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Abstract: Cancer is the second major cause of disease-related dead worldwide, and its accurate early diagnosis
and therapeutic intervention are fundamental for saving the patient’s life. Cancer, as a complex and
heterogeneous disorder, results from disruption and alteration of a wide variety of biological entities, including
genes, proteins, nRNAs, miRNAs, and metabolites that eventually emerge as clinical symptoms. Traditionally,
diagnosis is based on clinical examination, blood tests for biomarkers, histopathology of biopsy, and imaging
(MRI, CT, PET, US). Additionally, omics biotechnologies help to further characterize the genome, metabolome,
microbiome traits of the patient that could have an impact on the prognosis and patient’s response to the
therapy. The integration of all these data relies on gathering of several experts and may require considerable
time, and, unfortunately, it is not without the risk of error in the interpretation and therefore in the decision.
Systems biology algorithms exploit Artificial Intelligence (AI) combined with omics technologies to perform a
rapid and accurate analysis and integration of patient’s big data and support the physician in making diagnosis
and tailoring the most appropriate therapeutic intervention. However, Al is not free from possible diagnostic
and prognostic errors in the interpretation of images or biochemical-clinical data. Here, we first describe the
methods used by systems biology for combining Al with omics and then discuss the potential, challenges,
limitations, and critical issues in using Al in cancer research.

Keywords: artificial intelligence; medical technology; smart health; digital health; omics
technologies; imaging; diagnosis; personalized medicine

1. Introduction

According to a recent review, mistakes in diagnosis account for 60% of all medical errors and an
estimated 40,000 to 80,000 deaths in U.S. medical centers each year. Typically, clinicians have limited
time to make decisions based on the interpretation of huge amounts of data, and this increases the
risk of underestimating (or sometimes overestimating) some data. Other factors of potential biases
affecting the accuracy of the diagnosis are personal experience and medical specialty.

Artificial Intelligence (Al), a field of computer science used for prediction and automation, has
emerged as a potential solution to promote a precision approach in healthcare and is expected to
reduce errors caused by human judgment in various medical domains [1].

Cancer is the leading cause of death in people, accounting for an estimated 10 million deaths by
2020 [2]. It is a complex disease resulting from anomalies in physiological processes involving genes,
coding and non-coding RNAs, proteins, metabolites, and other biomolecules [3,4]. To understand
such a complex disease from its onset to its progression, multi-omics analysis of these numerous bio-
entities is required. Modern biotechnologies allow the high throughput analysis of the sequence and
expression of many genes (genomics and epigenomics), proteins and their post-translational
modifications  (proteomics, phospho-proteomics and glycol-proteomics)) RNAs (RNA
transcriptomics), non-coding RNAs (including miRNAs and long-non-coding RNAs), and
metabolites (metabolomics) from the same organism [5]. However, a platform where all these big
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data are integrated to uncover correlations and synergisms among the biological pathways and
processes is required. Systems biology combines the power of Al and of multi-omics technologies for
modeling the signaling and metabolic signature of a given cancer. This is instrumental for designing
effective diagnostic and prognostic markers and novel and patient-tailored therapeutic interventions.

Current diagnostic practice includes histopathology imaging and a range of blood tests which
are instrumental in the initial diagnosis and for determining cancer staging; however, these
approaches display some limitations in dissecting the molecular basis beyond the onset of the
disorder. To overcome these aspects, molecular and omics technologies can provide a genetic,
epigenetic, and metabolic profile of the tumor [6,7].

Despite difficulties in providing individualized and data-driven care, advancements in
screening, diagnosis, treatment, and survival rate have been remarkable in recent decades [8]. Early
detection and prognosis prediction represent two crucial clinical needs for limiting cancer
progression. In this context, the proper clinical care for cancer patients can be improved by the
introduction of Al in cancer detection, diagnosis, and treatment [9-12].

The development and extensive use of high-throughput technologies has ushered in the era of
biological and medical big data. This has led to the accumulation of data sets on a large scale, thereby
opening a wide range of potential applications for data-driven methods in cancer treatment, spanning
from basic research to clinical practice: molecular tumor characterization, tumor heterogeneity, drug
discovery and potential therapeutic strategies. As a result, the data-driven research field of
bioinformatics adapts data mining techniques such as systems biology, machine learning, and deep
learning, which are discussed in this review paper. Systems biology uses a data-driven approach to
identify important signaling pathways. The pathway-oriented analysis is extremely important in
cancer research because it helps researchers comprehend the molecular features and heterogeneity
of tumors and tumor subtypes [13].

