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Simple Summary: The modern healthcare landscape is overwhelmed by data derived from heterogeneous IoT 

data sources and Electronic Health Record (EHR) systems. Based on the advancements in data sciences and AI, 

an improved ability to integrate and process the so-called primary and secondary data offers the potentials to 

provide real-time, and personalized health-related decision support and develop personalized healthcare 

strategies. In that direction, an innovative mechanism for processing health related data is introduced in this 

article. This mechanism, called iHelp Platform, integrates emerging technologies and techniques from IoT 

systems, Artificial Intelligence (AI), data management and Semantic Web to help release a holistic and robust 

solution for all stakeholders in the modern healthcare domain. This article describes the details of the 

mechanism, its internal subcomponents and workflows, together with the results from its utilization, 

validation, and evaluation in a real-world scenario.  

Abstract: The healthcare domain is increasingly adopting IoT and Electronic Health Record (EHR) systems, 

generating vast volumes of healthcare data. This shift is driven by the growing need of delivering the right 

information to the right individuals, at the right time. The latter underscores the importance of adopting a 

comprehensive strategy for efficiently collecting, utilizing, and analyzing health-related data to not only 

enhance overall healthcare management but also for the provision of timely and personalized prevention 

strategies. The latter is of highest importance especially in scenarios where lack of effective treatments or poor 

survival rates (such in pancreatic cancer) renders typical healthcare strategies ineffective. In this article, we 

introduce an innovative and integrated platform that is specifically designed and developed for accessing, 

processing, and analyzing data in challenging healthcare scenarios, such as dealing with pancreatic cancer. 

This platform, called iHelp, combines multidisciplinary technologies and provides healthcare professionals 

reliable risk modelling, analysis, and prediction techniques so that individuals (at risk of developing pancreatic 

cancer) can be provided with timely, reliable, and personalized prevention and intervention measures. A key 

innovation in the iHelp platform is the standardized data management approach called Holistic Health 

Records (HHRs) that facilitate the capturing of all health determinants in a standardized and well-structured 

way for processing towards the provision of health risk detection and personalized healthcare decision 

support. In the development of iHelp platform, the HHRs are evaluated through different real-world 

healthcare datasets, including datasets coming from hospital systems, data from wearables, questionnaires, 

and mobile applications. 
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1. Introduction 

During the last decade the development and utilization of cutting-edge technologies, such as IoT 

and AI, has fueled an exponential growth in different domains [1-3]. The insights of a recent survey 

indicate that most of the emerging technologies and trends are three to eight years away from 

reaching widespread adoption but are the ones that pose significant impact during the next years [4]. 

Although many of these technologies are still in their infancy, still organizations and businesses that 

adopt and embrace them early, will be able to gain significant advantages against their competitors. 

Some of these technologies, such as Edge Artificial Intelligence (AI), Human-centered AI, Synthetic 

Data, and Intelligent Applications, can significantly impact the healthcare sector, among other 

domains. The integrations and utilization of these technologies can enhance the provisioning of 

remote diagnostics, as well as of early diagnosis and pre-diagnosis of critical diseases [5]. The high 

demand for remote patient monitoring and personalized healthcare has vastly improved the health 

analytics techniques and their implementation in healthcare systems. Emphasis on health analytics is 

also supported by the increasing utilization of wearables and the Internet of Medical Things (IoMT) 

that provide easy access to a large pool of health-related data. It should be noted that wearable 

devices are projected to grow at a 9.1% CAGR and IoMT at 23.70% between 2023 and 2032 [6].  

However, the healthcare domain faces various challenges related to the diversity and variety of 

data, the huge volume, and the distribution of data, thus there is an ever-increasing demand from 

healthcare organizations to implement and utilize new solutions and data-centric applications that 

can help gain actionable insights from their data [7]. Data have long been a critical asset for medical 

organizations, hospitals, governments, and other stakeholders in the healthcare domain. The massive 

investments by the healthcare industry into new technologies and the rapid growth in the usage of 

cloud computing, mobile computing, medical devices, IoMT, and AI are some of the key factors that 

promote the need for enhanced and state-of-the-art health analytics solutions [8]. In this respect, 

health analytic solutions are increasing focusing on exploiting value from primary data (coming from 

established data sources such as lab results, genomics, and family history), or secondary data (coming 

from Internet of Medical Things (IoMT) devices that automatically measure and monitor in real-time 

various medical parameters in the human body). The integration of primary and secondary data has 

revealed the potentials for greater insights for healthcare and health related decision making [9]. Even 

if, for collecting prospective and retrospective clinical data, there already exists a plethora of methods 

and techniques for automatically capturing such data in batches [10], this is not the case for the 

ingestion of streaming data which has come under the attention of research and development during 

the last five (5) years [11-12]. As a result, current healthcare and assisted living solutions need to be 

enhanced to support the processing of primary and secondary data, since citizens have increasing 

access to their personal IoMT devices that can monitor their individual parameters (e.g., heart rate, 

sleeping condition) and track their daily activities (e.g., distance walked, calories burned). In addition 

to collecting data, these devices are also capable of offering personalized recommendations to 

enhance lifestyle, optimize personal activities within living environments, and proactively prevent 

the onset of health-related issues [13].  

However, to effectively work with primary and secondary data, there are still challenges with 

regards to standardised discovery and interoperability of different types of devices/data, as well as 

security and privacy of data to be used in existing healthcare platforms. Existing IoMT devices most 

of the times are surrounded by high levels of heterogeneity, since they have diverse capabilities, 

functionalities, and characteristics. In such cases, it becomes essential to offer abstractions of these 

devices to both the platforms and the end-users and develop tools to handle the lack of 

interoperability among them [14]. Hence, another challenge that emerges is related to addressing the 

heterogeneity of different IoMT devices, along with the difficulty of healthcare systems/platforms to 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 October 2023                   doi:10.20944/preprints202310.1360.v1

https://doi.org/10.20944/preprints202310.1360.v1


 3 

 

effectively communicate and interact with these devices. In that direction, there is an even growing 

demand to develop methodologies and procedures for the standardised integration, processing, and 

analysis of heterogeneous data driven from divergent data sources and devices in the modern 

Healthcare Information Systems (HIS). Such improvements can lead to enhanced diagnostics and 

care strategies, as well as to the extraction and utilization of actionable value and knowledge from 

available data in the healthcare domain. 

Timely diagnosis is very important when it comes to the critical diseases, such as cancer, and 

especially to pancreatic cancer that is uncurable and usually lacks clear symptoms at its early stages 

[15]. Understanding the underlying causes or risk factors can help to identify individuals at high risk 

of developing pancreatic cancer. From there, specific measures (preventions and interventions) can 

be introduced to reduce the risks e.g. by working on modifiable risk factors that relate to lifestyle, 

behaviors, and social interactions (e.g., reduction in smoking, alcohol, obesity, red meat consumption, 

and increasing intake of vegetables, increasing fruit and regular physical exercise) [16]. Early 

detection allows for more effective planning and the implementation of appropriate interventions 

and possible treatments to improve Quality of Life (QoL) of the affected individuals [17].  

Early identification of modifiable risk factors of pancreatic cancer relies on healthcare 

professionals (HCPs) to possess sufficient knowledge, age-appropriate care programs and 

community-based approaches towards specialized, multidisciplinary services both in terms of 

prevention and interventions on diverse cancer related factors. However, a significant gap still 

remains between the delivery of stratified healthcare, because current approaches often take a one-

size-fits-all approach [18]. Personalization implies a level of precision that seeks to treat the patient 

as opposed to the disease, taking into account as an example comorbidities, genetic predisposition 

and environmental factors. Lack of integrated data (e.g., lifestyle data, Patient-Reported Outcome 

Measures (PROMs), Patient Reported Experience Measures (PREMs), and genomic data) from 

patients that would allow clinicians to make personalized decisions as part of their clinical decisions 

limits the effectiveness of prevention strategies. Lack of integrated health data also hampers the 

potential of patient centric interactions between HCPs, healthcare authorities, patients, and 

caregivers, as well the potentials of advanced technologies, such as AI, for accurate risk prediction, 

prevention, and intervention [19]. 

