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Abstract: Random Forest (RF) is a widely used data prediction and variable selection technique.

However, the variable selection aspect of RF can become unreliable when there are more irrelevant

variables than relevant ones. In response, we introduced the Bayesian Random Forest (BRF) method

specifically designed for high-dimensional datasets with a sparse covariate structure. Our research

demonstrates that BRF possesses the oracle property, which means it achieves strong selection

consistency without compromising efficiency or bias.

Keywords: random forest; oracle property; variable selection; bayesian analysis; asymptotic

normality
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1. Introduction

Several techniques for handling high-dimensional data have been proposed from different areas

of research, such as in oncology (modelling and identification of relevant genetic biomarkers for

tumourous cancer cells) [1–5]. The methodologies of the techniques differ, but the collective standpoint

is to find an efficient way to analyze high-dimensional data [6]. In a broader sense, high-dimensionality

(HD) refers to a modelling situation where the number of unknown parameters p are far greater than

the sample size n that’s p ≫ n [7]. This scenario includes supervised regression and classification with

several explanatory variables or features largely greater than sample size, unsupervised learning with

more attributes than samples and hypothesis testing parlance with more considered hypotheses than

observations [8]. [9] identified the need for developing robust methods for high-dimensional data.

Classical methods like ordinary least squares, logistic regression, and k − NN often break down due

to an ill-conditioned design matrix when p ≫ n. [10] described two major approaches to analyzing

high-dimensional data, namely: modification of n > p approaches to accommodate high-dimensional

data or developing a new approach. Modifying approaches involves moving from complex to simple

models by selecting relevant subsets of the p variables. This approach is widely referred to as variable

selection.

Variable selection is an approach used to adapt existing low-dimensional data modeling

techniques for high-dimensional data. Simultaneously, penalized regression involves imposing

constraints on dimensionality to achieve a similar objective. The primary advantage of variable

selection methods is their ability to preserve the desirable qualities of low-dimensional approaches like

the Maximum Likelihood Estimator (MLE), even though they may struggle to address the complexity

of high-dimensional datasets. Penalized methods such as LASSO [11] and SCAD [12], among others,

offer a partial solution to the problem but introduce bias in estimation. Both approaches share the

drawback of not fully capturing the complexities of high-dimensional datasets, including interactions,

non-linearity, and non-normality [13]. One robust procedure that has been shown to overcome these
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challenges in both low and high-dimensional scenarios is Classification and Regression Trees (CART)

[14,15]. CART is a non-parametric statistical method that relaxes dimensionality assumptions and

naturally accommodates modeling of interactions and non-linearity.

The strength of CART in terms of simplicity and interpretability is offset by a significant drawback,

which often leads to a loss of accuracy. In the late 20th century, a new methodological framework

emerged for combining multiple models to create a more comprehensive model, known as ensemble

modeling. One of the earliest ensemble techniques within the CART framework is Bagging (Bootstrap

Aggregating) [16]. The Bagging process involves taking multiple versions of the bootstrap sample [17]

from the training dataset and fitting an unpruned CART to each of these bootstrap samples. The final

predictor is derived by averaging these different model versions. Remarkably, this procedure works

well and typically outperforms its competitors in most situations. Some intuitive explanations for why

and how it works were provided in [18]. This concept has spurred subsequent work, including the

development of Random Forests (RF) [19], which presents a broader framework for tree ensembles. RF

enhances Bagging by replacing all covariates in the CART’s splitting step with a random sub-sampling

of covariates. This adjustment helps reduce the correlation between adjacent trees, thereby enhancing

predictive accuracy.

The complexity of dealing with high-dimensional data has led to the development of multiple

versions of Random Forest (RF) algorithms in the context of regression modeling. One prominent

characteristic of high-dimensional datasets is their sparsity, which means there are relatively few

relevant predictors within the predictor space. This sparsity is often observed in microarray data, where

only a small number of genes are associated with a specific disease outcome [13,20]. The traditional

approach of RF, which involves randomly subsampling either the square root of the predictors
√

p or
p
3 , fails to effectively capture this sparsity [21]. This failure arises from RF’s unrealistic assumption

that the predictor space should be densely populated with relevant variables to achieve reasonable

accuracy. In contrast, boosting techniques, as introduced by [20], specifically address this issue by

boosting weak trees rather than averaging all the trees, as done in RF. However, boosting comes at the

cost of reduced predictive accuracy compared to RF. The Bayesian modified boosting approach, known

as Bayesian Additive Regression Trees (BART) proposed by [22], provides an alternative method

for estimating a boosting-inspired ensemble of Classification and Regression Trees (CART) models.

Nevertheless, BART does not focus on solving the problem of sparsity and is not robust to an increase

in dimensionality, as reported by [23].Therefore, in this paper, we introduce a new framework for

Random Forest (RF) by incorporating Bayesian estimation and a hybrid variable selection approach

within the splitting step of RF. This innovation aims to enhance prediction efficiency and improve the

consistency of variable selection in high-dimensional datasets.

2. Random Forest and Sum of Trees Models

Suppose we let D = [yi, xi1, xi2, . . . , xip], i = 1, 2, . . . , n be an n × p dataset with yi assuming

continuous values and x = [xi1, xi2, . . . , xip] be the vector of p covariates. Thus, we can define a single

regression tree using the formulation of [22]

yi = f (xi1,, xi2, . . . , xip) + ǫi. (1)

where the random noise seen during estimation is denoted by the variable epsiloni, which is assumed

to have an independent, identical Gaussian distribution with a mean of 0 and a constant variance of

sigma2. Consequently, in the same formulation by [22], a sum of trees model can be defined as:

yi = h(xi1,, xi2, . . . , xip) + ǫi. (2)
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where h(xi1,, xi2, . . . , xip) = ∑
J
j=1 f (xi1,, xi2, . . . , xip) and the total number of trees in the forest is J. In

the notation of a tree, we have;

y =
J

∑
j=1

Ij(βmj : x ∈ Rmj) (3)

where βm is an estimate of y in region Rm, Ij(βmj : x ∈ Rmj) is the single regression tree.

The model’s parameters βm and σ2 (3) are often estimated using the frequentist approach. These

approaches include Bagging [16], Stacking [24], Boosting [25] and Random forest [19]. Stacking

improves the performance of the single tree in the model (1) by forming a linear combination of

different covariates in x. Similarly, boosting improves (1) by fitting a single tree model on data sample

points not used by an earlier fitted tree. Bagging and random forest iteratively randomize the sample

data D and fitting (1) on each uniquely generated sample. Random forest improves over bagging by

using a random subset of p covariates, often denoted mtry, to fit (1) instead of all p covariates. This

procedure has been shown to dramatically lower the correlations between adjacent trees and thus

reduce the overall prediction risk of (3). Freidman [26] defined the risk of using the random forest for

estimating (3) as:

Var(ŷRF) = ρ(x)σ2(x) (4)

where ρ(x) is the pairwise correlation between adjacent trees and σ2(x) is the variance of any randomly

selected tree from the forest. Equation (4) implies that ρ(x) plays a vital role in shrinking the risk

towards 0 as J → ∞. Achieving infinite forests is rarely possible due to computational difficulty. This

drawback has necessitated the development of Bayesian [27] alternatives that are adaptive in nature

in terms of averaging many posterior distributions. Chipman [22] proposed the Bayesian Additive

Regression Trees (BART) that average many posterior distributions of single Bayesian Classification

and Regression trees (BCART, [28]). The approach is specifically similar to a form of boosting proposed

in [20]. BART boosts weak trees by placing some form of deterministic priors on them. Although

the empirical bake-off results of 42 datasets used to test the BART procedure showed improved

performance over RF, there is no theoretical backup on why BART is better than RF. Several authors

have queried the improvement, especially in a high-dimensional setting where RF still enjoys moderate

acceptance. Hernandez [13] claimed the BART algorithm implemented in R as package “bartMachine”

is memory hungry even at moderate p with T the number of MCMC iterations for posterior sampling

fixed at 1000.