Al-based technologies applied to oncology aim at improving clinical practice, including but not
limited to early and accurate diagnosis and prediction of personalized outcomes (i.e., prognosis and
therapy response), by acquiring a profound perception of tumor molecular biology through the
association of multiple biological parameters [14].

Artificial intelligence in medicine at glance

Current Al systems have been involved to be used in a variety of clinical settings, including (i)
image-based computer-aided discovery and diagnosis in various medical specialties, (ii) translation
of genomic information for recognizing genetic variants using high-throughput sequencing
technologies, and (iii) prediction and tracking of patient's prognosis [15]. Moreover, they have been
implemented as well in (iv) the discovery of new biomarkers by combining omics and phenotype
data, (v) the detection of health status using biological signals obtained from wearable devices, and
(vi) the production and implementation of autonomous robots in medical procedures [16].

The creation of Al models that predict the properties of vast and interconnected networks found
in living organisms would allow for a thorough examination of how signaling molecules generate
functional cellular reactions. Machine learning (ML) algorithms, a subset of Al, are capable of making
decisive interpretations of large, complex data sets, making them an effective tool for analyzing and
comprehending multi-omics data for patient-specific observations [17]. We can anticipate the
remarkable growth of Al in the medical field in light of the digital acquisition of high-dimensional
and annotated medical data, the progress of ML methods, open ML data science, and advancements
in computational power and storage services [18]. Al is expected to make it easier to diagnose specific
illnesses in patients. Commonly, deep learning (DL) architectures are analogous to artificial neural
networks of multiple non-linear tiers. Over the past decade, a large variety of DL designs have been
developed depending on the input data type and the purpose of the research. Moreover, the
assessment of the model's efficiency has revealed that DL application on cancer prognosis surpasses
other traditional ML techniques. DL frameworks have been also used in cancer diagnosis,
classification, and treatment by utilizing genomic profiles and phenotype information. Systems
biology has been an effective method to comprehend the complex molecular profile of cancers,
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interpret the mechanisms of tumor progression and allow the amalgamation of omics data as well as
the characterization of diverse tumors [19].
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Figure 1. Overview of the applications of Al to cancer diagnosis and oncology research field. The
scheme depicts the main fields of application of Al discussed in this review. Abbreviations: computed
tomography, CT; gene expression models, GEMs; machine learning, ML; magnetic resonance
imaging, MRI; nano differential scanning fluorimetry, Nanodsf; next generation sequencing, NGS;

positron emission tomography, PET; partial least squares analysis, PLS; ultrasound imaging, U/S.

2. Omics data for identifying cancer metabolic biomarkers

Omics technologies allow to analyze in depth the molecular characteristics of cancer at both bulk
and single-cell level, providing a wealth of multi-omics data that challenge the capability of scientists
and medical doctor to combine for drawing a consistent picture of the multilayer complexity of cancer
biology. Genomic, epigenomic, transcriptomic, proteomic, and metabolomic data can be elaborated

using appropriate models for making prediction about prognosis and treatment response in a patient-
tailored (personalized) manner [10,12,20].

Survival models

To find cancer metabolic biomarkers, survival models have been used more frequently than
partial least squares (PLS) models, machine learning models, and gene expression modelling (GEM)
[21]. The Kaplan-Meier method, the log-rank test, and/or the Cox regression model are representative
survival models used in cancer studies. These models are used to describe the likelihood of survival
(or survival curve) for a group of patients after treatment, compare the survival curves of two or more
treatment groups, and describe the effects of multiple explanatory (independent) variables, profiles
of gene expression, and metabolite concentration) on survival curves, respectively. In contrast to
Kaplan-Meier models, which must discretize their data, the Cox regression model has the advantage
of processing continuous values directly, minimizing data loss [22].

