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Abstract: Cancer is the second major cause of disease-related dead worldwide, and its accurate early diagnosis 

and therapeutic intervention are fundamental for saving the patient’s life. Cancer, as a complex and 
heterogeneous disorder, results from disruption and alteration of a wide variety of biological entities, including 

genes, proteins, mRNAs, miRNAs, and metabolites that eventually emerge as clinical symptoms. Traditionally, 

diagnosis is based on clinical examination, blood tests for biomarkers, histopathology of biopsy, and imaging 

(MRI, CT, PET, US). Additionally, omics biotechnologies help to further characterize the genome, metabolome, 

microbiome traits of the patient that could have an impact on the prognosis and patient’s response to the 
therapy. The integration of all these data relies on gathering of several experts and may require considerable 

time, and, unfortunately, it is not without the risk of error in the interpretation and therefore in the decision. 

Systems biology algorithms exploit Artificial Intelligence (AI) combined with omics technologies to perform a 

rapid and accurate analysis and integration of patient’s big data and support the physician in making diagnosis 
and tailoring the most appropriate therapeutic intervention. However, AI is not free from possible diagnostic 

and prognostic errors in the interpretation of images or biochemical-clinical data. Here, we first describe the 

methods used by systems biology for combining AI with omics and then discuss the potential, challenges, 

limitations, and critical issues in using AI in cancer research. 

Keywords: artificial intelligence; medical technology; smart health; digital health; omics 

technologies; imaging; diagnosis; personalized medicine 

 

1. Introduction 

According to a recent review, mistakes in diagnosis account for 60% of all medical errors and an 

estimated 40,000 to 80,000 deaths in U.S. medical centers each year. Typically, clinicians have limited 

time to make decisions based on the interpretation of huge amounts of data, and this increases the 

risk of underestimating (or sometimes overestimating) some data. Other factors of potential biases 

affecting the accuracy of the diagnosis are personal experience and medical specialty. 

Artificial Intelligence (AI), a field of computer science used for prediction and automation, has 

emerged as a potential solution to promote a precision approach in healthcare and is expected to 

reduce errors caused by human judgment in various medical domains [1].  

Cancer is the leading cause of death in people, accounting for an estimated 10 million deaths by 

2020 [2]. It is a complex disease resulting from anomalies in physiological processes involving genes, 

coding and non-coding RNAs, proteins, metabolites, and other biomolecules [3,4]. To understand 

such a complex disease from its onset to its progression, multi-omics analysis of these numerous bio-

entities is required. Modern biotechnologies allow the high throughput analysis of the sequence and 

expression of many genes (genomics and epigenomics), proteins and their post-translational 

modifications (proteomics, phospho-proteomics and glycol-proteomics), RNAs (RNA 

transcriptomics), non-coding RNAs (including miRNAs and long-non-coding RNAs), and 

metabolites (metabolomics) from the same organism [5]. However, a platform where all these big 
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data are integrated to uncover correlations and synergisms among the biological pathways and 

processes is required. Systems biology combines the power of AI and of multi-omics technologies for 

modeling the signaling and metabolic signature of a given cancer. This is instrumental for designing 

effective diagnostic and prognostic markers and novel and patient-tailored therapeutic interventions.  

Current diagnostic practice includes histopathology imaging and a range of blood tests which 

are instrumental in the initial diagnosis and for determining cancer staging; however, these 

approaches display some limitations in dissecting the molecular basis beyond the onset of the 

disorder. To overcome these aspects, molecular and omics technologies can provide a genetic, 

epigenetic, and metabolic profile of the tumor [6,7]. 

Despite difficulties in providing individualized and data-driven care, advancements in 

screening, diagnosis, treatment, and survival rate have been remarkable in recent decades [8].  Early 

detection and prognosis prediction represent two crucial clinical needs for limiting cancer 

progression. In this context, the proper clinical care for cancer patients can be improved by the 

introduction of AI in cancer detection, diagnosis, and treatment [9–12]. 

The development and extensive use of high-throughput technologies has ushered in the era of 

biological and medical big data. This has led to the accumulation of data sets on a large scale, thereby 

opening a wide range of potential applications for data-driven methods in cancer treatment, spanning 

from basic research to clinical practice: molecular tumor characterization, tumor heterogeneity, drug 

discovery and potential therapeutic strategies. As a result, the data-driven research field of 

bioinformatics adapts data mining techniques such as systems biology, machine learning, and deep 

learning, which are discussed in this review paper. Systems biology uses a data-driven approach to 

identify important signaling pathways. The pathway-oriented analysis is extremely important in 

cancer research because it helps researchers comprehend the molecular features and heterogeneity 

of tumors and tumor subtypes [13]. 

