Pre prints.org

Article Not peer-reviewed version

Enhanced Monitoring and
Decision Support in Pancreatic
Cancer through Holistic Health
Records and Advanced Data
Processing: the IHELP Platform

George Manias : , Ainhoa Azqueta-Alzuaz , Juan Ramon Berenguer Mari, Athanasios Dalianis , Jake Griffiths
, Maritini Kalogerini , Konstantina Kostopoulou , Eleftheria Kouremenou , Pavlos Kranas , Sofoklis Kyriazakos
, Danae Lekka , Fabio Melillo , Marta Patifio-Martinez , Oscar Garcia-Perales , Aristodemos Pnevmatikakis ,

Spyros Spanos , Salvador Garcia Torrens , Usman Wajid , Dimosthenis Kyriazis

Posted Date: 20 October 2023

doi: 10.20944/preprints202310.1360.v1

Keywords: artificial intelligence; holistic health records; pancreatic cancer; real-time monitoring; primary and
secondary data

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3216670
https://sciprofiles.com/profile/1525613
https://sciprofiles.com/profile/1083102
https://sciprofiles.com/profile/1482498
https://sciprofiles.com/profile/1458686
https://sciprofiles.com/profile/480723

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 October 2023 doi:10.20944/preprints202310.1360.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Enhanced Monitoring and Decision Support in
Pancreatic Cancer through Holistic Health Records
and Advanced Data Processing: the iHELP Platform

George Manias 1*, Ainhoa Azqueta-Alztiaz 2, Juan Ramon Berenguer Mari 3, Athanasios Dalianis ¢,
Jake Griffiths 5, Maritini Kalogerini ¢, Konstantina Kostopoulou 6, Eleftheria Kouremenou ?,
Pavlos Kranas 7, Sofoklis Kyriazakos ¢, Danae Lekka ¢, Fabio Melillo 8, Marta Patino-Martinez 2,
Oscar Garcia Perales 5, Aristodemos Pnevmatikakis ¢, Spyros Spanos ¢, Salvador Garcia Torrens 3,
Usman Wajid 5 and Dimosthenis Kyriazis !

I Department of Digital Systems, University of Piraeus, Piraeus, Greece
2 Universidad Politécnica de Madrid, Madrid, Spain

3 Hospital de Denia Marina Salud S.A., Alicante, Spain

4 Athens Technology Center S.A., Athens, Greece

5 Information Catalyst, S.L., Alicante, Spain

¢ Innovation Sprint, Brussels, Belgium

7 LeanXscale, Madrid, Spain

8 Engineering Ingegneria Informatica SpA, Rome, Italy
Correspondence: gmanias@unipi.gr

Simple Summary: The modern healthcare landscape is overwhelmed by data derived from heterogeneous IoT
data sources and Electronic Health Record (EHR) systems. Based on the advancements in data sciences and Al,
an improved ability to integrate and process the so-called primary and secondary data offers the potentials to
provide real-time, and personalized health-related decision support and develop personalized healthcare
strategies. In that direction, an innovative mechanism for processing health related data is introduced in this
article. This mechanism, called iHelp Platform, integrates emerging technologies and techniques from IoT
systems, Artificial Intelligence (Al), data management and Semantic Web to help release a holistic and robust
solution for all stakeholders in the modern healthcare domain. This article describes the details of the
mechanism, its internal subcomponents and workflows, together with the results from its utilization,
validation, and evaluation in a real-world scenario.

Abstract: The healthcare domain is increasingly adopting IoT and Electronic Health Record (EHR) systems,
generating vast volumes of healthcare data. This shift is driven by the growing need of delivering the right
information to the right individuals, at the right time. The latter underscores the importance of adopting a
comprehensive strategy for efficiently collecting, utilizing, and analyzing health-related data to not only
enhance overall healthcare management but also for the provision of timely and personalized prevention
strategies. The latter is of highest importance especially in scenarios where lack of effective treatments or poor
survival rates (such in pancreatic cancer) renders typical healthcare strategies ineffective. In this article, we
introduce an innovative and integrated platform that is specifically designed and developed for accessing,
processing, and analyzing data in challenging healthcare scenarios, such as dealing with pancreatic cancer.
This platform, called iHelp, combines multidisciplinary technologies and provides healthcare professionals
reliable risk modelling, analysis, and prediction techniques so that individuals (at risk of developing pancreatic
cancer) can be provided with timely, reliable, and personalized prevention and intervention measures. A key
innovation in the iHelp platform is the standardized data management approach called Holistic Health
Records (HHRs) that facilitate the capturing of all health determinants in a standardized and well-structured
way for processing towards the provision of health risk detection and personalized healthcare decision
support. In the development of iHelp platform, the HHRs are evaluated through different real-world
healthcare datasets, including datasets coming from hospital systems, data from wearables, questionnaires,
and mobile applications.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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1. Introduction

During the last decade the development and utilization of cutting-edge technologies, such as IoT
and Al, has fueled an exponential growth in different domains [1-3]. The insights of a recent survey
indicate that most of the emerging technologies and trends are three to eight years away from
reaching widespread adoption but are the ones that pose significant impact during the next years [4].
Although many of these technologies are still in their infancy, still organizations and businesses that
adopt and embrace them early, will be able to gain significant advantages against their competitors.
Some of these technologies, such as Edge Artificial Intelligence (AI), Human-centered Al, Synthetic
Data, and Intelligent Applications, can significantly impact the healthcare sector, among other
domains. The integrations and utilization of these technologies can enhance the provisioning of
remote diagnostics, as well as of early diagnosis and pre-diagnosis of critical diseases [5]. The high
demand for remote patient monitoring and personalized healthcare has vastly improved the health
analytics techniques and their implementation in healthcare systems. Emphasis on health analytics is
also supported by the increasing utilization of wearables and the Internet of Medical Things (IoMT)
that provide easy access to a large pool of health-related data. It should be noted that wearable
devices are projected to grow at a 9.1% CAGR and IoMT at 23.70% between 2023 and 2032 [6].

However, the healthcare domain faces various challenges related to the diversity and variety of
data, the huge volume, and the distribution of data, thus there is an ever-increasing demand from
healthcare organizations to implement and utilize new solutions and data-centric applications that
can help gain actionable insights from their data [7]. Data have long been a critical asset for medical
organizations, hospitals, governments, and other stakeholders in the healthcare domain. The massive
investments by the healthcare industry into new technologies and the rapid growth in the usage of
cloud computing, mobile computing, medical devices, IoMT, and Al are some of the key factors that
promote the need for enhanced and state-of-the-art health analytics solutions [8]. In this respect,
health analytic solutions are increasing focusing on exploiting value from primary data (coming from
established data sources such as lab results, genomics, and family history), or secondary data (coming
from Internet of Medical Things (IoMT) devices that automatically measure and monitor in real-time
various medical parameters in the human body). The integration of primary and secondary data has
revealed the potentials for greater insights for healthcare and health related decision making [9]. Even
if, for collecting prospective and retrospective clinical data, there already exists a plethora of methods
and techniques for automatically capturing such data in batches [10], this is not the case for the
ingestion of streaming data which has come under the attention of research and development during
the last five (5) years [11-12]. As a result, current healthcare and assisted living solutions need to be
enhanced to support the processing of primary and secondary data, since citizens have increasing
access to their personal IoMT devices that can monitor their individual parameters (e.g., heart rate,
sleeping condition) and track their daily activities (e.g., distance walked, calories burned). In addition
to collecting data, these devices are also capable of offering personalized recommendations to
enhance lifestyle, optimize personal activities within living environments, and proactively prevent
the onset of health-related issues [13].

However, to effectively work with primary and secondary data, there are still challenges with
regards to standardised discovery and interoperability of different types of devices/data, as well as
security and privacy of data to be used in existing healthcare platforms. Existing IoMT devices most
of the times are surrounded by high levels of heterogeneity, since they have diverse capabilities,
functionalities, and characteristics. In such cases, it becomes essential to offer abstractions of these
devices to both the platforms and the end-users and develop tools to handle the lack of
interoperability among them [14]. Hence, another challenge that emerges is related to addressing the
heterogeneity of different IoMT devices, along with the difficulty of healthcare systems/platforms to
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effectively communicate and interact with these devices. In that direction, there is an even growing
demand to develop methodologies and procedures for the standardised integration, processing, and
analysis of heterogeneous data driven from divergent data sources and devices in the modern
Healthcare Information Systems (HIS). Such improvements can lead to enhanced diagnostics and
care strategies, as well as to the extraction and utilization of actionable value and knowledge from
available data in the healthcare domain.

Timely diagnosis is very important when it comes to the critical diseases, such as cancer, and
especially to pancreatic cancer that is uncurable and usually lacks clear symptoms at its early stages
[15]. Understanding the underlying causes or risk factors can help to identify individuals at high risk
of developing pancreatic cancer. From there, specific measures (preventions and interventions) can
be introduced to reduce the risks e.g. by working on modifiable risk factors that relate to lifestyle,
behaviors, and social interactions (e.g., reduction in smoking, alcohol, obesity, red meat consumption,
and increasing intake of vegetables, increasing fruit and regular physical exercise) [16]. Early
detection allows for more effective planning and the implementation of appropriate interventions
and possible treatments to improve Quality of Life (QoL) of the affected individuals [17].