doi:10.20944/preprints202310.1262.v1
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In their study, based on gene expression profiles of seven major metabolic pathways, Peng and
colleagues identified 30 tumor subtypes in 33 different cancer types and evaluated the clinical utility
of so-called metabolic expression subtypes. For this, correlations between metabolic expression
subtypes and their corresponding prognosis were investigated using the Kaplan-Meier method, log-
rank test, and Cox regression model. Consequently, subtypes with upregulated lipid metabolism
appeared to have a better prognosis than subtypes with upregulated glycemic, nucleotide, vitamin,
and cofactor metabolism. The association of various somatic mutations in cancer driver genes with
metabolic expression subtypes has also been discovered. Two transcription factors, SNAI1 and
RUNX1, were identified from knockdown studies as potential therapeutic targets for a subtype of
cancer with upregulated carbohydrate metabolism that consistently had a poor prognosis across
cancer types [21].
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Figure 2. Overview of the omics technologies exploited in cancer diagnosis/prognosis. The scheme
depicts the main omics models currently used in biomarker identification. Abbreviations: gene
expression modelling, GEM; partial least squares analysis, PLS.

PLS models

Partial least squares regression (PLS) was initially created as a regression model that processes
numerous independent variables that are correlated and also produce numerous dependent
variables, which many statistical and ML techniques cannot directly handle. PLS models and their
variations, particularly PLS-discriminant analysis (PLS-DA) were frequently used for the analysis of
omics data with a focus on metabolomics [23]. PLS-DA has been primarily used to extract insights
from large datasets of omics data, such as identifying metabolites from metabolome data that are the
best at differentiating between cancer cells with various statuses or people with various health
conditions. PLS-DA might have an overfitting issue, too, like other data mining techniques, so it
needs thorough validation, frequently done through cross-validation [24].

PLS-DA or its variants have been used to analyze metabolome data to identify a variety of
cancers, including breast cancer, glioma, non-small cell lung cancer, oral precancerous cells, cervical
precancerous lesions and prostate cancer [25,26]. Among its advantages, PLS-DA allows to analyze
highly collinear and noisy data. Moreover, the calibration model provides a subset of useful statistics,
including prediction accuracy, scores and loading plots. However, a potential limitation has emerged
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when this method was applied to metabolomics: the use of this model by non-experts may produce
inaccurate results, owing to a lack of appropriate statistical validation [27].

The Materials and Methods should be described with sufficient details to allow others to
replicate and build on the published results. Please note that the publication of your manuscript
implicates that you must make all materials, data, computer code, and protocols associated with the
publication available to readers. Please disclose at the submission stage any restrictions on the
availability of materials or information. New methods and protocols should be described in detail
while well-established methods can be briefly described and appropriately cited.

Research manuscripts reporting large datasets that are deposited in a publicly available database
should specify where the data have been deposited and provide the relevant accession numbers. If
the accession numbers have not yet been obtained at the time of submission, please state that they
will be provided during review. They must be provided prior to publication.

Interventionary studies involving animals or humans, and other studies that require ethical
approval, must list the authority that provided approval and the corresponding ethical approval

code.
Table 1. The table summarizes the main advantages and limitations of PLS models.
Advantages Limitations
Ability to robustly handle more descriptor variables Higher risk of overlooking ‘real’ correlations
Provide more predictive accuracy Sensitivity to the relative scaling of the descriptor variables

Low risk of chance correlation

Genome-scale metabolic models

Gene expression modeling (GEM) is a computational model based on the law of mass
conservation of metabolites and allows predicting metabolic fluxes for entire biochemical reactions
taking place inside a cell by using numerical optimization [28,29]. Technically, GEM describes the
participation of each metabolite for an entire set of biochemical reactions in the form of a
stoichiometric matrix and is simulated using varied forms of objective functions and constraints that
reflect genetic and environmental conditions of interest. As a result, GEM allows for efficiently
simulating a target cell's metabolic phenotypes under a wide range of genetic and environmental
conditions. GEM can also be integrated with omics data, such as RNA-seq, which allows for building
a cell-specific model, which can be especially useful for modeling multicellular organisms. In
comparison with ML models, GEMs generate more interpretable prediction outcomes that grasp a
cell-specific metabolic phenotype. GEM simulations, however, demand consideration. Due to the
possibility of biologically incorrect objective functions or constraints, it is advised to proceed with the
analysis of the predicted intracellular metabolic flux distributions from GEMs with caution. A
representative issue is the use of constraints that do not accurately reflect a cultural medium. Finally,
GEMs do not directly produce additional data for regulatory and signaling networks, which are also
crucial for understanding the physiology of a cell [30,31].

Table 2. The table summarizes the main advantages and limitations of GEM models.