AI-based technologies applied to oncology aim at improving clinical practice, including but not 

limited to early and accurate diagnosis and prediction of personalized outcomes (i.e., prognosis and 

therapy response), by acquiring a profound perception of tumor molecular biology through the 

association of multiple biological parameters [14]. 

Artificial intelligence in medicine at glance 

Current AI systems have been involved to be used in a variety of clinical settings, including (i) 

image-based computer-aided discovery and diagnosis in various medical specialties, (ii) translation 

of genomic information for recognizing genetic variants using high-throughput sequencing 

technologies, and (iii) prediction and tracking of patient's prognosis [15]. Moreover, they have been 

implemented as well in (iv) the discovery of new biomarkers by combining omics and phenotype 

data, (v) the detection of health status using biological signals obtained from wearable devices, and 

(vi) the production and implementation of autonomous robots in medical procedures [16]. 

The creation of AI models that predict the properties of vast and interconnected networks found 

in living organisms would allow for a thorough examination of how signaling molecules generate 

functional cellular reactions. Machine learning (ML) algorithms, a subset of AI, are capable of making 

decisive interpretations of large, complex data sets, making them an effective tool for analyzing and 

comprehending multi-omics data for patient-specific observations [17]. We can anticipate the 

remarkable growth of AI in the medical field in light of the digital acquisition of high-dimensional 

and annotated medical data, the progress of ML methods, open ML data science, and advancements 

in computational power and storage services [18]. AI is expected to make it easier to diagnose specific 

illnesses in patients. Commonly, deep learning (DL) architectures are analogous to artificial neural 

networks of multiple non-linear tiers. Over the past decade, a large variety of DL designs have been 

developed depending on the input data type and the purpose of the research. Moreover, the 

assessment of the model's efficiency has revealed that DL application on cancer prognosis surpasses 

other traditional ML techniques. DL frameworks have been also used in cancer diagnosis, 

classification, and treatment by utilizing genomic profiles and phenotype information. Systems 

biology has been an effective method to comprehend the complex molecular profile of cancers, 
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interpret the mechanisms of tumor progression and allow the amalgamation of omics data as well as 

the characterization of diverse tumors [19]. 

 

Figure 1. Overview of the applications of AI to cancer diagnosis and oncology research field. The 

scheme depicts the main fields of application of AI discussed in this review. Abbreviations: computed 

tomography, CT; gene expression models, GEMs; machine learning, ML; magnetic resonance 

imaging, MRI; nano differential scanning fluorimetry, Nanodsf; next generation sequencing, NGS; 

positron emission tomography, PET; partial least squares analysis, PLS; ultrasound imaging, U/S. 

2. Omics data for identifying cancer metabolic biomarkers 

Omics technologies allow to analyze in depth the molecular characteristics of cancer at both bulk 

and single-cell level, providing a wealth of multi-omics data that challenge the capability of scientists 

and medical doctor to combine for drawing a consistent picture of the multilayer complexity of cancer 

biology. Genomic, epigenomic, transcriptomic, proteomic, and metabolomic data can be elaborated 

using appropriate models for making prediction about prognosis and treatment response in a patient-

tailored (personalized) manner [10,12,20]. 

Survival models 

To find cancer metabolic biomarkers, survival models have been used more frequently than 

partial least squares (PLS) models, machine learning models, and gene expression modelling (GEM) 

[21]. The Kaplan-Meier method, the log-rank test, and/or the Cox regression model are representative 

survival models used in cancer studies. These models are used to describe the likelihood of survival 

(or survival curve) for a group of patients after treatment, compare the survival curves of two or more 

treatment groups, and describe the effects of multiple explanatory (independent) variables, profiles 

of gene expression, and metabolite concentration) on survival curves, respectively. In contrast to 

Kaplan-Meier models, which must discretize their data, the Cox regression model has the advantage 

of processing continuous values directly, minimizing data loss [22]. 
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In their study, based on gene expression profiles of seven major metabolic pathways, Peng and 

colleagues identified 30 tumor subtypes in 33 different cancer types and evaluated the clinical utility 

of so-called metabolic expression subtypes. For this, correlations between metabolic expression 

subtypes and their corresponding prognosis were investigated using the Kaplan-Meier method, log-

rank test, and Cox regression model. Consequently, subtypes with upregulated lipid metabolism 

appeared to have a better prognosis than subtypes with upregulated glycemic, nucleotide, vitamin, 

and cofactor metabolism. The association of various somatic mutations in cancer driver genes with 

metabolic expression subtypes has also been discovered. Two transcription factors, SNAI1 and 

RUNX1, were identified from knockdown studies as potential therapeutic targets for a subtype of 

cancer with upregulated carbohydrate metabolism that consistently had a poor prognosis across 

cancer types [21]. 