Early identification of modifiable risk factors of pancreatic cancer relies on healthcare
professionals (HCPs) to possess sufficient knowledge, age-appropriate care programs and
community-based approaches towards specialized, multidisciplinary services both in terms of
prevention and interventions on diverse cancer related factors. However, a significant gap still
remains between the delivery of stratified healthcare, because current approaches often take a one-
size-fits-all approach [18]. Personalization implies a level of precision that seeks to treat the patient
as opposed to the disease, taking into account as an example comorbidities, genetic predisposition
and environmental factors. Lack of integrated data (e.g., lifestyle data, Patient-Reported Outcome
Measures (PROMs), Patient Reported Experience Measures (PREMs), and genomic data) from
patients that would allow clinicians to make personalized decisions as part of their clinical decisions
limits the effectiveness of prevention strategies. Lack of integrated health data also hampers the
potential of patient centric interactions between HCPs, healthcare authorities, patients, and
caregivers, as well the potentials of advanced technologies, such as Al, for accurate risk prediction,
prevention, and intervention [19].

Considering all these challenges, by effectively gathering, standardizing, and analyzing both
primary and secondary data, collective community knowledge and personalized health insights
could be extracted. The latter is facilitated by the collection, integration, and analysis of information
from different sources concerning individuals for the provision of actionable insights at the point of
care. To address gaps and requirements in individualized or personalized healthcare, this article
introduces a digital platform that aims to integrate heterogeneous data sources to realize Holistic
Health Records (HHRs) that can provide complete integrated data views. To effectively construct the
HHRs, the platform develops various data management techniques that cover the complete data
lifecycle, from the collection of the heterogeneous data until its aggregation, processing, and
harmonization. The data in the HHRs are analyzed using advance Al techniques embedded in
adaptive learning models that are used to provide decision support to HCPs in the form of early risk
predictions as well as personalized prevention measures. To this end, the digital platform enables the
management of integrated and harmonized data in the HHR format, and its analysis and exploitation
by Al-based algorithms. The platform also provides advanced decision support functionalities to
enable healthcare experts to provide added-value care services to cancer patients for improved
Quality of Life (QoL).

The digital platform introduced in this article, called iHelp, has been evaluated through diverse
real-world scenarios that provide different datasets, ranging from hospital-retrieved data to data
from wearables, questionnaires, and mobile applications proving its wider applicability and overall
efficiency. The platform is developed in the context of the EU-funded project iHelp (hence the name
iHelp platform) that seeks to deliver a novel personalized-healthcare framework and digital platform
that can enable the collection, integration, and management of primary and secondary health-related
data [20]. In addition to the emphasis on data, the platform provides advanced Al-based learning,
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decision support and monitoring systems to help with early identification and mitigation of
pancreatic cancer related risks.

The remainder of the paper is structured as follows. Section 2 describes the overall architecture
of the proposed mechanism, depicting all of its incorporated components and the integration
approach among them to achieve improved healthcare data integration and analysis. Section 3
evaluates the reference implementation of the mechanism against a real-world healthcare scenario,
whereas Section 4 discusses the effectiveness of the current research work and its overall contribution,
as well outlines any future work. Finally, Section 5 concludes this article.

2. Materials and Methods

The flowchart and reference architecture of the iHelp platform is depicted in Figure 1. More
specifically, the platform consists of 5 different building blocks or sub mechanisms: (i) Data Collection
& Ingestion, (ii) Data Standardization and Qualification, (iii) Data Analysis, (iv) Monitoring and Alerting
and (v) Decision Support System. The integration of these different building blocks results on an end-
to-end integration and exploitation of the raw data though this novel and holistic platform. It should
be noted that the secondary data referred to in this article (and used within the iHelp platform)
correspond to the data collected from Garmin wearable device, whereas the primary or batch data
correspond to the historical personal data of the individuals.

(iHelp for HCP
land ModelBuilder

I 7
Data Colletion

Il 3

| & Ingestion

I

Figure 1. Overall Architecture.

2.1. Referecence Architecture

In this section, a blueprint of the proposed platform is presented, along with the internal process
that takes place for its seamless interaction and integration with either secondary data sources (i.e.,
wearable devices) or primary data sources (i.e., hospital systems and databases), as depicted in Figure
1. As described previously five (5) different building blocks and phases are incorporated in the iHelp
platform. It is characterized as a reference architecture since it is presented at a high-level, abstract,
logical form, which provides a blueprint for the implementation of different functionalities such as
the Al-based healthcare analytics. In more detail, the platform initially consists of the sub mechanisms
of Data Collection and Ingestion, through which it may connect to heterogeneous data sources and
gather their data, and of the Data Standardization and Qualification that can process and harmonize the
external healthcare data it receives and store them in its internal datastore. These two building blocks
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represent the end-to-end Data Ingestion Pipeline of the iHelp platform, as depicted in the Figure 2.
Other software components in the Pipeline are the Data Capture Gateway, Data Cleaner, Data
Qualifier, Data Harmonizer, and HHR Importer that consume data from one and produce them to
the other by utilizing the capabilities of the Kafka message bus that is further described in the next
sub section.

Ingestion Pipeline - detailed

mull\pls furmats

9 ¢

MESSAGE BUS

‘ T3 [Tb
e

Figure 2. Data Ingestion Pipeline.

The iHelp platform also integrates sophisticated techniques and Al algorithms for performing
the Data Analysis (sub mechanism) so that HCPs are able to glean invaluable insights from the
integrated patient data, enhancing their ability to tailor treatment plans and preventions.
Concurrently, the utilization of Monitoring and Alerting components diligently oversees patient
conditions and system performance, rapidly notifying HCPs of any irregularities or critical
occurrences. Finally, the implementation of a Decision Support System empowers HCPs with
intelligent recommendations and data-based support, assisting them in making informed decisions
that prioritize patient well-being. The latter also acts as the frontend of the iHelp platform by
visualizing the insights derived from the Data Analysis and Monitoring and Alerting sub mechanisms.
Together, these interconnected sub mechanisms create a powerful synergy, enabling more efficient
and effective healthcare decision making while promoting improved health outcomes for all
stakeholders.

2.1. Integration Approach

What concerns the integration of all these different components the open-source Kafka and
Kubernetes tools are utilized providing a containerized approach of integrating the iHelp platform.
The latter enables the deployment of this platform in different environments and infrastructures
showcasing its interoperability and improved adaptability in any deployment environment e.g., in
stakeholders’ servers and premises. The manifests that are developed as part of the deployment
scripts contain all the needed components and respective installation prerequisites to establish and
deploy the platform as a whole. On top of this, it should be noted that the iHelp has already been
deployed and evaluated for its functionality and performance in the premises of two different
hospitals (in EU) in the context of the iHelp project.

To facilitate seamless and reliable data exchange between different components such as the two
first sub mechanisms (i.e,, Data Collection and Integration, and the Data Standardization and
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Qualification), the iHelp platform uses Apache Kafka [21]. Kafka is a message broker and stream
processor that allows to publish, subscribe, archive and process streams of data/records in real time.
It is especially designed to manage data streams from multiple sources by distributing them to
multiple consumers. In this way, Kafka facilitates the collection and processing of both primary and
secondary data that are ingested into the introduced mechanism.

Apart from the use of Kafka as the platform’s message broker mechanism, the Kubernetes
platform is utilized [22] to provide DevOps services. Kubernetes (K8s) is an open-source platform
that automates Linux container operations. The integration between K8s and Kafka results on the
simplification of the deployment of Kafka brokers as containerized pods, as each Kafka broker can
run as a separate pod, ensuring scalability, fault tolerance and availability of the overall approach.
On top of this, microservices can be deployed to easily consume and produce data to Kafka topics,
allowing for real-time data processing and analysis of the processed data in the context of the project.
Finally, K8s eliminates many of the manual processes involved in deploying and scaling
containerized applications and allows to manage host clusters running containers easily and
efficiently and for enhanced management of the K8s cluster the Rancher tool is utilized.

2.3. Data Collection and Ingestion

Health data can result from clinical tests performed invasively on samples taken from the
patients” bodies, or non-invasively using modern depicting techniques. Such data, obtained in a
clinical setting, are of paramount importance and are termed as primary, but certainly does not form
the complete spectrum of health data [23]. Today the importance of environmental factors, diet, and
living habits is well-established. The patients’ living habits can be enumerated using data attributes
about their lifestyle, obtained in their natural environment, outside the clinical setting. These types
of data are termed secondary, since they correspond to health but are not determinists of typical
health systems.

The Data Collection and Ingestion building block in the iHelp platform is responsible for the
integration, anonymization, and verification of the primary and secondary data. Depending on the
data source type that is connected and the corresponding way that must be used for ingesting its data
(i.e., streaming collection for unknown sources and batch collection for known sources), this (Data
Collection and Ingestion) sub mechanism utilizes different connectors of the Data Capture Gateway
as its main interfacing component.

The Data Capture Gateway is the component that can be considered as the interface between the
iHelp integrated platform and the external data sources, both primary and secondary, from which it
captures the data to be pushed into the established data ingestion pipeline. The Gateway implements
a standalone Java process, or a microservice, that take cares of connecting to the various external data
sources and sends the data to an intermediate Kafka topic, so that the data can be retrievable from
the other functions in the Data Ingestion Pipeline. As such, it also provides REST APIs that are used
to initiate data capture activities or schedule them for a later or a periodic execution. The REST APIs
of the Gateway are deployed into a servlet container, however they make use of the core
functionalities of the Data Ingestion Gateway and therefore, both the REST APIs and the code
implementation are inside the single Java process. A high-level overview of the different software
elements of this initial design are depicted in Figure 3.
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Figure 3. Data Capture Gateway Overview.

