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Abstract: Random Forest (RF) is a widely used data prediction and variable selection technique.
However, the variable selection aspect of RF can become unreliable when there are more irrelevant
variables than relevant ones. In response, we introduced the Bayesian Random Forest (BRF) method
specifically designed for high-dimensional datasets with a sparse covariate structure. Our research
demonstrates that BRF possesses the oracle property, which means it achieves strong selection
consistency without compromising efficiency or bias.
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1. Introduction

Several techniques for handling high-dimensional data have been proposed from different areas
of research, such as in oncology (modelling and identification of relevant genetic biomarkers for
tumourous cancer cells) [1-5]. The methodologies of the techniques differ, but the collective standpoint
is to find an efficient way to analyze high-dimensional data [6]. In a broader sense, high-dimensionality
(HD) refers to a modelling situation where the number of unknown parameters p are far greater than
the sample size n that’s p > n [7]. This scenario includes supervised regression and classification with
several explanatory variables or features largely greater than sample size, unsupervised learning with
more attributes than samples and hypothesis testing parlance with more considered hypotheses than
observations [8]. [9] identified the need for developing robust methods for high-dimensional data.
Classical methods like ordinary least squares, logistic regression, and k — NN often break down due
to an ill-conditioned design matrix when p >> n. [10] described two major approaches to analyzing
high-dimensional data, namely: modification of n > p approaches to accommodate high-dimensional
data or developing a new approach. Modifying approaches involves moving from complex to simple
models by selecting relevant subsets of the p variables. This approach is widely referred to as variable
selection.

Variable selection is an approach used to adapt existing low-dimensional data modeling
techniques for high-dimensional data. Simultaneously, penalized regression involves imposing
constraints on dimensionality to achieve a similar objective. The primary advantage of variable
selection methods is their ability to preserve the desirable qualities of low-dimensional approaches like
the Maximum Likelihood Estimator (MLE), even though they may struggle to address the complexity
of high-dimensional datasets. Penalized methods such as LASSO [11] and SCAD [12], among others,
offer a partial solution to the problem but introduce bias in estimation. Both approaches share the
drawback of not fully capturing the complexities of high-dimensional datasets, including interactions,
non-linearity, and non-normality [13]. One robust procedure that has been shown to overcome these
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challenges in both low and high-dimensional scenarios is Classification and Regression Trees (CART)
[14,15]. CART is a non-parametric statistical method that relaxes dimensionality assumptions and
naturally accommodates modeling of interactions and non-linearity.

The strength of CART in terms of simplicity and interpretability is offset by a significant drawback,
which often leads to a loss of accuracy. In the late 20th century, a new methodological framework
emerged for combining multiple models to create a more comprehensive model, known as ensemble
modeling. One of the earliest ensemble techniques within the CART framework is Bagging (Bootstrap
Aggregating) [16]. The Bagging process involves taking multiple versions of the bootstrap sample [17]
from the training dataset and fitting an unpruned CART to each of these bootstrap samples. The final
predictor is derived by averaging these different model versions. Remarkably, this procedure works
well and typically outperforms its competitors in most situations. Some intuitive explanations for why
and how it works were provided in [18]. This concept has spurred subsequent work, including the
development of Random Forests (RF) [19], which presents a broader framework for tree ensembles. RF
enhances Bagging by replacing all covariates in the CART’s splitting step with a random sub-sampling
of covariates. This adjustment helps reduce the correlation between adjacent trees, thereby enhancing
predictive accuracy.

The complexity of dealing with high-dimensional data has led to the development of multiple
versions of Random Forest (RF) algorithms in the context of regression modeling. One prominent
characteristic of high-dimensional datasets is their sparsity, which means there are relatively few
relevant predictors within the predictor space. This sparsity is often observed in microarray data, where
only a small number of genes are associated with a specific disease outcome [13,20]. The traditional
approach of RF, which involves randomly subsampling either the square root of the predictors ,/p or
£, fails to effectively capture this sparsity [21]. This failure arises from RF’s unrealistic assumption
that the predictor space should be densely populated with relevant variables to achieve reasonable
accuracy. In contrast, boosting techniques, as introduced by [20], specifically address this issue by
boosting weak trees rather than averaging all the trees, as done in RE. However, boosting comes at the
cost of reduced predictive accuracy compared to RE. The Bayesian modified boosting approach, known
as Bayesian Additive Regression Trees (BART) proposed by [22], provides an alternative method
for estimating a boosting-inspired ensemble of Classification and Regression Trees (CART) models.
Nevertheless, BART does not focus on solving the problem of sparsity and is not robust to an increase
in dimensionality, as reported by [23].Therefore, in this paper, we introduce a new framework for
Random Forest (RF) by incorporating Bayesian estimation and a hybrid variable selection approach
within the splitting step of RF. This innovation aims to enhance prediction efficiency and improve the
consistency of variable selection in high-dimensional datasets.

2. Random Forest and Sum of Trees Models

Suppose we let D = [y;, xj1, Xi2, - ..,xip],i = 1,2,...,n be an n X p dataset with y; assuming
continuous values and x = [xj1, Xj, . .., xip] be the vector of p covariates. Thus, we can define a single
regression tree using the formulation of [22]

Yi :f(xil,/xiZI'-'/xip>+€l’. (1)

where the random noise seen during estimation is denoted by the variable epsilon;, which is assumed
to have an independent, identical Gaussian distribution with a mean of 0 and a constant variance of
sigma2. Consequently, in the same formulation by [22], a sum of trees model can be defined as:

yi = h(xj, Xig, - -, Xip) + €;. 2)
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where h(xi1, Xip, ..., xip) = 2}21 fxin, xin, .., xip) and the total number of trees in the forest is J. In
the notation of a tree, we have;
¥ = Y %(Bnj i x € Ruy) ®)
j=1
where B, is an estimate of y in region Ry, J;(Bj : X € Ry;j) is the single regression tree.

The model’s parameters B, and o (3) are often estimated using the frequentist approach. These
approaches include Bagging [16], Stacking [24], Boosting [25] and Random forest [19]. Stacking
improves the performance of the single tree in the model (1) by forming a linear combination of
different covariates in x. Similarly, boosting improves (1) by fitting a single tree model on data sample
points not used by an earlier fitted tree. Bagging and random forest iteratively randomize the sample
data D and fitting (1) on each uniquely generated sample. Random forest improves over bagging by
using a random subset of p covariates, often denoted mtry, to fit (1) instead of all p covariates. This
procedure has been shown to dramatically lower the correlations between adjacent trees and thus
reduce the overall prediction risk of (3). Freidman [26] defined the risk of using the random forest for
estimating (3) as:

Var(re) = p(x)o2(x) @

where p(x) is the pairwise correlation between adjacent trees and o2 (x) is the variance of any randomly
selected tree from the forest. Equation (4) implies that p(x) plays a vital role in shrinking the risk
towards 0 as ] — oo. Achieving infinite forests is rarely possible due to computational difficulty. This
drawback has necessitated the development of Bayesian [27] alternatives that are adaptive in nature
in terms of averaging many posterior distributions. Chipman [22] proposed the Bayesian Additive
Regression Trees (BART) that average many posterior distributions of single Bayesian Classification
and Regression trees (BCART, [28]). The approach is specifically similar to a form of boosting proposed
in [20]. BART boosts weak trees by placing some form of deterministic priors on them. Although
the empirical bake-off results of 42 datasets used to test the BART procedure showed improved
performance over RF, there is no theoretical backup on why BART is better than RF. Several authors
have queried the improvement, especially in a high-dimensional setting where RF still enjoys moderate
acceptance. Hernandez [13] claimed the BART algorithm implemented in R as package “bartMachine”
is memory hungry even at moderate p with T the number of MCMC iterations for posterior sampling
fixed at 1000.