 

Figure 2. Overview of the omics technologies exploited in cancer diagnosis/prognosis. The scheme 

depicts the main omics models currently used in biomarker identification. Abbreviations: gene 

expression modelling, GEM; partial least squares analysis, PLS. 

PLS models 

Partial least squares regression (PLS) was initially created as a regression model that processes 

numerous independent variables that are correlated and also produce numerous dependent 

variables, which many statistical and ML techniques cannot directly handle. PLS models and their 

variations, particularly PLS-discriminant analysis (PLS-DA) were frequently used for the analysis of 

omics data with a focus on metabolomics [23]. PLS-DA has been primarily used to extract insights 

from large datasets of omics data, such as identifying metabolites from metabolome data that are the 

best at differentiating between cancer cells with various statuses or people with various health 

conditions. PLS-DA might have an overfitting issue, too, like other data mining techniques, so it 

needs thorough validation, frequently done through cross-validation [24]. 

PLS-DA or its variants have been used to analyze metabolome data to identify a variety of 

cancers, including breast cancer, glioma, non-small cell lung cancer, oral precancerous cells, cervical 

precancerous lesions and prostate cancer [25,26].  Among its advantages, PLS-DA allows to analyze 

highly collinear and noisy data. Moreover, the calibration model provides a subset of useful statistics, 

including prediction accuracy, scores and loading plots. However, a potential limitation has emerged 
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when this method was applied to metabolomics: the use of this model by non-experts may produce 

inaccurate results, owing to a lack of appropriate statistical validation [27]. 

The Materials and Methods should be described with sufficient details to allow others to 

replicate and build on the published results. Please note that the publication of your manuscript 

implicates that you must make all materials, data, computer code, and protocols associated with the 

publication available to readers. Please disclose at the submission stage any restrictions on the 

availability of materials or information. New methods and protocols should be described in detail 

while well-established methods can be briefly described and appropriately cited. 

Research manuscripts reporting large datasets that are deposited in a publicly available database 

should specify where the data have been deposited and provide the relevant accession numbers. If 

the accession numbers have not yet been obtained at the time of submission, please state that they 

will be provided during review. They must be provided prior to publication. 

Interventionary studies involving animals or humans, and other studies that require ethical 

approval, must list the authority that provided approval and the corresponding ethical approval 

code. 

Table 1. The table summarizes the main advantages and limitations of PLS models. 

Advantages Limitations 

Ability to robustly handle more descriptor variables Higher risk of overlooking ‘real’ correlations 

Provide more predictive accuracy Sensitivity to the relative scaling of the descriptor variables 

Low risk of chance correlation  

Genome-scale metabolic models 

Gene expression modeling (GEM) is a computational model based on the law of mass 

conservation of metabolites and allows predicting metabolic fluxes for entire biochemical reactions 

taking place inside a cell by using numerical optimization [28,29]. Technically, GEM describes the 

participation of each metabolite for an entire set of biochemical reactions in the form of a 

stoichiometric matrix and is simulated using varied forms of objective functions and constraints that 

reflect genetic and environmental conditions of interest. As a result, GEM allows for efficiently 

simulating a target cell's metabolic phenotypes under a wide range of genetic and environmental 

conditions. GEM can also be integrated with omics data, such as RNA-seq, which allows for building 

a cell-specific model, which can be especially useful for modeling multicellular organisms. In 

comparison with ML models, GEMs generate more interpretable prediction outcomes that grasp a 

cell-specific metabolic phenotype. GEM simulations, however, demand consideration. Due to the 

possibility of biologically incorrect objective functions or constraints, it is advised to proceed with the 

analysis of the predicted intracellular metabolic flux distributions from GEMs with caution. A 

representative issue is the use of constraints that do not accurately reflect a cultural medium. Finally, 

GEMs do not directly produce additional data for regulatory and signaling networks, which are also 

crucial for understanding the physiology of a cell [30,31]. 

Table 2. The table summarizes the main advantages and limitations of GEM models. 

