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Abstract: Fuzzy Rule Interpolation (FRI) offers an innovative methodology for inferring outcomes
from data points that match no established rules in a sparse fuzzy rule base. Generally, a traditional
fuzzy rule-based system suffers from the inability to perform inference while facing an unmatched
observation, given a sparse fuzzy rule base that is derived from insufficient data or inadequate human
experience and that fails to cover parts of a specific problem domain. Fortunately, starting with a
sparse rule base, Fuzzy Rule Interpolation (FRI) can help to formulate interpolated rules specifically
in instances where observations fail to activate any existing rule. An interpolated rule gives a result
called consequent, which is related to the unmatched observation so that the inference system will
not fail to generate an outcome corresponding to the observation as the output. Conventionally,
these interpolated rules will be discarded after obtaining outcomes. However, valuable information
may be potentially embedded within those discarded rules addressing the limitation regarding the
coverage of the original sparse knowledge space. Moreover, without exploiting the potential value of
the interpolated rules, the fuzzy inference system based on a sparse rule base will never improve its
efficiency and robustness in the long run. Therefore, this underscores the necessity for Dynamic Fuzzy
Rule Interpolation (D-FRI), which aims to collate interpolated rules that cover particular knowledge
spaces absent in the sparse rule base. Intuitively, those frequently appeared interpolated rules are
considered valuable because future observations are more likely to hit the respective problem areas.
Promoting selected interpolated rules to the sparse rule base can enhance the overall coverage of the
knowledge space and increase the inference efficiency over time. This paper introduces a framework
for Dynamic Fuzzy Rule Interpolation that integrates the widely used Transformation-based Fuzzy
Rule Interpolation (T-FRI) with an effective form of clustering of interpolated results. Experimental
findings validate the effectiveness of this approach.

Keywords: Dynamic Rule Interpolation; Fuzzy Rule Interpolation; Density-Based Rule Promotion

1. Introduction

In a traditional fuzzy inference system with a sparse rule base, the absence of a corresponding
rule for an observation results in the failure to generate any inferred outcome. Here, a sparse rule base
means that the inference system lacks certain knowledge coverage of a problem domain. Furthermore,
when applied to real-world problems, a static rule base may also lose its relevance and effectiveness
due to the nature of the dynamics of the underlying changing world. Fuzzy rule interpolation (FRI)
approaches introduce a novel way to enhance the reasoning potential [1-5], when the rule base is
incomplete and especially when it can dynamically update itself.

In general, there exist two categories of Fuzzy Rule Interpolation (FRI) methodologies. The first
approach is centred on the utilisation of a-cuts, whereby the a-cut of an interpolated consequent
is calculated from the a-cuts of its antecedents, as outlined by the Resolution Principle [6-8]. The
second methodology employs the concept of similarity of fuzzy value and analogical reasoning [9-16].
Specifically, within this latter category, an FRI algorithm generates intermediate fuzzy rules based
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on the principle of similarity. Among such methods, Transformation-Based Fuzzy Rule Interpolation
(T-FRI) is the most popular [11,12]. T-FRI can manage multiple fuzzy rules in both rule interpolation
and extrapolation while guaranteeing the uniqueness, convexity, and normality of the interpolated
fuzzy sets. Furthermore, it accommodates multiple antecedent variables and varying shapes of
membership functions. Consequently, this paper takes classical T-FRI techniques to generate
interpolated rules, forming the foundation for a novel dynamic FRI methodology.

In the seminal T-FRI method, intermediate rules artificially generated through Fuzzy Rule
Interpolation (FRI) are discarded once an interpolated outcome is derived. Nonetheless, these
interpolated rules may embed information that holds the potential to extend the coverage of a sparse
rule base. Therefore, developing a methodology for collecting the interpolated rules generated during
the FRI procedure is imperative for formulating a dynamic fuzzy rule interpolation mechanism.

In dynamic fuzzy reasoning, adaptive rule-based methodologies have gained popularity for
traditional fuzzy systems that employ a dense rule base. These systems often apply various
optimisation techniques to improve inference accuracy by cultivating a dynamic and dense rule
base [17-21]. However, these adaptive strategies, built upon a dense rule base, can hardly apply to
sparse rule-based fuzzy systems where the rules are inadequate for comprehensive coverage of the
problem domain. Approaches designed for sparse rule-based dynamic fuzzy rule interpolation are
unfortunately rather limited. One such approach is fundamentally framed within a predefined quantity
space of domain variables, called hyper-cubes [22]. This technique employs K-means clustering and
genetic algorithms (GA) to sort through hyper-cubes of interpolated rules. Subsequently, it generates a
new rule from the selected hyper-cube via a weighting process. Whilst simple in conception, it forms
the foundation of Dynamic Fuzzy Rule Interpolation (D-FRI) strategies and is fundamental for future
methodologies that seek to manipulate pools of interpolated rules.