Taddy [29] proposed the Bayesian and Empirical Bayesian Forests (BF and EBF) to maintain the
structure of RF and modify the data randomisation technique using a Bayesian approach. BF replaces
the uniform randomisation with the Dirichlet posterior distribution of sampled observation. Similarly,
EBF considered the hierarchical parameter structure of estimating the next stage prior hyperparameters
using current data. The results from the empirical analysis showed that BF and EBF are not different
from RF except in the aspect of model interpretation.

2.1. Variable Selection Inconsistency and Inefficiency of Random Forest in Sparse High-Dimensional Setting

Definition 1. Let Dyy; = [Y|X] be a partitioned matrix composed of n x 1 response variable Y vector and X be
an n x p matrix with y;, xy € R, fori =1,... ,nandk =1,..., p then a rectangular matrix Dy

n X111 X122 X3 X4 ... Xip
Y2 X1 X2 X3 X4 ... Xp

Dy = | Y3 X31 X322 X33 X34 ... Xpp (5)
Yn1 Xnl Xn2 Xpn3  Xpd .- Xnp

is referred to as high-dimensional data matrix if p > n [8].
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If we redefine some of the columns in Dy, such that the entries are zeros, thus truncating the
matrix structure, we have a sparsed HD. Sparsity is inherent in HD where only a few of the p covariates
xS are usually related to the response y.

Definition 2. A typical sparsed HD matrix is given by

n xn1 0 x3 0 0 xgp
Y2 21 0 x3 0 0 xp

Dgy= | Y3 31 0 x33 0 0 x (6)

Yn1 Xp1 0 xp3 0 O Xnp

in Olaniran & Abdullah [30].

The risk of random forests (RF), as indicated in equation (4), increases in high-dimensional
situations with a sparse covariate matrix. This increase is a consequence of the random selection of the
variable set mtry used to build equation (1). The method of hypergeometric sampling for selecting
mtry C p is notably sensitive to the mixing parameter 7r, which represents the proportion of relevant
variables. Specifically, when the proportion of relevant variables (77) is higher, the risk associated with
RF is lower, and vice versa.

It's worth noting that many software implementations of RF regression commonly set mtry as
p/3. This choice is expected to yield a satisfactory set of covariates for predicting the target variable
y under two conditions: when the data matrix D is of low dimensionality or when the number of
observations (1) is greater than the number of covariates (p).

In the specific scenario where D = Dy, theorem (1) is employed to establish an upper bound for
the probability of correctly selecting at least one relevant covariate from the set of p. This theorem is
the foundation for defining the selection consistency of random forests in high-dimensional, sparse
settings.

Theorem 1. Given p covariates, r C p relevant variables, if we set the RF subsample size mtry = p/3asr,
then the probability that at least one of the covariates in r is relevant converges to 1 — e~ ! as p — co.

Proof.

Proposition 1. Let Ry, Ry, ... R, denote the event that the Ry covariate is relevant. Then, the event that at least
one covariate in r is relevant is R1 U Ry U ... R,, the required probability is P(Ry U Ry U ... R,). It is worthy
of note that the subsample selection done by RF is without replacement, implying that the sample space of p
covariates can be partitioned into two (R relevant covariates and p — R irrelevant covariates). This partitioning
done without replacement is often referred to as a hypergeometric or non-mutually exclusive process [31]. Thus,
by the generalization of the principle of non-mutually exclusive events, we have

T T T
P(RiUR,U...R,) =Y P(Ry)— Y. P(RNR)+ Y PRiNRNR)
k=1 jk=1k>j ijk=1k>j>i 7)

— o+ (=1)'P(RyNRyN---NRy)
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rroru- 5= () (0 - (O )+ (OO () ()
(1 (:) (j') (®)
)+ () ()

Recall that the exponential function e = 1+ & + g—z, + g—? 4+t %, if § = —1,

|

—_

|
7 N
N

1 1 1
-1 _ r—1
Thus,
P(RyURyU...R,) =1—¢"! =0.6321 (10)
O

Theorem (1) implies that when p grows infinitely, the maximum proportion of relevant covariates
that would be selected is 63.2% assuming the number of subsample mtry chosen equals the number of
relevant covariates in p. Figure 1 shows the convergence over varying p covariates.

Pr(R=1)

0 5000 10000 15000

Figure 1. Probability of selecting relevant variables for RF at varying dimensionality p.

Lemma 1. RF variable selection is consistent if limy_co P(M = M) = 1.

Remark 1. Lemma (1) indicates that for an RF model M fitted using r subsampled covariates, RF variable
selection is consistent if the fitted model converges almost surely to the true model M that contains all relevant
variables R.
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Corollary 1. limy_c P(UZS{ Ry) = 0.6321 < 1, then RF variable selection is inconsistent in HD with large

p.

Now that we have established the inconsistency of RF in the HD setting, the following lemma
presents RF variance for Dgj,; matrix.

Lemma 2. Let 7 be the proportion of relevant covariates and 0 < 7t < 1, the variance of a single tree 0 (x)
can be decomposed into random and noise variance such that the risk of RF in a high-dimensional setting with
p > n can be defined as:

Var(jrr) = p(x) |03 (x) + (1 = m)o3 (x)] )
where 0% (x) and 02 (x) are the random and noise variances respectively.

Remark 2. It is clear from lemma (2) that the risk of RF in (11) is larger than (4) when 1t < 1, thus RF violates
the oracle property conditions defined by [32-34] among others as:

i.  Identification of the right subset model M such that P(M = M) — 1.
ii.  Achievement of the optimal estimation rate, /n(M — M) 4N (0, Var(M))

Many authors have argued that a good estimator M should satisfy these oracle properties.
However, from theorem (1) and (2), RF fails to achieve these conditions in the sparse HD setting. Thus,
there is a need to propose an alternative procedure that enjoys these attractive properties.