Taddy [29] proposed the Bayesian and Empirical Bayesian Forests (BF and EBF) to maintain the

structure of RF and modify the data randomisation technique using a Bayesian approach. BF replaces

the uniform randomisation with the Dirichlet posterior distribution of sampled observation. Similarly,

EBF considered the hierarchical parameter structure of estimating the next stage prior hyperparameters

using current data. The results from the empirical analysis showed that BF and EBF are not different

from RF except in the aspect of model interpretation.

2.1. Variable Selection Inconsistency and Inefficiency of Random Forest in Sparse High-Dimensional Setting

Definition 1. Let Dhd = [Y|X] be a partitioned matrix composed of n × 1 response variable Y vector and X be

an n × p matrix with yi, xik ∈ ℜ, for i = 1, . . . , n and k = 1, . . . , p then a rectangular matrix Dhd:

Dhd =

















y1 x11 x12 x13 x14 . . . x1p

y2 x21 x22 x23 x24 . . . x2p

y3 x31 x32 x33 x34 . . . x2p
...

...
...

...
...

...
...

yn1 xn1 xn2 xn3 xn4 . . . xnp

















(5)

is referred to as high-dimensional data matrix if p ≫ n [8].
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If we redefine some of the columns in Dhd such that the entries are zeros, thus truncating the

matrix structure, we have a sparsed HD. Sparsity is inherent in HD where only a few of the p covariates

xS are usually related to the response y.

Definition 2. A typical sparsed HD matrix is given by

Dshd =

















y1 x11 0 x13 0 0 x1p

y2 x21 0 x23 0 0 x2p

y3 x31 0 x33 0 0 x2p
...

...
...

...
...

...
...

yn1 xn1 0 xn3 0 0 xnp

















(6)

in Olaniran & Abdullah [30].

The risk of random forests (RF), as indicated in equation (4), increases in high-dimensional

situations with a sparse covariate matrix. This increase is a consequence of the random selection of the

variable set mtry used to build equation (1). The method of hypergeometric sampling for selecting

mtry ⊂ p is notably sensitive to the mixing parameter π, which represents the proportion of relevant

variables. Specifically, when the proportion of relevant variables (π) is higher, the risk associated with

RF is lower, and vice versa.

It’s worth noting that many software implementations of RF regression commonly set mtry as

p/3. This choice is expected to yield a satisfactory set of covariates for predicting the target variable

y under two conditions: when the data matrix D is of low dimensionality or when the number of

observations (n) is greater than the number of covariates (p).

In the specific scenario where D = Dshd, theorem (1) is employed to establish an upper bound for

the probability of correctly selecting at least one relevant covariate from the set of p. This theorem is

the foundation for defining the selection consistency of random forests in high-dimensional, sparse

settings.

Theorem 1. Given p covariates, r ⊂ p relevant variables, if we set the RF subsample size mtry = p/3 as r,

then the probability that at least one of the covariates in r is relevant converges to 1 − e−1 as p → ∞.

Proof.

Proposition 1. Let R1, R2, . . . Rr denote the event that the Rk covariate is relevant. Then, the event that at least

one covariate in r is relevant is R1 ∪ R2 ∪ . . . Rr, the required probability is P(R1 ∪ R2 ∪ . . . Rr). It is worthy

of note that the subsample selection done by RF is without replacement, implying that the sample space of p

covariates can be partitioned into two (R relevant covariates and p − R irrelevant covariates). This partitioning

done without replacement is often referred to as a hypergeometric or non-mutually exclusive process [31]. Thus,

by the generalization of the principle of non-mutually exclusive events, we have

P(R1 ∪ R2 ∪ . . . Rr) =
r

∑
k=1

P(Rk)−
r

∑
j,k=1;k>j

P(Rj ∩ Rk) +
r

∑
i,j,k=1;k>j>i

P(Ri ∩ Ri ∩ Rk)

− · · ·+ (−1)r−1P(R1 ∩ R2 ∩ · · · ∩ Rr)

(7)
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P(R1 ∪ R2 ∪ . . . Rr) =

(

r

1

)(

1

r

)

−
(

r

2

)(

1

r

)(

1

r − 1

)

+

(

r

3

)(

1

r

)(

1

r − 1

)(

1

r − 3

)

− · · ·+ (−1)r−1

(

r

r

)(

1

r!

)

= 1 −
(

1

2!

)

+

(

1

3!

)

− · · ·+ (−1)r−1

(

1

r!

)

(8)

Recall that the exponential function eξ = 1 + ξ + ξ2

2! +
ξ3

3! + · · ·+ ξr

r! , if ξ = −1,

e−1 = 1 −
(

1 − 1

2!
+

1

3!
+ · · ·+ (−1)r−1 1

r!

)

(9)

Thus,

P(R1 ∪ R2 ∪ . . . Rr) = 1 − e−1 = 0.6321 (10)

Theorem (1) implies that when p grows infinitely, the maximum proportion of relevant covariates

that would be selected is 63.2% assuming the number of subsample mtry chosen equals the number of

relevant covariates in p. Figure 1 shows the convergence over varying p covariates.

0 5000 10000 15000

0
.6

0
0
.6

2
0
.6

4
0
.6

6
0
.6

8
0
.7

0

p

P
r(R

≥
1
)

Figure 1. Probability of selecting relevant variables for RF at varying dimensionality p.

Lemma 1. RF variable selection is consistent if limp→∞ P(M̂ = M) = 1.

Remark 1. Lemma (1) indicates that for an RF model M̂ fitted using r subsampled covariates, RF variable

selection is consistent if the fitted model converges almost surely to the true model M that contains all relevant

variables R.
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Corollary 1. limp→∞ P(
⋃r⊂p

k=1 Rk) = 0.6321 < 1, then RF variable selection is inconsistent in HD with large

p.

Now that we have established the inconsistency of RF in the HD setting, the following lemma

presents RF variance for Dshd matrix.

Lemma 2. Let π be the proportion of relevant covariates and 0 ≤ π ≤ 1, the variance of a single tree σ2(x)

can be decomposed into random and noise variance such that the risk of RF in a high-dimensional setting with

p ≫ n can be defined as:

Var(ŷRF) = ρ(x)
[

πσ2
1 (x) + (1 − π)σ2

2 (x)
]

(11)

where σ2
1 (x) and σ2

2 (x) are the random and noise variances respectively.

Remark 2. It is clear from lemma (2) that the risk of RF in (11) is larger than (4) when π < 1, thus RF violates

the oracle property conditions defined by [32–34] among others as:

i. Identification of the right subset model M such that P(M̂ = M) → 1.

ii. Achievement of the optimal estimation rate,
√

n(M̂ −M)
d−→ N(0, Var(M))

Many authors have argued that a good estimator M̂ should satisfy these oracle properties.

