) 

𝑃(zt|xt) = det(2πQt)−12     Ex p [− 12 (zt  −  𝐶txt)𝑇𝑄t
−1(𝑧𝑡 − Ctxt)]., (16) 

The motion model used in this study utilizes odometry information to estimate the motion of 

the robot. Odometry information refers to the data obtained from the robot's sensors, such as wheel 

encoders, which provide estimates of the robot's distance traveled and orientation changes. The 

motion model incorporates this information to estimate the robot's position and velocity at each time 

step shown in proposed Algorithm 3.  

5. Proposed Algorithm 

5.1. Low-Pass Filter in Average Filter (LPF+AVG) 

The “LPF+AVG” algorithm is specifically designed for indoor localization systems. It starts by 
collecting measurements, such as TOF data, from the UWB or a similar technology. AVG is applied 

to these measurements to reduce noise and improve accuracy. Trilateration is then performed to 

estimate the position of the target based on processed TOF data and reference point locations. 

The Algorithm 1 introduces an LPF+AVG to further refine the position estimates by removing 

noise and improving the results. By combining these filtering techniques, the LPF+AVG algorithm 

achieves a balance between noise reduction and responsiveness, ensuring accurate and reliable 

position estimates even in complex indoor environments. Based on this algorithm, the robot's input 

position is mapped to the ground truth position according to the LPF+AVG from the robot's data 

point for smoothing the trajectories. 

Algorithm 1 LPF+AVG 

1: 

2: 

3: 

4: 

Input: data = [(𝑥𝑟𝑎𝑤, 𝑦𝑟𝑎𝑤), (𝑥𝑡𝑟𝑢𝑡ℎ, 𝑦𝑡𝑟𝑢𝑡ℎ)] 
LPF-Averaging filter (data) 

filtered_data = [] 

    For i in range (len(data)); 
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5:  Measurement (TOF ()); 

6:  Lateration (); 

7:  LPF-Averaging filter () 

8:   { 

9:    if no valid data, then 

10:     return state: link failure or system failure 

11:    else 

12: 

13: 

14: 

15: 

    Averaging (); ∖∖calculate the expected value of the range 

average_value = np.mean(data[start:end]) 

filtered_data = filtered_data.append(average_value) 

return: filtered_data 

16:    end if 

17:   } 

18:  Lateration (); 

19:  LPF-Averaging filter (); 

20:  Print (filtered_data) 

21:  End for 

5.2. Low-Pass Filter in Kalman Filter (LPF+KF) 

LPF+KF is a localization algorithm that uses indoor region information, such as room size, to 

correct measurements. It acts as a integrated filter that behaves like a KF when the data are within 

the boundaries of the indoor region. In this case, it calculates positions using prediction and 

correction steps. However, when data fall outside the bounds or the system encounters disturbance 

information, it behaves like a low-pass filter, relying on the predicted value from the previous state. 

Algorithm 2 outlines the operation of the LPF+KF to provide accurate and reliable indoor position 

estimates. In the presence of significant measurement noise, LPF+KF tends to rely on its predicted 

value. The algorithm is particularly suited for tracking motion within a confined area because such 

motion typically involves low speeds and generally follows simple, straight paths. This makes 

LPF+KF well suited for scenarios where the motion is slow and does not involve complex and 

tortuous paths. LPF+KF is processed by providing the estimated state of the position of the robot, and 

also it will calculate the effect of noise. Next step, the LPF+KF is to correct the step for the next state. 

Algorithm 2 LPF+KF 

1: 

2: 

3: 

4: 

Input: data = [(𝑥𝑟𝑎𝑤, 𝑦𝑟𝑎𝑤), (𝑥𝑡𝑟𝑢𝑡ℎ, 𝑦𝑡𝑟𝑢𝑡ℎ)] 
LPF-Kalman filter (data) 

filtered_data = [ ] 

    For i in range (len(data)); 

5:  Measurement(TOF()); 

6:  LPF-Kalman filter () 

7:   { 

8:    if (Positions out of bound then 

9:           return [𝑥̂, 𝑦̂] 
10:    else 

11:     LPF-Kalman filter ();∖∖calculate the expected value of 
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12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

the range 

State Estimate = [𝑥̂, 𝑦̂] 
Process Noise 

      𝑥̂𝑘 = 𝑥𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘) 