3. Priors and Posterior Specification of Bayesian Random Forest for Sparse HD

The Bayesian Random Forest (BRF) proposed here has three major prior parameters. The first
is model uncertainty prior defined over tree J. Here we propose a uniform prior J ~ U(0, 1) by [35]
such that Pr(J) = 1 for any candidate tree. We used this prior specification to retain the average
weighing procedure of RF so that each tree J; has an equal voting right. The core advantage of this
prior is to retain RF’s strength in correcting the over-fitting problem by averaging over all trees. The
second form of prior is terminal node parameter 8 and o2 prior, here we propose the Normal Inverse
Gamma prior NIG(up, 02 Y, a9, bo) by [35], where p); and X are the prior mean and covariance for
parameter Sy, ap and by are the prior sample size and sum of squares for response y; on parameter
0. Furthermore, we assumed a conditional prior of trees parameters B1 on 02, that's for a single tree
with M terminal nodes:
P(Br,0) = P(Bule?)P(0?). (12)

This can be easily extended to ] trees with the assumption of constant model variance ¢ over all trees.

Thus we have;

]
P(31,32,...,3)) = [ [ P(3), Bmj) P(0?) (13)
j=1
]
P(31,72,...,37) = [ [ P(Bmjle*)P(3;)P(c?) (14)
j=1
with Pr(3;) =1
]
P(31,72,...,3)) = [HP(/BM]-|O'2)]P(02) (15)
j=1

exp {z}lz(ﬁMj — 1) 2 (Buj — VM]‘)}
(V2m)Mlo2 ;|2

P(Bmjlo?) = (16)
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If we assumed that the trees are independent and identically distributed, then,
]
HP :BM]|‘7 (]VMIIUZZ)
j=1
i ) exp [2}(32(/31\41 - ]ﬂMj)/Zj_l(ﬁMj - ]Ile)]
P(Bujlo?) = 17)
L1FCw (V2Zm)M|o2] T |
b (0) =0~ exp(—bo/0?)
Pr(c?) = 2 18
exp [2];2(,3Mj — Jumj) Z{l(ﬁMj - ]VM]‘)]
Pi’(jl,jz,...,jj) = 7
(V2m)M|e2] ¥ |2 (19)
y by’ (02) "~ Lexp(—by/0?)
T'(ao)
b“O (a0+(J/2)+1)
Pr(3,T,...,7)) = ()
T (ao)(v2m)IM|TL; E
rr—1y-1 (20)
exp {2(,2 [(ﬁM] Tuwm) T (Bmj — Thwmy) +2bo} }
X
[(a0) (V270)M|] 5 |
The Bayes theorem leads to the posterior density of trees;
Pr(3y,..., 37y, x) =
[Hf-zl Pr(ﬁMj|02)]Pr(az)L(y,xDl,...,3]) 1)

Jprys Jo {H}I Pr(lBM]-|02)}Pr(UZ)L(y,xDl,...,jj)d/%deUZ

The integral at the denominator of equation (21) cannot be solved analytically thus, it is often dropped
in most Bayesian analyses suggested by [35] and hence, we proceed as;

]
Pr(31,3,..., 31|y, x) {HP;’(‘BMJ-WZ)} Pr(c®)L(y, x|31,3a, ..., 7)) (22)
j=1

The likelihood of | trees can be defined as;

]
L(y,x|31,7,...,9)) = [ [ L(v, x|3)) (23)
j=1
exp {27,12 (y—Bumy) (v — .BM]')]
N 4
L(y,X|3]) (\/W)" (2 )
exp | b K = ) (v~ )|
L(y,x|31,32,...,3]) = . (25)

(V2mo?)In
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Therefore, the posterior of Bayesian Random Forest regression is;
02)—(a0+(1/2)+1)
T (a0) (v/27) M| 2
exp {%,lz [(,BMj - ]P‘Mj)/]_lzj_l (Bmj — Tumj) + Zb()] }
I(a0) (v270)/M |72
oxp | b K 0= By (4 )
(V2mo?)ln '

Pr(jl,jg,. . .,3]|y,x) X

X (26)

X

Pr(31,32,..., 3|y, x) o (¢2) (01 +0/2)+1)
-1 1 visly-1 . 27)
X exp {2(72 [(IBMJ‘ = Jua) UZ5) ™ (Bmj — Thwg) +2b1} }

where;

Tiky = 102+ V)L 0 s+ ) maggng| 28)
where V; is an m x m matrix of data information such that the diagonal of V; is o, ]-2 which is defined as;

Tlmj—l

,2 _
= =10Z) " + v (30)
a =ay+n/2 (31)
LNy ey — b (=10
by = by + (VM]( i) i +y2y i (E7) VM,) 2

The marginal densities of Pr(Jq,J>,...,Jj|y, x) is important when performing inference about s and
0. The marginal density of B, is given by;

Pr(Ba|T, 32, 3,4, %) = /2 Pr(31, %, ..., 3|y, x)do? (33)
(2%

Pr(Bm|J1,32,...,31,y,x) = /ﬁ(gz)*(ﬂﬁ(]/Z)H)
_1 B
xexp {M('BMJ'_IV}VI]‘)/(IZ}‘) ! (34)

x (Bumj — Tpy) + 2b1} do?

According to [36], the marginal distribution is identical to the student — t distribution defined as:

Pr(Bm|31,32,...,31,y,x) ~ t(y}w,szz},Zul)

where,

/ _
b + V}/{j(z‘j)ilyMj‘Fylzy*H}\/fj(z}) R
by

2_ u—
s -1 ag+n/2—1 (35)
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Therefore, the posterior mean for S is;
= 11027+ v (U)o + (V) ) | @)
and the posterior variance for B is;
oar (B) = 11{ ziflfzz =)~ + (fvml} 37)

The posterior mean of 8 can be interpreted as the weighted average of prior mean y); and data
mean 7p;. The scaling factor is the joint contribution of prior and data information. Similarly, the
posterior variance of ) is the scaled form of the joint contribution of data and prior information
matrix. The parameters 8); and o can be extracted from their posterior density using a hybrid of
Metropolis-Hastings and Gibbs sampler algorithms described as follows:

3.0.1. Hybrid Gibbs and MH procedure for extracting posterior information from Bayesian Random
Regression Forest with Gaussian Response

1.  Step 0: Define initial values for ﬁ(}w and (02)° such that Pr( 5)\4]-|y, x) > 0and Pr[(c?)?] > 0.
Stepl: Forv=12,...,V

Step 2: Sample &2 from lognormal distribution;q; (62, v1) = LN[(3%)°~1,11].
Step3:Forj=1,2,...,] trees

Step 4: Sample B Mj from independent multivariate normal distribution ga( B MjV2) =
INM(Bj,i' v2)-

6.  Step 5: Calculate the moving probability for fy; by;

Ol LN

PT(EUM]W/ x) 1}

By Pag) = i [ g

7. Step 6: Sample U; ~ U(0,1); then

] IBZ]J\ZJ if u, > 7'[1(,31])\2]- ,ﬁM])
8.  Step 7: Compute the residuals ¢; = y; — ]! 2]1:1 Ji( ’]’VI]- 1 X € Ryj)
9.  Step 8: Calculate the moving probability for ¢ by;

0 2\o—1|x2
- [(O'Z)U/ 52] = min { Prﬁtf(gJeﬁZ:][q(j&)Z | ((7|20)'v’];1,]y1] ’ 1}

10.  Step 9: Sample U, ~ U(0,1); then

(02" — { &2 if U, < my[(02)?,62);
()1 if Uy > mo[(0?)?,52).