However, from theorem (1) and (2), RF fails to achieve these conditions in the sparse HD setting. Thus,

there is a need to propose an alternative procedure that enjoys these attractive properties.

3. Priors and Posterior Specification of Bayesian Random Forest for Sparse HD

The Bayesian Random Forest (BRF) proposed here has three major prior parameters. The first

is model uncertainty prior defined over tree I. Here we propose a uniform prior I ∼ U(0, 1) by [35]

such that Pr(I) = 1 for any candidate tree. We used this prior specification to retain the average

weighing procedure of RF so that each tree Ij has an equal voting right. The core advantage of this

prior is to retain RF’s strength in correcting the over-fitting problem by averaging over all trees. The

second form of prior is terminal node parameter βM and σ2 prior, here we propose the Normal Inverse

Gamma prior NIG(µM, σ2 ∑, a0, b0) by [35], where µM and Σ are the prior mean and covariance for

parameter βM, a0 and b0 are the prior sample size and sum of squares for response yi on parameter

σ2. Furthermore, we assumed a conditional prior of trees parameters βM on σ2, that’s for a single tree

with M terminal nodes:

P(βM, σ2) = P(βM|σ2)P(σ2). (12)

This can be easily extended to J trees with the assumption of constant model variance σ2 over all trees.

Thus we have;

P(I1, I2, . . . , IJ) =
J

∏
j=1

P(Ij, βMj)P(σ2) (13)

P(I1, I2, . . . , IJ) =
J

∏
j=1

P(βMj|σ2)P(Ij)P(σ2) (14)

with Pr(Ij) = 1

P(I1, I2, . . . , IJ) =

[ J

∏
j=1

P(βMj|σ2)

]

P(σ2) (15)

P(βMj|σ2) =

exp

[

−1
2σ2 (βMj − µMj)

′ ∑
−1
j (βMj − µMj)

]

(
√

2π)M|σ2 ∑j |
1
2

(16)
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If we assumed that the trees are independent and identically distributed, then,

J

∏
j=1

P(βMj|σ2) ∼ N(JµM, Jσ2Σ)

J

∏
j=1

P(βMj|σ2) =

exp

[

−1
2Jσ2 (βMj − JµMj)

′Σ−1
j (βMj − JµMj)

]

(
√

2π)JM|σ2 J ∑j |
J
2

(17)

Pr(σ2) =
ba0

0 (σ2)−a0−1 exp(−b0/σ2)

Γ(a0)
(18)

Pr(I1, I2, . . . , IJ) =

exp

[

−1
2Jσ2 (βMj − JµMj)

′ ∑
−1
j (βMj − JµMj)

]

(
√

2π)JM|σ2 J ∑j |
J
2

× ba0
0 (σ2)−a0−1 exp(−b0/σ2)

Γ(a0)

(19)

Pr(I1, I2, . . . , IJ) =
ba0

0 (σ2)−(a0+(J/2)+1)

Γ(a0)(
√

2π)JM|J ∑j |
J
2

×
exp

{

−1
2σ2

[

(βMj − JµMj)
′ J−1 ∑

−1
j (βMj − JµMj) + 2b0

]}

Γ(a0)(
√

2π)JM|J ∑j |
J
2

(20)

The Bayes theorem leads to the posterior density of trees;

Pr(I1, . . . , IJ |y, x) =
[

∏
J
j=1 Pr(βMj|σ2)

]

Pr(σ2)L(y, x|I1, . . . , IJ)

∫

βMj

∫

σ2

[

∏
J
j=1 Pr(βMj|σ2)

]

Pr(σ2)L(y, x|I1, . . . , IJ)dβMjdσ2

(21)

The integral at the denominator of equation (21) cannot be solved analytically thus, it is often dropped

in most Bayesian analyses suggested by [35] and hence, we proceed as;

Pr(I1, I2, . . . , IJ |y, x) ∝

[ J

∏
j=1

Pr(βMj|σ2)

]

Pr(σ2)L(y, x|I1, I2, . . . , IJ). (22)

The likelihood of J trees can be defined as;

L(y, x|I1, I2, . . . , IJ) =
J

∏
j=1

L(y, x|Ij) (23)

L(y, x|Ij) =

exp

[

−1
2σ2 (y − βMj)

′(y − βMj)

]

(
√

2πσ2)n
(24)

L(y, x|I1, I2, . . . , IJ) =

exp

[

−1
2σ2 ∑

J
j=1(y − βMj)

′(y − βMj)

]

(
√

2πσ2)Jn
. (25)
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Therefore, the posterior of Bayesian Random Forest regression is;

Pr(I1, I2, . . . , IJ |y, x) ∝
(σ2)−(a0+(J/2)+1)

Γ(a0)(
√

2π)JM|JΣj|
J
2

×
exp

{

−1
2σ2

[

(βMj − JµMj)
′ J−1Σ−1

j (βMj − JµMj) + 2b0

]}

Γ(a0)(
√

2π)JM|JΣj|
J
2

×
exp

[

−1
2σ2 ∑

J
j=1(y − βMj)

′(y − βMj)

]

(
√

2πσ2)Jn
.

(26)

Pr(I1, I2, . . . , IJ |y, x) ∝ (σ2)−(a1+(J/2)+1)

× exp

{−1

2σ2

[

(βMj − Jµ1
Mj)

′(JΣ1
j )

−1(βMj − Jµ1
Mj) + 2b1

]} (27)

where;

Jµ1
Mj = [(JΣj)

−1 + (JVj)]
−1

[

(JΣj)
−1µMj + (JVj)

−1nMjȳMj

]

(28)

where Vj is an m × m matrix of data information such that the diagonal of Vj is σ−2
mj which is defined as;

σ−2
mj =

nmj − 1

∑
nmj

i=1(y − ȳmj)2
(29)

JΣ1
j = [(JΣj)

−1 + (JVj)]
−1 (30)

a1 = a0 + n/2 (31)

b1 = b0 +

(µ′
Mj(Σj)

−1µMj + y′y − µ1′
Mj(Σ

1
j )

−1µ1
Mj

2

)

(32)

The marginal densities of Pr(I1, I2, . . . , IJ |y, x) is important when performing inference about βM and

σ2. The marginal density of βM is given by;

Pr(βM|I1, I2, . . . , IJ , y, x) =
∫

σ2
Pr(I1, I2, . . . , IJ |y, x)dσ2 (33)

Pr(βM|I1, I2, . . . , IJ , y, x) =
∫

σ2
(σ2)−(a1+(J/2)+1)

× exp

[−1

2σ2
(βMj − Jµ1

Mj)
′(JΣ1

j )
−1

× (βMj − Jµ1
Mj) + 2b1

]

dσ2

(34)

According to [36], the marginal distribution is identical to the student − t distribution defined as:

Pr(βM|I1, I2, . . . , IJ , y, x) ∼ t(µ1
Mj, s2Σ1

j , 2a1)

where,

s2 =
b1

a1 − 1
=

b0 +

(

µ′
Mj(Σj)

−1µMj+y′y−µ1′
Mj(Σ

1
j )

−1µ1
Mj

2

)

a0 + n/2 − 1
(35)
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Therefore, the posterior mean for βM is;

β̂M = J−1

{

[(JΣj)
−1 + (JVj)]

−1

(

(JΣj)
−1µMj + (JVj)

−1nMjȳMj

)}

(36)

and the posterior variance for βM is;

var(βM) = J−1

{

2a1s2

2a1 − 2
[(JΣj)