Advantages Limitations 

Explore metabolism in multiple cell types 
Uncertainties in the estimated parameters in 

regarding quantitative flux predictions 

Validating or discovering biomarkers for screening, 

diagnostics, prognostics and/or patient stratification 

Ambiguous normalization of experimentally 

quantified fluxes 

Identify cancer-specific metabolic features that constitute 

generic potential drug targets for cancer treatment 
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Machine learning models 

The classification task of disease prediction has been thoroughly studied in medical oncology 

and cancer research, based on well-established machine learning algorithms for dealing with binary 

or multi-class learning problems. Patient categorization would allow the development of ML-based 

predictive models capable of assessing risk stratification with generalizable performance. Based on 

images and genetic data, DL models were trained to classify and detect disease subtypes. These data-

driven approaches demonstrated the superiority of ML-based frameworks for leveraging 

heterogeneous datasets for improved diagnosis and treatment [32]. 

Deep neural networks (DNNs) 

Deep neural network (DNN) models are rapidly evolving and becoming more sophisticated. 

They have been widely used in biomedical research across the board. Initially, large-scale imaging 

and video data aided its development. While most biomedical data sets are not considered big data, 

the rapid data accumulation enabled by NGS made it suitable for the application of DNN models 

that require a large amount of training data [33]. In 2019, for example, Samiei et al. used TCGA-based 

large-scale cancer data as benchmark datasets for bioinformatics machine learning research, such as 

Image-Net in computer vision [34]. Following that, large-scale public cancer data sets like the TCGA 

encouraged the widespread use of DNNs in the cancer research [35]. 

Table 3. The table summarizes the main advantages and limitations of DNN models. 

Advantages Limitations 

Ability to handle complex data and relationships Massive data requirement 

Effective at producing high-quality results High processing and computational power 

Extremely scalable because of its capacity to 

analyze large volumes of data 

Black box problem making them hard to debug and 

understand how they make decisions 

Graph neural networks (GNNs) 

Graph neural networks (GNNs) have achieved great results and are being progressively 

employed in a node classification task. It offers a strategy to acquire novel representations of nodes 

by combining the features of its local neighborhood and connectivity. Recently, some GNN-based 

approaches have been proposed to forecast molecular subtyping of cancer. Rhee et al. created a Graph 

Convolutional Network (GCN) based model to investigate the gene-gene alliance and information 

transmission for cancer subtyping [36]. Lee et al. developed a GCN model with a focus on the 

mechanisms to learn pathway-level representations of cancer samples for their subtype classification 

[37]. Even though GNNs are strong, it is reported that they are susceptible when the structure of the 

graph and nodes' features are polluted with noise [38]. Thus, a robust GNN model is required for 

precise and stable prediction of cancer subtypes [39]. 

Table 4. The table summarizes the main advantages and limitations of GNN models. 

Advantages Limitations 

Rapid processing of massive data Limited to a fixed number of points 

Reliable performance in mining deep-level topological 

information 
Time and space complexity are higher 

Extracting text relationship and reasoning the structure of 

graphics and images 

Less handling of edges of graphs based on their 

types and relations 

3. Computational models for the prediction of cancer metabolic biomarkers 

Single-cell sequencing allows to study the molecular changes occurring in individual cells within 

the tumor mass. Nonetheless, attributing a specific cellular annotation (in terms of cell type or 

metabolic state) is challenging, in particular to distinguish cancer cells in single-cell or spatial 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 October 2023                   doi:10.20944/preprints202310.1262.v1

https://doi.org/10.20944/preprints202310.1262.v1


 7 

 

sequencing experiments. The information provided by a high throughput single-cell sequencing 

provides not only the description of distinct cellular annotations, but also the functional annotation 

of single cells, for example the estimation of the differentiation potential, vulnerability to metabolic 

changes, and a prediction of cellular crosstalk [40]. However, the use of this technology also raises 

computational difficulties [41]. One of the major challenges in single-cell data analysis is to attribute 

a cell annotation to each cell analyzed [42]. The magnitude of the generated datasets renders the 

manual annotation processes unfeasible, whereas the peculiarities of data generation have stimulated 

the spread of novel and creative classification methods [43]. This limitation is particularly found in 

datasets coming from cancer tissues, in which the variability in the transcriptomic states is not 

conform to traditionally defined cell types [44,45]. 