The proposed algorithm is a combination of the Metropolis-hasting algorithm and Gibbs sampler. It
is a Metropolis Hasting algorithm with further updates on o2 using Gibbs sampler. The algorithm’s
validity was demonstrated with a simulated response variable y scenario with no predictor variable.
A regression tree with three terminal nodes was assumed. Each terminal node of the regression tree
consists of 5 observations with mean ,, = 10; variance (7,31 =4; m = 1,2,3. The regression tree was
replicated 5 times using bootstrapping to make a forest. The MCMC iteration results are shown below.
The first column shows the trace plot of the parameter for each node over the trees. The trace plot
for the four parameters shows that the iterations converge very sharply at 10000. The autocorrelation
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plots show an exponential decay, suggesting independent MCMC chains. The acceptance rate lies
within the tolerable range of 20%—40% as suggested by [35]. These features established the validity of
the algorithm. In addition, the histogram supports the analytical densities proposed for the posterior
distribution of parameters. The posterior densities for 3, is very much closer to student t distribution
with values at the tail end while ¢? density is very much closer to Gamma. The overall model
standard error estimate using the Bayesian Random Forest (BRF) algorithm is 0},,f = 1.42 while that
of frequentist estimate is ;s = 2.04. This established that empirically, BRF is more efficient than the

frequentist RF method.
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Figure 2. Simulation plot 1 of the hybrid algorithm for Bayesian Random Forest regression.


https://doi.org/10.20944/preprints202310.1272.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 October 2023 doi:10.20944/preprints202310.1272.v1

11 0f 25

Bz Ba
o ™ - e |
24 =
| [] =
- =
= o |
=]
@ |
=
F-4
= 24 g o« &
g ° g
=
=
&
o~
s 7 o
|
© a = HJ“JUMML
EE S —parsdieid il s e A R
T T T T T T r T T T 1 T T T T T T
Oe+00 2e+04 4e+04 Be+04 Be+D4 1e+05 8 9 10 1 12 0 10 20 30 40 0
chain Ba Lag
2
o o
- = |
s =
« . ™
@
@ 24 <
= | = | @
@ o =
=
B w
R £ (3]
w | g @4 g
o

20
02 04

15

0.0

T T
Oe+D0 2e+04 4e+D4 Be+04 Be+D4 1e+05 15 20 25 30 35 40 0 1

0

Al I

chain 43 Lag

Figure 3. Simulation plot 2 of the hybrid algorithm for Bayesian Random Forest regression.

The performance of the BRF procedure was also examined for predicting response y given three
covariates that correspond to genes. The three covariates are denoted as Genel, Gene2, Gene3. The
functional relation between the response and genes was defined as:

yi =5+ 10 x Genel 420 x Gene2 + 30 x Gene3 + €;

wherei = 1,2,...,30. Figures 4 and 5 shows a single tree diagram from a Bayesian random forest
consisting of 5 trees. The plot shows simulated 20 terminal nodes.

The first white box in Figure 4 housed value 2.4, corresponding to the split decision value. Variable
Gene3 split into two daughter nodes with the left node terminating on predicted § = 13.39 based
on the condition that Gene3 < 2.4. Subsequently, the right node further splits into another two
daughter nodes using condition Gene3 < 0.69. Again, the left daughter node terminates on predicted
7 = 17.17. The process continues until the maximum number of nodes set to be 20 is reached. The
number of nodes condition is also referred to as maximal tree depth by [6]. The reason for more
splits on Gene3 can be easily observed from how the response was simulated such that Gene3 is the
most relevant in terms of weights. If the variable importance score is desired, Gene3 will be the most
important variable since it occurs more frequently than others in the predictor set. The posterior
estimates in equations (36) and (37) obtained earlier rely on the accuracy of prior parameter values
assumed. In most occasions, searching for appropriate prior parameters may be difficult, especially
in the case of the sum of trees model. A data-driven approach is often used, such as those used in
[22,28]. Another alternative is the Empirical Bayes. Empirical Bayes [37-39] allows the experimenter
to estimate the prior hyperparameter values from the data. It is a hierarchical modelling approach
where the parameter of a second stage or later model depends on initial stage data. The empirical
Bayes approach is often used when hierarchical data are available. However, it can also be applied
for non-hierarchical situations as extended by [40] using bootstrapped data to construct confidence
intervals. The sum of trees modelling strategy is thus further simplified using the bootstrap prior
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technique. The approach was used to obtain the prior hyperparameters y s, Z for each tree. The
major advantage of bootstrap prior is that it guarantees an unbiased estimate of S, for each tree. To
achieve a fast grasp of the approach, we consider Bayesian inference of a single tree j with one of
the terminal node parameters defined by B, and A,,. The likelihood of a single tree J;(Bm : x € Ru),
L[y, x|3;(Bm : x € Ryy)] can be written as;

/\m‘ Myj )\m‘ Mnj
Lly 3B Rl = (L) ep | =L B | 8)
LEXERy;

where A, =0, ]2 interpreted as precision for node m. Correspondingly, we can write the prior density
for the parameters of a single tree as;

(Amjno)'/?

V2
bSOAz;’j_l exp ( - /\m]-bo)
I'(a)

)\ .
Pr(Bumj, Amjlno, a0, bo) = exp {— %(ﬁmi - Vo)z]
(39)

X

where 1 is the prior sample size for terminal node m, y is the prior mean obtained from ny, ag is the
prior sample size for the precision A,,; and by is the prior sum of squares deviation from prior mean .
The posterior distribution of a single tree thus follows from the Bayes theorem:

Pr(Bujs Amjly, x) =
Pr(Bumj, Amj) % Lly, x|3j(Bm : x € Rn)] (40)
fﬁmj f)lmj Pl"(ﬁm],/\m]) X L[y,x|3](/3m tX € Rm)]dﬁm]d)Lm]

After a little arrangement, the posterior distribution can be defined as:
(Amjn1)'/? Amj )
Pr(ﬁmj/ )\mj\]/rx) = W exp {— T(ﬁmj —H1) ]
_ (41)
bil)\fnlj ! exp < - )Lm]‘bl)

8 T(aq)

where pym = (nopto + nmim)/ (no + ny) is the posterior estimate of B, 11 = ngy + nyy, is the posterior

sample size for which pjm can be estimated, a; = ag + n,, /2 is the posterior sample size for which A,
= 2

can be estimated and b; = by +1/2 an (yz — ym)z + M The terminal node estimate Ym is

i=1 2(no+nm)
defined as;
Nm

I = (nm) 2(]/i|xi € Ri) (42)
i—1

is the maximum likelihood estimate of E(y;|x; € R;,). The estimate is unbiased and that is used in RF
algorithms. The variance of the estimate followed as;

var(Jm) = ny'os, (43)

doi:10.20944/preprints202310.1272.v1
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Figure 4. Single regression tree plot from forest of five trees using Bayesian Random Forest (BRF)
hybrid Gibbs and MH procedure. The coloured box corresponds to the terminal node or final prediction,
and the white box corresponds to the decision node or split point.