Considering all these challenges, by effectively gathering, standardizing, and analyzing both 

primary and secondary data, collective community knowledge and personalized health insights 

could be extracted. The latter is facilitated by the collection, integration, and analysis of information 

from different sources concerning individuals for the provision of actionable insights at the point of 

care. To address gaps and requirements in individualized or personalized healthcare, this article 

introduces a digital platform that aims to integrate heterogeneous data sources to realize Holistic 

Health Records (HHRs) that can provide complete integrated data views. To effectively construct the 

HHRs, the platform develops various data management techniques that cover the complete data 

lifecycle, from the collection of the heterogeneous data until its aggregation, processing, and 

harmonization. The data in the HHRs are analyzed using advance AI techniques embedded in 

adaptive learning models that are used to provide decision support to HCPs in the form of early risk 

predictions as well as personalized prevention measures. To this end, the digital platform enables the 

management of integrated and harmonized data in the HHR format, and its analysis and exploitation 

by AI-based algorithms. The platform also provides advanced decision support functionalities to 

enable healthcare experts to provide added-value care services to cancer patients for improved 

Quality of Life (QoL).  

The digital platform introduced in this article, called iHelp, has been evaluated through diverse 

real-world scenarios that provide different datasets, ranging from hospital-retrieved data to data 

from wearables, questionnaires, and mobile applications proving its wider applicability and overall 

efficiency. The platform is developed in the context of the EU-funded project iHelp (hence the name 

iHelp platform) that seeks to deliver a novel personalized-healthcare framework and digital platform 

that can enable the collection, integration, and management of primary and secondary health-related 

data [20]. In addition to the emphasis on data, the platform provides advanced AI-based learning, 
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decision support and monitoring systems to help with early identification and mitigation of 

pancreatic cancer related risks. 

The remainder of the paper is structured as follows. Section 2 describes the overall architecture 

of the proposed mechanism, depicting all of its incorporated components and the integration 

approach among them to achieve improved healthcare data integration and analysis. Section 3 

evaluates the reference implementation of the mechanism against a real-world healthcare scenario, 

whereas Section 4 discusses the effectiveness of the current research work and its overall contribution, 

as well outlines any future work. Finally, Section 5 concludes this article. 

2. Materials and Methods 

The flowchart and reference architecture of the iHelp platform is depicted in Figure 1. More 

specifically, the platform consists of 5 different building blocks or sub mechanisms: (i) Data Collection 

& Ingestion, (ii) Data Standardization and Qualification, (iii) Data Analysis, (iv) Monitoring and Alerting 

and (v) Decision Support System. The integration of these different building blocks results on an end-

to-end integration and exploitation of the raw data though this novel and holistic platform. It should 

be noted that the secondary data referred to in this article (and used within the iHelp platform) 

correspond to the data collected from Garmin wearable device, whereas the primary or batch data 

correspond to the historical personal data of the individuals. 

 

Figure 1. Overall Architecture. 

2.1. Referecence Architecture 

In this section, a blueprint of the proposed platform is presented, along with the internal process 

that takes place for its seamless interaction and integration with either secondary data sources (i.e., 

wearable devices) or primary data sources (i.e., hospital systems and databases), as depicted in Figure 

1. As described previously five (5) different building blocks and phases are incorporated in the iHelp 

platform. It is characterized as a reference architecture since it is presented at a high-level, abstract, 

logical form, which provides a blueprint for the implementation of different functionalities such as 

the AI-based healthcare analytics. In more detail, the platform initially consists of the sub mechanisms 

of Data Collection and Ingestion, through which it may connect to heterogeneous data sources and 

gather their data, and of the Data Standardization and Qualification that can process and harmonize the 

external healthcare data it receives and store them in its internal datastore. These two building blocks 
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represent the end-to-end Data Ingestion Pipeline of the iHelp platform, as depicted in the Figure 2. 

Other software components in the Pipeline are the Data Capture Gateway, Data Cleaner, Data 

Qualifier, Data Harmonizer, and HHR Importer that consume data from one and produce them to 

the other by utilizing the capabilities of the Kafka message bus that is further described in the next 

sub section. 

 

Figure 2. Data Ingestion Pipeline. 

The iHelp platform also integrates sophisticated techniques and AI algorithms for performing 

the Data Analysis (sub mechanism) so that HCPs are able to glean invaluable insights from the 

integrated patient data, enhancing their ability to tailor treatment plans and preventions. 

Concurrently, the utilization of Monitoring and Alerting components diligently oversees patient 

conditions and system performance, rapidly notifying HCPs of any irregularities or critical 

occurrences. Finally, the implementation of a Decision Support System empowers HCPs with 

intelligent recommendations and data-based support, assisting them in making informed decisions 

that prioritize patient well-being. The latter also acts as the frontend of the iHelp platform by 

visualizing the insights derived from the Data Analysis and Monitoring and Alerting sub mechanisms. 

Together, these interconnected sub mechanisms create a powerful synergy, enabling more efficient 

and effective healthcare decision making while promoting improved health outcomes for all 

stakeholders. 

2.1. Integration Approach 

What concerns the integration of all these different components the open-source Kafka and 

Kubernetes tools are utilized providing a containerized approach of integrating the iHelp platform. 

The latter enables the deployment of this platform in different environments and infrastructures 

showcasing its interoperability and improved adaptability in any deployment environment e.g., in 

stakeholders’ servers and premises. The manifests that are developed as part of the deployment 

scripts contain all the needed components and respective installation prerequisites to establish and 

deploy the platform as a whole. On top of this, it should be noted that the iHelp has already been 

deployed and evaluated for its functionality and performance in the premises of two different 

hospitals (in EU) in the context of the iHelp project.  

To facilitate seamless and reliable data exchange between different components such as the two 

first sub mechanisms (i.e., Data Collection and Integration, and the Data Standardization and 
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Qualification), the iHelp platform uses Apache Kafka [21]. Kafka is a message broker and stream 

processor that allows to publish, subscribe, archive and process streams of data/records in real time. 

It is especially designed to manage data streams from multiple sources by distributing them to 

multiple consumers. In this way, Kafka facilitates the collection and processing of both primary and 

secondary data that are ingested into the introduced mechanism.  

Apart from the use of Kafka as the platform’s message broker mechanism, the Kubernetes 
platform is utilized [22] to provide DevOps services. Kubernetes (K8s) is an open-source platform 

that automates Linux container operations. The integration between K8s and Kafka results on the 

simplification of the deployment of Kafka brokers as containerized pods, as each Kafka broker can 

run as a separate pod, ensuring scalability, fault tolerance and availability of the overall approach. 

On top of this, microservices can be deployed to easily consume and produce data to Kafka topics, 

allowing for real-time data processing and analysis of the processed data in the context of the project. 

Finally, K8s eliminates many of the manual processes involved in deploying and scaling 

containerized applications and allows to manage host clusters running containers easily and 

efficiently and for enhanced management of the K8s cluster the Rancher tool is utilized. 

2.3. Data Collection and Ingestion 

Health data can result from clinical tests performed invasively on samples taken from the 

patients’ bodies, or non-invasively using modern depicting techniques. Such data, obtained in a 

clinical setting, are of paramount importance and are termed as primary, but certainly does not form 

the complete spectrum of health data [23]. Today the importance of environmental factors, diet, and 

living habits is well-established. The patients’ living habits can be enumerated using data attributes 
about their lifestyle, obtained in their natural environment, outside the clinical setting. These types 

of data are termed secondary, since they correspond to health but are not determinists of typical 

health systems. 

The Data Collection and Ingestion building block in the iHelp platform is responsible for the 

integration, anonymization, and verification of the primary and secondary data. Depending on the 

data source type that is connected and the corresponding way that must be used for ingesting its data 

(i.e., streaming collection for unknown sources and batch collection for known sources), this (Data 

Collection and Ingestion) sub mechanism utilizes different connectors of the Data Capture Gateway 

as its main interfacing component. 