Learning from interpolated rules involving multiple antecedent variables can be interpreted
as a complex task of optimisation or clustering. Techniques like Genetic Algorithms (GA) and
Particle Swarm Optimisation (PSO) are prominent in the domain of systems learning and optimisation.
Meanwhile, clustering methodologies such as K-Means, Mean-Shift, Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [23] and Ordering Points To Identify the Clustering Structure
(OPTICS) [24] exist. Based on recent findings from applying Harmony Search as an optimisation
method and DBSCAN as a clustering method [25,26], the density-based rule promotion approach is
proven effective. Notably, OPTICS is an improved version of DBSCAN as a density-based clustering
algorithm. Unlike K-Means, where every data point is ultimately categorised into a cluster, OPTICS
has the capability to filter out noise data, effectively excluding noise from the constructed clusters.
When employed to select rules from a pool of interpolated rules, OPTICS can help to mitigate the
influence of outliers and assemble clusters largely populated by commonly encountered observations.
Consequently, the interpolated results within these clusters are more generalised and more reliable for
referencing in a dynamic system. Inspired by this observation, the present work applies OPTICS to
implement a novel approach to D-FRI.

This paper is structured as follows. Section 2 introduces the core computational mechanism of
T-FRI and that of OPTICS. Section 3 illustrates the proposed OPTICS-assisted density-based dynamic
fuzzy rule interpolation framework. Section 4 provides experimental results over different data sets.
Section 4.3 presents a discussion regarding the experimental results. Finally, Section 5 concludes the
paper and outlines the potential improvements that would be interesting to be made in future.

2. Foundational Work

This section provides an overview of the fundamental principles and procedural steps of T-FRI
and OPTICS. Within the context of this paper, as with many recent techniques developed in the
literature, triangular membership functions are employed to represent fuzzy sets, both for popularity
and for simplicity.
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2.1. Transformation-Based Fuzzy Rule Interpolation (T-FRI)

Without losing generality, the structure of a sparse rule base can be denoted as R, which includes
R; € R fuzzy rules [11,12]. The specific rule format is delineated as follows:

Ri :IF xq is Ai,l AND ... AND XN is Ai,N THEN Yy is Bl',

where i spans the set {1,...,|R|}, with the term |R| signifying the total count of rules present in
the rule base. In the given domain, each x; with j € {1,..., N} represents an antecedent variable,
with N indicating the overall number of these variables. The notation A;; indicates the linguistic
value attributed to the variable x; within the rule R;, and it can be represented as the triangular
fuzzy set (‘10,]‘/ ay,j, ‘12,]‘)- Here, ag; and a, ; define the left and right boundaries of the support (where
the membership values become zero), and 47 ; denotes the peak of the triangular fuzzy set (with a
membership value of one).

Considering an instance O, it is typically denoted by the sequence Apy,...,Ap,; with j €
{1,...,N}. In this sequence, Ap; = (a9,a1,42) represents a specific triangular fuzzy value of the
variable x;. For any triangular fuzzy set A, defined as (ap, a1, ap), its representative value, termed as
rep(A), can be described as the average of its three defining points, which is given by:

rep(A) = (ag + a1 +az)/3 1)

Building upon the foundational concepts outlined above, T-FRI employs the following key procedures
when an observation fails to match any rules within the sparse rule base.

Closest Rules Determination. Euclidean distance metric is applied while measuring distances
between a rule and an observation (or between two rules). The algorithm selects the rules closest to the
unmatched observation to initiate the interpolation procedure. The distance between a rule R; and the
observation O is computed by aggregating the component distances between them, as shown below:

dy =~ 01 @)

where d(4;, Ap,j) = |rep(A;) — rep(Ap,j)| defines the distance between the representative values in
the domain of the j antecedent variable. Additionally, the term ran gex; is calculated as the difference
between the maximum and minimum values of the variable x; within its domain.