The corresponding empirical bayes estimate for equations (42) and (43) are;

fiesm = (Rofto + nmdm) / (o + 1) (44)
~ i _ A m —m_A )2
o bt 1/2E g+ Mt (45)
[EB]m — ag + 1y /2

As a further update on the empirical Bayes procedure, the prior hyperparameters are estimated from a
bootstrapped sample by following the procedure below:

1.  Creating B bootstrap samples y;, from the initial sample y;, in the terminal node m,

2. Estimating the hyperparameters (prior parameters) each time the samples are generated using
the Maximum Likelihood (ML) method,

3. Updating the posterior estimates using the hyperparameters in step (2) above using equations
(44) and (45),

4. Then obtaining the bootstrap empirical Bayesian estimates figr and 63, using;

B
fpr = B'Y fEp)m, (46)
b=1
B
ofr =B bZ:1 ﬁ[ZEB}mb (47)

Theorem 2. The bootstrap prior estimate fipr is a uniformly minimum variance unbiased estimator of By =
E(yi|x; € Ry) under mild regularity conditions.
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Proof.
o 1’10‘140 + NnlYm
— 48
fipr = Z P (48)
Z floflo Ny Ym (49)

fig + 1y 7’10+71m

Suppose we fix the prior parameters as; fip, = B and floy = s, where (), is the ML estimate based
on a bootstrap sample selected from y;. That is,

N
Ymb = (nm)il E(}/hilxi € Rin)
i=1

Then,

. -1 Byup MmYm
fisr = B Z {B—l—nm B+ i (50)

N _ Zb:l Ymb NmYm
#BT B+ ny B+ ny

~ o 25:1 Ymb Ny Ym
E[,‘MBT]—E|: B+n, +B—|—nm (52)

] _ Z‘41‘?:1 E[gmb} + nmE[]]m]

(51)

Elppr Bin, B, (53)

Since /;; and 7,,,, are known unbiased estimates of B,

4)
X~ - ZE:l ,Bm nmﬁm
Elier) = B T Bt 54)
1

=~ Btn, (BB + 1P (55)
Elfigr] = Bm (56)

Therefore, fipr is unbiased for estimating ;. Also, the MSE is the combination of the square of bias
and variance of the estimate, then following from the above derivation the MSE is just the variance of
the estimate. Thus,

lejzl Ymb Ny Ym (57)
B + ny, B + nyy,

T oarlg] | roarlgal

var[fipr] = var[

(B+ 1y )? (B+ 1y)? (58)
_ Lhalngted] | ndlnytod]
(B+mn)2 " (B+1m)? 9
2
var[fipr] = [m} n, o2 (60)
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Hence, it can be shown that the limiting form of [ (zﬁ :mB)z} is 0, by applying L'hospital rule:
- 9 - d(n2,+B)
. iy, +B .
lim | —"——| = lim |4 1
Boo | (B+nm)2]  Boseo [dw%n»z } 6D
[ n2,+B ] 1
lim | -"——| = lim |- 2
Boeo | (B+mm)2| — Boioo [Z(B—f—nm)} ©2)
[ n2,+B | 1
li —r | == 63
Bglgo_(B+nm)2_ 0o ©3
[ n3,+B |
li —r =0 64
Bglgo_(Bjan)Z_ (64)

O

The derivation above implies that at sample size n,,, the limp_,, var[fipr] = 0. This affirms that
the experimenter can control the stability of the estimator by increasing the number of bootstrap

2 2
mtB | —1,2 3 — 1,2 1y +B
(B+nm)2] Ny, 0 < var[fiyr] = n,, 0y, by a factor [(B+nm)2

converges faster to zero with increasing B. Therefore, the frequentist estimator (ML) is less efficient
than the estimator fipr, which is more efficient. Because they are both unbiased, this comparison
is valid. Since this proposed estimator reduces the MSE in terms of bias and variance reduction, it
is additionally more efficient within the Bayesian framework. By only lowering the variance, the

samples B. In addition, var[figr] = [ ] that

conventional Bayesian estimator reduces the MSE.. Therefore, fipr is a minimum variance unbiased
estimator for estimating the population mean f,,. The proof established here serves as a baseline for
using bootstrapped prior with the sum of trees model.

3.1. A New Weighted Splitting for Bayesian Random Forest in Sparse High-Dimensional Setting

Apart from the probabilistic interpretation update on random forest regression achieved using
Bayesian modelling, we also dealt with the variable selection principle used during splitting.
Tree-based methods use a greedy approach to build trees. In a high-dimensional setting with a
large number of covariates, modelling with all the covariates increases the computational time and
thus subsampling variables randomly or using a deterministic approach is suitable for tree-based
methods. There are two popular approaches for handling high-dimensional data;

1. Greedy search: Identifying the relevant subset of variables and fitting the desired model on them.
2.  Random search: Randomly selecting subset (whether relevant or irrelevant) and fitting the

desired model on them.

The two approaches are not 100% perfect in variable selection, greedy search fails to capture the
interaction effect between variables and sometimes overfits while random search does not overfit if
replicated a large number of times but tends to suffer the loss of efficiency when the variable space is
populated with irrelevant variables. The RF regression algorithm randomly selects variables from the
predictor space by selecting a fixed number p/3 irrespective of their predictive interaction with the
response variable. This subsample size does not take into account the number of relevant predictors in
the entire predictor space, thus the chance of selecting irrelevant features increases with increased p.
Therefore, using the same data configuration, the predictive performance of RF reduces with increasing
p.

The weakness of RF can be attributed to its random subset selection mechanism. Updating the
subset selection with a data-driven approach such that predictors are ranked in the order of relative
correlation with response y will be fruitful. The motivation behind this idea follows from a greedy
background, by trying to build a sum of tree models with only a relevant subset of predictors. However,
this will affect the interaction modelling strength of RF which might further lead to a reduction in
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predictive power. In addition, we intend to update and not modify RF so as to maintain all its strength.
Based on this fact, we developed a new framework that combines the strength of greedy search as well
as random search by ranking the variables based on their initially computed importance.