In addition to the genome data, the transcriptome, proteome, and metabolome data offer 

snapshots of a cell's phenotype space. As shown by PCAWG58 and TCGA59, which also provide 

transcriptome data in addition to genome data, the transcriptome, particularly RNA sequencing 

(RNA-seq), is the most frequently generated omics data among these. To perform more complex 

transcriptomic analyses, bulk RNA-seq has evolved into single-cell RNA-seq (scRNA-seq) and spatial 

RNA-seq. To enable a greater understanding of cell phenotypes, massive amounts of proteome and 

metabolome data are being generated for various human cells [46,47]. Human Metabolome Database 

(HMDB) and Human Protein Atlas (HPA) are representative databases for the human proteome and 

metabolome, respectively. Integrative omics analysis has gained importance since these omics data 

are complementary to one another and multiple omics data are frequently generated for a target cell 

[48,49]. 

Several studies have combined NGS data with ML to propose a novel data-driven methodology 

in systems biology [50]. Several network-based ML models have been implemented to analyze cancer 

data and aid in the understanding of novel mechanisms in cancer development [51,52]. Furthermore, 

the use of DNN models for large-scale data analysis enhanced the accuracy of computational models 

for the prediction of the mutational landscape, molecular subtyping and drug repurposing [53–56]. 

A growing number of DNN-based applications have recently integrated multi-omics and systems 

biology data into the learned models. Such approaches aim to apply the DNN model to well-

established biomedical knowledge, thereby improving our understanding of diseases and 

therapeutic effects in novel ways [57,58]. 

A common aim of NGS data analysis in cancer research is the identification of potential 

biomarkers predictive of specific cancer types or subtypes. A variety of bioinformatics tools and ML 

models, for example, aim to identify a molecular signature significantly altered in cancer cells on a 

genomic, transcriptomic, or epigenomic level. Statistical and ML methods are typically used to 

identify the best set of biomarkers, such as single nucleotide polymorphisms (SNPs), mutations, or 

differentially expressed genes that are important in cancer progression. Previously, those markers 

had to be discovered or validated using time-consuming in vitro analysis. As a result, systems biology 

provides in silico solutions to validate such findings by utilizing biological pathways or gene 

ontology data [59]. 

4. AI in cancer prognosis 

Detecting and predicting the course of the disease are key components to controlling tumor 

enlargement and providing adequate treatment to cancer patients. With the understanding that 

cancer can affect individuals differently, AI has been utilized to isolate subgroups within the patient 

population based on prognosis and survival data. Aside from segmentation, AI has pinpointed 

biomarkers that can indicate the recurrence of the disease. AI has been implemented to prognosticate 

high-risk neuroblastoma patients. Utilizing combined gene expression and copy number variations, 

an unsupervised learning algorithm called auto encoder determined significant features which were 

then used for division into two clusters [60]. In a separate study, Francescatto et al. employed the 

integrative network fusion framework together with a ML classifier to distinguish features that could 

differentiate between distinct outcomes of patients [61].  
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DL-based neural networks have also been applied to breast cancer survival prognosis. To 

prevent overfitting effects due to the vast size of omics data, the SALMON survival analysis 

algorithm operates on eigengene matrices of co-expression network modules. To enhance robustness, 

it brings together traditional cancer biomarkers and multi-omics information and pinpoints key 

feature genes and cytobands [62]. The use of a DL-based algorithm allows to combine the information 

from the same gene across different types of omics data, thus resulting in a successful and insightful 

analysis [63]. 

5. AI in the identification of therapeutic targets 

A subset of alternative network approaches to identifying cancer targets are provided by 

network-based biology analysis algorithms. More importantly, because different algorithms can look 

at network data from different angles, they can compensate each other to provide accurate biological 

explanations [64]. 

Interactome data can be organized and represented in the form of network structures to explain 

the molecular mechanisms underlying carcinogenesis, where the nodes are biological entities (genes, 

proteins, mRNAs, and metabolites) while the edges represent the associations-interactions between 

them (gene co-expression, signaling transduction, gene regulation, and physical interaction between 

proteins) [65,66]. AI algorithms could efficiently process biological network data by implementing 

classification, clustering, and prediction tasks in biological networks using machines or programs 

that enhance human intelligence [67]. As a result, AI algorithms will be able to elucidate the 

complexity of cancer behavior that rely on the interactions between genes and their products in 

biological network structures [68], allowing us to better understand carcinogenesis and identify novel 

anti-cancer targets [69]. 

One of the fundamental needs of precision oncology is anticipating therapy response for a 

patient population. The advantages of ML strategies have been tried for treatment response 

displaying and expectation following both center-based and component choice-based strategies [70]. 