Advantages Limitations

L . Uncertainties in the estimated parameters in
Explore metabolism in multiple cell types . . .
regarding quantitative flux predictions

Validating or discovering biomarkers for screening, Ambiguous normalization of experimentally
diagnostics, prognostics and/or patient stratification quantified fluxes

Identify cancer-specific metabolic features that constitute
generic potential drug targets for cancer treatment
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Machine learning models

The classification task of disease prediction has been thoroughly studied in medical oncology
and cancer research, based on well-established machine learning algorithms for dealing with binary
or multi-class learning problems. Patient categorization would allow the development of ML-based
predictive models capable of assessing risk stratification with generalizable performance. Based on
images and genetic data, DL models were trained to classify and detect disease subtypes. These data-
driven approaches demonstrated the superiority of ML-based frameworks for leveraging
heterogeneous datasets for improved diagnosis and treatment [32].

Deep neural networks (DNNs)

Deep neural network (DNN) models are rapidly evolving and becoming more sophisticated.
They have been widely used in biomedical research across the board. Initially, large-scale imaging
and video data aided its development. While most biomedical data sets are not considered big data,
the rapid data accumulation enabled by NGS made it suitable for the application of DNN models
that require a large amount of training data [33]. In 2019, for example, Samiei et al. used TCGA-based
large-scale cancer data as benchmark datasets for bioinformatics machine learning research, such as
Image-Net in computer vision [34]. Following that, large-scale public cancer data sets like the TCGA
encouraged the widespread use of DNNs in the cancer research [35].

Table 3. The table summarizes the main advantages and limitations of DNN models.

Advantages Limitations
Ability to handle complex data and relationships Massive data requirement
Effective at producing high-quality results High processing and computational power
Extremely scalable because of its capacity to Black box problem making them hard to debug and
analyze large volumes of data understand how they make decisions

Graph neural networks (GNNs)

Graph neural networks (GNNs) have achieved great results and are being progressively
employed in a node classification task. It offers a strategy to acquire novel representations of nodes
by combining the features of its local neighborhood and connectivity. Recently, some GNN-based
approaches have been proposed to forecast molecular subtyping of cancer. Rhee et al. created a Graph
Convolutional Network (GCN) based model to investigate the gene-gene alliance and information
transmission for cancer subtyping [36]. Lee et al. developed a GCN model with a focus on the
mechanisms to learn pathway-level representations of cancer samples for their subtype classification
[37]. Even though GNNs are strong, it is reported that they are susceptible when the structure of the
graph and nodes' features are polluted with noise [38]. Thus, a robust GNN model is required for
precise and stable prediction of cancer subtypes [39].

Table 4. The table summarizes the main advantages and limitations of GNN models.

Advantages Limitations

Rapid processing of massive data Limited to a fixed number of points

Reliable performance.in minin.g deep-level topological Time and space complexity are higher
information

Extracting text relationship and reasoning the structure of = Less handling of edges of graphs based on their
graphics and images types and relations

3. Computational models for the prediction of cancer metabolic biomarkers

Single-cell sequencing allows to study the molecular changes occurring in individual cells within
the tumor mass. Nonetheless, attributing a specific cellular annotation (in terms of cell type or
metabolic state) is challenging, in particular to distinguish cancer cells in single-cell or spatial
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sequencing experiments. The information provided by a high throughput single-cell sequencing
provides not only the description of distinct cellular annotations, but also the functional annotation
of single cells, for example the estimation of the differentiation potential, vulnerability to metabolic
changes, and a prediction of cellular crosstalk [40]. However, the use of this technology also raises
computational difficulties [41]. One of the major challenges in single-cell data analysis is to attribute
a cell annotation to each cell analyzed [42]. The magnitude of the generated datasets renders the
manual annotation processes unfeasible, whereas the peculiarities of data generation have stimulated
the spread of novel and creative classification methods [43]. This limitation is particularly found in
datasets coming from cancer tissues, in which the variability in the transcriptomic states is not
conform to traditionally defined cell types [44,45].