The Data Capture Gateway is the component that can be considered as the interface between the 

iHelp integrated platform and the external data sources, both primary and secondary, from which it 

captures the data to be pushed into the established data ingestion pipeline. The Gateway implements 

a standalone Java process, or a microservice, that take cares of connecting to the various external data 

sources and sends the data to an intermediate Kafka topic, so that the data can be retrievable from 

the other functions in the Data Ingestion Pipeline. As such, it also provides REST APIs that are used 

to initiate data capture activities or schedule them for a later or a periodic execution. The REST APIs 

of the Gateway are deployed into a servlet container, however they make use of the core 

functionalities of the Data Ingestion Gateway and therefore, both the REST APIs and the code 

implementation are inside the single Java process. A high-level overview of the different software 

elements of this initial design are depicted in Figure 3. 
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Figure 3. Data Capture Gateway Overview. 

As the Data Capture Gateway captures data from the supported primary data sources, it 

forwards them into a common Kafka topic from where it can be used by different components in the 

data pipeline. As it has been described in the previous sub sections, all software components that are 

involved in the Data Ingestion Pipeline are interchanging data through Kafka broker.  

With regards to the secondary data, they comprise attributes that enumerate different important 

aspects of the way the patients live their lives. The attributes are grouped in the physiological, 

psychological, social, and environmental categories [24]. 

The physiological attributes are concerned with the human body, its activities, and adverse 

events. They are mostly measured using activity trackers e.g., steps walked, distance walked, 

elevation (or floors climbed), energy dissipation, time spent in different activity intensity zones and 

exercise activities (walking, running, cycling, etc.), as well as their distribution in the day. Attributes 

related to the functioning of the heart include the continuous measurements of the heart rate 

variability and the time spent in different heart rate zones, as well as the daily resting heart rate 

measurement. Sleep related attributes include continuous measurements on the time spent in the 

different sleep stages (awake in bed, light, REM, deep sleep). Other physiological attributes like 

Symptoms of interest, weight and nutrition can be self-reported by the participant using widgets on 

a mobile app or questionnaires. 

The psychological attributes refer to the emotions of the patients. They are mostly reported 

(although audiovisual or text-based emotion detection is possible) and include emotional state self-

assessment using questionnaires or standardized reports from professional therapists. 

The social attributes can be measured indirectly based on the usage of the mobile phone 

(diversity, duration, frequency of calls) and social media (diversity, number, frequency of 

interactions). More direct information can be reported using questionnaires on activities with others 

or can be obtained in conversation with a digital virtual coach or mobile app. 

The environmental attributes include reported environmental indicators for the assessment of 

the quality of life. Measurements of living environment quality can be obtained by integrating 

relevant commercial devices (e.g., for air quality analysis), or by integrating with data services that 

report the Air Quality Index or weather details at the patients’ locations. 
Secondary data collection can be done by the patients at their own everyday setting, using a 

mobile application. The Healthentia mobile application was selected to be utilized in the context of 

this research work. This mobile application offers interoperability between different mobile and 

wearable devices and allows to capture data concerning all the abovementioned health determinants 

and categories [25]. Regarding the use of this application, at first, the corresponding portal is used to 
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define the mobile app functionalities and the settings applied for a particular clinical study. This step 

results into the setup of the main application dashboard, as depicted in Figure 4. The data that are 

captured for each specific individual of the study is then transported in the iHelp platform through 

the secondary data connector of the Data Capture Gateway. From the Gateway, the data are 

forwarded to the internal Data Ingestion Pipeline for their further processing, cleaning, and 

transformation to the corresponding HHR data model. 

 

Figure 4. Setting up an iHELP study in Healthentia. Widgets are selected (left) and the nutrition 

widget is customized to include the food categories of interest (middle), resulting to the main 

dashboard of the mobile app (right). . 

2.4. Conceptual Data Modelling and Specification of HHRs 

For addressing interoperability challenges, it is of paramount importance - - to develop 

adaptable and standardised data structure, which are termed as Holistic Health Records (HHRs). The 

HHR model is developed using existing models as a guide, with specific focus on the HL7 FHIR 

standard [26]. Although the HL7 FHIR standard is still in development and primarily designed to 

represent clinical data, it incorporates the capability to represent a broader range of data going 

beyond clinical information e.g., streaming data originating from sensors. In this respect, our HHR 

model is engineered to be versatile and adaptable to various contexts, thanks to the flexibility offered 

in the HL7 FHIR standard. 

Regarding the construction of the HHR model, the data gathered from the hospitals were 

initially grouped into medical categories for easier analysis of the concepts such as Pathology, 

Medication etc. Then every concept was mapped to the most relevant FHIR entity resources. The 

FHIR entities resources mostly used were Person, Observation, Condition, Procedure, Encounter, 

MedicationAdministration etc. Any concept not directly mapped to a FHIR element resource was 

modelled exploiting the standard mechanism provided by the FHIR standard, the Extensions, as an 

FHIR Extension inside the most relevant FHIR element mentioned thus creating a separate Profile for 

these elements. Similarly, the not standardized values of the hospital’s data attributes were 
translated, following the HCP’s knowledge into standard SNOMED concepts [27]. If an attribute did 
not have a direct representation in SNOMED, it was included in the iHelp FHIR CodeSystem as a 

custom element. The representation of the iHelp conceptual model was achieved by using TTL, 
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utilizing the FHIR ontology and the official guidelines in relation to creating FHIR CodeSystems, 

Extensions etc. 

2.5. Data Standardization and Qualification towards HHRs 

The deployment of advanced healthcare analytical tools and frameworks not only results in the 

increased productivity of the healthcare professionals but also overall improved patient management 

and care. However, the analysis of data is mostly reliant on standardization and qualification of 

underlying data [28]. To this end, the proposed pipeline in the iHelp platform addresses these aspects 

by exploiting three (3) processing phases, the cleaning, the qualification, and the harmonization of 

the data. These phases are realized through the design and implementation of three (3) integrated 

subcomponents, i.e., the Data Cleaner, the Data Qualifier, and the Data Harmonizer respectively as 

depicted in Figure 2 and initially introduced in [29]. 

In deeper detail, as soon as all the needed data are ingested into this pipeline by the Data 

Collection and Ingestion building block the first two phases of this pipeline are responsible for the 

cleaning and quality assurance of the collected data. Thus, from the very beginning of the overall 

processing pipeline, it aims to clean all the collected data and to measure and evaluate the quality of 

both the connected data sources and their produced data. To successfully achieve that, the optimized 

pipeline exploits two (2) separate modules, the Data Cleaner subcomponent, and the Data Qualifier 

subcomponent. Sequentially, in the harmonization phase, the interpretation and transformation of 

the collected cleaned, and reliable data takes place through the implementation and utilization of the 

Data Harmonizer. This component incorporates two (2) subcomponents, the Terminology Mapping 

service, and the Data Mappers to further transform the cleaned and reliable data and to provide 

interoperable, harmonized, and transformed into the HL7 FHIR standard data. To this end, the 

proposed pipeline facilitates the standardization and qualification of the heterogeneous primary and 

secondary data coming from multiple health-related sources and provides data into a unique and 

globally recognized standard and format as the HL7 FHIR. Finally, the data are then fed into 

enhanced mappers to further transform them into the Holistic Health Records (HHRs) format. The 

actual realization of the conceptual HHR model is performed with the assistance of the FHIR 

mappers. The implementation of them is based on the Java library of HAPI FHIR and expose APIs 

that the Data Harmonizer component can consume [30]. 

2.6. Data Analysis 

The Data Analysis building block is where the predictors for analyzing the data (in HHR format) 

are executed. Two types of predictors have been developed under iHelp : a personalized predictor 

and a predictor and risk identifier. The first predictor is based on data around specific diseases and 

specific risks identified for individuals within the integrated (HHR) datasets. With this functionality 

it has been possible to develop personalized health models that enable the identification of disease(s) 

and their contributing factors. This predictor has allowed the development of prediction mechanisms 

for certain risks, based on the analysis of disease-centric trends and patterns. 