As the Data Capture Gateway captures data from the supported primary data sources, it
forwards them into a common Kafka topic from where it can be used by different components in the
data pipeline. As it has been described in the previous sub sections, all software components that are
involved in the Data Ingestion Pipeline are interchanging data through Kafka broker.

With regards to the secondary data, they comprise attributes that enumerate different important
aspects of the way the patients live their lives. The attributes are grouped in the physiological,
psychological, social, and environmental categories [24].

The physiological attributes are concerned with the human body, its activities, and adverse
events. They are mostly measured using activity trackers e.g., steps walked, distance walked,
elevation (or floors climbed), energy dissipation, time spent in different activity intensity zones and
exercise activities (walking, running, cycling, etc.), as well as their distribution in the day. Attributes
related to the functioning of the heart include the continuous measurements of the heart rate
variability and the time spent in different heart rate zones, as well as the daily resting heart rate
measurement. Sleep related attributes include continuous measurements on the time spent in the
different sleep stages (awake in bed, light, REM, deep sleep). Other physiological attributes like
Symptoms of interest, weight and nutrition can be self-reported by the participant using widgets on
a mobile app or questionnaires.

The psychological attributes refer to the emotions of the patients. They are mostly reported
(although audiovisual or text-based emotion detection is possible) and include emotional state self-
assessment using questionnaires or standardized reports from professional therapists.

The social attributes can be measured indirectly based on the usage of the mobile phone
(diversity, duration, frequency of calls) and social media (diversity, number, frequency of
interactions). More direct information can be reported using questionnaires on activities with others
or can be obtained in conversation with a digital virtual coach or mobile app.

The environmental attributes include reported environmental indicators for the assessment of
the quality of life. Measurements of living environment quality can be obtained by integrating
relevant commercial devices (e.g., for air quality analysis), or by integrating with data services that
report the Air Quality Index or weather details at the patients’ locations.

Secondary data collection can be done by the patients at their own everyday setting, using a
mobile application. The Healthentia mobile application was selected to be utilized in the context of
this research work. This mobile application offers interoperability between different mobile and
wearable devices and allows to capture data concerning all the abovementioned health determinants
and categories [25]. Regarding the use of this application, at first, the corresponding portal is used to
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define the mobile app functionalities and the settings applied for a particular clinical study. This step
results into the setup of the main application dashboard, as depicted in Figure 4. The data that are
captured for each specific individual of the study is then transported in the iHelp platform through
the secondary data connector of the Data Capture Gateway. From the Gateway, the data are
forwarded to the internal Data Ingestion Pipeline for their further processing, cleaning, and
transformation to the corresponding HHR data model.

Enabled Widgets . 2=
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Figure 4. Setting up an iHELP study in Healthentia. Widgets are selected (left) and the nutrition
widget is customized to include the food categories of interest (middle), resulting to the main
dashboard of the mobile app (right). .

2.4. Conceptual Data Modelling and Specification of HHRs

For addressing interoperability challenges, it is of paramount importance - - to develop
adaptable and standardised data structure, which are termed as Holistic Health Records (HHRs). The
HHR model is developed using existing models as a guide, with specific focus on the HL7 FHIR
standard [26]. Although the HL7 FHIR standard is still in development and primarily designed to
represent clinical data, it incorporates the capability to represent a broader range of data going
beyond clinical information e.g., streaming data originating from sensors. In this respect, our HHR
model is engineered to be versatile and adaptable to various contexts, thanks to the flexibility offered
in the HL7 FHIR standard.

Regarding the construction of the HHR model, the data gathered from the hospitals were
initially grouped into medical categories for easier analysis of the concepts such as Pathology,
Medication etc. Then every concept was mapped to the most relevant FHIR entity resources. The
FHIR entities resources mostly used were Person, Observation, Condition, Procedure, Encounter,
MedicationAdministration etc. Any concept not directly mapped to a FHIR element resource was
modelled exploiting the standard mechanism provided by the FHIR standard, the Extensions, as an
FHIR Extension inside the most relevant FHIR element mentioned thus creating a separate Profile for
these elements. Similarly, the not standardized values of the hospital’s data attributes were
translated, following the HCP’s knowledge into standard SNOMED concepts [27]. If an attribute did
not have a direct representation in SNOMED, it was included in the iHelp FHIR CodeSystem as a
custom element. The representation of the iHelp conceptual model was achieved by using TTL,
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utilizing the FHIR ontology and the official guidelines in relation to creating FHIR CodeSystems,
Extensions etc.

2.5. Data Standardization and Qualification towards HHRs

The deployment of advanced healthcare analytical tools and frameworks not only results in the
increased productivity of the healthcare professionals but also overall improved patient management
and care. However, the analysis of data is mostly reliant on standardization and qualification of
underlying data [28]. To this end, the proposed pipeline in the iHelp platform addresses these aspects
by exploiting three (3) processing phases, the cleaning, the qualification, and the harmonization of
the data. These phases are realized through the design and implementation of three (3) integrated
subcomponents, i.e., the Data Cleaner, the Data Qualifier, and the Data Harmonizer respectively as
depicted in Figure 2 and initially introduced in [29].

In deeper detail, as soon as all the needed data are ingested into this pipeline by the Data
Collection and Ingestion building block the first two phases of this pipeline are responsible for the
cleaning and quality assurance of the collected data. Thus, from the very beginning of the overall
processing pipeline, it aims to clean all the collected data and to measure and evaluate the quality of
both the connected data sources and their produced data. To successfully achieve that, the optimized
pipeline exploits two (2) separate modules, the Data Cleaner subcomponent, and the Data Qualifier
subcomponent. Sequentially, in the harmonization phase, the interpretation and transformation of
the collected cleaned, and reliable data takes place through the implementation and utilization of the
Data Harmonizer. This component incorporates two (2) subcomponents, the Terminology Mapping
service, and the Data Mappers to further transform the cleaned and reliable data and to provide
interoperable, harmonized, and transformed into the HL7 FHIR standard data. To this end, the
proposed pipeline facilitates the standardization and qualification of the heterogeneous primary and
secondary data coming from multiple health-related sources and provides data into a unique and
globally recognized standard and format as the HL7 FHIR. Finally, the data are then fed into
enhanced mappers to further transform them into the Holistic Health Records (HHRs) format. The
actual realization of the conceptual HHR model is performed with the assistance of the FHIR
mappers. The implementation of them is based on the Java library of HAPI FHIR and expose APIs
that the Data Harmonizer component can consume [30].

2.6. Data Analysis

The Data Analysis building block is where the predictors for analyzing the data (in HHR format)
are executed. Two types of predictors have been developed under iHelp : a personalized predictor
and a predictor and risk identifier. The first predictor is based on data around specific diseases and
specific risks identified for individuals within the integrated (HHR) datasets. With this functionality
it has been possible to develop personalized health models that enable the identification of disease(s)
and their contributing factors. This predictor has allowed the development of prediction mechanisms
for certain risks, based on the analysis of disease-centric trends and patterns.

The second predictor is based on deriving the disease- and risks- related knowledge from the
integrated (HHR) data by using Al-based novel anomaly detection algorithms. Given the multitude
of data sources hosting and providing patients” data into the iHelp platform, this predictor has been
developed to robustly detect risks based on the analysis a variety of (historic and real-time) data for
each patient and by doing so also provide relevant predictions and assessments (correlations, trend,
pattern, underlying factors, etc.) on individuals” health status. These predictors combine facts from
streaming data not necessarily related to health (e.g., lifestyle and social interactions), collective
knowledge/intelligence and information related to the individual (e.g., from the health records and
the stored health status monitoring data). The analysis of these combined facts provides knowledge
referring to different types of risks and their evolution in time. Another aspect of this second type of
predictor is that it enables to evaluate the impact of different symptoms, decisions, and
environmental conditions regarding the same situation-dependent attributes such as lifestyle choices,
mobility modes, etc.
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2.7. Decision Support System

The Decision Support System (DSS) is the user interface and access point to the iHelp platform
and has a two-fold objective. On one hand, it seeks to provide several functionalities that allow HCPs
and healthcare stakeholders to make decisions based on improved data analytical outcomes. The DSS
provides query building, analytics, and visualization mechanisms that access the HHR integrated
data and present the analytic outcomes to the end users in a way that eases the understanding,
interpretability and explainability of the analytic models in the iHelp platform. The Explainable
Dashboard Hub (EDH) sub-component in the iHelp platform facilitates this approach, as it provides
several dashboards that are used to monitor metrics and outcomes of the AI models. The dashboards
are designed to offer improved explainability on the analytical models allowing the HCPs to select
multiple data analytic models for a wide range of scenarios and view numerous different
visualizations and model comparisons. This helps the HCPs to enhance their knowledge and
understanding on outcomes of the models and better interpret the final insights of them. On the other
hand, the DSS mechanism can also be exploited by more technical users and Al experts e.g., model
builders. These users can use the DSS to design different dashboards with the visualization and
presentation of the and provide these dashboards to the relevant HCPs. A model builder can use a
palette of SQL-like, analytical and visualization operators to create pipelines/workflows of
transformations and visualizations over the results of the analytical algorithms. Following this robust
approach and integration of different tools the DSS offers a set of generic dashboards that help both,
the technical and non-technical users, to extract enhanced and more evidence-based decisions.