Correction Step           𝑧𝑘 = 𝐻 𝑥𝑘 + 𝑟𝑘 

Predict Step 

       𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑞𝑘 

filtered_data  

return: filtered_data 

22:    end if 

23:   } 

24:  LPF-Kalman filter (); 

25:  Print (filtered_data) 

26:  End for 

 

5.3. Low-Pass Filter in Extended Kalman Filter (LPF+EKF) 

LPF+EKF is similar to LPF+KF, except for the trilateration in Algorithm 2. In Algorithm 3, 

LPF+EKF exhibits similar principles as those of the EKF and utilizes range values as observation 

inputs instead of calculating measurement positions [38]. This eliminates the need for position 

calculations, and the algorithm directly utilizes the range values in its filtering process. LPF+EKF can 

provide a more dynamic filtering method, as we can input the velocity of the robot linearly and its 

velocity in angle, which can provide more accuracy than other methods. The process of LPF+EKF is 

just more promising than LPF+KF by adding the robot's velocity to predict the next trajectory. It 

works well with environments that have high noise. 

Algorithm 3 LPF+EKF 

1: 

2: 

3: 

4: 

Input: data = [(𝑥𝑟𝑎𝑤, 𝑦𝑟𝑎𝑤), (𝑥𝑡𝑟𝑢𝑡ℎ, 𝑦𝑡𝑟𝑢𝑡ℎ), (𝑥̇𝑟𝑎𝑤, 𝑦̇𝑟𝑎𝑤)]  
LPF- Extended Kalman filter (data) 

filtered_data = [ ] 

    For i in range (len(data)); 

5:  Measurement(TOF()); 

6:  LPF-Extended Kalman filter () 

7:   { 

8:    if (Positions out of bound then 

9:           return [(𝑥̂, 𝑦̂), (𝑥̇, 𝑦̇ ) ] 
10:    else 
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11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

    LPF- Extended Kalman filter ();∖∖calculate the 

expected 

robot's position and velocity range 

State Estimate = [(𝑥̂, 𝑦̂), (𝑥̇, 𝑦̇ )] 
Process Noise 

            zt = Ctxt + Wt,                 Wt~Ɲ(0, Qt), 
Correction Step           𝑧𝑘 = 𝐻 𝑥𝑘 + 𝑟𝑘 

Predict Step              𝑥𝑡 =  𝑔(𝑥𝑡−1, 𝑢𝑡 , 𝑣𝑡−1) 

             zt = ℎ(xt, wt) 

filtered_data  

return: filtered_data 

23:    end if 

24:   } 

25:  LPF- Extended Kalman filter (); 

26:  Print (filtered_data) 

27:  End for 

The proposed method is suitable for specific indoor localization scenarios. LPF+KF excels in 

high-noise environments and simple motions; LPF+AVG provides adaptability and robustness in 

various indoor environments; and LPF+EKF utilizes direct range values for accurate position 

estimates, as shown in the proposed algorithm [39]. 

6. Experimental Setup 

6.1. Hardware setup 

In our test, we used the TurtleBot 3 robot, a Raspberry Pi onboard processor, a UWB tag module, 

and four POZYX anchors attached to the sensor stand in the experimental area. Ethernet cables and 

PoE switches connect the anchors to the computer. A UWB localization software package is installed 

on the computer [40]. The details of the components used in the experiment are listed in Table 1. 

Table 1. Hardware Specification. 

Hardware Components Description 

UWB Localization 

System 

• POZYX UWB localization system 
• Consists of UWB anchors and tags 
• Operates in the frequency range of 3.5 GHz to 6.5 GHz 
• Supports precise indoor positioning 
• Range of up to 100 meters 

Camera 

• High-resolution RGB camera 
• Minimum resolution of 1080p 
• Wide field of view (FOV) of at least 90°  
• Interfaces with the computer/processing unit via USB 3.0 
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6.2. Environment 

A relatively large indoor area with a clear line of sight between the anchors and the tag on the 

robot has been set up for operation. There are no large metal obstacles or reflective surfaces to 

interfere with the UWB signals. The environment is well lit to allow the robot to move safely, as 

shown in Figure 6. 

 

Figure 6. Indoor environment. 

6.2.1. Calibration 

Before starting the experiment, the UWB localization was calibrated to obtain accurate distance 

measurements between the anchors and the tag. The ROS software package is used for the calibration. 