Intermediate Rule Construction. The normalised displacement factor, symbolised as w; ;,
represents the significance or weight of the j* antecedent in the i*" rule:

Wij = —r T 3)

where M (with M > 2) indicates the count of rules selected based on their minimum distance values
related to observation O. The weight w j is given by:

1
w!

e — 4
Z 1+ d(AO,]', Ai,j) @)

Intermediate fuzzy terms, denoted as A}L’L, are calculated utilising the antecedents from the nearest
M rules:

M
Alt =3 wijAi ®)
i=1
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These intermediate fuzzy terms are subsequently adjusted to A}L in order to ensure their
representative values aligning with those of Ag ;:

A}r = A]JTJr + (Sjrungexj 6)
where §; quantifies the offset between Ap ; and A;f in the domain of the j** variable:

5 rep(Ao,j) — rep(Af) -

rangey;

From this, the intermediate consequent, symbolised as B?, is derived similarly to Equation (6).
The aggregated weights wpg, and shift Jp are calculated from the respective values of A¥, such that

1Y 1Y
N 2wi,j/ 08 = Z 9; ®)
j=1 j=1
Scale Transformation. Let A 5] be represented by the fuzzy set (alf,al’,al"), resulting from a

scale transformation applied to the j* intermediate antecedent value AJr (af,al,a}). Given a scaling

ratio s;, the components of Ag; are defined as:

i ap(1+2s) +al(1—s)) +ai(1—s))

= 9
at . ©)
w ap(1—sj) +a](142s)) +aj(1—s))
ot = y (10)
A ag(l—s]-)+a{(l—sj)+a;(1+2sj) 1

This means that the scale rate s; is determined by

Tt _ 1t
ay' —a
= E 02)
iy —
For the corresponding consequent, the scaling factor sp is then computed using:
YN s
j=1
Sp = ———— 13
B N (13)

Move Transformation. Agj, after performing a scale transformation, is then shifted based on a
move rate ;. This adjustment ensures that the final scaled and shifted fuzzy set retains the geometric
properties of the observed value Ao ;. In implementation, mathematically, this implies that the move
rate m; is determined such that

3(ag _”0+)

Mj = it (14)
4y @

where 4y is the lower limit of the support of Ag; = (4o, a1,42). From this, the move factor mp for the
consequent can then be derived as below:

N
21:1 mj
N

Interpolated Consequent Calculation. In adherence to the analogical reasoning principle, the
determined parameters sp (from the scaling transformation) and mp (from the move transformation)

mp = (15)
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are collectively utilised to calculate the consequent of the intermediary rule B. As a result, the
interpolated outcome Bg is generated in reaction to the unmatched observation in question. This
methodology ensures that the computed output by the FRI algorithm, while derived from intermediate
rules, closely reflects the characteristics of the given observation, thus maintaining the intuition behind
the entire inference process.

2.2. OPTICS Clustering

OPTICS, a data density-based clustering algorithm [24], builds upon the foundation of
DBSCAN [23], aiming to identify clusters of varying densities. Notable advantages of OPTICS over
K-means and DBSCAN include its adeptness at detecting clusters of various densities, its independence
from pre-specifying the number of clusters (a requirement in K-means), its ability to identify clusters
of non-spherical shapes (unlike the sphere-bound K-means), and its proficiency in distinguishing
between noise and clustered data. This last trait is shared with DBSCAN but contrasts with K-means,
which assumes every data point belongs to one and only one cluster.

In addition, OPTICS provides a hierarchical cluster structure, allowing for nested clusters, a
feature missing in both K-means and DBSCAN, which is measured by the parameter ¢, the minimum
steepness on the reachability plot that forms a cluster boundary. However, OPTICS can be sensitive
to its parameter settings, particularly the minimum number of points needed to define a cluster.
Its computational complexity may also be more demanding because, unlike DBSCAN, where the
maximum radius of the neighbourhood ¢ is fixed; in OPTICS, ¢ is devised to identify clusters across
all scales, especially with large datasets. Nonetheless, in practice, for most datasets and specifically
with an appropriate indexing mechanism, OPTICS runs efficiently: often close to O(nlogn). Yet,
it should be noted that degenerate cases can push the complexity closer to O(n?). For completion,
Table 1 presents the basic concepts and parameters concerning OPTICS and Figure 1 provides a simple
illustration of its working.

Table 1. Concepts and parameters of OPTICS clustering algorithm.

Concept Definition
¢ Parameter used to specify the steepness that defines a cluster in reachability plot, with clusters determined as
regions in reachability plot that exhibit a steep decrease, followed by a gentler increase in reachability distance.
Mi Minimum number of points needed to form a dense region, signifying that at least MinPts points are contained
inPts P . . . f
within its e-neighbourhood for it to be considered a core point.
Reachability Distance ~ Smallest distance to reach a point while considering density (number of points) in the neighbourhood.
Core Distance Smallest radius required for a point to cover MinPts points in its neighbourhood.
Ordering Sequence in which points are processed, resulting in cluster ordering rather than explicit cluster assignments.

q: reachability distance "
for cases outside core
distance 5
/ €'+ core distance
A E’ for minPts =4

®
aR

€
p: reachability distance )
for cases inside core
distance

\ € : maximum search
distance

Figure 1. Illustration for OPTICS.