Data Storage
-

- - =
Authentication and Authorization - w
Model Builder Workflow Editor iHelp Analytics
User — redictor and Risk Identifier
Personalized Predictor
/ = Algorithms
e
. Custom Dashboards iHelp Monitoring
Healthcare Professional Web Interface and Alerting System
User )
b d

iHelp Social
Analyser

iHelp Mobile
Application
(Healthentia)

Figure 5. Interaction of Different Users with the DSS.

The overall interaction of a model builder and an HCP user with the DSS is presented in Figure
5. At first, each user must access the DSS through a Login interface and an Authentication and
Authorization mechanism for improved security and access monitoring on the visualized data. Based
on the privileges of the user, the DSS grants access to its different subcomponents. If the user has a
model builder user role, then the DSS grants access to the Workflow Editor, Custom Dashboards or
EDH subcomponents. Otherwise, for HCP role users the DSS grants access to the Custom Dashboards
or EDH subcomponents. When a user registers in the iHelp platform, he/she is assigned one of the
above roles. The model builder user can design the workflows and the custom dashboards that will
be further used by the HCPs users. The Query-builder and Workflow interface interact with the iHelp
Data Storage reading the data and injecting them into the Analytical models provided by the
Analytics Workbench or into the Predictor and Risk Identifier or the Personalized Predictor
components. The model builder can create dashboards through the Dashboard interface which will
show the results of the models and queries designed in the Workflow interface. On the other hand,
the web interface contains a series of generic interfaces that allow the HCP to access patient data, the
Monitoring and Alerting system, and interact with the patient by sending messages through the
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mobile application (the Healthentia mobile app), as well as having access to the custom dashboard
implemented by the model builder and the EDH subcomponent interface to analyze the results
obtained by the Al models.

2.8. Monitoring and Alerting

Having collected the data (both primary and secondary) about the patients in a holistic and
standardized (mapped into HHR) way, the guidance of the patients through early identification of
pancreatic cancer is the Monitoring and Alerting mechanism. This mechanism has a two-fold
objective, as it aims to optimize decision support for HCPs, while also offering improved
personalization of risk mitigation and prevention plans and the fine-tuning of goal settings. To
achieve the latter, three (3) different subcomponents are designed and developed: the Data
Aggregator, the Data Evaluator, and the Alert Generator that implement the monitoring, evaluating
and alerting functionalities respectively. Their development has been based on a Java-based
microservice approach and their integration and interexchange of data are based on the utilization of
the Apache Kafka tool.

On top of this, the Monitoring and Alerting mechanism offers HCPs an interface to define offline
rules, evaluate them online, propose dialogues for their consideration, and make final selections for
delivering them to patients. In that context, its main objective is to give HCP the ability to assign
mitigation plans and respective recommendations to a specific individual and then to monitor and
assess the effect of these recommendations and plans in the QoL of the individual. A mitigation plan
is essentially an action plan assigned to a patient and typically the execution of this plan aims to bring
concrete health improvements and to lower the risk of developing pancreatic cancer. It is comprised
of several rules some of which can be turned off depending on the personalized configuration for the
patient. The HCP will assign a goal value to each active rule of the mitigation plan selected for the
patient. For example, a goal for a given patient can be to decrease the cigarettes smoked per day or
to increase his/her physical activity on weekly basis. Then, the component will monitor and evaluate
the progress of the patients by collecting and aggregating secondary data, such as questionaries and
behavioral data collected through the Healthentia mobile application, and then comparing them with
personalized targets issued by HCPs. To this end, this mechanism, along with its accompanied
subcomponents, enables the set of mitigation rules, and facilitates the personalized interactions with
the patients. Two of its main subcomponents are the Virtual Coach and the Impact Evaluator that are
further detailed below.

2.8.1. Virtual Coach

The virtual coach component offers patients the user interface for receiving and interacting with
the mobile application and the underlying iHelp platform. This component also runs on the
Healthentia mobile application, which is used for secondary data collection. Virtual Coach interacts
with the users by sending the notification (e.g., risk alert). Following the notification, the users end
up in the virtual coach interface, from where they can start a dialogue with the virtual coach.

Behind the scenes, the virtual coach exposes an endpoint to receive requests for dialogue
delivery. In that call, the receiving patient and the intended dialogue are identified. Upon receiving
the request, Healthentia (backend platform of the mobile app) pushes a notification to the mobile
operating system (Android or iOS) and to the mobile application itself (to be viewed in the
notifications page of the mobile app). The patient can tap either on the notification of the operating
system, or on the notification at the dedicated application page. Then the web view of the virtual
coach is displayed, and the patient can go through the dialogue. After dialogue playback, the patient
can see the read notification in the dedicated page, but tapping on it only provides a summary of
what it was about.

The structure of the dialogues is implemented via the open-source WOOL platform [31]. WOOL
comprises both a dialogue editor and a playback system. The editor allows dialogue authoring as a
graph of interconnected nodes of agent text and possible patient replies to be selected. The playback
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system provides the web view that is integrated in the mobile phone, serving as the user interface for
dialogue playback.

2.8.2. Impact Evaluator

This subcomponent, part of the Monitoring and Alerting component in the iHelp platform, aims
to evaluate and highlight the impact of the advice, sent to the citizens/patients, on their behavior. The
main goal is to monitor and highlight to the clinicians how and if the specific type of advice changed
the lifestyle of the recipients. For doing that, the citizens/patients are clustered using common
characteristics (e.g., age, gender, BMI, or risk factors, if available) to compare the advice sent to a
similar population. The result of this analysis could contribute to better fine-tune the model for
generating the advice and the user to be reached. The input data are collected both from the
Monitoring component (the goals and their achievement) and the HHR (sent messages and collected
secondary data) using the standard FHIR API.

The image in Figure 6 shows the initial and feedback loop, based on the overall iHelp
architecture, which is explained above.

1. The HCP sets the goals of the individual and configures the iHelp platform to ingest the primary
data that the health organization already has on its premises.

2. The specific component reads the data and triggers the dialogue to send the right content.

The content is delivered to the individual.

4. The individual, using the mobile app on his/her phone, feeds the platform with the secondary
data that are stored inside the iHelp platform. Any other primary data which are produced by
other external services of the health organization, like the lab tests, are stored in the iHelp

W

Platform as well (as in step 1).

5. When the HCP requests the analysis, the Impact Evaluator read all the data needed to elaborate
on the result.

6. The result of the computation is shown to the HCP through the dedicated iHelp platform

interface.
It should be noted that Steps 1 to 4 are performed in a loop, while Steps 5 and 6 are performed
on demand.
@ i
iHelp User
¥ IS
o 7...‘ A 3
S -
Health Organization °
o

Figure 6. Ingest and evaluation loop.
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3. Results

In this section, the performance of the core components of the iHelp platform are analyzed
together with its potential for bringing more efficient and personalized decisions in the healthcare
domain. In deep detail, this article focuses on evaluating the effectiveness of the operation of the
different pillars and the final demonstration and visualization of the results to the healthcare
professionals. To this end, it should be noted that the evaluated components have been developed in
Java SE, Angular]S, React]S, and Python programming languages showcasing the generalization and
improved integration of the introduced platform with widely used frameworks.

3.1. Use Case Description

To evaluate the Data Collection and Ingestion mechanism, and other components of the iHelp
platform, both primary and secondary data from the Hospital de Dénia — Marina Salud (HDM) pilot
have been utilized. The HDM use case is focused on predicting the risk of pancreatic cancer. The
iHelp platform is used to analyse the impact of changes in the lifestyle and habits over the identified
risk factors. The impact of the lifestyle changes will be measured at epigenomic level through the
measurement of methylation indexes.

At its initial stage, this pilot obtained patients’ medical records from the hospital’s local
Electronical Health Records (EHRs). The data extraction was performed in CSV files and following
the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) [32]. The
data input is received by the Data Collection and Ingestion mechanism of the iHelp platform. It
should be noted that these data represent patients that are separated into two main groups:

Individuals that are directly involved in the iHelp project for their further monitoring and

follow-up by the HCPs of the HDM. Out of these individuals:

o 6 are patients already diagnosed with pancreatic cancer. In the context of this pilot study,
they provide their medical records and one single blood sample to perform epigenomic
analytics.

o 13 are patients without pancreatic cancer. In addition to their medical records, a blood
sample was provided each 3 months and lifestyle data were collected through a 9-month
monitoring phase based on the wearable devices and periodic questionnaires through the
Healthentia platform.

Individuals not directly inside the program:

o  Anextraction of medical records from around 90K patients is anonymized and provided to
the iHelp platform.

It should be noted that in HDM pilot no bias has been identified in the examined data and the
90K patients represent the full population of the geographic area that is assigned to the hospital. The
data that are ingested in the iHelp platform are fully anonymized and the study is performed under
the approval of the hospital’s Ethical Committee. Following the OMOP standard, a collection of seven
(7) different primary datasets is produced, provided, and examined in the context of this pilot study
based on the respective information, as presented in Table 1. A sample from one these primary
datasets related to the different measurements is also depicted in Figure 7.

Table 1. HDM Datasets Description.