The second predictor is based on deriving the disease- and risks- related knowledge from the 

integrated (HHR) data by using AI-based novel anomaly detection algorithms. Given the multitude 

of data sources hosting and providing patients’ data into the iHelp platform, this predictor has been 
developed to robustly detect risks based on the analysis a variety of (historic and real-time) data for 

each patient and by doing so also provide relevant predictions and assessments (correlations, trend, 

pattern, underlying factors, etc.) on individuals’ health status. These predictors combine facts from 
streaming data not necessarily related to health (e.g., lifestyle and social interactions), collective 

knowledge/intelligence and information related to the individual (e.g., from the health records and 

the stored health status monitoring data). The analysis of these combined facts provides knowledge 

referring to different types of risks and their evolution in time. Another aspect of this second type of 

predictor is that it enables to evaluate the impact of different symptoms, decisions, and 

environmental conditions regarding the same situation-dependent attributes such as lifestyle choices, 

mobility modes, etc. 
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2.7. Decision Support System 

The Decision Support System (DSS) is the user interface and access point to the iHelp platform 

and has a two-fold objective. On one hand, it seeks to provide several functionalities that allow HCPs 

and healthcare stakeholders to make decisions based on improved data analytical outcomes. The DSS 

provides query building, analytics, and visualization mechanisms that access the HHR integrated 

data and present the analytic outcomes to the end users in a way that eases the understanding, 

interpretability and explainability of the analytic models in the iHelp platform. The Explainable 

Dashboard Hub (EDH) sub-component in the iHelp platform facilitates this approach, as it provides 

several dashboards that are used to monitor metrics and outcomes of the AI models. The dashboards 

are designed to offer improved explainability on the analytical models allowing the HCPs to select 

multiple data analytic models for a wide range of scenarios and view numerous different 

visualizations and model comparisons. This helps the HCPs to enhance their knowledge and 

understanding on outcomes of the models and better interpret the final insights of them. On the other 

hand, the DSS mechanism can also be exploited by more technical users and AI experts e.g., model 

builders. These users can use the DSS to design different dashboards with the visualization and 

presentation of the and provide these dashboards to the relevant HCPs. A model builder can use a 

palette of SQL-like, analytical and visualization operators to create pipelines/workflows of 

transformations and visualizations over the results of the analytical algorithms. Following this robust 

approach and integration of different tools the DSS offers a set of generic dashboards that help both, 

the technical and non-technical users, to extract enhanced and more evidence-based decisions. 

 

Figure 5. Interaction of Different Users with the DSS. 

The overall interaction of a model builder and an HCP user with the DSS is presented in Figure 

5. At first, each user must access the DSS through a Login interface and an Authentication and 

Authorization mechanism for improved security and access monitoring on the visualized data. Based 

on the privileges of the user, the DSS grants access to its different subcomponents. If the user has a 

model builder user role, then the DSS grants access to the Workflow Editor, Custom Dashboards or 

EDH subcomponents. Otherwise, for HCP role users the DSS grants access to the Custom Dashboards 

or EDH subcomponents. When a user registers in the iHelp platform, he/she is assigned one of the 

above roles. The model builder user can design the workflows and the custom dashboards that will 

be further used by the HCPs users. The Query-builder and Workflow interface interact with the iHelp 

Data Storage reading the data and injecting them into the Analytical models provided by the 

Analytics Workbench or into the Predictor and Risk Identifier or the Personalized Predictor 

components. The model builder can create dashboards through the Dashboard interface which will 

show the results of the models and queries designed in the Workflow interface. On the other hand, 

the web interface contains a series of generic interfaces that allow the HCP to access patient data, the 

Monitoring and Alerting system, and interact with the patient by sending messages through the 
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mobile application (the Healthentia mobile app), as well as having access to the custom dashboard 

implemented by the model builder and the EDH subcomponent interface to analyze the results 

obtained by the AI models. 

2.8. Monitoring and Alerting 

Having collected the data (both primary and secondary) about the patients in a holistic and 

standardized (mapped into HHR) way, the guidance of the patients through early identification of 

pancreatic cancer is the Monitoring and Alerting mechanism. This mechanism has a two-fold 

objective, as it aims to optimize decision support for HCPs, while also offering improved 

personalization of risk mitigation and prevention plans and the fine-tuning of goal settings. To 

achieve the latter, three (3) different subcomponents are designed and developed: the Data 

Aggregator, the Data Evaluator, and the Alert Generator that implement the monitoring, evaluating 

and alerting functionalities respectively. Their development has been based on a Java-based 

microservice approach and their integration and interexchange of data are based on the utilization of 

the Apache Kafka tool. 

On top of this, the Monitoring and Alerting mechanism offers HCPs an interface to define offline 

rules, evaluate them online, propose dialogues for their consideration, and make final selections for 

delivering them to patients. In that context, its main objective is to give HCP the ability to assign 

mitigation plans and respective recommendations to a specific individual and then to monitor and 

assess the effect of these recommendations and plans in the QoL of the individual. A mitigation plan 

is essentially an action plan assigned to a patient and typically the execution of this plan aims to bring 

concrete health improvements and to lower the risk of developing pancreatic cancer. It is comprised 

of several rules some of which can be turned off depending on the personalized configuration for the 

patient. The HCP will assign a goal value to each active rule of the mitigation plan selected for the 

patient. For example, a goal for a given patient can be to decrease the cigarettes smoked per day or 

to increase his/her physical activity on weekly basis. Then, the component will monitor and evaluate 

the progress of the patients by collecting and aggregating secondary data, such as questionaries and 

behavioral data collected through the Healthentia mobile application, and then comparing them with 

personalized targets issued by HCPs. To this end, this mechanism, along with its accompanied 

subcomponents, enables the set of mitigation rules, and facilitates the personalized interactions with 

the patients. Two of its main subcomponents are the Virtual Coach and the Impact Evaluator that are 

further detailed below. 

2.8.1. Virtual Coach 

The virtual coach component offers patients the user interface for receiving and interacting with 

the mobile application and the underlying iHelp platform. This component also runs on the 

Healthentia mobile application, which is used for secondary data collection. Virtual Coach interacts 

with the users by sending the notification (e.g., risk alert). Following the notification, the users end 

up in the virtual coach interface, from where they can start a dialogue with the virtual coach. 

Behind the scenes, the virtual coach exposes an endpoint to receive requests for dialogue 

delivery. In that call, the receiving patient and the intended dialogue are identified. Upon receiving 

the request, Healthentia (backend platform of the mobile app) pushes a notification to the mobile 

operating system (Android or iOS) and to the mobile application itself (to be viewed in the 

notifications page of the mobile app). The patient can tap either on the notification of the operating 

system, or on the notification at the dedicated application page. Then the web view of the virtual 

coach is displayed, and the patient can go through the dialogue. After dialogue playback, the patient 

can see the read notification in the dedicated page, but tapping on it only provides a summary of 

what it was about. 

The structure of the dialogues is implemented via the open-source WOOL platform [31]. WOOL 

comprises both a dialogue editor and a playback system. The editor allows dialogue authoring as a 

graph of interconnected nodes of agent text and possible patient replies to be selected. The playback 
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system provides the web view that is integrated in the mobile phone, serving as the user interface for 

dialogue playback. 

2.8.2. Impact Evaluator 

This subcomponent, part of the Monitoring and Alerting component in the iHelp platform, aims 

to evaluate and highlight the impact of the advice, sent to the citizens/patients, on their behavior. The 

main goal is to monitor and highlight to the clinicians how and if the specific type of advice changed 

the lifestyle of the recipients. For doing that, the citizens/patients are clustered using common 

characteristics (e.g., age, gender, BMI, or risk factors, if available) to compare the advice sent to a 

similar population. The result of this analysis could contribute to better fine-tune the model for 

generating the advice and the user to be reached. The input data are collected both from the 

Monitoring component (the goals and their achievement) and the HHR (sent messages and collected 

secondary data) using the standard FHIR API. 

The image in Figure 6 shows the initial and feedback loop, based on the overall iHelp 

architecture, which is explained above. 

1. The HCP sets the goals of the individual and configures the iHelp platform to ingest the primary 

data that the health organization already has on its premises. 

2. The specific component reads the data and triggers the dialogue to send the right content. 

3. The content is delivered to the individual. 

4. The individual, using the mobile app on his/her phone, feeds the platform with the secondary 

data that are stored inside the iHelp platform. Any other primary data which are produced by 

other external services of the health organization, like the lab tests, are stored in the iHelp 

Platform as well (as in step 1). 

5. When the HCP requests the analysis, the Impact Evaluator read all the data needed to elaborate 

on the result. 

6. The result of the computation is shown to the HCP through the dedicated iHelp platform 

interface. 

It should be noted that Steps 1 to 4 are performed in a loop, while Steps 5 and 6 are performed 

on demand. 