More formally, Algorithm 1 outlines the process of OPTICS. In addition, Figure 2 shows the impact
of different parameters set upon the results of OPTICS clustering (as compared to the employment
of DBSCAN) with respect to the classical Iris dataset [27]. NOte that both algorithms share the same
MinSample in defining the minimum size of a cluster, while DBSCAN purely depends on fixed epsilon
value and OPTICS uses ¢ to define reachability without a fixed epsilon value. It can be seen from
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the illustrations given in this figure that under different settings, results from the OPTICS clustering
algorithm (regarding variation of ¢) exhibit more effective clusters (in smaller groups and located in
more dense areas). This forms sharp contrast with the outcomes of applying DBSCAN where clusters

give relatively larger clusters across varying densities, and it may even generate no clusters when
encountering a greater MinSample value. The above empirical findings indicate that OPTICS offers
better robustness while determining groups within a dense area of data points. In particular, this differs
from the existing GA-based approach [22] that utilises pre-defined hypercubes to depict the knowledge
space. Applying a clustering algorithm avoids strict boundaries like the hypercubes. Furthermore, the
reachability feature in OPTICS introduces a new level of robustness on top of DBSCAN, which can
determine tighter clusters, facilitating the approach proposed herein to investigate the generalisation

of the interpolated rules with more informative content.

Algorithm 1 OPTICS Clustering Algorithm

%?)rctédure OPTICS (Dataset D, MinPts, ¢, maxSamples):

Step 1. Initialise all points in D as unprocessed; set OrderedList = @
and SeedList as an empty priority queue.
Step 2. For each point in D, if point is unprocessed:
Obtain neighbours with RegionQuery and process point.
If point is a core point:
Add its unprocessed neighbours to SeedList with their respective
reachability distances.
Step 3. While SeedList is not empty:
Pop point p with smallest reachability distance from SeedList.
Mark p as processed and add to OrderedList.
If p is a core point:
For each unprocessed neighbour 7 of p:

Update reachability distance of n and add/update its position in SeedList.

Step 4. Return OrderedList.
End.
Function RegionQuery/(point, {, maxSamples):
Return all points within reachability distance considering ¢ and restricted
by maxSamples.
End.
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Figure 2. Different OPTICS clustering settings on Iris dataset.

3. Density Based Dynamic Fuzzy Rule Interpolation

This section describes the proposed method employing OPTICS to construct a dynamic fuzzy
rule interpolation, hereafter abbreviated to OPTICS-D-FRI.
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3.1. Structure of Proposed Approach

To provide an overview, Figure 3 illustrates the structure of OPTICS-D-FRI. Throughout the
subsequent procedure, steps are enumerated with a notation ’(k)’, representing the sequence of
operations as depicted in Figure 3.

Initiated with a sparse rule base, denoted as R, and one of unseen observations (which has not
been utilised to derive any outcome), the first step of the inference process tests whether any rule exists
within R that can match the observation; if so, the respective rule is triggered to produce the outcome.
In scenarios where the observation does not match any rule (2), the T-FRI (3) is employed to begin the
rule interpolation process. The outcome, R}, is accumulated into a pool of interpolated rules. After
accumulating a complete batch of observations in the interpolated pool (6), the OPTICS algorithm
clusters these observation points (4). Then, the interpolated rules are categorised in alignment with
the clustering outcomes of the observations (5-6). After that, the recurrence frequency of interpolated
rules within each cluster is calculated. Those rules RIS Am1, Amp, - -, Ay N, Bz (with m denoting
the number of attributes in the rule antecedent space and z representing the fuzzy consequent) of a
frequency Freqgs surpassing the mode frequency mode(Freqc,) within the cluster C;, are selected to
progress onto the subsequent phase (7).

Regarding every potential outcome B; (8), the next stage computes a linguistic attribute frequency
weight, as outlined in [26], represented by (Ws%arse = [W%O, W}ﬂ, e, WA}]N]), where (W}XN =
[ano, aN1, - - -, aNm]) and any, signifies the frequency weight of an attribute within the antecedent Ay
corresponding to B;. The procedure following this calculates a score, Scoreg = [Sp1, Spo, - . ., Spz), for
each consequent B, regarding the antecedent linguistic attributes of the rules RIS A1 Amps o AN
(9). If the resultant score, Sg,, for B; from the rule Rls tAma, Amp, - -, Ay N, By is the highest, the rule
is selected (10) and promoted into the original sparse rule base, leading to an enriched or promoted rule
base P =R U {RZS } (10). Conversely, if score Sp, does not stand out within Scoreg, the consequent B,
will be substituted by B; = Bygax(scorey), and then the entire process iterates.