The profound neural system-based examination has been used to predict therapy response. MOLI, a 

multi-omics late mix strategy in light of a profound neural system, consolidates somatic 

transformation, duplicate number variation, and quality articulation information to anticipate 

medication reaction conduct. MOLI is additionally utilized for board medication information, and 

information on medications with a similar target [71]. 

The Support Vector Machine (SVM) and the Leave-One-Out Cross-Validation (LOOCV) models 

have been employed to detect significant changes in RNA and miRNA transcriptomics data between 

from pancreatic ductal adenocarcinoma specimens and normal tissues. These features (selected 

RNAs and miRNAs) in combination with miRNA target expression data were further exploited to 

identify efficient diagnostic markers that were validated in other distinct datasets and biologically 

interpreted by pathway analysis of the corresponding target genes [72]. Moreover, ML-based analysis 

has been utilized to discover specific anticancer drug targets for breast tumors [73]. The characteristic 

genes extracted from multi-omics data of breast cancer with the aid of capsule network-based 

modeling were compared with well-known oncogenes, and novel genes were identified [74]. 

Recently, a comprehensive examination of nine cancers has demonstrated that proteomics data 

combined with gene expression, miRNAs expression and genomics is more effective in predicting 

the responsiveness of drugs and molecules specifically designed to target them. This research was 

conducted across 58 cell lines over nine cancers with the Bayesian Efficient Multiple Kernel Learning 

(BEMKL) models [70]. This confirms the robustness of multi-omics data analysis across cancer types. 

6. AI clinical application 

The DELFI technology, which uses a blood test to indirectly evaluate the packing of DNA in the 

nucleus of a cell by assessing the bulk and amount of cell-free DNA present in the flow from various 

regions of the genome, is one example of AI in clinical practice. Cancer cells release DNA into the 

bloodstream when they die. DELFI uses ML to investigate millions of cell-free DNA pieces for 

unusual design in order to distinguish the occurrence of cancer. The strategy provides a perspective 
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on cell-free DNA known as the "fragmentome" and only requires low-coverage genome sequencing, 

allowing technology to be economically affordable in a screening setting [75]. 

The DELFI methodology finds that patients who were later diagnosed positive for cancer had a 

wide fluctuation in their fragmentome profiles, while those who had a negative cancer diagnosis had 

predictable fragmentome profiles. Overall, the technique was able to distinguish more than 90 

percent of patients with lung cancer (including those with early stages) and displaying different 

subtypes [76]. 

Another study focused on glioblastoma, whose diagnosis is based on resection or biopsy which 

can be especially arduous and perilous in the case that the tumor mass is located in a deep position 

and patient comorbidities. Moreover, tracking cancer progression also necessitates repeated biopsies 

that are often impracticable. Consequently, there is an urgent requirement to identify biomarkers to 

diagnose and follow-up glioblastoma evolution by limiting the invasive approaches. Recently, it has 

been developed an innovative cancer detection method based on plasma denaturation profiles 

obtained by a novel use of differential scanning fluorimetry. By comparing the denaturation profiles 

of blood samples collected from glioma patients and from healthy subjects, the researchers 

demonstrated that ML-based algorithms can automatically distinguish the cancer patients from the 

healthy individuals (with a precision around 92%). Additionally, this high throughput workflow can 

be applied to any type of cancer and may represent a potent pan-cancer diagnostic and monitoring 

tool that requires only a plain blood test [77]. 

Among the limitations of the current approaches, tissue biopsy presents a fixed overview of the 

tumor that fails to record the intratumor distinguishment and dynamic changes occurring during 

carcinogenesis, also determined by clonal pressure caused by the applied medication [78]. On top of 

that, it is an invasive procedure, which cannot be usually done multiple times on request, making 

this system unfeasible to be conducted as a regular practice for cancer patients' long-term supervision 

and treatment adjustment. The emergence of liquid biopsy has been a revolutionary development for 

the current clinical practice, offering great potential to improve the management of ongoing cancer 

patients for diagnosis, prognosis, and tailoring of treatment. This approach presents the advantage 

to be a minimally invasive procedure that utilizes tumor-derived materials obtained from several 

body fluids, such as peripheral blood, urine, pleural liquid, saliva, or ascites [79]. This solution is not 

limited by space or time, and it supplies clinically meaningful information related to both primary 

and metastatic malignant lesions. Among the components of tumor-derived materials that can be 

analyzed by liquid biopsy, circulating tumor cells, cell-free circulating nucleic acids, and extracellular 

vesicles are the most extensively studied and characterized cancer markers and are used for various 

objectives, for instance, early detection of cancer, staging, prognosis, drug resistance, and minimal 

residual disease [80]. 