Dataset Name No of Records N? of Dataset Size (in MB) Dataset Type
Attributes

Measurements 3.252.920 17 564,1 CSv
Observations 339.925 14 55,4 CSV
Person 99.019 8 2,8 CSV
Drug Exposure 5.411.914 13 779,9 CSvV
Condition 1.833.512 14 248,5 CSV
Visit Occurrence 5.205.819 13 727,5 CSvV

Procedure 602.351 12 147,5 CSv

doi:10.20944/preprints202310.1360.v1
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neasurement_id person_id datetine type_concept id value as number value as_concept id unit concept id range low range high provider id visit occurrence id
12899689 194005 10 02;{?%:]}]”;(;;3 32817 59 NaN 8753 40 60 1234 7608885
53301404 194005 09:49: 523%%;[)2633 32817 183 NaN 0 74 105 46 12377026
61670970 194005 08 IS‘IZfE%%EJDD?(;SS 32817 88 NaN 0 o 150 1234 9472232
61693516 194005 0813 3220%315653 32817 170 NaN 0 70 200 1234 9472232
65774109 194005 s et e 32817 103 NaN 0 7 105 52 14789393

Figure 7. A sample of the Measurement Dataset.

3.1. Data Collection and Ingestion

The Data Collection and Ingestion component in the iHelp platform encompasses all tasks
associated with collecting, validating, and ingesting both primary and secondary data into the iHelp
platform. The primary data are directly captured and ingested by the Data Capture Gateway through
the implementation and utilization of different data connectors. Afterwards, the initial validation of
the integrity of the data is achieved through the utilization of the Avro Schema that also requires the
use of an Avro Schema Registry, which allows to only transmit the number of bytes that concerns the
data themselves, thus minimizing the overall size of the data elements, as well the time needed for
their ingestion and overall processing [33]. For instance, the time that is needed for the whole
Measurements dataset from its initial capture until its final transformation as HHR standardized data
and storage into the platform’s Data Storage is Sminutes and 26seconds. The schema of the dataset is
transformed by the Data Capture Gateway in an Avro Schema compatible format that boosts the
interoperability and have a well-known standard to be further used by other functions involved in
the data ingestion and processing process.

Moreover, the intermediate software components that formulates the Data Ingestion Pipeline
are domain and schema agnostic. This means that a flexible ingestion pipeline is established, as each
function can consume and produce data from corresponding Kafka topics in a dynamic manner and
without any prior knowledge on the data. The respective information is passed to each
subcomponent through these messages, enabling all subcomponents to communicate using this
common data format. This format is designed to be highly interpretable and in such a way in order
to be irrespective of the dataset, schema, and type of data that are contained in these messages. An
example of such messages is depicted in Figure 8, that shows a message with primary data derived
from the Measurement dataset with a batch of 2 elements, as well a message of secondary data
derived from the Healthentia platform.
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Figure 8. Messages interexchanged between the components of the Data Ingestion pipeline: (a)

Message including primary data; (b) Message including secondary data.

The most important attributes of these JSON objects and messages are presented below:
. datasourcelD: the name of the data provider
. datasetID: the name of the dataset
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. schema: the schema of the value of the tuples, defined in Avro Schema
. schemaKey: the schema of the key of the tuples, defined in Avro Schema
. batchSize: the number of batch size
. currentBatchStart: the index of the first element of the batch in the overall dataset
° currentBatchEnd: the index of the last element of the batch in the overall dataset
. confParameters: the configuration parameters required by each of the intermediate functions. It

includes an array of data parameters packed in JSON format, where each JSON can be

interpreted by the corresponding function. These parameters are being passed to each of the

intermediate functions and each one of those can retrieve the ones of their interest. For instance,
specific cleaning rules have been set by the data provider concerning specific data attributes, as
depicted in Figure 8a. These rules as consumed by the Data Cleaner to perform the necessary
cleaning and validation actions on the data.

o values: a list of the exploitable data and their different values per each record

These messages are exchanged between different subcomponents of the Data Ingestion Pipeline
by utilizing the Kafka message broker, as analyzed before.

However, a slightly different procedure is followed for the collection phase of the secondary
data. That data are initially collected using the Healthentia mobile application [25], rather than
directly fetching by the Data Capture Gateway. It is important to be mentioned that the Healthentia
mobile application gives access to answers on different questionnaires that are used for self-
assessment, while activity trackers collect individuals’ physiological and exercise data. The
questionnaires are selected by HCPs and are defined in the Healthentia portal, together with the
timing used for pushing them to patients automatically. More specifically, Figure 9 depicts the
questionnaires defined for the HDM study, as well as how such a questionnaire is answered by a
patient in the Healthentia mobile app.
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(a)

Have you recently smoked
tobacco?

(@) Yes
O o

—
How soon after you wake up do you
smoke your first cigarette?

() After 60 minutes

() 31-60 minutes

() 8-30minutes

(0) within 5 minutes

Do you find it difficult to refrain
from smoking in places where it is
forbidden?

O no

O ves

Which cigarette would you hate
most to give up?

() Thefirst in the morning

() Anyother

How many cigarettes do you smoke
per day?

() 10orless
.O n-3o0
() 2-30

() Srormore

(b)

Do you smoke more frequently
during the first hours after waking,
than during the rest of the day?

QO Wo

O vyes

Do you smoke even if you are so
ill that you are in bed most of the
day?

() nNo

Q ves

Figure 9. Using questionnaires in the HDM study. (a) List of defined questionnaires at the Healthentia
portal; and (b) answering the Fagerstrom questionnaire by a patient in the mobile app.
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The different widgets accessible from the main dashboard of the mobile app (see Figure 10) give
access to data entry functionalities and visualizations of data collected from activity trackers (like
physical activity, sleep, and heart info), other devices (like scales) and the nutrition widget, as shown
in Figure 10.

Regarding the information related with the answers, exercises and physiological data, a specific
connector has been implemented in the Data Capture Gateway. Depending to the type of dataset it
connects to the corresponding REST API provided by Healthentia and receives the respective list of
information.

< ACTIVITY = < ACTIVITY = (< SLEEP DATA =

Dally Woekly Monthly Daily Wookly Monthly Daily Weekly Monthly

> < 20c12023-80¢c12023 >

< Tue 10 Oct 2023 < 2 Oct 2023 - 8 Oct 2023

Sleep Stages

99% of Goal Ught @ Rem
) | Q ()
9.05 km 50 2010 n7

Activity List

......

< HEART RATE = < NUTRITION = < WEIGHT =
Dally Weokly Monthly Manual Entry Daity Wookly Monthly
< 20ct2023-80ct2023 > < 01Aug2023-31 Aug2023 >
Across All Meals
Heart Rate readings [] rrocessed meat PTIN
{ A ) [¥] redmeat
v [0 white meat 815 2
530;»‘“ ]22!}9(\\ LJ EQgs
Avg Resting Avg High 8.0
[] wniter Ifish .
@ Ry @ g
[_] o h fish 805
140
120.0 ol \ e 8 - od
s N Save 200
100 ¢ 01/08 15/08 /08
80, Itis important to track your food intake every
day to monitor your health
ey M

Figure 10. Entering and visualizing data in the Healthentia mobile app.

3.2. Data Standardization and Qualification towards HHRs

This sub mechanism is evaluated on real-world primary and secondary data as have been
provided in the context of the iHelp project [20], where clinical data of Pancreatic Cancer patients are
analyzed to provide personalized recommendations.

At first, the Data Cleaner component is utilized as an integrated component of the Data
Standardization and Qualification mechanism, and its main objective is to deliver the software
implementation that provides the assurance that the provided data coming from several
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heterogeneous data sources are clean and complete, to the extent possible. This component is
designed to minimize and filter the non-important data, thus improving the data quality and
importance. To address a portion of these challenges, referring mainly to reducing the complexity
and facilitating the analysis of large datasets, data cleaning procedures attempt to improve the data
quality and to enhance the analytical outcomes, since wrong data can drive an organization to wrong
decisions, and poor conclusions. To this end, this component seeks to assure the incoming data’s
accuracy, integrity, and quality.

Afterwards, the Data Qualifier component classifies data sources as reliable or non-reliable both
during the primary and secondary data injection. A data source is classified as reliable when the
datasets received from this source are considered correct by the experts (such as HCPs), otherwise it
is considered as non-reliable. To test this feature, this component acquires both the cleaned and faulty
data produced by the Data Cleaner component.

With regards to the Data Harmonizer component, initially, it translates the hospital data coming
in, into SNOMED concepts and these concepts are fed to the mappers for further analysis. This step
is specifically achieved through the implementation of the Ontology-based Domain Terminology
Mapping functionality that utilizes the PyMedTermino [34] and UMLS meta thesaurus [35] offering
a wide collection of terminology services. Coupled with the utilization of the FHIR ontology the Data
Harmonizer component provides a set of intelligent services to manage terminology resources and
make the data semantically interoperable. In addition, it provides a set of operations on widely used
and known medical terminologies used for the coding of medical knowledge, such as LOINC [36],
ICD-10 [37] and SNOMED, which further enhance the information structures that are provided as
outputs from the Data Harmonizer component. In addition, it provides the flexibility to the whole
iHelp platform to utilize new releases of terminologies and to provide mappings or translations
between different terminologies and standards. The latter is addressed through the extensible
searching and querying functionality for specific elements of the well-established terminologies and
standards. The mappers receive as input the harmonized and semantic interoperable data and then
transform these concepts into the appropriate FHIR elements, grouping the elements as needed.
Finally, a FHIR Bundle containing the mapped data is sent back to the Data Harmonizer for fusing
the HHR-based modelled data to the platform’s data storage. A sample harmonization of raw
primary data to HHR data is depicted in Figure 11.