In addition to the genome data, the transcriptome, proteome, and metabolome data offer
snapshots of a cell's phenotype space. As shown by PCAWG58 and TCGA59, which also provide
transcriptome data in addition to genome data, the transcriptome, particularly RNA sequencing
(RNA-seq), is the most frequently generated omics data among these. To perform more complex
transcriptomic analyses, bulk RNA-seq has evolved into single-cell RNA-seq (scRNA-seq) and spatial
RNA-seq. To enable a greater understanding of cell phenotypes, massive amounts of proteome and
metabolome data are being generated for various human cells [46,47]. Human Metabolome Database
(HMDB) and Human Protein Atlas (HPA) are representative databases for the human proteome and
metabolome, respectively. Integrative omics analysis has gained importance since these omics data
are complementary to one another and multiple omics data are frequently generated for a target cell
[48,49].

Several studies have combined NGS data with ML to propose a novel data-driven methodology
in systems biology [50]. Several network-based ML models have been implemented to analyze cancer
data and aid in the understanding of novel mechanisms in cancer development [51,52]. Furthermore,
the use of DNN models for large-scale data analysis enhanced the accuracy of computational models
for the prediction of the mutational landscape, molecular subtyping and drug repurposing [53-56].
A growing number of DNN-based applications have recently integrated multi-omics and systems
biology data into the learned models. Such approaches aim to apply the DNN model to well-
established biomedical knowledge, thereby improving our understanding of diseases and
therapeutic effects in novel ways [57,58].

A common aim of NGS data analysis in cancer research is the identification of potential
biomarkers predictive of specific cancer types or subtypes. A variety of bioinformatics tools and ML
models, for example, aim to identify a molecular signature significantly altered in cancer cells on a
genomic, transcriptomic, or epigenomic level. Statistical and ML methods are typically used to
identify the best set of biomarkers, such as single nucleotide polymorphisms (SNPs), mutations, or
differentially expressed genes that are important in cancer progression. Previously, those markers
had to be discovered or validated using time-consuming in vitro analysis. As a result, systems biology
provides in silico solutions to validate such findings by utilizing biological pathways or gene
ontology data [59].

4. Al in cancer prognosis

Detecting and predicting the course of the disease are key components to controlling tumor
enlargement and providing adequate treatment to cancer patients. With the understanding that
cancer can affect individuals differently, Al has been utilized to isolate subgroups within the patient
population based on prognosis and survival data. Aside from segmentation, Al has pinpointed
biomarkers that can indicate the recurrence of the disease. Al has been implemented to prognosticate
high-risk neuroblastoma patients. Utilizing combined gene expression and copy number variations,
an unsupervised learning algorithm called auto encoder determined significant features which were
then used for division into two clusters [60]. In a separate study, Francescatto et al. employed the
integrative network fusion framework together with a ML classifier to distinguish features that could
differentiate between distinct outcomes of patients [61].
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DL-based neural networks have also been applied to breast cancer survival prognosis. To
prevent overfitting effects due to the vast size of omics data, the SALMON survival analysis
algorithm operates on eigengene matrices of co-expression network modules. To enhance robustness,
it brings together traditional cancer biomarkers and multi-omics information and pinpoints key
feature genes and cytobands [62]. The use of a DL-based algorithm allows to combine the information
from the same gene across different types of omics data, thus resulting in a successful and insightful
analysis [63].

5. Al in the identification of therapeutic targets

A subset of alternative network approaches to identifying cancer targets are provided by
network-based biology analysis algorithms. More importantly, because different algorithms can look
at network data from different angles, they can compensate each other to provide accurate biological
explanations [64].

Interactome data can be organized and represented in the form of network structures to explain
the molecular mechanisms underlying carcinogenesis, where the nodes are biological entities (genes,
proteins, mRNAs, and metabolites) while the edges represent the associations-interactions between
them (gene co-expression, signaling transduction, gene regulation, and physical interaction between
proteins) [65,66]. Al algorithms could efficiently process biological network data by implementing
classification, clustering, and prediction tasks in biological networks using machines or programs
that enhance human intelligence [67]. As a result, Al algorithms will be able to elucidate the
complexity of cancer behavior that rely on the interactions between genes and their products in
biological network structures [68], allowing us to better understand carcinogenesis and identify novel
anti-cancer targets [69].

One of the fundamental needs of precision oncology is anticipating therapy response for a
patient population. The advantages of ML strategies have been tried for treatment response
displaying and expectation following both center-based and component choice-based strategies [70].
The profound neural system-based examination has been used to predict therapy response. MOLL a
multi-omics late mix strategy in light of a profound neural system, consolidates somatic
transformation, duplicate number variation, and quality articulation information to anticipate
medication reaction conduct. MOLI is additionally utilized for board medication information, and
information on medications with a similar target [71].