Another AI approach is PinPoint test, a cost-effective AI-driven blood test for cancer that is 

meant to upgrade rapid cancer referral paths. The test is found on an algorithm that uses ML to 

investigate regular constituents, as well as the patient's age and sex. It can calibrate and combine 

these individual variables into one solid and highly precise result such as the likelihood that a patient 

has cancer [81]. The PinPoint test has been crafted as a decision support tool to give medical 

professionals the data they need to better sort patients when they initially present with symptoms. 

Those with high risk can be given precedence for speedy examination in secondary care, while those 

with the lowest risk can be securely excluded from the “2 week wait” pathway for further discussion 

with their physicians [82]. This strategy of pinpointing those at the greatest risk for prioritization will 

promote early detection, contribute to a more dependable pathway, and assist in decreasing post-

pandemic delays [83]. 

7. AI imaging in cancer diagnosis 

In the field of cancer imaging, AI displays a great utility in three main clinical tasks: tumor 

detection, characterization, and monitoring [84]. The localization of objects of interest in radiographs 

is referred to as detection, and it is a subset of computer-aided detection (CADe). AI-based detection 
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tools can be used to reduce observational errors and serve as a first line of defense against omission 

errors [85]. 

Characterization in general includes tumor segmentation, diagnosis, and staging. It can also 

include a disease-specific prognosis as well as outcome prediction based on specific treatment 

modalities. Segmentation determines the extent of abnormalities and can range from simple 2D 

measurements of the maximum in plane tumor diameter to more involved volumetric segmentations 

that assess the entire tumor as well as any surrounding tissues. This information could be exploited 

for future diagnostic purposes as well as for calculating the appropriate dose administration during 

radiation planning. AI has the capability to significantly improve the efficiency, reproducibility, and 

reliability of tumor measurements through automated segmentation. In computer-aided diagnosis 

(CADx) systems, systematic processing of quantitative tumor features is used, allowing for more 

reproducible descriptors. In the case of inconsistencies in interpretation by different human readers, 

CADx systems have been used to diagnose lung nodules in thin section CT and prostate lesions in 

multiparametric MRI [86].  

Staging is another aspect of tumor characterization in which tumors are classified into 

predefined groups based on size and spread of the tumor mass, thus providing information regarding 

the expected clinical course and for the decision of the most appropriated treatment strategies [87]. 

The application of AI-based methods to cancer imaging allows for the estimation of tumor size, shape, 

morphology, texture, and kinetics. Additionally, the use of dynamic assessment of contrast uptake 

on MRI enables physicians to characterize the tumor mass in terms of heterogeneity, phenotypes of 

spatial features and dynamic characteristics [88]. Another variable taken in consideration from AI-

based tools is entropy, a mathematical descriptor of randomness that provides information on how 

heterogeneous the pattern is within the tumor, thereby describing the heterogeneous pattern of 

vascular system uptake (contrast uptake) within tumors imaged on contrast-enhanced breast MRI. 

As demonstrated by the NCI's The Cancer Genome Atlas (TCGA) breast cancer dataset, such analyses 

could reflect the heterogeneous nature of angiogenesis and treatment susceptibility [89]. 

DL systems have been used to simultaneously detect and classify prostate lesions. For training 

convolutional neural networks (CNNs) for prostate cancer diagnosis by MRI, both de novo training 

[90] and transfer learning of pre-trained models [91] have been successful. The implementation of 

CNNs models with anatomically aware features has been shown to improve their performance 

[92,93]. In addition to MRI, AI techniques for prostate cancer classification have shown promising 

results by integrating ultrasound data, specifically radiofrequency. Again, both traditional ML and 

DL approaches were used to train classifiers to estimate the grading of prostate cancer by exploiting 

temporal ultrasound data [94]. 

8. Critical issues, challenges, and limitations  

The accuracy and consistency of AI systems are frequently restricted by their training data and 

the hardware used. We must keep in mind that AI can make mistakes in some situations because its 

decision-making ability is predictive and probabilistic. As a result, there are no clear regulations or 

guidelines in place to determine who is legally liable when AI malfunctions occur or causes issues 

while providing a service. Another factor to take in consideration is that most of the places where the 

potential of AI in healthcare has been evaluated are basically high-income and resource-driven areas. 

When used in low-income countries with a shortage of well-trained physicians and oncological 

specialists, AI-based prediction tools are expected to have a greater impact and increment the success 

of cancer treatment. 