{ “effectiveDateTime": "2021-84-15T00:06:00+88:80",
"resourceType”: "Observation”, “performer”: [
"id™: 12892689, {
"status™: "final”, "reference”: "Practitioner/1234"
"category™: [ }
{ 1
“coding™: [ “valueQuantity": {

{ "value": 50

- "system”: "http://mn.ohdsi.org/", “comparato =",

" "measurement_id": 12839883 "code": "OMOP4976398", “unit": "millimole per liter",
“person_id": 154 "display”: "EHR" "system”: “http://unitsofmeasure.org”,
"measurement_concept, 1 “code": "mmol/L"

“measurement_date™: "2
"measurement_datetime” i Is R
} “referenceRange”: [
1. {
"code™: { “low": f
“coding™: [ "value": 4@,
{ "unit": "millimole per liter”,
“system”: "http://snomed.info/sct”, "system": "http://unitsofmeasure.org”,
. ider. 53% “code": "166832000", “code": "mmol/L"
"visit_occurrence_id": 783235 “display”: "Serum HDL cholesterol measurement” T
} "high": {
1 “value": 6@,
} "unit": "millimole per liter”,
"subject”: { "system”: “http://unitsofmeasure.org”,
“reference": "Patient/194605" "code": "mmol/L"
I 1
"encounter™: {
"reference”: "Encounter/76@8885" 1
(a) (b) (©)

Figure 11. Sample transformation of raw primary data to the HHR format via the the iHELP mappers,
where: (a) Represents the raw primary data as they collected by the hospital; (b) & (c) Depict the
transformed to HHR format data.

The same approach and transformation are followed in the case of the ingestion of secondary
data. These data represent lifestyle and behavioral aspects of the patients’ life. These data are
gathered through wearable devices, as well answers to questionnaires and nutrition-related
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information. In Figure 12, a sample harmonization of raw secondary data to the standardized HHR
model is presented.

“stepshialked”: { © “rescurceType": "Bundle”,
"id": "4135 "entry": [

Patient/2345"
t*

“resource”: { b i
": "Observation”, *valvestring": “5820"

.ihelp-project. eu/Codesysten/codes”,

1p-project. eu/CodeSysten/codes”,

": "LOINC",
1950-7",
“Steps Walked”

“resource”: {

“resourceType": "Observation”,
"id": "41953-1",

"category”: [

"Observation”

-project. eu/Codesysten/codes”,

3-17,
istance Travelled”

@ | (b) ©

Figure 12. Sample transformation of secondary data to HHR format. Sample transformation of raw
secondary data to the HHR format via the the iHELP mappers, where: (a) Represents the raw
secondary data related to the daily activity and as they collected by the individual wearable device;
(b) & (c) Depicts the transformed to HHR format daily activity data of the individual mapped to an
Observation resource type.

3.3. Data Analysis

One of the Al models developed within iHelp platform focuses on predicting the risk of
developing pancreatic cancer based on lifestyle choices. The Al model is developed using the data
acquired from the Hospital de Dénia — Marina Salud (HDM) use case. This model is trained on a
collection of datasets provided by HDM that contains data of 200 patients related to blood analysis
and other physical tests. It also contains an extra set of parameters containing comorbidities of such
patients so the training could incorporate this information making it completer and more accurate,
taking into account historic data about alcohol, tobacco, hepatitis, hypertension, diabetes, cholesterol,
obesity, pancreas and h pylori for each patient.

Besides adding complexity, all these comorbidities enrich the trained models and increase their
rate accuracy, from an initial 70% where no comorbidities were taken into account to a range of 80%-
85%.

Before the comorbidities were considered, a huge number of different versions of Al models
(around 240.000 models) have been trained, to assess every parameter combination requested by the
classification algorithm. The best performing model hit the 70% accuracy rate and results are
displayed in the Figure 13 below.
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Figure 13. Classification of patients as per the model trained without considering comorbidities.

Regarding the model considering comorbidities, a limited number of variations for the
parameters have been trained and the results are still limited; however, it appears that the predicted
clusters look better in comparison to the models trained without comorbidities as they have far less
overlapping between the data and the clusters.
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Figure 14. Classification of patients as per the model trained without considering comorbidities.

Based on Figure 13 and Figure 14 two groups of clusters can be distinguished: the Red group
and the Green group. The Red group lists all patients that have not been diagnosed with pancreatic
cancer whereas the Green group corresponds to those patients that have been diagnosed.
Considering this classification, an initial prediction on likeliness or risk of developing pancreatic
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cancer of further patients can be regarded. However, as said, this classification (of Figure 13) does
not consider the comorbidities yet, while results from the models that consider comorbidities (of
Figure 14) indicate an enhancement in the overall analysis and risk identification approach; however
further finetuning is needed. It should be noted that these are initial results, that were also evaluated
by the clinicians of HDM who have reacted positively to these classifications and more actions are
planned to be performed.

The comparison of both models is summarized in the following table, Table 2, by indicating
averages and ranges as concerns four different performance metrics.

Table 2. Models Comparison and Average Performance Metrics.

Models Silhouette =~ Adjust Rand Sensitivity (True Specificity (True
coefficient Index (ARI) Positive Rate) Negative Rate)
Models without
considering 0,49 0,01 65-70% 30-35%
comorbidities
Models considering 0,325 0,475 80-85% 15-20%

comorbidities

The Silhouette coefficient indicates the separation between the clusters and the coefficient should
be as close as possible to 0,5 (optimal range is between -1 and 1). The closer to 0,5 the better in the
sense that the clusters will have fewer overlapping samples. On the other hand, the Adjust Rand
Index (ARI) indicates the matching between real labels and the predicted clusters. Again, as optimal
range is between -1 and 1, the models considering comorbidities are closer to an average ARI 0,5
meaning that they perform better in matching between real and predicted clusters.

Regarding the second predictor model, this considers the data gathered over 6 months where a
subgroup of volunteers has acceded to be part of the experiment. These volunteers have been enrolled
to change their daily activities and habits so that an epigenetic analysis could be performed. After a
six months period has passed, the HCPs of HDM are now in the position to assess whether these
volunteers have their epigenetic markers changed in the right direction to perform the clinical study,
which is the purpose of this use case. In other words, see how the changes in lifestyle and habits
influence the likeliness of developing pancreatic cancer.

3.4. Decision Support System

The Decision Support System (DSS) allows the HCP to visualize the primary and secondary data
for a particular patient among other functionalities, such us running Al models and reviewing and
approval of customized messages generated by the Monitoring and Alerting system. When the HCP
accesses the DSS a welcome menu appears with the main functionalities provided to the HCP role,
Patient Visualization, Patient Enrolment, Edit Patient Information, Model Explainability and Custom
Dashboards as shown in Figure 15. The first time a patient is added to the iHelp platform, the HCP
adds the patient’s hospital identifier and the Healthentia platform identifier into the Patient Enrolment
interface to allow the iHelp platform to associate the data provided by the hospital (primary) and
data provided by the Healthentia platform (secondary). An iHelp identifier is then generated which
will be the patient’s identifier within the iHelp platform.
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Welcome to the iHelp Decision Support System

Select an action

Patient Patient Edit Patient
Visualisation Enroiment Information

Madel Explainability Custom Dashboards

Home
Patient Visualisation
Patlznt Enroiment
Edit Patient Information
Medal Explainabiiity
Custom Dashboards
Social Madia Analizor
‘Bounce mitigation

Figure 15. HCP Decision Support System main menu interface.

Whenever the HCP needs to access the historical data of a specific patient, he/she accesses the
“Patient Visualization” interface and enters the iHelp identifier. Automatically all information
obtained for that patient is collected from the underlying Data storage and displayed in the different
charts. In Figure 16 two drop-down menus are depicted showing the data provided by the hospital
(primary) and the data provided by Healthentia (secondary) for the patient with id “ec4a096d-eaa3-
4536-91c4-5bc64134a247” respectively. In addition, a set of actions can be accessed from the same
interface. The “Risk Identification” button opens an interface that allows the HCP to run Al models
for that patient. The “Risk Mitigation” button gives access to web interface of the Monitoring and
Alerting system. The “Impact Evaluator” and the “Personalized Recommendation Review” buttons,
which give access to the respective actions.

Patient Visualisation

Set the patient identifier

iHelp Identifier*

‘ec4a096d-eaa3-4536-91c4-5bc64134a247

Patient information will be loaded once the patient is selected

Primary data Patient's data provided by hospital/patients/GPs/Community medical specialist v
Secondary data Patient's data provided by wearables/patients v
Home
Patient Visualisation Actions
Risk Identification Risk Mitigation Impact Evaluator Advise Recomendation
Patient Enroiment

Edit Patient Information

Figure 16. Patient Visualisation DSS interface.

On top of this, Figure 17 depicts the data provided by the hospital through different graphs.
These graphs are navigable and show the real values obtained in each of the patient samples for a
better understanding by the HCP. In this case, Figure 17 shows the “Serum glucose level” of two
different tests with values 93 and 75 respectively.
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Figure 17. Primary data — DSS Patient Visualisation interface.

Similarly, Figure 18 shows in different graphs the data obtained by the patient's wearable, such
as the number of daily steps or the distance among others available on the Healthentia platform. For
example, Figure 18 shows the graph of the number of steps from 18" April 2023 to 11t October 2023.
With graphs like these, the HCP can track and analyze the patient’s physical activity, enhancing the
overall monitoring phase, as well as the decision-making process.