The Support Vector Machine (SVM) and the Leave-One-Out Cross-Validation (LOOCV) models
have been employed to detect significant changes in RNA and miRNA transcriptomics data between
from pancreatic ductal adenocarcinoma specimens and normal tissues. These features (selected
RNAs and miRNAs) in combination with miRNA target expression data were further exploited to
identify efficient diagnostic markers that were validated in other distinct datasets and biologically
interpreted by pathway analysis of the corresponding target genes [72]. Moreover, ML-based analysis
has been utilized to discover specific anticancer drug targets for breast tumors [73]. The characteristic
genes extracted from multi-omics data of breast cancer with the aid of capsule network-based
modeling were compared with well-known oncogenes, and novel genes were identified [74].

Recently, a comprehensive examination of nine cancers has demonstrated that proteomics data
combined with gene expression, miRNAs expression and genomics is more effective in predicting
the responsiveness of drugs and molecules specifically designed to target them. This research was
conducted across 58 cell lines over nine cancers with the Bayesian Efficient Multiple Kernel Learning
(BEMKL) models [70]. This confirms the robustness of multi-omics data analysis across cancer types.

6. Al clinical application

The DELFI technology, which uses a blood test to indirectly evaluate the packing of DNA in the
nucleus of a cell by assessing the bulk and amount of cell-free DNA present in the flow from various
regions of the genome, is one example of Al in clinical practice. Cancer cells release DNA into the
bloodstream when they die. DELFI uses ML to investigate millions of cell-free DNA pieces for
unusual design in order to distinguish the occurrence of cancer. The strategy provides a perspective
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on cell-free DNA known as the "fragmentome" and only requires low-coverage genome sequencing,
allowing technology to be economically affordable in a screening setting [75].

The DELFI methodology finds that patients who were later diagnosed positive for cancer had a
wide fluctuation in their fragmentome profiles, while those who had a negative cancer diagnosis had
predictable fragmentome profiles. Overall, the technique was able to distinguish more than 90
percent of patients with lung cancer (including those with early stages) and displaying different
subtypes [76].

Another study focused on glioblastoma, whose diagnosis is based on resection or biopsy which
can be especially arduous and perilous in the case that the tumor mass is located in a deep position
and patient comorbidities. Moreover, tracking cancer progression also necessitates repeated biopsies
that are often impracticable. Consequently, there is an urgent requirement to identify biomarkers to
diagnose and follow-up glioblastoma evolution by limiting the invasive approaches. Recently, it has
been developed an innovative cancer detection method based on plasma denaturation profiles
obtained by a novel use of differential scanning fluorimetry. By comparing the denaturation profiles
of blood samples collected from glioma patients and from healthy subjects, the researchers
demonstrated that ML-based algorithms can automatically distinguish the cancer patients from the
healthy individuals (with a precision around 92%). Additionally, this high throughput workflow can
be applied to any type of cancer and may represent a potent pan-cancer diagnostic and monitoring
tool that requires only a plain blood test [77].

Among the limitations of the current approaches, tissue biopsy presents a fixed overview of the
tumor that fails to record the intratumor distinguishment and dynamic changes occurring during
carcinogenesis, also determined by clonal pressure caused by the applied medication [78]. On top of
that, it is an invasive procedure, which cannot be usually done multiple times on request, making
this system unfeasible to be conducted as a regular practice for cancer patients' long-term supervision
and treatment adjustment. The emergence of liquid biopsy has been a revolutionary development for
the current clinical practice, offering great potential to improve the management of ongoing cancer
patients for diagnosis, prognosis, and tailoring of treatment. This approach presents the advantage
to be a minimally invasive procedure that utilizes tumor-derived materials obtained from several
body fluids, such as peripheral blood, urine, pleural liquid, saliva, or ascites [79]. This solution is not
limited by space or time, and it supplies clinically meaningful information related to both primary
and metastatic malignant lesions. Among the components of tumor-derived materials that can be
analyzed by liquid biopsy, circulating tumor cells, cell-free circulating nucleic acids, and extracellular
vesicles are the most extensively studied and characterized cancer markers and are used for various
objectives, for instance, early detection of cancer, staging, prognosis, drug resistance, and minimal
residual disease [80].