Let Ty, T, T3, . . ., Ty be p independent ¢ statistics with cumulative distribution function F (t). Here,
T} corresponds to the ¢ statistic for each covariate x; after fitting a Bayesian simple linear regression
model of the response y on xj. Specifically, Ty can be defined as follows:

A

Ok
Ty = ~ 65
= 5Dy (65)
where 0y is the Bayesian estimated weight of x; in the simple linear regression model:
y =00+ 0Okxy+€ (66)

0 is the bias of estimating y using xj and € is the random noise that arises during the estimation of y
with the linear model; it is considered to be independent, identical, Gaussian-distributed noise with
a mean of zero and a constant variance 62. SD(8}) is the posterior standard deviation of 6. The t-
statistics Ty are then ranked in the increasing order of magnitude as; T(l) < T(Z) < T(3) << T(p).
The T is the kth order statistic (k =1,2,..., p). Then, the cumulative distribution function (CDF) of
the largest order statistic T(,) is given by;

Fp(t) = P?‘(T(p) < i’) (67)
Ey(t) = Pr(allTyy < t) = FP(t) (68)

Also, we can see that Pr(T) > allT(,_)) = Pr(allT,_) < T(); thus
Fp,k(t) = Pr(allT(p_k) S T(k)) (69)

Equation (69) can be interpreted as the probability that at least p — k of the Ty, are less than or equal
to t. This also implies that all other (p — k) variables are less relevant to response y than Xj.

P
PriaiTip—u < Te) = (Zk) (Z) FOM®L - F()r* (70)
p— p7
Fron = (Z) FO DL —F]™. (71)
k=)

We now refer to F(P %) (t) as weight wy, which is the probability that each Xy, variable is less important
to y than x;. A binary regression tree’s splitting mechanism is then updated using this weight in the
following ways:

Nim R Ny .
Q%(T)=(1wk)[ Y i Bwl?t Y (i Pan) 72)
i:kaRl(j,S) i:xkERz(j,S)

If a variable x; is important and subsequent splitting on it will have significance, the weighted
deviation Qf (T) reduces to zero (since wy — 1). Due to the fact that variables with lower weights w
won't be further divided in the tree-building algorithm, this strategy helps to speed up the algorithm
and improve the variable selection component of random forest regression. The procedure below
summarizes BRF for a Gaussian response.

1. Step 0: Start with input data D = [x;y/]
2. Step 1: Analyze each variable x; € x individually by running a univariate analysis and save the

bootstrap Bayesian ¢ statistic 5.
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@

Step 2: Calculate the probability of maximal weight wy for each variable x; € x.

Step 3: For each of the | trees, where j =1,2,...,]:

5.  Step 4: Compute the bootstrap prior predictive density weights w; from a Normal-Inverse (NIG)
distribution with parameters yff , UZZE/F ,agp,bpp.

6. Step 5: Generate a Bayesian weighted simple random sample D* of size N with replacement from
the training data D using the weights w;.

7.  Step 6: Generate a Bayesian weighted simple random sample:

8. Step 7: Grow a weighted predictors CART tree Jj, by iteratively repeating the following steps for

each terminal node m, until the minimum node size n,,;, is reached:

b

(a) Randomly select mtry = |p/3] variables without replacement from the pavailable variables.
(b)  Choose the best variable and split-point from the selected variables.

(c) Divide the node into two daughter nodes.

(d) Compute weighted splitting criterion Q% (T) and identify the node with the minimum

deviance Q% (T).

Step 8: Print the ensemble of trees J; over ] iterations.
10.  Step 10: To predict test data x, apply:

e

N 1¢
Yorf = j};j]'(xte)

3.2. Oracle Properties of Bayesian Random Forest

In this section, we show that if the Bayesian bootstrap prior estimator fipr is used for estimating
Bum and the weighted splitting approach is utilized, the Bayesian Random Forest (BRF) enjoys the
oracle properties.

Theorem 3. Suppose By = figr and FP=K) () — 1, then the Bayesian Random Forest (BRF) satisfy the
following:

i.  Identification of the right subset model M such that P(M = M) — 1.
ii.  Achievement of the optimal estimation rate, \/n(M — M) 4N (0, Var(M))

Proof. From theorem (1), we know that the probability of selecting at least one relevant subset R from
the set p using RF is

r r r
P(R{UR,U...R,) =Y P(Ry)— Y. PRiNRY+ Y. P(RNR;NRy)
k=1 jk=Lk>j i,jk=1k>j>i

— 4+ (=) P(RyNRyN---NR,).

Now using the weighted splitting, there is assurance that the selected variable xy, is relevant provided
F(P=K)(t) — 1. This implies that the random selection of variables for splitting in BRF is a mutually
exclusive process that is P(R; N R;) = 0Vi # j. Thus, the probability of selecting at least one relevant
subset R from the set p using BRF is

r

P(RyURyU...R;) = Y P(Ry)

-()0) ‘73’
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Lemma 3. BRF variable selection is consistent if limy_co P(M = M) = 1.
Corollary 2. From equation (73) limy_;c P (UZS{ Ry) = 1, then BRF wvariable selection is consistent in HD

with large p.

Theorem (2) revealed that the Bayesian estimator fipr is a uniformly minimum variance unbiased
estimator for the parameter ) under mild regularity conditions. This implies

var (Jurf) = var(fipr)

. n2 + B _ N _
var(ybrf) = [(B'_”FW} ”mla’% < var[yrf] = nmlafn

(74)
Remark 3. Equation (74) implies that BRF is more efficient than RF when the bootstrap size B — .
O

4. Simulation and Results

In this section, we conducted an empirical evaluation of BRF in comparison to its major
competitors using both simulation and real-life data. The analyses were performed through 10-fold
cross-validations on the datasets. All the analyses were executed in the R statistical package. We
utilized the newly built-in function brf for BRF, glmnet function [26] for LASSO, gbm for Gradient
Boosting [20], rfsrc for Random Forest, wbart for BART1 as described in [22], and bartMachine for
BART2 [41].

To implement the Bayesian Forest method (BF), we modified the case.wt parameter of r fsrc from
[42], introducing random weights distributed exponentially with a rate parameter of 1. It's worth
noting that we employed two different R packages for BART due to observed discrepancies in the
results produced by these packages. Detailed information regarding the setup of tuning parameters
can be found in Table 1.

Table 1. Tuning parameters set-up for the various methods used in data analysis.

Method Tuning Parameter Set-up

LASSO A € [0,1] is selected via 10 folds cross validation. Other
settings are default as in glmnet.

GBM Number of trees is fixed at 1000 and all other settings are
default.
RF mtry settings are default p/3, number of trees is fixed at

1000. Other settings are default.

BART1 All settings are default.
BART2 All settings are default
BF mtry settings are default, number of trees is fixed at 1000.

case.wt ~ exp(1). Other settings are default.