 

Figure 6. Ingest and evaluation loop. 
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3. Results 

In this section, the performance of the core components of the iHelp platform are analyzed 

together with its potential for bringing more efficient and personalized decisions in the healthcare 

domain. In deep detail, this article focuses on evaluating the effectiveness of the operation of the 

different pillars and the final demonstration and visualization of the results to the healthcare 

professionals. To this end, it should be noted that the evaluated components have been developed in 

Java SE, AngularJS, ReactJS, and Python programming languages showcasing the generalization and 

improved integration of the introduced platform with widely used frameworks. 

3.1. Use Case Description 

To evaluate the Data Collection and Ingestion mechanism, and other components of the iHelp 

platform, both primary and secondary data from the Hospital de Dénia – Marina Salud (HDM) pilot 

have been utilized. The HDM use case is focused on predicting the risk of pancreatic cancer. The 

iHelp platform is used to analyse the impact of changes in the lifestyle and habits over the identified 

risk factors. The impact of the lifestyle changes will be measured at epigenomic level through the 

measurement of methylation indexes.  

At its initial stage, this pilot obtained patients’ medical records from the hospital’s local 
Electronical Health Records (EHRs). The data extraction was performed in CSV files and following 

the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) [32]. The 

data input is received by the Data Collection and Ingestion mechanism of the iHelp platform. It 

should be noted that these data represent patients that are separated into two main groups: 

• Individuals that are directly involved in the iHelp project for their further monitoring and 

follow-up by the HCPs of the HDM. Out of these individuals: 

o 6 are patients already diagnosed with pancreatic cancer. In the context of this pilot study, 

they provide their medical records and one single blood sample to perform epigenomic 

analytics. 

o 13 are patients without pancreatic cancer. In addition to their medical records, a blood 

sample was provided each 3 months and lifestyle data were collected through a 9-month 

monitoring phase based on the wearable devices and periodic questionnaires through the 

Healthentia platform. 

• Individuals not directly inside the program: 

o An extraction of medical records from around 90K patients is anonymized and provided to 

the iHelp platform. 

It should be noted that in HDM pilot no bias has been identified in the examined data and the 

90K patients represent the full population of the geographic area that is assigned to the hospital. The 

data that are ingested in the iHelp platform are fully anonymized and the study is performed under 

the approval of the hospital’s Ethical Committee. Following the OMOP standard, a collection of seven 
(7) different primary datasets is produced, provided, and examined in the context of this pilot study 

based on the respective information, as presented in Table 1. A sample from one these primary 

datasets related to the different measurements is also depicted in Figure 7. 

Table 1. HDM Datasets Description. 

Dataset Name No of Records 
No of 

Attributes 

 
Dataset Size (in MB) Dataset Type 

Measurements 3.252.920 17  564,1 CSV 

Observations 339.925 14  55,4 CSV 

Person 99.019 8  2,8 CSV 

Drug Exposure 5.411.914 13  779,9 CSV 

Condition 1.833.512 14  248,5 CSV 

Visit Occurrence 5.205.819 13  727,5 CSV 

Procedure 602.351 12  147,5 CSV 
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Figure 7. A sample of the Measurement Dataset. 

3.1. Data Collection and Ingestion 

The Data Collection and Ingestion component in the iHelp platform encompasses all tasks 

associated with collecting, validating, and ingesting both primary and secondary data into the iHelp 

platform. The primary data are directly captured and ingested by the Data Capture Gateway through 

the implementation and utilization of different data connectors. Afterwards, the initial validation of 

the integrity of the data is achieved through the utilization of the Avro Schema that also requires the 

use of an Avro Schema Registry, which allows to only transmit the number of bytes that concerns the 

data themselves, thus minimizing the overall size of the data elements, as well the time needed for 

their ingestion and overall processing [33]. For instance, the time that is needed for the whole 

Measurements dataset from its initial capture until its final transformation as HHR standardized data 

and storage into the platform’s Data Storage is 5minutes and 26seconds. The schema of the dataset is 
transformed by the Data Capture Gateway in an Avro Schema compatible format that boosts the 

interoperability and have a well-known standard to be further used by other functions involved in 

the data ingestion and processing process.  

Moreover, the intermediate software components that formulates the Data Ingestion Pipeline 

are domain and schema agnostic. This means that a flexible ingestion pipeline is established, as each 

function can consume and produce data from corresponding Kafka topics in a dynamic manner and 

without any prior knowledge on the data. The respective information is passed to each 

subcomponent through these messages, enabling all subcomponents to communicate using this 

common data format. This format is designed to be highly interpretable and in such a way in order 

to be irrespective of the dataset, schema, and type of data that are contained in these messages. An 

example of such messages is depicted in Figure 8, that shows a message with primary data derived 

from the Measurement dataset with a batch of 2 elements, as well a message of secondary data 

derived from the Healthentia platform.  

 

 
(a) (b) 

Figure 8. Messages interexchanged between the components of the Data Ingestion pipeline: (a) 

Message including primary data; (b) Message including secondary data. 

The most important attributes of these JSON objects and messages are presented below: 

• datasourceID: the name of the data provider 

• datasetID: the name of the dataset 
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• schema: the schema of the value of the tuples, defined in Avro Schema 

• schemaKey: the schema of the key of the tuples, defined in Avro Schema 

• batchSize: the number of batch size 

• currentBatchStart: the index of the first element of the batch in the overall dataset 

• currentBatchEnd: the index of the last element of the batch in the overall dataset 

• confParameters: the configuration parameters required by each of the intermediate functions. It 

includes an array of data parameters packed in JSON format, where each JSON can be 

interpreted by the corresponding function. These parameters are being passed to each of the 

intermediate functions and each one of those can retrieve the ones of their interest. For instance, 

specific cleaning rules have been set by the data provider concerning specific data attributes, as 

depicted in Figure 8a. These rules as consumed by the Data Cleaner to perform the necessary 

cleaning and validation actions on the data. 

• values: a list of the exploitable data and their different values per each record 

These messages are exchanged between different subcomponents of the Data Ingestion Pipeline 

by utilizing the Kafka message broker, as analyzed before.  

However, a slightly different procedure is followed for the collection phase of the secondary 

data. That data are initially collected using the Healthentia mobile application [25], rather than 

directly fetching by the Data Capture Gateway. It is important to be mentioned that the Healthentia 

mobile application gives access to answers on different questionnaires that are used for self-

assessment, while activity trackers collect individuals’ physiological and exercise data. The 
questionnaires are selected by HCPs and are defined in the Healthentia portal, together with the 

timing used for pushing them to patients automatically. More specifically, Figure 9 depicts the 

questionnaires defined for the HDM study, as well as how such a questionnaire is answered by a 

patient in the Healthentia mobile app.  

 

(a) 

 

(b) 

Figure 9. Using questionnaires in the HDM study. (a) List of defined questionnaires at the Healthentia 

portal; and (b) answering the Fagerstrom questionnaire by a patient in the mobile app. 
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The different widgets accessible from the main dashboard of the mobile app (see Figure 10) give 

access to data entry functionalities and visualizations of data collected from activity trackers (like 

physical activity, sleep, and heart info), other devices (like scales) and the nutrition widget, as shown 

in Figure 10. 

Regarding the information related with the answers, exercises and physiological data, a specific 

connector has been implemented in the Data Capture Gateway. Depending to the type of dataset it 

connects to the corresponding REST API provided by Healthentia and receives the respective list of 

information.  

 

Figure 10. Entering and visualizing data in the Healthentia mobile app. 

3.2. Data Standardization and Qualification towards HHRs 

This sub mechanism is evaluated on real-world primary and secondary data as have been 

provided in the context of the iHelp project [20], where clinical data of Pancreatic Cancer patients are 

analyzed to provide personalized recommendations. 

At first, the Data Cleaner component is utilized as an integrated component of the Data 

Standardization and Qualification mechanism, and its main objective is to deliver the software 

implementation that provides the assurance that the provided data coming from several 
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heterogeneous data sources are clean and complete, to the extent possible. This component is 

designed to minimize and filter the non-important data, thus improving the data quality and 

importance. To address a portion of these challenges, referring mainly to reducing the complexity 

and facilitating the analysis of large datasets, data cleaning procedures attempt to improve the data 

quality and to enhance the analytical outcomes, since wrong data can drive an organization to wrong 

decisions, and poor conclusions. To this end, this component seeks to assure the incoming data’s 
accuracy, integrity, and quality. 