The calibration process typically involves collecting measurements between the anchors and the tag 

at various distances and angles [41]. 

6.2.2 Localization 

After UWB, the system was calibrated, and the localization algorithm was run on the computer 

to estimate the position of the robot in real time. The estimated position was then displayed on a 2D 

map of the environment and used for navigation tasks. 

  

TurtleBot 

• TurtleBot 3 Burger model 
• Equipped with a Raspberry Pi 4 single-board  
• Features a differential drive system with two DC motors 
• Includes encoders for odometry calculations 
• Equipped with a 360-degree LiDAR sensor 

Computer/Processing 

Unit 

• Intel Core i7 processor-based computer 
• 8GB RAM 
• 256GB SSD storage 
• Runs on Ubuntu or ROS (Robot Operating System 

UWB Anchors and Tags 
• Four UWB anchor nodes 
• One UWB tag 

 

Power Supply 
• Input voltage: 100-240V AC 
• Output voltage: 12V DC 

Communication 

Interface 

• Gigabit Ethernet interface for high-speed data transfer 
• Communication between the computer and processing unit, UWB 

system, and Turtle Bot 

Mounting Hardware 
• In-house 3D printed mounting brackets and fixtures for the camera, 

UWB anchors, and tags 
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7. Experiment and Results 

To evaluate the accuracy and efficiency of the UWB indoor localization technology proposed in 

this study, an experimental scenario was considered. By leveraging the time difference and angle of 

arrival of the UWB pulses transmitted by the tags, the sensors were able to measure the position of 

the tag. The experiments were conducted under line-of-sight conditions between the tag and the 

wired sensors, and the system was used to measure of the position of the tag, which was then used 

by the developed algorithms to determine the distance between the measured position and the 

position of the wireless sensors based on the range measurements. 

7.1. Experiment 

We conducted three different trajectory path experiments (T1, T2, and T3), as shown in Figure 16. 

Trajectories T1, T2, and T3 are square, circular, and free paths, respectively, with UWB tags placed at 

fixed positions. Filtering techniques, such as AVG, KF, and EKF, were used to filter the data. We then 

applied our proposed integrated techniques (AVG+LPF, KF+LPF, EKF+LPF). The comparative 

analysis evaluated the accuracy and precision by comparing the filtered data with the ground-truth 

positions. The results provide valuable insights for optimizing UWB localization algorithms in real-

world applications, considering accuracy, noise reduction, and handling of nonlinear motion. 

7.2. Results 

7.2.1. Target 1- Square Path with (AVG, KF, EKF and AVG+LPF, KF+LPF, EKF+LPF) Filtering 

Figure 7 shows a graphical representation of the T1 square trajectory path with (AVG, KF, EKF) 

filtering and (AVG+LPF, KF+LPF, EKF+LPF) integrated filtering, which measures the raw data and 

the filtered data collected during the experiment with respect to the ground truth. The trajectory 

covers 2 m at a speed of 0.5 m/s. The collected data correspond to the positions along the X and Y 

axes, measured in millimeters (mm). 

Figure 7. (a) Target 1- Square path with (AVG, KF, EKF) filtering. 

Figure 7. (b)Target 1- Square path with (AVG+LPF, KF+LPF, EKF+LPF) integrated filtering. 
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The data in Table 2, obtained from the graph in Figure 8, represent the square trajectory with 

(AVG, KF, EKF) filtering and (AVG+LPF, KF+LPF, EKF+LPF) integrated filtering. Both trajectories 

cover 2 m and have a speed of 0.5 m/s. The table presents various measurements for these trajectories 

in terms of positions along the X and Y axes. For the “trajectory with (AVG, KF, EKF)” the maximum 
error position reached along X axis was 180.82 mm and the maximum error position Y axis was 371.07 

mm. On the other hand, the minimum error along X axis was 0.12 mm, and the minimum error along 

Y was also 0.12 mm. The absolute error difference between the maximum and minimum error values, 

denoted as |Max.-Min.|, was 179.9 mm for the X axis and 371.85 mm for the Y axis. In addition, the 

mean error position for the X axis was 52.19, and for the Y axis, it was 89.09 mm. 

Table 2. Measurement error data for the square trajectory for both algorithms. 