BRF mtry settings are default p/3, number of trees is fixed at
1000, search type is random, split weight is obtained using
Fle=h)(p).

Two simulation scenarios were created based on the problem we intend to tackle in this paper.
The simulation scenarios were adapted from the works of [22] and [13]. In each of the scenarios, six
levels of low and high-dimensional settings were defined as p = 50, 100, 500, 1000, 5000, 10000 and
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used so as to mimic realistic gene expression datasets. The sample size corresponding to the number
of patients n which is usually far smaller than p was fixed at 200 in all the scenarios. Here, the Root
Mean Square Error (RMSE) and Average Root Mean Square(ARMSE) were used as performance
measures over the 10-folds. Note p = 50&100 were used to examine the behaviour of the methods in
low dimensional data situations.

Z”tesr (yl _ ]ii>2

RMSE = i=1
Ntest
10
ARMSE = %OMSEE

Scenario 1: Linear Case; Set x1,...,X, as multivariate standard normal N (0,1) random variables
with associated covariance structure define as; ¥ = blockdiag(Z%, ceey Z};) = I; ® X!, where ® is the
kronecker product. Here we assume that the first five predictors [xq, ..., x5] are relevant and the
associated covariance structure is defined as

1_ ) p ifi#Fj
Z_{l ifi = j.

, such that the first five variables have pairwise correlation value p = 0.9 and likewise the other
blocks of size five variables have the same correlation structure. The response is then simulated as
Y = X1+ 2xp + 3x3 + 4x4 + 5x5 + €, where [, .. ., x| are the irrelevant predictor set. Note, with the
covariance structure X defined, the p — 5 variables are independent and identically distributed and
e~ N(0,1).

Scenario 2: Nonlinear Case; This follows the same structure as in scenario one except for the
simulation of the response which is defined as y = 10sin(xx2) + 20(x3 — 0.5)% 4+ 10|x4 — 0.5| + 5(x5 —
0.5)3 +eand p = 0.2.

4.1. Simulation Results

Table 2 summarizes the 10-fold cross-validation simulation of a Gaussian response for the seven
methods. As expected for scenario 1 with the linearity assumption, LASSO takes the lead followed by
the new method BRF. Also, the ARMSE increases with an increase in p for most of the methods except
GBM which is unaffected by the increase in p. RF also performs much better than other ensemble
methods like BE, BART1 and BART2 and most especially GBM. Although an increase in p affects
the performance of RF significantly, the situation is different for BRF as the increase in p does not
correspond to an increase in the ARMSE. BART2 performance tends to be better than BART1 for the
low-dimensional case than the high-dimensional situation. BF performance is better than BART1
and BART?2 but, BRF still takes the lead within the Bayesian class of models. The boxplot in Figure 5
corroborates the findings in Table 2 with the median RMSE of BRF and LASSO being the lowest over
the different data dimensions.
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Table 2. Average test Root Mean Square Error (ARMSE) over 10-fold cross-validation for scenario 1.

Scenario 1: Linear

p
Method 50 100 500 1000 5000 10000
BRF 2.005 2012 2.084 2113 2114 2.156
GBM 8.853 8.861 8.843 8.854 8.854 8.847
LASSO 0950 0949 0952 0958 0967 0.977
RF 2247 2296 2513 2603 2824 2947
BE 2568 2627 2855 3.022 3.185 3.590
BART1 3.843 4521 2763 3126 5364 7.210
BART2 2596 3.113 3.007 3.621 5.658 8.395
p =50 p =100 p =500
P URETEEE TR CE T
= = -
== ==
m == T = - _ =
% p = 1000 p = 5000 p = 10000

P L s 2 cog L s 3 P L s 2
E ks £ 3 % b EoEos E E S & EE 5 £ F O3 ok
o o © 5 [ o o 3 o o © S

Method

Method

B3 BART
B3 BART2
=1
B BRF
=]
ES LAssO
=1

Figure 5. Boxplot of test 10-folds cross-validation RMSE of Scenario 1. The black middle line in each

box represents the median. The dots represent outliers in RMSE results. The outliers in GBM is the

highest.

The box and whisker plot for GBM (blue) was observed to be the highest in all data dimension
situations. Table 3 summarizes the 10-fold cross-validation simulation for Gaussian response for the
seven methods when the nonlinear model is assumed. The performance of all methods degrades

drastically when compared to the linear case in Table 2. LASSO performs worse as expected in this
situation. BART1 and BART?2 performance are again better for the low dimensional situation when
p < n, precisely for p = 50, 100. However, their performances depreciate faster as p approaches 500
and in fact worse than LASSO as p approaches 10000. GBM performance is again unaffected with the
increase in p but the performance is not different from LASSO. RF and likewise BF perform moderately
better than BART1 and BART2 for p > 1000. BRF simultaneously achieves robustness to increase in p
as well as maintaining the lowest RMSE for low and high dimensional settings when compared with

the six other competing methods. The boxplot in Figure 6 corroborates the findings in Table 3, with the
median RMSE of BRF being the lowest for p > 500.
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Table 3. Average test Root Mean Square Error (ARMSE) over 10-fold cross-validation for scenario 2.

Scenario 2: Nonlinear

14
Method 50 100 500 1000 5000 10000

BRF 19.498 19.896 19.889 19.906 21.637 22.543
GBM 30.355 30352 30.444 30.551 30.708 30.964
LASSO 32404 32453 32585 33.526 34.626 35.230
RF 20.664 21.264 23.266 23.742 25.043 25.954
BF 23.288 22993 26.062 26.095 29121 28.210
BART1 16.844 16.493 24.151 28180 31.917 38.156
BART2  14.037 18.071 22193 27.450 33.522 37.932

p=50 p=100 p =500

50+

Method

B3 BART
B3 BART2
=1
B BRF
=]
ES LAssO
=1

RMSE

50

BART1
BART2
BF
BRF
GBM
LASSO
RF
BART1
BART2

B
RF
GBM
LASSO
RF
BART1
BART2
BF
BRF
GBM
LASSO
RF

Figure 6. Boxplot of test 10 folds cross-validation RMSE of Scenario 2 for Gaussian response. The black
middle line in each box represents the median.

4.2. Variable Selection

The two scenario models (Linear and Non-linear) were investigated to determine the best method
in terms of the selection of the five relevant variables imposed. Table 4 presents the results of the
variable selection performance of BRF alongside competing methods. For the linear model, the average
proportion of relevant variables identified using LASSO is 1 and constant over all the six datasets
used. This result corroborates the findings in Table 2 where LASSO was found to be the best in terms
of lowest ARMSE. The entire five relevant variables were correctly identified with LASSO under the
linearity assumption. BRF competes favourably with LASSO with the identification of about 4/5
relevant variables up to p = 5000. BRF also consistently identified all the relevant variables in low
dimensional conditions with p = 50&100. The performances of RF, BF and GBM are very similar with
GBM slightly above RF and BF. BART2 also consistently identified about 4/5 relevant variables up
till p = 1000. However, the performance at p = 5000&10000 is not presented due to computational
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difficulty while computing the probability of inclusion for p > 1000. The lowest performance was
observed with BART1 over all the dimensions of datasets used.