Afterwards, the Data Qualifier component classifies data sources as reliable or non-reliable both 

during the primary and secondary data injection. A data source is classified as reliable when the 

datasets received from this source are considered correct by the experts (such as HCPs), otherwise it 

is considered as non-reliable. To test this feature, this component acquires both the cleaned and faulty 

data produced by the Data Cleaner component. 

With regards to the Data Harmonizer component, initially, it translates the hospital data coming 

in, into SNOMED concepts and these concepts are fed to the mappers for further analysis. This step 

is specifically achieved through the implementation of the Ontology-based Domain Terminology 

Mapping functionality that utilizes the PyMedTermino [34] and UMLS meta thesaurus [35] offering 

a wide collection of terminology services. Coupled with the utilization of the FHIR ontology the Data 

Harmonizer component provides a set of intelligent services to manage terminology resources and 

make the data semantically interoperable. In addition, it provides a set of operations on widely used 

and known medical terminologies used for the coding of medical knowledge, such as LOINC [36], 

ICD-10 [37] and SNOMED, which further enhance the information structures that are provided as 

outputs from the Data Harmonizer component. In addition, it provides the flexibility to the whole 

iHelp platform to utilize new releases of terminologies and to provide mappings or translations 

between different terminologies and standards. The latter is addressed through the extensible 

searching and querying functionality for specific elements of the well-established terminologies and 

standards. The mappers receive as input the harmonized and semantic interoperable data and then 

transform these concepts into the appropriate FHIR elements, grouping the elements as needed. 

Finally, a FHIR Bundle containing the mapped data is sent back to the Data Harmonizer for fusing 

the HHR-based modelled data to the platform’s data storage. A sample harmonization of raw 
primary data to HHR data is depicted in Figure 11.  

 

  
(a) (b) (c) 

Figure 11. Sample transformation of raw primary data to the HHR format via the the iHELP mappers, 

where: (a) Represents the raw primary data as they collected by the hospital; (b) & (c) Depict the 

transformed to HHR format data. 

The same approach and transformation are followed in the case of the ingestion of secondary 

data. These data represent lifestyle and behavioral aspects of the patients’ life. These data are 
gathered through wearable devices, as well answers to questionnaires and nutrition-related 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 October 2023                   doi:10.20944/preprints202310.1360.v1

https://doi.org/10.20944/preprints202310.1360.v1


 18 

 

information. In Figure 12, a sample harmonization of raw secondary data to the standardized HHR 

model is presented.  

   
(a) (b) (c) 

Figure 12. Sample transformation of secondary data to HHR format. Sample transformation of raw 

secondary data to the HHR format via the the iHELP mappers, where: (a) Represents the raw 

secondary data related to the daily activity and as they collected by the individual wearable device; 

(b) & (c) Depicts the transformed to HHR format daily activity data of the individual mapped to an 

Observation resource type. 

3.3. Data Analysis 

One of the AI models developed within iHelp platform focuses on predicting the risk of 

developing pancreatic cancer based on lifestyle choices. The AI model is developed using the data 

acquired from the Hospital de Dénia – Marina Salud (HDM) use case. This model is trained on a 

collection of datasets provided by HDM that contains data of 200 patients related to blood analysis 

and other physical tests. It also contains an extra set of parameters containing comorbidities of such 

patients so the training could incorporate this information making it completer and more accurate, 

taking into account historic data about alcohol, tobacco, hepatitis, hypertension, diabetes, cholesterol, 

obesity, pancreas and h pylori for each patient. 

Besides adding complexity, all these comorbidities enrich the trained models and increase their 

rate accuracy, from an initial 70% where no comorbidities were taken into account to a range of 80%-

85%.  

Before the comorbidities were considered, a huge number of different versions of AI models 

(around 240.000 models) have been trained, to assess every parameter combination requested by the 

classification algorithm. The best performing model hit the 70% accuracy rate and results are 

displayed in the Figure 13 below. 
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Figure 13. Classification of patients as per the model trained without considering comorbidities. 

Regarding the model considering comorbidities, a limited number of variations for the 

parameters have been trained and the results are still limited; however, it appears that the predicted 

clusters look better in comparison to the models trained without comorbidities as they have far less 

overlapping between the data and the clusters. 

 

Figure 14. Classification of patients as per the model trained without considering comorbidities. 

Based on Figure 13 and Figure 14 two groups of clusters can be distinguished: the Red group 

and the Green group. The Red group lists all patients that have not been diagnosed with pancreatic 

cancer whereas the Green group corresponds to those patients that have been diagnosed. 

Considering this classification, an initial prediction on likeliness or risk of developing pancreatic 
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cancer of further patients can be regarded. However, as said, this classification (of Figure 13) does 

not consider the comorbidities yet, while results from the models that consider comorbidities (of 

Figure 14) indicate an enhancement in the overall analysis and risk identification approach; however 

further finetuning is needed. It should be noted that these are initial results, that were also evaluated 

by the clinicians of HDM who have reacted positively to these classifications and more actions are 

planned to be performed. 

The comparison of both models is summarized in the following table, Table 2, by indicating 

averages and ranges as concerns four different performance metrics. 

Table 2. Models Comparison and Average Performance Metrics. 

Models 
Silhouette 

coefficient 

Adjust Rand 

Index (ARI) 

 Sensitivity (True 

Positive Rate) 

Specificity (True 

Negative Rate) 

Models without 

considering 

comorbidities 

0,49 0,01 

 

65-70% 30-35% 

Models considering 

comorbidities 
0,325 0,475 

 
80-85% 15-20% 

The Silhouette coefficient indicates the separation between the clusters and the coefficient should 

be as close as possible to 0,5 (optimal range is between -1 and 1). The closer to 0,5 the better in the 

sense that the clusters will have fewer overlapping samples. On the other hand, the Adjust Rand 

Index (ARI) indicates the matching between real labels and the predicted clusters. Again, as optimal 

range is between -1 and 1, the models considering comorbidities are closer to an average ARI 0,5 

meaning that they perform better in matching between real and predicted clusters. 

Regarding the second predictor model, this considers the data gathered over 6 months where a 

subgroup of volunteers has acceded to be part of the experiment. These volunteers have been enrolled 

to change their daily activities and habits so that an epigenetic analysis could be performed. After a 

six months period has passed, the HCPs of HDM are now in the position to assess whether these 

volunteers have their epigenetic markers changed in the right direction to perform the clinical study, 

which is the purpose of this use case. In other words, see how the changes in lifestyle and habits 

influence the likeliness of developing pancreatic cancer. 

3.4. Decision Support System  

The Decision Support System (DSS) allows the HCP to visualize the primary and secondary data 

for a particular patient among other functionalities, such us running AI models and reviewing and 

approval of customized messages generated by the Monitoring and Alerting system. When the HCP 

accesses the DSS a welcome menu appears with the main functionalities provided to the HCP role, 

Patient Visualization, Patient Enrolment, Edit Patient Information, Model Explainability and Custom 

Dashboards as shown in Figure 15. The first time a patient is added to the iHelp platform, the HCP 

adds the patient’s hospital identifier and the Healthentia platform identifier into the Patient Enrolment 

interface to allow the iHelp platform to associate the data provided by the hospital (primary) and 

data provided by the Healthentia platform (secondary). An iHelp identifier is then generated which 

will be the patient’s identifier within the iHelp platform. 
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Figure 15. HCP Decision Support System main menu interface. 

Whenever the HCP needs to access the historical data of a specific patient, he/she accesses the 

“Patient Visualization” interface and enters the iHelp identifier. Automatically all information 
obtained for that patient is collected from the underlying Data storage and displayed in the different 

charts. In Figure 16 two drop-down menus are depicted showing the data provided by the hospital 

(primary) and the data provided by Healthentia (secondary) for the patient with id “ec4a096d-eaa3-

4536-91c4-5bc64134a247” respectively. In addition, a set of actions can be accessed from the same 
interface. The “Risk Identification” button opens an interface that allows the HCP to run AI models 
for that patient. The “Risk Mitigation” button gives access to web interface of the Monitoring and 

Alerting system. The “Impact Evaluator” and the “Personalized Recommendation Review” buttons, 
which give access to the respective actions. 