−1 + (JVj)]
−1

}

(37)

The posterior mean of βM can be interpreted as the weighted average of prior mean µM and data

mean ȳM. The scaling factor is the joint contribution of prior and data information. Similarly, the

posterior variance of βM is the scaled form of the joint contribution of data and prior information

matrix. The parameters βM and σ2 can be extracted from their posterior density using a hybrid of

Metropolis-Hastings and Gibbs sampler algorithms described as follows:

3.0.1. Hybrid Gibbs and MH procedure for extracting posterior information from Bayesian Random
Regression Forest with Gaussian Response

1. Step 0: Define initial values for β0
Mj and (σ2)0 such that Pr(β0

Mj|y, x) > 0 and Pr[(σ2)0] > 0.
2. Step 1: For v = 1, 2, . . . , V
3. Step 2: Sample σ̃2 from lognormal distribution;q1(σ̃

2, ν1) = LN[(σ̃2)v−1, ν1].
4. Step 3: For j = 1, 2, . . . , J trees
5. Step 4: Sample β̃Mj from independent multivariate normal distribution q2(β̃Mj, ν2) =

INM(βv−1
Mj , ν2).

6. Step 5: Calculate the moving probability for βMj by;

π1(βv
Mj, β̃Mj) = min

[Pr(β̃v
Mj|y, x)

Pr(βv
Mj|y, x)

, 1

]

7. Step 6: Sample U1 ∼ U(0, 1); then

βv
Mj =

{

β̃Mj if U1 ≤ π1(βv
Mj, β̃Mj);

βv−1
Mj if U1 > π1(βv−1

Mj , β̃Mj).

8. Step 7: Compute the residuals ǫi = yi − J−1 ∑
J
j=1 Ij(βv

Mj : x ∈ RMj)

9. Step 8: Calculate the moving probability for σ2 by;

π2[(σ
2)v, σ̃2] = min

{

Pr(σ̃2|ǫi)q1[(σ
2)v−1|σ̃2, ν1]

Pr[(σ2)v−1|ǫi]q1[σ̃2|(σ2)v−1, ν1]
, 1

}

10. Step 9: Sample U2 ∼ U(0, 1); then

(σ2)v =

{

σ̃2 if U2 ≤ π2[(σ
2)v, σ̃2];

(σ2)v−1 if U2 > π2[(σ
2)v, σ̃2].

The proposed algorithm is a combination of the Metropolis-hasting algorithm and Gibbs sampler. It

is a Metropolis Hasting algorithm with further updates on σ2 using Gibbs sampler. The algorithm’s

validity was demonstrated with a simulated response variable y scenario with no predictor variable.

A regression tree with three terminal nodes was assumed. Each terminal node of the regression tree

consists of 5 observations with mean βm = 10; variance σ2
m = 4; m = 1, 2, 3. The regression tree was

replicated 5 times using bootstrapping to make a forest. The MCMC iteration results are shown below.

The first column shows the trace plot of the parameter for each node over the trees. The trace plot

for the four parameters shows that the iterations converge very sharply at 10000. The autocorrelation
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plots show an exponential decay, suggesting independent MCMC chains. The acceptance rate lies

within the tolerable range of 20%−40% as suggested by [35]. These features established the validity of

the algorithm. In addition, the histogram supports the analytical densities proposed for the posterior

distribution of parameters. The posterior densities for βm is very much closer to student t distribution

with values at the tail end while σ2 density is very much closer to Gamma. The overall model

standard error estimate using the Bayesian Random Forest (BRF) algorithm is σbr f = 1.42 while that

of frequentist estimate is σr f = 2.04. This established that empirically, BRF is more efficient than the

frequentist RF method.

Figure 2. Simulation plot 1 of the hybrid algorithm for Bayesian Random Forest regression.
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Figure 3. Simulation plot 2 of the hybrid algorithm for Bayesian Random Forest regression.

The performance of the BRF procedure was also examined for predicting response y given three

covariates that correspond to genes. The three covariates are denoted as Gene1, Gene2, Gene3. The

functional relation between the response and genes was defined as:

yi = 5 + 10 × Gene1 + 20 × Gene2 + 30 × Gene3 + ǫi

where i = 1, 2, . . . , 30. Figures 4 and 5 shows a single tree diagram from a Bayesian random forest

consisting of 5 trees. The plot shows simulated 20 terminal nodes.

The first white box in Figure 4 housed value 2.4, corresponding to the split decision value. Variable

Gene3 split into two daughter nodes with the left node terminating on predicted ŷ = 13.39 based

on the condition that Gene3 < 2.4. Subsequently, the right node further splits into another two

daughter nodes using condition Gene3 < 0.69. Again, the left daughter node terminates on predicted

ŷ = 17.17. The process continues until the maximum number of nodes set to be 20 is reached. The

number of nodes condition is also referred to as maximal tree depth by [6]. The reason for more

splits on Gene3 can be easily observed from how the response was simulated such that Gene3 is the

most relevant in terms of weights. If the variable importance score is desired, Gene3 will be the most

important variable since it occurs more frequently than others in the predictor set. The posterior

estimates in equations (36) and (37) obtained earlier rely on the accuracy of prior parameter values

assumed. In most occasions, searching for appropriate prior parameters may be difficult, especially

in the case of the sum of trees model. A data-driven approach is often used, such as those used in

[22,28]. Another alternative is the Empirical Bayes. Empirical Bayes [37–39] allows the experimenter

to estimate the prior hyperparameter values from the data. It is a hierarchical modelling approach

where the parameter of a second stage or later model depends on initial stage data. The empirical

Bayes approach is often used when hierarchical data are available. However, it can also be applied

for non-hierarchical situations as extended by [40] using bootstrapped data to construct confidence

intervals. The sum of trees modelling strategy is thus further simplified using the bootstrap prior
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technique. The approach was used to obtain the prior hyperparameters µM, Σ for each tree. The

major advantage of bootstrap prior is that it guarantees an unbiased estimate of βM for each tree. To

achieve a fast grasp of the approach, we consider Bayesian inference of a single tree j with one of

the terminal node parameters defined by βm and λm. The likelihood of a single tree Ij(βm : x ∈ Rm),

L[y, x|Ij(βm : x ∈ Rm)] can be written as;

L[y, x|Ij(βm : x ∈ Rm)] =

( λ
1
2
mj√
2π

)nmj

exp

[

−
λmj

2

nmj

∑
i:x∈Rmj

(yi − βmj)
2

]

(38)

where λmj = σ−2
mj interpreted as precision for node m. Correspondingly, we can write the prior density

for the parameters of a single tree as;

Pr(βmj, λmj|n0, a0, b0) =
(λmjn0)

1/2

√
2π

exp

[

−
λmj

2
(βmj − µ0)

2

]

×
ba0

0 λ
a0−1
mj exp

(

− λmjb0

)

Γ(a0)

(39)

where n0 is the prior sample size for terminal node m, µ0 is the prior mean obtained from n0, a0 is the

prior sample size for the precision λmj and b0 is the prior sum of squares deviation from prior mean µ0.