Another Al approach is PinPoint test, a cost-effective Al-driven blood test for cancer that is
meant to upgrade rapid cancer referral paths. The test is found on an algorithm that uses ML to
investigate regular constituents, as well as the patient's age and sex. It can calibrate and combine
these individual variables into one solid and highly precise result such as the likelihood that a patient
has cancer [81]. The PinPoint test has been crafted as a decision support tool to give medical
professionals the data they need to better sort patients when they initially present with symptoms.
Those with high risk can be given precedence for speedy examination in secondary care, while those
with the lowest risk can be securely excluded from the “2 week wait” pathway for further discussion
with their physicians [82]. This strategy of pinpointing those at the greatest risk for prioritization will
promote early detection, contribute to a more dependable pathway, and assist in decreasing post-
pandemic delays [83].

7. Al imaging in cancer diagnosis

In the field of cancer imaging, Al displays a great utility in three main clinical tasks: tumor
detection, characterization, and monitoring [84]. The localization of objects of interest in radiographs
is referred to as detection, and it is a subset of computer-aided detection (CADe). Al-based detection
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tools can be used to reduce observational errors and serve as a first line of defense against omission
errors [85].

Characterization in general includes tumor segmentation, diagnosis, and staging. It can also
include a disease-specific prognosis as well as outcome prediction based on specific treatment
modalities. Segmentation determines the extent of abnormalities and can range from simple 2D
measurements of the maximum in plane tumor diameter to more involved volumetric segmentations
that assess the entire tumor as well as any surrounding tissues. This information could be exploited
for future diagnostic purposes as well as for calculating the appropriate dose administration during
radiation planning. Al has the capability to significantly improve the efficiency, reproducibility, and
reliability of tumor measurements through automated segmentation. In computer-aided diagnosis
(CADx) systems, systematic processing of quantitative tumor features is used, allowing for more
reproducible descriptors. In the case of inconsistencies in interpretation by different human readers,
CADx systems have been used to diagnose lung nodules in thin section CT and prostate lesions in
multiparametric MRI [86].

Staging is another aspect of tumor characterization in which tumors are classified into
predefined groups based on size and spread of the tumor mass, thus providing information regarding
the expected clinical course and for the decision of the most appropriated treatment strategies [87].
The application of Al-based methods to cancer imaging allows for the estimation of tumor size, shape,
morphology, texture, and kinetics. Additionally, the use of dynamic assessment of contrast uptake
on MRI enables physicians to characterize the tumor mass in terms of heterogeneity, phenotypes of
spatial features and dynamic characteristics [88]. Another variable taken in consideration from Al-
based tools is entropy, a mathematical descriptor of randomness that provides information on how
heterogeneous the pattern is within the tumor, thereby describing the heterogeneous pattern of
vascular system uptake (contrast uptake) within tumors imaged on contrast-enhanced breast MRI.
As demonstrated by the NCI's The Cancer Genome Atlas (TCGA) breast cancer dataset, such analyses
could reflect the heterogeneous nature of angiogenesis and treatment susceptibility [89].

DL systems have been used to simultaneously detect and classify prostate lesions. For training
convolutional neural networks (CNNs) for prostate cancer diagnosis by MRI, both de novo training
[90] and transfer learning of pre-trained models [91] have been successful. The implementation of
CNNs models with anatomically aware features has been shown to improve their performance
[92,93]. In addition to MRI, Al techniques for prostate cancer classification have shown promising
results by integrating ultrasound data, specifically radiofrequency. Again, both traditional ML and
DL approaches were used to train classifiers to estimate the grading of prostate cancer by exploiting
temporal ultrasound data [94].

8. Critical issues, challenges, and limitations

The accuracy and consistency of Al systems are frequently restricted by their training data and
the hardware used. We must keep in mind that Al can make mistakes in some situations because its
decision-making ability is predictive and probabilistic. As a result, there are no clear regulations or
guidelines in place to determine who is legally liable when AI malfunctions occur or causes issues
while providing a service. Another factor to take in consideration is that most of the places where the
potential of Alin healthcare has been evaluated are basically high-income and resource-driven areas.
When used in low-income countries with a shortage of well-trained physicians and oncological
specialists, Al-based prediction tools are expected to have a greater impact and increment the success
of cancer treatment.