For the non-linear condition, none of the methods could achieve 100% identification as the
functional path is now rough but BRF is still the best for p = 50, and it converges to 2/5 from p = 1000.
LASSO performance is not consistent here and it also corroborates the high ARMSE observed in Table
3. BART2 competes with BRF at various levels of p and in fact the highest for p < 1000. A similar
worse performance was observed for BART1 under the non-linear condition.

Table 4. Average proportion of relevant variables selected in 10 folds cross validation.

p
Method 50 100 500 1000 5000 10000
Linear
BRF 1.00 098 090 084 0.76 0.68
RF 096 0.84 0.80 0.78 0.68 0.64
BF 098 0.84 076 0.68 0.64 0.64

GBM 096 084 082 080 076 076
LASSO 100 1.00 1.00 1.00 1.00 1.00
BART1 076 086 0.82 080 048 024
BART2 088 0.88 0.84 0.80 - -

Non-linear
BRF 0.66 058 044 040 040 0.40
RF 0.60 0.60 044 042 040 0.38
BF 058 058 040 036 0.36 0.26

GBM 058 056 040 040 038 0.34
LASSO 062 072 042 040 040 040
BART1 054 056 040 030 014 0.10
BART2 062 064 052 044 - -

4.3. Predicting Tumour Size and Biomarker Score

Three real-life cancer datasets on the prediction of tumour size and biomarker score. The
two breast cancer datasets were used to predict the size of tumour before the patients underwent
chemotherapy. The other dataset was used to predict the biomarker score of lung cancer for patients
with smoking history. The dataset’s detailed description can be found below:

1. Breast1 Cancer: [43] obtained 22,283 gene expression profiles using Affymetrix Human Genome
U133A Array on 61 patients prior to chemotherapy. The pre-chemotherapy size of tumours was
recorded for both negative Estrogen Receptor (ER-) and positive Estrogen Receptor (ER+). A
preliminary analysis carried out on the dataset using a Bayesian t-test revealed that only 7903
genes are relevant at some specific threshold.

2. Breast2 Cancer: [44] obtained 22,575 gene expression profiles using 60mer oligonucleotide
array from 60 patients with ER-positive primary breast cancer and treated with tamoxifen
monotherapy for 5 years. Data were generated from whole tissue sections of breast cancers.
The pre-chemotherapy size of tumours was recorded for both negative Estrogen Receptor (ER-)
and positive Estrogen Receptor (ER+). A preliminary analysis carried out on the dataset using a
Bayesian t-test revealed that only 4808 genes are relevant at some specific threshold.

3. Lung Cancer: [45] obtained 22,215 gene expression profiles using Affymetrix Suggested Protocol
on 163 patients. The biomarker score to detect the presence or absence of lung cancer was recorded
alongside the gene expression profile. A preliminary analysis carried out on the dataset using a
Bayesian t-test revealed that only 7187 genes are relevant at some specific threshold.

The RMSE of the methods were obtained for the test dataset that arose from ten-fold cross-validation.
Table 5 shows the summary of ARMSE for the test dataset over the ten-fold cross-validation. For
Breastl and Breast2, BRF was found to be the best with the lowest ARMSE. In terms of ranking, RF
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was found to be in the second position in terms of performance when compared with other methods.
For the prediction of biomarker score, the best is LASSO with the lowest ARMSE. On average, BRF has
the lowest ARMSE over the three datasets. The Standard Error of Mean (SEM) estimates measure the
relative spread of RMSE for each dataset. The SEM results show that the most stable method is BRF
with least SEM over most datasets except Lung.

Table 5. Average test RMSE and (Standard error) over 10-fold cross-validation for regression cancer
datasets.

Method
Dataset BRF GBM LASSO RF BF BART1 BART2

Breastl 1014 1131 1.283 1117 1120 1128  1.123
(0.071) (1.086)  (0.258)  (0.673) (0.749)  (0.661)  (1.380)
Breast2 0347  0.450 0.458 0448 0449 0456 0452
0.048) (0.352)  (0.246)  (0.298) (0.576)  (0.139)  (0.239)
Lung 1.099 5243 0.825 2287 2420 1589  1.934
(0.243) (1.125)  (0.309)  (0.162) (0.298)  (0.717)  (0.255)

5. Discussion of Results

BRF achieves impressive results because it employs Bayesian estimation at the tree node parameter
stage and combines a greedy and random search to select splitting variables. In contrast, RF fails since
it randomly selects variables without considering their importance. Random search is adequate for
low-dimensional cases, as seen in various simulation conditions. However, as the number of irrelevant
variables increases, the performance of random search significantly deteriorates. For example, in a
five-dimensional simulation with five relevant variables, the probabilities of selecting at least one
relevant variable when mtry = L\/ﬂ are as follows 0.546,0.416,0.202,0.150,0.06, 0.05, 0.04 for different
values of p = 50,100, 500, 1000, 5000, 10000. This demonstrates that as the data dimension grows with
a fixed sample size 1, more irrelevant variables are selected, resulting in a poor model fit.

The new approach, BRF, directly addresses this issue by ensuring the use of only relevant variables,
regardless of the dataset’s dimension. This approach is akin to what GBM does, as it assesses the
influence of each variable on the response. However, BRF surpasses GBM due to its application of
Bayesian estimation methods and robust data-driven prior techniques. Moreover, it’s clear that BRF’s
performance relies on correctly identifying variables during the greedy search. If irrelevant variables
are ranked higher than relevant ones, it will affect performance, emphasizing the need for a robust
procedure for preliminary variable ranking. While the bootstrap prior technique performed reasonably
well in both linear and non-linear scenarios, the accuracy of BRF can also be improved by introducing
a more effective subset selection procedure.

6. Conclusion

This paper investigated the strengths and flaws of Random Forest (RF) for modelling
high-dimensional data. The major weakness of RF methods is that they are not governed by any
statistical model, and thus, they cannot provide probabilistic results as in the Bayesian setting. Another
critical issue with the RF methods occurs in high-dimensional data with a large number of predictors
but a small number of relevant ones. The performance of RF tends to depreciate as the dimension
of the data grows infinitely under this condition. These two issues motivated the development of
Bayesian Random Forests (BRF) presented in this paper. The theoretical results revealed that BRF
satisfies the oracle properties under mild regularity conditions. Furthermore, the various empirical
results from the simulation and real-life data analysis established that BRF is more consistent and
efficient than other competing methods for modelling non-linear functional relationships in low and
high-dimensional situations. Also, BRF was found to be better than the competing Bayesian methods,
especially in high-dimensional settings.
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