The posterior distribution of a single tree thus follows from the Bayes theorem:

Pr(βmj, λmj|y, x) =

Pr(βmj, λmj)× L[y, x|Ij(βm : x ∈ Rm)]
∫

βmj

∫

λmj
Pr(βmj, λmj)× L[y, x|Ij(βm : x ∈ Rm)]dβmjdλmj

.
(40)

After a little arrangement, the posterior distribution can be defined as:

Pr(βmj, λmj|y, x) =
(λmjn1)

1/2

√
2π

exp

[

−
λmj

2
(βmj − µ1)

2

]

×
b

a1
1 λ

a1−1
mj exp

(

− λmjb1

)

Γ(a1)

(41)

where µ1m = (n0µ0 + nmȳm)/(n0 + nm) is the posterior estimate of βm, n1 = n0 + nm is the posterior

sample size for which µ1m can be estimated, a1 = a0 + nm/2 is the posterior sample size for which λm

can be estimated and b1 = b0 + 1/2 ∑
nm
i=1(yi − ȳm)2 + n0nm(ȳm−µ0)

2

2(n0+nm)
. The terminal node estimate ȳm is

defined as;

ȳm = (nm)
−1

nm

∑
i=1

(yi|xi ∈ Rm) (42)

is the maximum likelihood estimate of E(yi|xi ∈ Rm). The estimate is unbiased and that is used in RF

algorithms. The variance of the estimate followed as;

var(ȳm) = n−1
m σ2

m (43)
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Figure 4. Single regression tree plot from forest of five trees using Bayesian Random Forest (BRF)

hybrid Gibbs and MH procedure. The coloured box corresponds to the terminal node or final prediction,

and the white box corresponds to the decision node or split point.

The corresponding empirical bayes estimate for equations (42) and (43) are;

µ̂[EB]m = (n̂0µ̂0 + nmȳm)/(n̂0 + nm) (44)

σ̂2
[EB]m =

b̂0 + 1/2 ∑
nm
i=1(yi − ȳm)2 + n̂0nm(ȳm−µ̂0)

2

2(n̂0+nm)

â0 + nm/2
(45)

As a further update on the empirical Bayes procedure, the prior hyperparameters are estimated from a

bootstrapped sample by following the procedure below:

1. Creating B bootstrap samples yb from the initial sample ym in the terminal node m,
2. Estimating the hyperparameters (prior parameters) each time the samples are generated using

the Maximum Likelihood (ML) method,
3. Updating the posterior estimates using the hyperparameters in step (2) above using equations

(44) and (45),
4. Then obtaining the bootstrap empirical Bayesian estimates µ̂BT and σ̂2

BT using;

µ̂BT = B−1
B

∑
b=1

µ̂[EB]mb
(46)

σ̂2
BT = B−1

B

∑
b=1

σ̂2
[EB]mb

(47)

Theorem 2. The bootstrap prior estimate µ̂BT is a uniformly minimum variance unbiased estimator of βm =

E(yi|xi ∈ Rm) under mild regularity conditions.
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Proof.

µ̂BT = B−1
B

∑
b=1

n̂0µ̂0 + nmȳm

n̂0 + nm
(48)

µ̂BT = B−1
B

∑
b=1

[

n̂0µ̂0

n̂0 + nm
+

nmȳm

n̂0 + nm

]

(49)

Suppose we fix the prior parameters as; n̂0b = B and µ̂0b = ȳmb, where (̄y)mb is the ML estimate based

on a bootstrap sample selected from yb. That is,

ȳmb = (nm)
−1

nm

∑
i=1

(ybi|xi ∈ Rm)

Then,

µ̂BT = B−1
B

∑
b=1

[

Bȳmb

B + nm
+

nmȳm

B + nm

]

(50)

µ̂BT =
∑

B
b=1 ȳmb

B + nm
+

nmȳm

B + nm
(51)

E[µ̂BT ] = E

[

∑
B
b=1 ȳmb

B + nm
+

nmȳm

B + nm

]

(52)

E[µ̂BT ] =
∑

B
b=1 E[ȳmb]

B + nm
+

nmE[ȳm]

B + nm
(53)

Since ȳm and ȳmb are known unbiased estimates of βm,

→

E[µ̂BT ] =
∑

B
b=1 βm

B + nm
+

nmβm

B + nm
(54)

=
1

B + nm
[Bβm + nmβm] (55)

E[µ̂BT ] = βm (56)

Therefore, µ̂BT is unbiased for estimating βm. Also, the MSE is the combination of the square of bias

and variance of the estimate, then following from the above derivation the MSE is just the variance of

the estimate. Thus,

var[µ̂BT ] = var

[

∑
B
b=1 ȳmb

B + nm
+

nmȳm

B + nm

]

(57)

=
∑

B
b=1 var[ȳmb]

(B + nm)2
+

n2
mvar[ȳm]

(B + nm)2
(58)

=
∑

B
b=1[n

−1
m σ2

m]

(B + nm)2
+

n2
m[n

−1
m σ2

m]

(B + nm)2
(59)

var[µ̂BT ] =

[

n2
m + B

(B + nm)2

]

n−1
m σ2

m (60)
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Hence, it can be shown that the limiting form of

[

n2
m+B

(B+nm)2

]

is 0, by applying L’hospital rule:

lim
B→∞

[

n2
m + B

(B + nm)2

]

= lim
B→∞

[ d(n2
m+B)
dB

d(B+nm)2

dB

]

(61)

lim
B→∞

[

n2
m + B

(B + nm)2

]

= lim
B→∞

[

1

2(B + nm)

]

(62)

lim
B→∞

[

n2
m + B

(B + nm)2

]

=
1

∞
(63)

lim
B→∞

[

n2
m + B

(B + nm)2

]

= 0 (64)

The derivation above implies that at sample size nm, the limB→∞ var[µ̂BT ] = 0. This affirms that

the experimenter can control the stability of the estimator by increasing the number of bootstrap

samples B. In addition, var[µ̂BT ] =

[

n2
m+B

(B+nm)2

]

n−1
m σ2

m < var[µ̂ML] = n−1
m σ2

m, by a factor

[

n2
m+B

(B+nm)2

]

that

converges faster to zero with increasing B. Therefore, the frequentist estimator (ML) is less efficient

than the estimator µ̂BT , which is more efficient. Because they are both unbiased, this comparison

is valid. Since this proposed estimator reduces the MSE in terms of bias and variance reduction, it

is additionally more efficient within the Bayesian framework. By only lowering the variance, the

conventional Bayesian estimator reduces the MSE.. Therefore, µ̂BT is a minimum variance unbiased

estimator for estimating the population mean βm. The proof established here serves as a baseline for

using bootstrapped prior with the sum of trees model.

3.1. A New Weighted Splitting for Bayesian Random Forest in Sparse High-Dimensional Setting

Apart from the probabilistic interpretation update on random forest regression achieved using

Bayesian modelling, we also dealt with the variable selection principle used during splitting.

Tree-based methods use a greedy approach to build trees. In a high-dimensional setting with a

large number of covariates, modelling with all the covariates increases the computational time and

thus subsampling variables randomly or using a deterministic approach is suitable for tree-based

methods. There are two popular approaches for handling high-dimensional data;

1. Greedy search: Identifying the relevant subset of variables and fitting the desired model on them.
2. Random search: Randomly selecting subset (whether relevant or irrelevant) and fitting the

desired model on them.

The two approaches are not 100% perfect in variable selection, greedy search fails to capture the

interaction effect between variables and sometimes overfits while random search does not overfit if

replicated a large number of times but tends to suffer the loss of efficiency when the variable space is

populated with irrelevant variables. The RF regression algorithm randomly selects variables from the

predictor space by selecting a fixed number p/3 irrespective of their predictive interaction with the

response variable. This subsample size does not take into account the number of relevant predictors in

the entire predictor space, thus the chance of selecting irrelevant features increases with increased p.