The improvement in the Al interpretation is a crucial step toward mitigating this risk and
providing a decision-making rationale. One limitation is represented by the lack of a human
verification step in the process unless a physician supervises the Al system. As a result, no one expects
Al to entirely replace medical professionals. Al-based precision medicine will be critical for cancer
treatment in the future. Living databases will exploit extremely complex models capable of making
a personalized therapy selection, estimation of the drug dose, follow-up schedule, and so on.
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However, the transition from artificial narrow intelligence to artificial general intelligence will result
in the automation of all the steps involved in cancer prediction, diagnosis, and treatment.

Despite its numerous benefits, Al presents several challenges and constraints that hinder it from
fully functioning in cancer research. Particularly, three layers of complexity must be considered: (i)
cancer is a highly heterogeneous organoid-like structure that at the time of diagnosis is made up of
many different cancer subclones embedded in a stroma (the tumor microenvironment) that itself
contributes to cancer progression; (ii) as cancer progresses, tumor evolution leads to increased
intratumor heterogeneity so that by the time therapy is started the targeted cancer may not respond;
(iii) cancers with the same molecular and histological signatures behave differently in each single
patient because of individual epigenetic and immunological modulations [Garavaglia, Vallino et al.,
2023 Book chapter, in press; [95-97]. Thus, the final clinical outcome will depend on the complex
interplay between the cancer (with its multiple subclones) and the tumor microenvironment (which
includes the stroma composition and the inflammatory and immune response), and, finally, the
general pathophysiological condition of the patient (e.g., the body mass, the adipose tissue mass, the
nutrition status, the psychological status, the immune status, etc.). This poses an important limit to
the capability of Al in predicting the therapy efficacy and the prognosis, which once again stresses
the fundamental role of the clinician that cannot be substituted by an algorithm.

The new era of innovation brings with it many challenges that should be overcome to drastically
improve oncology procedures at several levels. The lack of inclusive and different datasets for
training represents a significant obstacle to the widespread adoption of Al algorithms and decision-
support systems in cancer care. Most of the powerful Al models require a large sample size to
efficiently train the tool. Although there are dimensionality-reduction and feature-selection methods
for addressing these aspects, proper implementation is critical for achieving better and reliable
results. In medical data sets, particularly in the case of cancer data, classes are typically distributed
unequally. Continuous use of Al- and ML-based tools for diagnosis and treatment decisions can be
risky due to distributional shifts, which means that target data may not match the ongoing patient
data employed to train the model, resulting in incorrect outputs. Changes in technology, healthcare,
and population, such as the gene pool, are likely to have an impact on the relationship between the
data items. The actual application of Al models in clinics is not being actively considered. The
predictions achieved with these models frequently require to be validated in the clinical practice to
assist medical experts in confirming diagnosis decisions. Significant issues regarding data availability
and interpretability caused by Al's "black box" process, in parallel with the emergence of an inherent
bias toward limited cohorts that reduces the reproducibility of Al models and perpetuates disparities
in the healthcare, collectively prevented widespread application of Al in clinics. Additionally, the
distribution of Al-based technologies in many developing countries may be hampered by a lack of
knowledge in computing algorithms and technologies of the physicians.

Taken together, the clinically relevant achievements discussed in the present review need to
become more solid for being translated into the right treatment for the right patient. Hence, the
rapidly ongoing evolution of Al-based medical data analysis will significantly improve the
treatments in cancer.
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Figure 3. Advantages and limitations of AI. The scheme summarizes the main benefits along with the
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current concerns related to the use of Al in the clinical practice.

9. Conclusions and perspectives

In this paper, we present an overview of the models applied in diagnosing and identifying
therapeutic targets, and we discussed the challenges and future perspectives of Al in cancer research.
As the power and potential of Al are increasingly demonstrated, in the coming future several other
biomedical fields may exploit the use of Al in their routine clinical practice. AI methodologies'
accuracy, and predictive power must be significantly improved, as well as demonstrated efficacy
comparable to, or better than, human experts in controlled studies [98]. Up to now, Al shows early
promising results in the management of several disease conditions, but more efforts in prospective
trials and in the education of physicians, technologists, and physicists are needed before it can be
widely used. Although there will always be a "black box" for human experts to view Al-generated
results, data visualization tools are becoming more widely available to provide some visual
understanding of how algorithms make decisions [99].
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