Trajectory Distance Speed Max. (mm) Min. (mm) |Max.-Min.| 

(mm) 

Mean (mm) 

X Y X Y X Y X Y 

Square 2m 0.5m/s 180.82 371.07 0.12 0.12 179.9 371.85 52.19 89.09 

Square 

(LPF) 

2m 0.5m/s 163.81 273.09 0.13 0.09 163.68 273 46.4 70.36 

 

Figure 8. Error comparison graph of square trajectory path-T1 with (AVG, KF, EKF and AVG+LPF, 

KF+LPF, EKF+LPF) filtering. 

"Integrated filtering method data with (AVG+LPF, KF+LPF, EKF+LPF) filtering" of the square 

error trajectory was collected from Figure 8; the maximum error along X position was 163.81 mm, 

and on Y position was 273.09 mm. The minimum error along X position was 0.13 mm, and the 

minimum error along Y position was 0.09 mm. The absolute error difference between the maximum 

and minimum values was 163.68 mm for the X axis and 273 mm for the Y axis. The average error 

position was 46.6 mm for the X-axis and 70.36 mm for the Y-axis. These measurements provide 

valuable insight into the characteristics of the two trajectories, revealing the range of positions, the 

average position, and the effect of the LPF on the data. 
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7.2.2. Target 2- Circular path with (AVG, KF, EKF and AVG+LPF, KF+LPF, EKF+LPF) filtering 

Figure 9 shows the graphical measurement of raw and filtered data collected during the circular 

trajectory with respect to the ground truth with (AVG, KF, EKF) filtering and (AVG+LPF, KF+LPF, 

EKF+LPF) integrated filtering. The trajectory covers a distance of 2.2 m at a speed of 0.5 m/s. The data 

collected correspond to the positions along the X and Y  axes, measured in millimeters (mm), as 

listed in Table 3. 

Figure 9. (a) Target 2- circular path with (AVG, KF, EKF) filtering. 

Figure 9. (b)Target 2- circular path with (AVG+LPF, KF+LPF, EKF+LPF) filtering. 

Table 3. Measurement error data for the circular trajectory for both algorithms. 

Trajectory Distance Speed Max. (mm) Min. (mm) |Max.-Min.| 

(mm) 

Mean (mm) 

X Y X Y X Y X X 

Circular 2.2m 0.5m/s 166.38 341.05 0.46 0.58 165.91 340.47 56.34 100.5 

Circular 

(LPF) 

2.2m 0.5m/s 158.51 286.22 0.52 0.81 157.99 285.4 157.99 285.4 

Table 3 presents the data for the filtering technique from the graph in Figure 9 "circular with 

(AVG, KF, EKF) filtering and (AVG+LPF, KF+LPF, EKF+LPF) with ground truth.” Both trajectories 
cover 2.2 m at a speed of 0.5 m/s. In the “circular trajectory without integrated filter technique,” we 
observed that the maximum error along X position reached was 166.38 mm, and the maximum error 

along Y position was 341.05 mm. However, the minimum error along X position was 0.46 mm, and 

the minimum error along Y position was 0.58 mm. The absolute difference error between the 

maximum and minimum values, called |Max.-Min.|, was 165.91 mm for the X axis and 340.47 mm 
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for the Y axis. In addition, the mean error position was 56.34 mm for the X-axis and 100.5 mm for the 

Y-axis. 

For the “circular trajectory with integrated filter technique” method, the maximum error along 
X position was 158.51 mm, and the maximum error along Y position was 286.22 mm. The minimum 

error along X position was 0.52 mm, and the minimum error along Y position was 0.81 mm. The 

absolute error difference between the maximum and minimum values was 157.99 mm along the X 

axis and 285.4 mm along the Y axis. The average error position along the X axis was 50.63 mm and 

for the Y axis, it was 88.44 mm. 

This calculated value hints at the valuable data characteristics of the two filtering algorithms, 

with the range of positions, the average position, and the effect of the LPF (low-pass filter) on the 

data. The raw data improved significantly after adding the low-pass integrated filtering technique to 

the filtered data. The error graph reveals how the LPF as integrated with existing filters (AVG, KF, 

EKF) improves the accuracy of the trajectory data, effectively reducing error and noise, as shown in 

Figure 10. 

 

Figure 10. Error comparison graph of circular trajectory path-T2 with (AVG, KF, EKF and AVG+LPF, 

KF+LPF, EKF+LPF) filtering. 