Therefore, using the same data configuration, the predictive performance of RF reduces with increasing

p.

The weakness of RF can be attributed to its random subset selection mechanism. Updating the

subset selection with a data-driven approach such that predictors are ranked in the order of relative

correlation with response y will be fruitful. The motivation behind this idea follows from a greedy

background, by trying to build a sum of tree models with only a relevant subset of predictors. However,

this will affect the interaction modelling strength of RF which might further lead to a reduction in
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predictive power. In addition, we intend to update and not modify RF so as to maintain all its strength.

Based on this fact, we developed a new framework that combines the strength of greedy search as well

as random search by ranking the variables based on their initially computed importance.

Let T1, T2, T3, . . . , Tp be p independent t statistics with cumulative distribution function F(t). Here,

Tk corresponds to the t statistic for each covariate xk after fitting a Bayesian simple linear regression

model of the response y on xk. Specifically, Tk can be defined as follows:

Tk =
θ̂k

SD(θ̂k)
(65)

where θ̂k is the Bayesian estimated weight of xk in the simple linear regression model:

y = θ0 + θkxk + ǫ (66)

θ0 is the bias of estimating y using xk and ǫ is the random noise that arises during the estimation of y

with the linear model; it is considered to be independent, identical, Gaussian-distributed noise with

a mean of zero and a constant variance δ2. SD(θ̂k) is the posterior standard deviation of θk. The t-

statistics Tk are then ranked in the increasing order of magnitude as; T(1) ≤ T(2) ≤ T(3) ≤ · · · ≤ T(p).

The T(k) is the kth order statistic (k = 1, 2, . . . , p). Then, the cumulative distribution function (CDF) of

the largest order statistic T(p) is given by;

Fp(t) = Pr
(

T(p) ≤ t
)

(67)

Fp(t) = Pr
(

allT(k) ≤ t
)

= Fp(t) (68)

Also, we can see that Pr(T(k) ≥ allT(p−k)) ≡ Pr(allT(p−k) ≤ T(k)); thus

Fp−k(t) = Pr(allT(p−k) ≤ T(k)). (69)

Equation (69) can be interpreted as the probability that at least p − k of the T(k) are less than or equal

to t. This also implies that all other (p − k) variables are less relevant to response y than Xk.

Pr(allT(p−k) ≤ T(k)) =
p

∑
k=(p−k)

(

p

k

)

F(k)(t)[1 − F(t)]p−k (70)

F(p−k)(t) =
p

∑
k=(p−k)

(

p

k

)

F(k)(t)[1 − F(t)]p−k. (71)

We now refer to F(p−k)(t) as weight wk which is the probability that each xp−k variable is less important

to y than xk. A binary regression tree’s splitting mechanism is then updated using this weight in the

following ways:

Qw
m(T) = (1 − wk)

[ n1m

∑
i:xk∈R1(j,s)

(yi − β̂1m)
2 +

n2m

∑
i:xk∈R2(j,s)

(yi − β̂2m)
2

]

(72)

If a variable xk is important and subsequent splitting on it will have significance, the weighted

deviation Qw
m(T) reduces to zero (since wk → 1). Due to the fact that variables with lower weights w

won’t be further divided in the tree-building algorithm, this strategy helps to speed up the algorithm

and improve the variable selection component of random forest regression. The procedure below

summarizes BRF for a Gaussian response.

1. Step 0: Start with input data D = [x; y]
2. Step 1: Analyze each variable xk ∈ x individually by running a univariate analysis and save the

bootstrap Bayesian t statistic tBP.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 October 2023                   doi:10.20944/preprints202310.1272.v1

https://doi.org/10.20944/preprints202310.1272.v1


17 of 25

3. Step 2: Calculate the probability of maximal weight wk for each variable xk ∈ x.
4. Step 3: For each of the J trees, where j = 1, 2, . . . , J:
5. Step 4: Compute the bootstrap prior predictive density weights ωi from a Normal-Inverse (NIG)

distribution with parameters µBP
M , σ2ΣBP

M , aBP, bBP.
6. Step 5: Generate a Bayesian weighted simple random sample D∗ of size N with replacement from

the training data D using the weights ωi.
7. Step 6: Generate a Bayesian weighted simple random sample:
8. Step 7: Grow a weighted predictors CART tree Ij, by iteratively repeating the following steps for

each terminal node m, until the minimum node size nmin is reached:

(a) Randomly select mtry = ⌊p/3⌋ variables without replacement from the pavailable variables.
(b) Choose the best variable and split-point from the selected variables.
(c) Divide the node into two daughter nodes.
(d) Compute weighted splitting criterion Qw

m(T) and identify the node with the minimum

deviance Qw
m(T).

9. Step 8: Print the ensemble of trees Ij over J iterations.
10. Step 10: To predict test data xte, apply:

ŷJ
br f =

1

J

J

∑
j=1

Ij(xte)

3.2. Oracle Properties of Bayesian Random Forest

In this section, we show that if the Bayesian bootstrap prior estimator µ̂BT is used for estimating

βM and the weighted splitting approach is utilized, the Bayesian Random Forest (BRF) enjoys the

oracle properties.

Theorem 3. Suppose β̂M = µ̂BT and F(p−k)(t) → 1, then the Bayesian Random Forest (BRF) satisfy the

following:

i. Identification of the right subset model M such that P(M̂ = M) → 1.

ii. Achievement of the optimal estimation rate,
√

n(M̂ −M)
d−→ N(0, Var(M))

Proof. From theorem (1), we know that the probability of selecting at least one relevant subset R from

the set p using RF is

P(R1 ∪ R2 ∪ . . . Rr) =
r

∑
k=1

P(Rk)−
r

∑
j,k=1;k>j

P(Rj ∩ Rk) +
r

∑
i,j,k=1;k>j>i

P(Ri ∩ Ri ∩ Rk)

− · · ·+ (−1)r−1P(R1 ∩ R2 ∩ · · · ∩ Rr).

Now using the weighted splitting, there is assurance that the selected variable xk is relevant provided

F(p−k)(t) → 1. This implies that the random selection of variables for splitting in BRF is a mutually

exclusive process that is P(Ri ∩ Rj) = 0∀i 6= j. Thus, the probability of selecting at least one relevant

subset R from the set p using BRF is

P(R1 ∪ R2 ∪ . . . Rr) =
r

∑
k=1

P(Rk)

=

(

r

1

)(

1

r

)

= 1

(73)

.
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Lemma 3. BRF variable selection is consistent if limp→∞ P(M̂ = M) = 1.

Corollary 2. From equation (73) limp→∞ P(
⋃r⊂p

k=1 Rk) = 1, then BRF variable selection is consistent in HD

with large p.

Theorem (2) revealed that the Bayesian estimator µ̂BT is a uniformly minimum variance unbiased

estimator for the parameter βM under mild regularity conditions. This implies

var(ŷbr f ) = var(µ̂BT)

var(ŷbr f ) =

[

n2
m + B

(B + nm)2

]

n−1
m σ2

m < var[ŷr f ] = n−1
m σ2

m

(74)

Remark 3. Equation (74) implies that BRF is more efficient than RF when the bootstrap size B → ∞.