Secondary data Patient's data provided by wearables/patients

Steps Distance Calories FairlyActive VeryActive Sedentary TotalActive LightSleep DeepSleep AwakeTi >

Home

Patient Visualisation J

Patient Enrolment s000 |

\

Edit Patient Information
Model Explainability

Custom Dashboards

Social Media Analizer

Bounce mitigation

Figure 18. Secondary data — DSS Patient Visualisation interface.

The Risk Identification interface allows the HCP to run models available in the Model Manager
component for that patient. Figure 19 shows the Risk identification interface, in particular the Basic
Risk Assessment interface that allows interaction with models trained and run with data provided
by the hospital (primary data). In this case, the model “8057 — sklearn.20230619” has been selected.
This model allows to identify whether the patient is at risk to develop Pancreatic cancer or not. Once
the HCP selects the model from the available ones, the model parameters are displayed in a form-
based panel with all fields automatically filled in with the data obtained for the patient. The HCP can
modify the values of the fields accessing the field by typing the desired value. In this example, the
model asks for 10 parameters. The HCP then presses the submit button and the model is run, when
the result is available it is represented within the DSS interface. The result is displayed in text and a
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clustering graph, in this case the patient (yellow point in the graph) may develop pancreatic cancer
based on the data provided to the model.

Basic Risk Assessment

' Risk Model Parameters
8057 - sklearn 20230619

28.0 1819 524.375 279.0909 0.0

0.0 1160 0.0 1047 1

Risk Result
1

Fredcien

Figure 19. Risk Identification - DSS Patient Visualisation interface.

To improve the explainability and interpretability of the models’” outcomes and enhance the
knowledge that can be derived for the HCPs, the DSS also utilizes the EDH subcomponent. This
component is embedded into the DSS suite and initially presented in Section 2.7. The EDH is a
collection of tools for rapidly creating interactive dashboards with several visualizations for
evaluating and presenting the forecasts and processes of the already implemented Al models. This
enables HCPs to have an overview of the specific features, allowing them to reach faster conclusions
about the most significant factors in pancreatic cancer, based on the comparison of the diagrams. This
subcomponent allows any Al model to be essentially “explained” by providing intuitive and
interactive visualizations that aim to showcase which features are most relevant to a given prediction
and the outcomes of the model. It seeks to explain the predictions of an instance “x” as derived by
the models presented in Section 3.3. The latter is further explained by calculating the contribution of
each feature to the predicted cluster, as indicated in Figure 20.

Feature importance PCA Scatter Plot  Elbow Mathod Plot  Silhoustte Score Plot Cluster Heatmap

Cluster Heatmap

Cluster Labe|

gy o {r A ey R -3
7 L* T, Gy w G &3
% e Iy 7, s {4 La ‘?’7"{-.

Features

Figure 20. Cluster Heatmap considering feature importance per cluster.
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Finally, the overall functionality of the DSS is complemented by the utilization of a personalized
recommendation mechanism and the personalized messages that are automatically generated for this
particular patient. In that context, Figure 21 shows the Personalized Recommendation Review interface
where messages generated by the Monitoring and Alerting system are listed to be reviewed and
approved by the HCP. A table containing the message identifier, the message title, the status and the
send/reject actions fields displays the messages. The HCP can decide to send the message to the
patient directly through the Healthentia mobile application or reject those messages whose status is
PROPOSED. Messages with other status such as APPROVED, SENT or AUTOMATIC are listed for
consideration by the HCP, but no action is required for those messages.

Actions

Personalized Recommendation Review

Q  search
Home
Patient Visualisation No. Message Title Status Send/Sent Reject
Patient Enrolment 123ed8cd-bade-45¢7-b3c6-
st Dally cigarettes - 110 10 ABPROVED o
Edit Patient Informatiol
3136c45c-dc26-4e59-83be- =
piispssnny Daily steps - Less than 5000 PROPOSED x
Model Explainability ssordie dcod aaes it
2081 dae 55bdde-
SiTiiaiss Daily steps - Less than 5000 APPROVED Sent
Custom Dashboards
171 '
SIOTIITILAMDIE . as han5000 wrroves (e
Social Media Analizer iz ”
6d6144c9-0315-493b-bead-
Dail tles - 11010 PROPOSED Send
Bounce mitigation. f13b817¢8d08 elytpretieaxito X

hems perpage: 5 ¥ 1-50012 > >

Figure 21. Personalized Recommendation Review - DSS Patient visualisation interface.

3.5. Monitoring and Alerting

As mentioned in the previous subsections the overall functionality of the Decision Support
System is further enhanced through the utilization and integration of the Monitoring and Alerting
mechanism. It is used to set rules, get dialogues that fulfill them and actually accept them for delivery
to the patients. More specifically, this mechanism exposes an advanced rule-based engine executed
on certain configurable time intervals (daily, weekly, or monthly) that perform an assessment of the
progress towards reaching individual targets. This functionality is implemented through the Risk
Mitigation option that is available in the DSS, which results from the strong integration between the
different mechanisms and systems of the iHelp platform. The Risk Mitigation interface provides to
the HCP the ability to assign personalized mitigation plans to each patient. Each mitigation plan is
comprised of user-specific rules which aim at providing the patient with a concrete goal and upon
the achievement of that goal the user is expected to lead a healthier life. Such a goal can be the
decrease of smoked cigarettes per day or the increase of weekly sports activity, as depicted in Figure
22 and Figure 23.
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Actions
Risk Identification Risk Mitigation Impact Evaluator Personalized Recommendation Review Advise Recomendation

Risk Mitigation

Mitigation Plans Assignment

Mitigation Plans
Let’s discuss and agreed upon actions you would like to take for the next 6 months

Select one or more actions below

Smoke Cessation
Increase Physical Activity

Mitigation Plan Configuration

Smoke Cessation A

- Reduce smoking
Setting key parameters for monitoring

What is the frequency period ?

Daily v
Select the frequency of evaluation of the rule.
What is evaluated?

Daily  sum v of Cigarettes smoked is less than v s
What is the monitoring period 7

From:  09/25/2023 (] To:  10/07/2023 [}

Setting key parameters for communication

Please select one or more options from the dropdowns
Achievement Dialogue

Daily cigarettes - 1to 10 v
Failure Dialogue

Daily cigarettes - 11 to 20 g

Needs Approval

Figure 22. Establishment of a Risk Mitigation Plan by the HCP.

Mitigation Plans
Let's discuss and agreed upon actions you would like to take for the next 6 months

Select one or more actions below

Smoke Cessation
Increase Physical Activity

Mitigation Plan Review

1. Smoke Cessation
Reduce smoking

Description: The aim of this rule is the gradual reduction of smoking.
Frequency of evaluation: Daily

Evaluation: Daily sum of cigarettes smoked is less than 0
Monitoring period: From 2023-10-14 To 2023-10-14

Achievement Dialogue: Daily cigarettes - 1 to 10

Failure Dialogue: Daily cigarettes - 1 to 10

Messages needs approval: Yes

Confirm Mitigation Plan

Figure 23. Risk Mitigation Plan Overview.
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In its core functionality, the Monitoring and Alerting mechanism evaluates the platform’s
integrated health data (i.e., primary, and secondary HHRs) and compares certain target values
defined in the personalized recommendation against real values gathered from the users through the
mobile application and wearables. The aggregation service collects secondary data for the respective
patient, calculates them according to the monitoring period chosen for the respective user and
preserve the resulting aggregated data into the database. Then, the evaluator assesses the aggregated
values towards the goals set for each rule in the mitigation plans for this particular patient. Finally,
the alerting module is activated to distribute evaluation and feedback messages. Different escalation
policies and threshold values are considered when distributing the proper message to the recipient
(individual or HCP) to achieve best results in risk communication in the context of pancreatic cancer.

The overall functionality of the Monitoring and Alerting mechanism is complemented by its
integration with the Virtual Coach subcomponent via corresponding API endpoints. The
achievement or failure dialogues initially selected by the HCP for pushing to the patient, as depicted
in Figure 22, are sent to Healthentia, to be delivered through the mobile application’s virtual coach
[38]. More specifically, messages are created by the alerting module and are approved by the HCP.
These messages are sent as notifications to the user of the Healthentia application and once they are
selected, then they are shown as a first step of a dialogue between the patient and the virtual coach.
This interaction can result, depending of course in the user preferences, to requests for more
information, further explanations, links to other coaching content, or to visualize data from a specific
widget of the application. The resulting notification and dialogue playback are shown in Figure 24.

Message from Coach < CHATBOT
:§ ) On smoking
Close OK Good progress! You kept
'%EJ Personalised Health tobacco consumption quite low.
© e p Monitoring You are a step closer to
& Decision Support removing tobacco from your life!

Q | want to know more.
You are saving about 70 euros
per month, or 850 per year.

eDiary [

Habitos para la prevencion de | want to discuss something
cdncer de pancreas else.

+ Fagerstrom Test for Nicotine... -
=] 2023-10-1114:04
X Goodbye.

Sleep g Activity 'k

AN

Track your activity here

Of Sleep

Figure 24. Handling dialogues at the Healthentia mobile app. A notification is sent to the patient (left),
which leads to the dialogue playback user interface.