7.2.3. Target 3- free path with (AVG, KF, EKF and AVG+LPF, KF+LPF, EKF+LPF) filtering 

Figure 11 is T-3 for the free path trajectory with respect to the ground truth using an integrated 

filtering technique and a non-integrated technique with a distance of 5 m and a constant velocity of 

0.5 m/s.  
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Figure 11. (a)Target 3- free path with (AVG, KF, and EKF) filtering. 

Figure 11. (b) Target 3- free path with (AVG+LPF, KF+LPF, EKF+LPF) filtering. 

Table 4 presents the error comparison data of the free path trajectory with (AVG, KF, EKF) 

filtering and (AVG+LPF, KF+LPF, EKF+LPF) integrated filtering with a ground truth of a distance of 

5 m at a constant velocity of 0.5 m/s. The table provides measurements for the maximum and 

minimum error positions along the X and Y axes, as well as the absolute difference (|Max.-Min.|) 

and mean positions. 

Table 4. Measurement error data of free trajectory path for both algorithms. 

Trajectory Distance Speed Max. (mm) Min. (mm) |Max.-Min.| 

(mm) 

Mean (mm) 

X Y X Y X Y X X 

Free   5m 0.5m/s 310.84 197.99 0.3 0.2 310.55 197.78 88.84 84.36 

Free (LPF) 5m 0.5m/s 256.74 166.50 0.74 0.36 255.99 166.13 76.25 74.07 

The graphical representation of (AVG, KF, EKF) filtering in Figure 12 reveals that the maximum 

error along X position was 310.84 mm, and the maximum error along Y position was 197.99 mm. The 

minimum error along X position was 0.3 mm, and the minimum error along Y position was 0.20 mm. 

The absolute difference error between the maximum and minimum was 310.55 mm along X axis and 

197.78 mm along the Y axis. The average error position along the X-axis was 88.84 mm, along the Y-

axis, it was 84.36 mm, as presented in the table. Similarly, in the (AVG+LPF, KF+LPF, EKF+LPF) 

integrated filtering graph, the maximum error along X position was 256.74 mm, and the maximum 

error along Y position was 166.50 mm. The minimum error along X position was 0.74 mm, and the 

minimum error along Y position was 0.36 mm. The absolute error difference between the maximum 

and minimum values was 255.99 along X axis and 166.13 mm along the Y axis. The mean position for 

the X axis was -41.72 mm, and for the Y axis, it was 22.81 mm. The average error position along the 

X-axis was 76.25 mm, along the Y-axis, it was 74.07 mm. 
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The data presented in all the Tables 1–3 reveal how these filtering techniques affect the trajectory 

data, and the integrated filtering (AVG+LPF, KF+LPF, EKF+LPF) adding a LPF to the raw filtered 

data. 

 

Figure 12. Error comparison graph of free trajectory path -T3 with (AVG, KF, EKF and AVG+LPF, 

KF+LPF, EKF+LPF) filtering. 

8. Conclusions 

In this research, we conducted an experiment to evaluate the performance of different filtering 

techniques for position estimation in different trajectory scenarios. Our goal was to evaluate the 

effectiveness of AVG, KF, and EKF techniques in improving the accuracy and reliability of 

measurement data. The experiment comprised three trajectory scenarios: square path, circular path, 

and free path, corresponding to distances of 2 m, 2.2 m, and 5 m, respectively, at a speed of 0.5 m/s. 

We collected measurement data along the X and Y coordinates and compared the results before and 

after applying the filtering techniques. Our results revealed that all three filtering methods improved 

the measurement data by reducing noise and fluctuations, resulting in smoother and more consistent 

position estimates. However, the integrated filtering method (LPF+EKF) consistently outperformed 

the others, demonstrating better accuracy making it a reliable solution for localization and tracking 

applications. 

Our experiment provides valuable insights into the effectiveness of different filtering techniques 

for position estimation. The results contribute to advancing localization and tracking systems and 

provide guidance for selecting the most appropriate technique based on specific application 

requirements. Future work can explore additional filtering techniques, perform robustness tests, 

optimize parameters, and integrate multiple sensors to further improve the performance of position 

estimation systems. By addressing these areas, the accuracy and robustness of position estimation 

can be improved, and the development of advanced localization and tracking technologies furthered. 
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