 

Figure 16. Patient Visualisation DSS interface. 

On top of this, Figure 17 depicts the data provided by the hospital through different graphs. 

These graphs are navigable and show the real values obtained in each of the patient samples for a 

better understanding by the HCP. In this case, Figure 17 shows the “Serum glucose level” of two 
different tests with values 93 and 75 respectively. 
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Figure 17. Primary data – DSS Patient Visualisation interface. 

Similarly, Figure 18 shows in different graphs the data obtained by the patient's wearable, such 

as the number of daily steps or the distance among others available on the Healthentia platform. For 

example, Figure 18 shows the graph of the number of steps from 18th April 2023 to 11th October 2023. 

With graphs like these, the HCP can track and analyze the patient’s physical activity, enhancing the 
overall monitoring phase, as well as the decision-making process. 

 

Figure 18. Secondary data – DSS Patient Visualisation interface. 

The Risk Identification interface allows the HCP to run models available in the Model Manager 

component for that patient. Figure 19 shows the Risk identification interface, in particular the Basic 

Risk Assessment interface that allows interaction with models trained and run with data provided 

by the hospital (primary data). In this case, the model “8057 – sklearn.20230619” has been selected. 
This model allows to identify whether the patient is at risk to develop Pancreatic cancer or not. Once 

the HCP selects the model from the available ones, the model parameters are displayed in a form-

based panel with all fields automatically filled in with the data obtained for the patient. The HCP can 

modify the values of the fields accessing the field by typing the desired value. In this example, the 

model asks for 10 parameters. The HCP then presses the submit button and the model is run, when 

the result is available it is represented within the DSS interface. The result is displayed in text and a 
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clustering graph, in this case the patient (yellow point in the graph) may develop pancreatic cancer 

based on the data provided to the model. 

 

Figure 19. Risk Identification - DSS Patient Visualisation interface. 

To improve the explainability and interpretability of the models’ outcomes and enhance the 
knowledge that can be derived for the HCPs, the DSS also utilizes the EDH subcomponent. This 

component is embedded into the DSS suite and initially presented in Section 2.7. The EDH is a 

collection of tools for rapidly creating interactive dashboards with several visualizations for 

evaluating and presenting the forecasts and processes of the already implemented AI models. This 

enables HCPs to have an overview of the specific features, allowing them to reach faster conclusions 

about the most significant factors in pancreatic cancer, based on the comparison of the diagrams. This 

subcomponent allows any AI model to be essentially “explained” by providing intuitive and 

interactive visualizations that aim to showcase which features are most relevant to a given prediction 

and the outcomes of the model. It seeks to explain the predictions of an instance “x” as derived by 
the models presented in Section 3.3. The latter is further explained by calculating the contribution of 

each feature to the predicted cluster, as indicated in Figure 20.  

 

Figure 20. Cluster Heatmap considering feature importance per cluster. 
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Finally, the overall functionality of the DSS is complemented by the utilization of a personalized 

recommendation mechanism and the personalized messages that are automatically generated for this 

particular patient. In that context, Figure 21 shows the Personalized Recommendation Review interface 

where messages generated by the Monitoring and Alerting system are listed to be reviewed and 

approved by the HCP. A table containing the message identifier, the message title, the status and the 

send/reject actions fields displays the messages. The HCP can decide to send the message to the 

patient directly through the Healthentia mobile application or reject those messages whose status is 

PROPOSED. Messages with other status such as APPROVED, SENT or AUTOMATIC are listed for 

consideration by the HCP, but no action is required for those messages.  

 

Figure 21. Personalized Recommendation Review - DSS Patient visualisation interface. 

3.5. Monitoring and Alerting 

As mentioned in the previous subsections the overall functionality of the Decision Support 

System is further enhanced through the utilization and integration of the Monitoring and Alerting 

mechanism. It is used to set rules, get dialogues that fulfill them and actually accept them for delivery 

to the patients. More specifically, this mechanism exposes an advanced rule-based engine executed 

on certain configurable time intervals (daily, weekly, or monthly) that perform an assessment of the 

progress towards reaching individual targets. This functionality is implemented through the Risk 

Mitigation option that is available in the DSS, which results from the strong integration between the 

different mechanisms and systems of the iHelp platform. The Risk Mitigation interface provides to 

the HCP the ability to assign personalized mitigation plans to each patient. Each mitigation plan is 

comprised of user-specific rules which aim at providing the patient with a concrete goal and upon 

the achievement of that goal the user is expected to lead a healthier life. Such a goal can be the 

decrease of smoked cigarettes per day or the increase of weekly sports activity, as depicted in Figure 

22 and Figure 23. 
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Figure 22. Establishment of a Risk Mitigation Plan by the HCP. 

 

Figure 23. Risk Mitigation Plan Overview. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 October 2023                   doi:10.20944/preprints202310.1360.v1

https://doi.org/10.20944/preprints202310.1360.v1


 26 

 

In its core functionality, the Monitoring and Alerting mechanism evaluates the platform’s 
integrated health data (i.e., primary, and secondary HHRs) and compares certain target values 

defined in the personalized recommendation against real values gathered from the users through the 

mobile application and wearables. The aggregation service collects secondary data for the respective 

patient, calculates them according to the monitoring period chosen for the respective user and 

preserve the resulting aggregated data into the database. Then, the evaluator assesses the aggregated 

values towards the goals set for each rule in the mitigation plans for this particular patient. Finally, 

the alerting module is activated to distribute evaluation and feedback messages. Different escalation 

policies and threshold values are considered when distributing the proper message to the recipient 

(individual or HCP) to achieve best results in risk communication in the context of pancreatic cancer. 

The overall functionality of the Monitoring and Alerting mechanism is complemented by its 

integration with the Virtual Coach subcomponent via corresponding API endpoints. The 

achievement or failure dialogues initially selected by the HCP for pushing to the patient, as depicted 

in Figure 22, are sent to Healthentia, to be delivered through the mobile application’s virtual coach 
[38]. More specifically, messages are created by the alerting module and are approved by the HCP. 

These messages are sent as notifications to the user of the Healthentia application and once they are 

selected, then they are shown as a first step of a dialogue between the patient and the virtual coach. 

This interaction can result, depending of course in the user preferences, to requests for more 

information, further explanations, links to other coaching content, or to visualize data from a specific 

widget of the application. The resulting notification and dialogue playback are shown in Figure 24. 

 

Figure 24. Handling dialogues at the Healthentia mobile app. A notification is sent to the patient (left), 

which leads to the dialogue playback user interface. 

As the last piece of the puzzle, the Impact Evaluator has the chance to envisage possible fine 

tuning in goals definition for the patient, and in the way in which different cluster of users could be 
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more engaged. During the development and experimentation, several parameters were checked to 

generate significative clusters. In the specific case of the HDM pilot, with few numbers, the main goal 

was the evaluation of the approach and the configurability of the API. Currently three clustering 

variables were chosen: the sex, the age (grouped in ranges) and, if present the risk factor, associated 

to the person. On plausible synthetic data, as depicted in Figure 25 the subcomponent highlighted 

that for the Topic1 (e.g., Smoking Cessation) a Cluster1 of people had a positive and healthy behavior 

after received some Prevention-based messages, but that was not the case for the Promotion-based 

messages. Completely the opposite behavior was observed in the Cluster2. The Cluster3, for the 

Topic1 was pretty unaffected. The percentage represented on the ordinate axis, is the delta percentage 

of the achieved goal between the period before and after receiving the messages. 

 

 

(a) (b) 

Figure 25. Clustering and Results. (a) Depicts the user journey and clustering approach of the Impact 

Evaluator; (b) Showcases an initial example of the final outcome. 