As the last piece of the puzzle, the Impact Evaluator has the chance to envisage possible fine
tuning in goals definition for the patient, and in the way in which different cluster of users could be
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more engaged. During the development and experimentation, several parameters were checked to
generate significative clusters. In the specific case of the HDM pilot, with few numbers, the main goal
was the evaluation of the approach and the configurability of the APIL. Currently three clustering
variables were chosen: the sex, the age (grouped in ranges) and, if present the risk factor, associated
to the person. On plausible synthetic data, as depicted in Figure 25 the subcomponent highlighted
that for the Topicl (e.g., Smoking Cessation) a Cluster1 of people had a positive and healthy behavior
after received some Prevention-based messages, but that was not the case for the Promotion-based
messages. Completely the opposite behavior was observed in the Cluster2. The Cluster3, for the
Topicl was pretty unaffected. The percentage represented on the ordinate axis, is the delta percentage
of the achieved goal between the period before and after receiving the messages.

e @ e @
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N 0"me™e * o™ ™o
\Help users. -...— o o L)
| O “~o
an i b s an s o o
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Retrieving dato

| Analysis "

(a) (b)

Figure 25. Clustering and Results. (a) Depicts the user journey and clustering approach of the Impact

Evaluator; (b) Showcases an initial example of the final outcome.

4. Discussion

According to the architecture of the iHelp platform described in Section 2 and the experimental
results stated in Section 3, the iHelp platform successfully achieved its main purpose of providing a
data integration healthcare framework for exploiting non-homogeneous healthcare data. The
utilization of advanced Al analytics and Monitoring and Decision Support techniques enhance the
follow-up of the individuals and the provision of improved recommendations to them. The iHelp
platform can have a significant impact on the modern digital care pathway, from preventive to
follow-up phases. In that context, solutions from the areas of Al, data management, DSS, mobile and
wearable health applications conforming with recognized standards are utilized in the iHelp
platform. The integration of these advanced solutions results in enhanced and efficient identification
of cancer related risks, diagnostics, and prevention strategies, allowing patients or people at risk to
better take control of their health based on effective utilization of health-related data. In this way,
iHelp platform enables (i) patients’ involvement and engagement in the healthcare process leading
to better acceptance and perceptive outcomes (satisfaction, usefulness), and improved QoL; and (ii)
personalized information and follow up based on improved trust and timely decision support. On
top of that, it should be considered that the healthcare systems domain is constantly evolving, and to
keep up with the changes, Al-based learning healthcare models are becoming more and more
popular. The iHelp platform is aligned with and will contribute to EU’s strategies and actions, such
as Europe's Beating Cancer Plan [39], through the development and utilization of advanced
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integrated techniques targeting on a wide range of aspects, ranging from the implementation of
causal risk factors analysis, early diagnosis and accurate personalized prediction of pancreatic cancer,
to improved QoL through personalized recommendations, and the provision of evidence-based
mitigation plans and lifestyle changes to the patients. Building this understanding is part of the EU’s
ongoing effort to accelerate learning and innovation in cancer care delivery to ensure that people
receive the highest quality, safest, and most up-to-date care.

Among its main advantages, the integrated solutions in the iHelp platform allow HCPs to
synchronously monitor the progress of their patients and achieve better coordination of their care
responsibilities. In summary, it gives HCPs a more effective approach to administer care through
better planning, to better manage decisions and mitigation plans, and to better prepare for providing
treatment and recommendations, and better manage the integrated and harmonized health data in
the HHR format. In particular, the iHelp platform facilitates well-informed decision-making through
the continuous and substantive flow of the health-related data. Through the integration of innovate
data management and analytic techniques in the iHelp platform, healthcare professionals can have
access to advanced knowledge related to each patient they are treating. The platform contributes to
the shift from acute-based to evidence-based care by providing improved access to patient-related
information. Through the utilization and improvement of existing evidence-based decision support
solutions, the platform supports improved clinical decision making and enhances the health
management of the patients care across the whole pathway. The utilization of patients” integrated
data, in the form of HHRs, leads to better identify and understand the key risk factors for developing
pancreatic cancer, which are typically difficult to study only through primary data. Based on the
availability of HHRs, the analysis and identification of the causal risk factors become easier and more
effective, contributing to increased understanding of pancreatic cancer related risks, improved early
diagnosis and the provision of enhanced personalized prevention and mitigation plans.

Among its indirect impacts, by effectively gathering data both from individuals' EHRs and
PGHDs, as well as personal IoMT devices, collective community knowledge could be extracted,
playing a significant dual goal: (i) fusing, collecting, and analyzing information from multiple sources
to generate valuable knowledge and actionable insights to the HCPs, and (ii) facilitating the
development of personalized and efficient prevention plans and decisions [40]. The impact of such
solutions using community knowledge, which is collective, in the domain of healthcare is apparent,
since information sharing has changed their overall approach towards better diagnostics and
improved QoL [41].

The personalized dialogue and coaching system is another impactful innovation of iHelp
platform. It breaks the communication barriers between healthcare providers and receives; and
facilitates behavioral change in patients and citizens since by empowering them to understand their
condition and providing easy to understand directions on how to manage their health. The rule-based
dialogue selection system implemented in the Monitoring and Alerting mechanism effectively delivers
education and advice on personalized levels, thus impacting everyday life activity of the patient or
people at risk of developing cancer. Improved emphasis and understanding of the secondary data
can eventually lead to improvements on the clinical condition of the patient, as is shown in the
evaluation study (or HDM use-case) of the iHelp platform.

It is worth mentioning that the iHelp platform has been designed and implemented in such a
way that it allows several cases of extensibility. The platform’s validation and evaluation is
performed in five (5) different use cases and scenarios in the context of the iHelp project. At first, it
allows for extensibility in terms of new datasets, since the functionalities of the Data Collection and
Integration, and Standardization and Qualification building blocks enable new datasets to be directly
ingested into the internal datastore by following a standard path, finally being represented in the
platform as HHRs. Apart from this, the platform allows for extensibility in terms of new data sources,
as demonstrated through the integration of Healthentia mobile application and wearable devices as
new data sources from where data can be gathered and utilized for decision making. As soon as these
new data sources are identified, the overall data ingestion flow can be followed as described in the
abovementioned extensibility case.
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The findings of this paper can be expanded in a variety of ways, for example the EDH
subcomponent can be improved by the integration of SHAP (SHapley Additive exPlanations)
techniques and a What-If analysis tool can be introduced in the platform that can help HCP in
understanding how the models’ behavior varies when characteristics or portions of the data are
altered. In our future plans, we aim to implement and improve the EDH component by the utilization
of SHAP Explainability techniques that calculate Shapley values based on the coalition game theory
and where the feature values of a data instance act as players in a coalition [42-43]. The Shapley values
indicate how to fairly distribute the “payoff” and the final prediction among the different examined
features. Moreover, a comparison tool for Al models will be also implemented to allow the HCPs to
select and compare statistics, diagrams, and outcomes from two different models in an interpretable
way. Finally, the Monitoring and Alerting mechanism will be improved by the integration of
Incentive Marketing and Bounce Mitigation approaches to further motivate patients in improving
their lifestyle choices and keep them engaged with the iHelp platform and mitigate the risk of quitting
the platform and its accompanied mobile and web applications.

In this paper, only a specific use case and data from one hospital were examined verifying the
functionalities of the platform, which could be considered a potential limitation. Towards this
direction, concerning the future research and further updates on the platform, it is among the future
plans to evaluate the platform with more use case scenarios and different types of data e.g., from
other cancer types. Furthermore, we aim to disseminate the outcomes of the iHelp project, to receive
valuable feedback on the platform and its usage scenarios, and to adapt the implemented components
to the different needs of the healthcare stakeholders. The latter will facilitate the development of a
holistic and multidisciplinary HTA approach considering multiple parameters and standardized
metrics and KPIs. It will combine outcomes of Clinical Studies and Randomized Control Trials (RCTs)
with Real World Evidence (RWE) from the different use cases and scenarios on which the platform
will be utilized and evaluated in the context of the iHelp project [20].

5. Conclusions

In the realm of healthcare, today's HCPs are presented with remarkable opportunities to gather
and manage comprehensive digital health records, drawing from various sources, including
individuals’ lifestyle behaviors and habits, EHRs, and medical data repositories. This variety of data
pose the potentials to facilitate a shift towards data-driven healthcare practices and Al-driven
healthcare analytics and decisions. The integration of Al in the healthcare decision making (e.g.,
monitoring, real-time decision support) phase is still evolving, with persistent challenges related to
the trustworthiness, explainability, as well as development of improved prevention and intervention
measures.

This paper has discussed these challenges and presented solutions that can advance the state of
Al-based personalized decision support systems. The main contribution of the paper is the
introduction of an integrated platform for health-related data processing, Al decision support and
personalized monitoring and alerting. The platform has been designed and developed for use by the
HCPs, enabling them to make efficient and reliable healthcare decisions by using Al-based analysis
of integrated health data. The extensible and user-centric design of the platform ensures a
harmonious blend of performance, interpretability, and wide adaptability, making it exploitable for
critical decision-making situations in the healthcare domain. Moreover, this paper has introduced an
approach to crafting Al-based healthcare recommendations in compliance with relevant regulations.
The viability of this approach has been evaluated through heterogeneous healthcare datasets
pertaining to individual monitoring and care planning. The suite of algorithms employed in the
Monitoring and Alerting System and the Decision Support System (within the iHelp platform),
represent a formidable toolkit for HCPs who are interested in utilizing advanced data-centric
techniques and Al-based analytics in their healthcare management and decision-making processes.
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