The improvement in the AI interpretation is a crucial step toward mitigating this risk and 

providing a decision-making rationale. One limitation is represented by the lack of a human 

verification step in the process unless a physician supervises the AI system. As a result, no one expects 

AI to entirely replace medical professionals. AI-based precision medicine will be critical for cancer 

treatment in the future. Living databases will exploit extremely complex models capable of making 

a personalized therapy selection, estimation of the drug dose, follow-up schedule, and so on. 
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However, the transition from artificial narrow intelligence to artificial general intelligence will result 

in the automation of all the steps involved in cancer prediction, diagnosis, and treatment. 

Despite its numerous benefits, AI presents several challenges and constraints that hinder it from 

fully functioning in cancer research. Particularly, three layers of complexity must be considered: (i) 

cancer is a highly heterogeneous organoid-like structure that at the time of diagnosis is made up of 

many different cancer subclones embedded in a stroma (the tumor microenvironment) that itself 

contributes to cancer progression; (ii) as cancer progresses, tumor evolution leads to increased 

intratumor heterogeneity so that by the time therapy is started the targeted cancer may not respond; 

(iii) cancers with the same molecular and histological signatures behave differently in each single 

patient because of individual epigenetic and immunological modulations [Garavaglia, Vallino et al., 

2023 Book chapter, in press; [95–97]. Thus, the final clinical outcome will depend on the complex 

interplay between the cancer (with its multiple subclones) and the tumor microenvironment (which 

includes the stroma composition and the inflammatory and immune response), and, finally, the 

general pathophysiological condition of the patient (e.g., the body mass, the adipose tissue mass, the 

nutrition status, the psychological status, the immune status, etc.). This poses an important limit to 

the capability of AI in predicting the therapy efficacy and the prognosis, which once again stresses 

the fundamental role of the clinician that cannot be substituted by an algorithm.  

The new era of innovation brings with it many challenges that should be overcome to drastically 

improve oncology procedures at several levels. The lack of inclusive and different datasets for 

training represents a significant obstacle to the widespread adoption of AI algorithms and decision-

support systems in cancer care. Most of the powerful AI models require a large sample size to 

efficiently train the tool. Although there are dimensionality-reduction and feature-selection methods 

for addressing these aspects, proper implementation is critical for achieving better and reliable 

results. In medical data sets, particularly in the case of cancer data, classes are typically distributed 

unequally. Continuous use of AI- and ML-based tools for diagnosis and treatment decisions can be 

risky due to distributional shifts, which means that target data may not match the ongoing patient 

data employed to train the model, resulting in incorrect outputs. Changes in technology, healthcare, 

and population, such as the gene pool, are likely to have an impact on the relationship between the 

data items. The actual application of AI models in clinics is not being actively considered. The 

predictions achieved with these models frequently require to be validated in the clinical practice to 

assist medical experts in confirming diagnosis decisions. Significant issues regarding data availability 

and interpretability caused by AI's "black box" process, in parallel with the emergence of an inherent 

bias toward limited cohorts that reduces the reproducibility of AI models and perpetuates disparities 

in the healthcare, collectively prevented widespread application of AI in clinics. Additionally, the 

distribution of AI-based technologies in many developing countries may be hampered by a lack of 

knowledge in computing algorithms and technologies of the physicians. 

Taken together, the clinically relevant achievements discussed in the present review need to 

become more solid for being translated into the right treatment for the right patient. Hence, the 

rapidly ongoing evolution of AI-based medical data analysis will significantly improve the 

treatments in cancer. 
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Figure 3. Advantages and limitations of AI. The scheme summarizes the main benefits along with the 

current concerns related to the use of AI in the clinical practice. 

9. Conclusions and perspectives 

In this paper, we present an overview of the models applied in diagnosing and identifying 

therapeutic targets, and we discussed the challenges and future perspectives of AI in cancer research. 

As the power and potential of AI are increasingly demonstrated, in the coming future several other 

biomedical fields may exploit the use of AI in their routine clinical practice. AI methodologies' 

accuracy, and predictive power must be significantly improved, as well as demonstrated efficacy 

comparable to, or better than, human experts in controlled studies [98]. Up to now, AI shows early 

promising results in the management of several disease conditions, but more efforts in prospective 

trials and in the education of physicians, technologists, and physicists are needed before it can be 

widely used. Although there will always be a "black box" for human experts to view AI-generated 

results, data visualization tools are becoming more widely available to provide some visual 

understanding of how algorithms make decisions [99]. 
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