4. Discussion 

According to the architecture of the iHelp platform described in Section 2 and the experimental 

results stated in Section 3, the iHelp platform successfully achieved its main purpose of providing a 

data integration healthcare framework for exploiting non-homogeneous healthcare data. The 

utilization of advanced AI analytics and Monitoring and Decision Support techniques enhance the 

follow-up of the individuals and the provision of improved recommendations to them. The iHelp 

platform can have a significant impact on the modern digital care pathway, from preventive to 

follow-up phases. In that context, solutions from the areas of AI, data management, DSS, mobile and 

wearable health applications conforming with recognized standards are utilized in the iHelp 

platform. The integration of these advanced solutions results in enhanced and efficient identification 

of cancer related risks, diagnostics, and prevention strategies, allowing patients or people at risk to 

better take control of their health based on effective utilization of health-related data. In this way, 

iHelp platform enables (i) patients’ involvement and engagement in the healthcare process leading 
to better acceptance and perceptive outcomes (satisfaction, usefulness), and improved QoL; and (ii) 

personalized information and follow up based on improved trust and timely decision support. On 

top of that, it should be considered that the healthcare systems domain is constantly evolving, and to 

keep up with the changes, AI-based learning healthcare models are becoming more and more 

popular. The iHelp platform is aligned with and will contribute to EU’s strategies and actions, such 
as Europe's Beating Cancer Plan [39], through the development and utilization of advanced 
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integrated techniques targeting on a wide range of aspects, ranging from the implementation of 

causal risk factors analysis, early diagnosis and accurate personalized prediction of pancreatic cancer, 

to improved QoL through personalized recommendations, and the provision of evidence-based 

mitigation plans and lifestyle changes to the patients. Building this understanding is part of the EU’s 
ongoing effort to accelerate learning and innovation in cancer care delivery to ensure that people 

receive the highest quality, safest, and most up-to-date care. 

Among its main advantages, the integrated solutions in the iHelp platform allow HCPs to 

synchronously monitor the progress of their patients and achieve better coordination of their care 

responsibilities. In summary, it gives HCPs a more effective approach to administer care through 

better planning, to better manage decisions and mitigation plans, and to better prepare for providing 

treatment and recommendations, and better manage the integrated and harmonized health data in 

the HHR format. In particular, the iHelp platform facilitates well-informed decision-making through 

the continuous and substantive flow of the health-related data. Through the integration of innovate 

data management and analytic techniques in the iHelp platform, healthcare professionals can have 

access to advanced knowledge related to each patient they are treating. The platform contributes to 

the shift from acute-based to evidence-based care by providing improved access to patient-related 

information. Through the utilization and improvement of existing evidence-based decision support 

solutions, the platform supports improved clinical decision making and enhances the health 

management of the patients care across the whole pathway. The utilization of patients’ integrated 
data, in the form of HHRs, leads to better identify and understand the key risk factors for developing 

pancreatic cancer, which are typically difficult to study only through primary data. Based on the 

availability of HHRs, the analysis and identification of the causal risk factors become easier and more 

effective, contributing to increased understanding of pancreatic cancer related risks, improved early 

diagnosis and the provision of enhanced personalized prevention and mitigation plans.  

Among its indirect impacts, by effectively gathering data both from individuals' EHRs and 

PGHDs, as well as personal IoMT devices, collective community knowledge could be extracted, 

playing a significant dual goal: (i) fusing, collecting, and analyzing information from multiple sources 

to generate valuable knowledge and actionable insights to the HCPs, and (ii) facilitating the 

development of personalized and efficient prevention plans and decisions [40]. The impact of such 

solutions using community knowledge, which is collective, in the domain of healthcare is apparent, 

since information sharing has changed their overall approach towards better diagnostics and 

improved QoL [41]. 

The personalized dialogue and coaching system is another impactful innovation of iHelp 

platform. It breaks the communication barriers between healthcare providers and receives; and 

facilitates behavioral change in patients and citizens since by empowering them to understand their 

condition and providing easy to understand directions on how to manage their health. The rule-based 

dialogue selection system implemented in the Monitoring and Alerting mechanism effectively delivers 

education and advice on personalized levels, thus impacting everyday life activity of the patient or 

people at risk of developing cancer. Improved emphasis and understanding of the secondary data 

can eventually lead to improvements on the clinical condition of the patient, as is shown in the 

evaluation study (or HDM use-case) of the iHelp platform. 

It is worth mentioning that the iHelp platform has been designed and implemented in such a 

way that it allows several cases of extensibility. The platform’s validation and evaluation is 
performed in five (5) different use cases and scenarios in the context of the iHelp project. At first, it 

allows for extensibility in terms of new datasets, since the functionalities of the Data Collection and 

Integration, and Standardization and Qualification building blocks enable new datasets to be directly 

ingested into the internal datastore by following a standard path, finally being represented in the 

platform as HHRs. Apart from this, the platform allows for extensibility in terms of new data sources, 

as demonstrated through the integration of Healthentia mobile application and wearable devices as 

new data sources from where data can be gathered and utilized for decision making. As soon as these 

new data sources are identified, the overall data ingestion flow can be followed as described in the 

abovementioned extensibility case. 
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The findings of this paper can be expanded in a variety of ways, for example the EDH 

subcomponent can be improved by the integration of SHAP (SHapley Additive exPlanations) 

techniques and a What-If analysis tool can be introduced in the platform that can help HCP in 

understanding how the models’ behavior varies when characteristics or portions of the data are 
altered. In our future plans, we aim to implement and improve the EDH component by the utilization 

of SHAP Explainability techniques that calculate Shapley values based on the coalition game theory 

and where the feature values of a data instance act as players in a coalition [42-43]. The Shapley values 

indicate how to fairly distribute the “payoff” and the final prediction among the different examined 
features. Moreover, a comparison tool for AI models will be also implemented to allow the HCPs to 

select and compare statistics, diagrams, and outcomes from two different models in an interpretable 

way. Finally, the Monitoring and Alerting mechanism will be improved by the integration of 

Incentive Marketing and Bounce Mitigation approaches to further motivate patients in improving 

their lifestyle choices and keep them engaged with the iHelp platform and mitigate the risk of quitting 

the platform and its accompanied mobile and web applications. 

In this paper, only a specific use case and data from one hospital were examined verifying the 

functionalities of the platform, which could be considered a potential limitation. Towards this 

direction, concerning the future research and further updates on the platform, it is among the future 

plans to evaluate the platform with more use case scenarios and different types of data e.g., from 

other cancer types. Furthermore, we aim to disseminate the outcomes of the iHelp project, to receive 

valuable feedback on the platform and its usage scenarios, and to adapt the implemented components 

to the different needs of the healthcare stakeholders. The latter will facilitate the development of a 

holistic and multidisciplinary HTA approach considering multiple parameters and standardized 

metrics and KPIs. It will combine outcomes of Clinical Studies and Randomized Control Trials (RCTs) 

with Real World Evidence (RWE) from the different use cases and scenarios on which the platform 

will be utilized and evaluated in the context of the iHelp project [20]. 

5. Conclusions  

In the realm of healthcare, today's HCPs are presented with remarkable opportunities to gather 

and manage comprehensive digital health records, drawing from various sources, including 

individuals’ lifestyle behaviors and habits, EHRs, and medical data repositories. This variety of data 
pose the potentials to facilitate a shift towards data-driven healthcare practices and AI-driven 

healthcare analytics and decisions. The integration of AI in the healthcare decision making (e.g., 

monitoring, real-time decision support) phase is still evolving, with persistent challenges related to 

the trustworthiness, explainability, as well as development of improved prevention and intervention 

measures. 

This paper has discussed these challenges and presented solutions that can advance the state of 

AI-based personalized decision support systems. The main contribution of the paper is the 

introduction of an integrated platform for health-related data processing, AI decision support and 

personalized monitoring and alerting. The platform has been designed and developed for use by the 

HCPs, enabling them to make efficient and reliable healthcare decisions by using AI-based analysis 

of integrated health data. The extensible and user-centric design of the platform ensures a 

harmonious blend of performance, interpretability, and wide adaptability, making it exploitable for 

critical decision-making situations in the healthcare domain. Moreover, this paper has introduced an 

approach to crafting AI-based healthcare recommendations in compliance with relevant regulations. 

The viability of this approach has been evaluated through heterogeneous healthcare datasets 

pertaining to individual monitoring and care planning. The suite of algorithms employed in the 

Monitoring and Alerting System and the Decision Support System (within the iHelp platform), 

represent a formidable toolkit for HCPs who are interested in utilizing advanced data-centric 

techniques and AI-based analytics in their healthcare management and decision-making processes. 
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