4. Simulation and Results

In this section, we conducted an empirical evaluation of BRF in comparison to its major

competitors using both simulation and real-life data. The analyses were performed through 10-fold

cross-validations on the datasets. All the analyses were executed in the R statistical package. We

utilized the newly built-in function br f for BRF, glmnet function [26] for LASSO, gbm for Gradient

Boosting [20], r f src for Random Forest, wbart for BART1 as described in [22], and bartMachine for

BART2 [41].

To implement the Bayesian Forest method (BF), we modified the case.wt parameter of r f src from

[42], introducing random weights distributed exponentially with a rate parameter of 1. It’s worth

noting that we employed two different R packages for BART due to observed discrepancies in the

results produced by these packages. Detailed information regarding the setup of tuning parameters

can be found in Table 1.

Table 1. Tuning parameters set-up for the various methods used in data analysis.

Method Tuning Parameter Set-up

LASSO λ ∈ [0, 1] is selected via 10 folds cross validation. Other
settings are default as in glmnet.

GBM Number of trees is fixed at 1000 and all other settings are
default.

RF mtry settings are default p/3, number of trees is fixed at
1000. Other settings are default.

BART1 All settings are default.

BART2 All settings are default

BF mtry settings are default, number of trees is fixed at 1000.
case.wt ∼ exp(1). Other settings are default.

BRF mtry settings are default p/3, number of trees is fixed at
1000, search type is random, split weight is obtained using

F(p−k)(t).

Two simulation scenarios were created based on the problem we intend to tackle in this paper.

The simulation scenarios were adapted from the works of [22] and [13]. In each of the scenarios, six

levels of low and high-dimensional settings were defined as p = 50, 100, 500, 1000, 5000, 10000 and
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used so as to mimic realistic gene expression datasets. The sample size corresponding to the number

of patients n which is usually far smaller than p was fixed at 200 in all the scenarios. Here, the Root

Mean Square Error (RMSE) and Average Root Mean Square(ARMSE) were used as performance

measures over the 10-folds. Note p = 50&100 were used to examine the behaviour of the methods in

low dimensional data situations.

RMSE =

√

∑
ntest
i=1 (yi − ŷi)2

ntest

ARMSE =
∑

10
e=1 RMSEe

10

Scenario 1: Linear Case; Set x1, . . . , xp as multivariate standard normal N(0, 1) random variables

with associated covariance structure define as; Σ = blockdiag(Σ1
1, . . . , Σ1

G) = IG ⊗ Σ1, where ⊗ is the

kronecker product. Here we assume that the first five predictors [x1, . . . , x5] are relevant and the

associated covariance structure is defined as

Σ1 =

{

ρ if i 6= j;

1 if i = j.

, such that the first five variables have pairwise correlation value ρ = 0.9 and likewise the other

blocks of size five variables have the same correlation structure. The response is then simulated as

y = x1 + 2x2 + 3x3 + 4x4 + 5x5 + ǫ, where [x6, . . . , xp] are the irrelevant predictor set. Note, with the

covariance structure Σ defined, the p − 5 variables are independent and identically distributed and

ǫ ∼ N(0, 1).

Scenario 2: Nonlinear Case; This follows the same structure as in scenario one except for the

simulation of the response which is defined as y = 10sin(x1x2) + 20(x3 − 0.5)2 + 10|x4 − 0.5|+ 5(x5 −
0.5)3 + ǫ and ρ = 0.2.

4.1. Simulation Results

Table 2 summarizes the 10-fold cross-validation simulation of a Gaussian response for the seven

methods. As expected for scenario 1 with the linearity assumption, LASSO takes the lead followed by

the new method BRF. Also, the ARMSE increases with an increase in p for most of the methods except

GBM which is unaffected by the increase in p. RF also performs much better than other ensemble

methods like BF, BART1 and BART2 and most especially GBM. Although an increase in p affects

the performance of RF significantly, the situation is different for BRF as the increase in p does not

correspond to an increase in the ARMSE. BART2 performance tends to be better than BART1 for the

low-dimensional case than the high-dimensional situation. BF performance is better than BART1

and BART2 but, BRF still takes the lead within the Bayesian class of models. The boxplot in Figure 5

corroborates the findings in Table 2 with the median RMSE of BRF and LASSO being the lowest over

the different data dimensions.
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Table 2. Average test Root Mean Square Error (ARMSE) over 10-fold cross-validation for scenario 1.

Scenario 1: Linear

p

Method 50 100 500 1000 5000 10000

BRF 2.005 2.012 2.084 2.113 2.114 2.156
GBM 8.853 8.861 8.843 8.854 8.854 8.847
LASSO 0.950 0.949 0.952 0.958 0.967 0.977
RF 2.247 2.296 2.513 2.603 2.824 2.947
BF 2.568 2.627 2.855 3.022 3.185 3.590
BART1 3.843 4.521 2.763 3.126 5.364 7.210
BART2 2.596 3.113 3.007 3.621 5.658 8.395

p = 1000 p = 5000 p = 10000

p = 50 p = 100 p = 500
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Figure 5. Boxplot of test 10-folds cross-validation RMSE of Scenario 1. The black middle line in each

box represents the median. The dots represent outliers in RMSE results. The outliers in GBM is the

highest.

The box and whisker plot for GBM (blue) was observed to be the highest in all data dimension

situations. Table 3 summarizes the 10-fold cross-validation simulation for Gaussian response for the

seven methods when the nonlinear model is assumed. The performance of all methods degrades

drastically when compared to the linear case in Table 2. LASSO performs worse as expected in this

situation. BART1 and BART2 performance are again better for the low dimensional situation when

p < n, precisely for p = 50, 100. However, their performances depreciate faster as p approaches 500

and in fact worse than LASSO as p approaches 10000. GBM performance is again unaffected with the

increase in p but the performance is not different from LASSO. RF and likewise BF perform moderately

better than BART1 and BART2 for p > 1000. BRF simultaneously achieves robustness to increase in p

as well as maintaining the lowest RMSE for low and high dimensional settings when compared with

the six other competing methods. The boxplot in Figure 6 corroborates the findings in Table 3, with the

median RMSE of BRF being the lowest for p > 500.
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Table 3. Average test Root Mean Square Error (ARMSE) over 10-fold cross-validation for scenario 2.

Scenario 2: Nonlinear

p

Method 50 100 500 1000 5000 10000

BRF 19.498 19.896 19.889 19.906 21.637 22.543
GBM 30.355 30.352 30.444 30.551 30.708 30.964
LASSO 32.404 32.453 32.585 33.526 34.626 35.230
RF 20.664 21.264 23.266 23.742 25.043 25.954
BF 23.288 22.993 26.062 26.095 29.121 28.210
BART1 16.844 16.493 24.151 28.180 31.917 38.156
BART2 14.037 18.071 22.193 27.450 33.522 37.932
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Figure 6. Boxplot of test 10 folds cross-validation RMSE of Scenario 2 for Gaussian response. The black

middle line in each box represents the median.

4.2. Variable Selection

The two scenario models (Linear and Non-linear) were investigated to determine the best method

in terms of the selection of the five relevant variables imposed. Table 4 presents the results of the

variable selection performance of BRF alongside competing methods. For the linear model, the average

proportion of relevant variables identified using LASSO is 1 and constant over all the six datasets

used. This result corroborates the findings in Table 2 where LASSO was found to be the best in terms

of lowest ARMSE. The entire five relevant variables were correctly identified with LASSO under the

linearity assumption. BRF competes favourably with LASSO with the identification of about 4/5

relevant variables up to p = 5000. BRF also consistently identified all the relevant variables in low

dimensional conditions with p = 50&100. The performances of RF, BF and GBM are very similar with

GBM slightly above RF and BF. BART2 also consistently identified about 4/5 relevant variables up

till p = 1000. However, the performance at p = 5000&10000 is not presented due to computational
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difficulty while computing the probability of inclusion for p > 1000. The lowest performance was

observed with BART1 over all the dimensions of datasets used.

For the non-linear condition, none of the methods could achieve 100% identification as the

functional path is now rough but BRF is still the best for p = 50, and it converges to 2/5 from p = 1000.

LASSO performance is not consistent here and it also corroborates the high ARMSE observed in Table

3. BART2 competes with BRF at various levels of p and in fact the highest for p ≤ 1000. A similar

worse performance was observed for BART1 under the non-linear condition.

Table 4. Average proportion of relevant variables selected in 10 folds cross validation.

p
Method 50 100 500 1000 5000 10000

Linear
BRF 1.00 0.98 0.90 0.84 0.76 0.68
RF 0.96 0.84 0.80 0.78 0.68 0.64
BF 0.98 0.84 0.76 0.68 0.64 0.64
GBM 0.96 0.84 0.82 0.80 0.76 0.76
LASSO 1.00 1.00 1.00 1.00 1.00 1.00
BART1 0.76 0.86 0.82 0.80 0.48 0.24
BART2 0.88 0.88 0.84 0.80 - -

Non-linear
BRF 0.66 0.58 0.44 0.40 0.40 0.40
RF 0.60 0.60 0.44 0.42 0.40 0.38
BF 0.58 0.58 0.40 0.36 0.36 0.26
GBM 0.58 0.56 0.40 0.40 0.38 0.34
LASSO 0.62 0.72 0.42 0.40 0.40 0.40
BART1 0.54 0.56 0.40 0.30 0.14 0.10
BART2 0.62 0.64 0.52 0.44 - -

4.3. Predicting Tumour Size and Biomarker Score

Three real-life cancer datasets on the prediction of tumour size and biomarker score. The

two breast cancer datasets were used to predict the size of tumour before the patients underwent

chemotherapy. The other dataset was used to predict the biomarker score of lung cancer for patients

with smoking history. The dataset’s detailed description can be found below:

1. Breast1 Cancer: [43] obtained 22,283 gene expression profiles using Affymetrix Human Genome

U133A Array on 61 patients prior to chemotherapy. The pre-chemotherapy size of tumours was

recorded for both negative Estrogen Receptor (ER-) and positive Estrogen Receptor (ER+). A

preliminary analysis carried out on the dataset using a Bayesian t-test revealed that only 7903

genes are relevant at some specific threshold.
2. Breast2 Cancer: [44] obtained 22,575 gene expression profiles using 60mer oligonucleotide

array from 60 patients with ER-positive primary breast cancer and treated with tamoxifen

monotherapy for 5 years. Data were generated from whole tissue sections of breast cancers.

The pre-chemotherapy size of tumours was recorded for both negative Estrogen Receptor (ER-)

and positive Estrogen Receptor (ER+). A preliminary analysis carried out on the dataset using a

Bayesian t-test revealed that only 4808 genes are relevant at some specific threshold.
3. Lung Cancer: [45] obtained 22,215 gene expression profiles using Affymetrix Suggested Protocol

on 163 patients. The biomarker score to detect the presence or absence of lung cancer was recorded

alongside the gene expression profile. A preliminary analysis carried out on the dataset using a

Bayesian t-test revealed that only 7187 genes are relevant at some specific threshold.

The RMSE of the methods were obtained for the test dataset that arose from ten-fold cross-validation.

Table 5 shows the summary of ARMSE for the test dataset over the ten-fold cross-validation. For

Breast1 and Breast2, BRF was found to be the best with the lowest ARMSE. In terms of ranking, RF
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was found to be in the second position in terms of performance when compared with other methods.

For the prediction of biomarker score, the best is LASSO with the lowest ARMSE. On average, BRF has

the lowest ARMSE over the three datasets. The Standard Error of Mean (SEM) estimates measure the

relative spread of RMSE for each dataset. The SEM results show that the most stable method is BRF

with least SEM over most datasets except Lung.

Table 5. Average test RMSE and (Standard error) over 10-fold cross-validation for regression cancer

datasets.

Method
Dataset BRF GBM LASSO RF BF BART1 BART2

Breast1 1.014 1.131 1.283 1.117 1.120 1.128 1.123
(0.071) (1.086) (0.258) (0.673) (0.749) (0.661) (1.380)

Breast2 0.347 0.450 0.458 0.448 0.449 0.456 0.452
(0.048) (0.352) (0.246) (0.298) (0.576) (0.139) (0.239)

Lung 1.099 5.243 0.825 2.287 2.420 1.589 1.934
(0.243) (1.125) (0.309) (0.162) (0.298) (0.717) (0.255)

5. Discussion of Results

BRF achieves impressive results because it employs Bayesian estimation at the tree node parameter

stage and combines a greedy and random search to select splitting variables. In contrast, RF fails since

it randomly selects variables without considering their importance. Random search is adequate for

low-dimensional cases, as seen in various simulation conditions. However, as the number of irrelevant

variables increases, the performance of random search significantly deteriorates. For example, in a

five-dimensional simulation with five relevant variables, the probabilities of selecting at least one

relevant variable when mtry = ⌊√p⌋ are as follows 0.546, 0.416, 0.202, 0.150, 0.06, 0.05, 0.04 for different

values of p = 50, 100, 500, 1000, 5000, 10000. This demonstrates that as the data dimension grows with

a fixed sample size n, more irrelevant variables are selected, resulting in a poor model fit.

The new approach, BRF, directly addresses this issue by ensuring the use of only relevant variables,

regardless of the dataset’s dimension. This approach is akin to what GBM does, as it assesses the

influence of each variable on the response. However, BRF surpasses GBM due to its application of

Bayesian estimation methods and robust data-driven prior techniques. Moreover, it’s clear that BRF’s

performance relies on correctly identifying variables during the greedy search. If irrelevant variables

are ranked higher than relevant ones, it will affect performance, emphasizing the need for a robust

procedure for preliminary variable ranking. While the bootstrap prior technique performed reasonably

well in both linear and non-linear scenarios, the accuracy of BRF can also be improved by introducing

a more effective subset selection procedure.

6. Conclusion

This paper investigated the strengths and flaws of Random Forest (RF) for modelling

high-dimensional data. The major weakness of RF methods is that they are not governed by any

statistical model, and thus, they cannot provide probabilistic results as in the Bayesian setting. Another

critical issue with the RF methods occurs in high-dimensional data with a large number of predictors

but a small number of relevant ones. The performance of RF tends to depreciate as the dimension

of the data grows infinitely under this condition. These two issues motivated the development of

Bayesian Random Forests (BRF) presented in this paper. The theoretical results revealed that BRF

satisfies the oracle properties under mild regularity conditions. Furthermore, the various empirical

results from the simulation and real-life data analysis established that BRF is more consistent and

efficient than other competing methods for modelling non-linear functional relationships in low and

high-dimensional situations. Also, BRF was found to be better than the competing Bayesian methods,

especially in high-dimensional settings.
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