1 | Observations

Frequeﬁcy

i

~ Sparse Rule Base Weright
D 4 ¥
Rule Promotion | < Match Ruie?>"2>  T.FRI OPTICS
g Yes ¥ 6 V5
Outcome | Interpl;c;ct)cl-:-ngules: | n
(7 No__‘

Score calculation ' Yes
— =—<Freg>mode? >
and comparation

-

Figure 3. Proposed OPTICS-D-FRI framework.
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Note that the computational complexity of OPTICS and that of T-FRI [12] are Opprics (n?) and
Or_rri(n?) respectively. Therefore, the overall computational complexity of the proposed approach is
Ooprics—p—rri = Ooprics(n?) + Or—pri(n?). This means that Ooprics—p—rri = O(n?).

3.2. Membership Frequency Weight Calculation and Interpolated Rule Promotion

Apart from the generic structure proposed for OPTICS-D-FRI, a key contribution of this work is
providing a means for computing the membership frequency weights that are exploited to decide on
whether an interpolated rule should be promoted to becoming a generalised rule to enrich the existing
sparse rule base. Algorithm 2 summarises the underlying procedure for such computation.

Algorithm 2 Frequency Weight Application

rtlijlolg’t Sparse Rule Base R®,
R;:TF x1is A;; AND ... AND xy is A; y THEN y is B;,

where i spans the set {1,...,|R5|} with | R®| denoting the total count of rules present in the sparse rule base, N indicates the
overall number of these variables, and the notation Ai,j indicates the linguistic value attributed to the variable Xj within the
rule R; (herein represented as a triangular fuzzy set (ag, a1, a2,))-
Output: Frequency Weights Table and Frequency Score

Step 1. For each rule R; in RS:

Extract representative values Rep(A;;) = (ag,a1,,a2;)/3 from each antecedent and Rep(B) € {0,1,---,C} from

consequent (where C is the total number of decision categories, e.g., number of possible classes for classification problems).

Step 2. Identify all g different rules per decision category Rep(B) € {0,1,---,C} and calculate the frequency by 1/n
from each antecedent domain, where 7 stands for number of unique Rep(4;;) within g different rules of each class, with
ie€{l,...,q} ineachdomainje {1,...,N}.

Step 3. Update frequency weights table of each antecedent domain regarding each possible class Rep(B) € {0,1,---,C}.

Step 4. Compute Rep(Ay;) on each interpolated rule and match against frequency weights Wy = (wy, wp, . .., w;) within
frequency weights table for each Rep(B) € {0,1,---,C}.

Step 5. Sum frequency weights Sg,,z) = w1 + w2 + - - - + w; for each Rep(B) € {0,1,---,C}, resulting in Scoreg =
[SRep B)=0~ SRE (B)=1r+""-7+ SRep B)=C}

étep 6. Take Max(ScoreBS = Max[Sgep(B)=0s Srep(B)=1/ - - - » Skep(B)—c), and replace interpolated consequent with outcome
of Max(Scoreg).
End.

To aid in understanding, a demonstration of how to compute frequency weights is provided here,
based on a sparse rule base as indicated in Table 2. For simplicity, suppose that all fuzzy terms are
represented by their respective representative values. This table shows that one of three membership
functions (say, My, M; and M) may be taken by each of the three antecedent variables at a time, and
that there are three potential consequent values too. For classification tasks, the consequent values
may be crisp, denoting three different classes (say, classes 0, 1 and 2). Thus, the first row of this
table represents a fuzzy rule, stating that "If x; is A; and x; is Ay and x3 is Az then y is 0" where
fuzzy sets A1, Az, Az and B, are defined with certain membership functions M;, My and M; (whose
representative values are 1, 0 and 1), respectively. The use of representative values herein helps simplify
the explanation of the relevant calculations.

For example, consider the two rules that each conclude with class 0 (i.e., the first and last one,
where Rep(B = 0)). Both rules are associated with the second membership function (Rep(A4;1) = 1).
However, regarding the first antecedent variable there is just one unique fuzzy set for it to take, so
1/1 = 1 for this variable. Regarding the second antecedent variable, it involves two different fuzzy sets
(Mp and M;) as depicted by Rep(A1) and Rep(A;), which gives 1/2 = 0.5 for each unique variable.
Generalising the intuition underlying this example, the frequency weights can be determined following
the procedure in Algorithm 2.

The results are displayed in Table 3, again denoted using their representative values for fuzzy
terms.
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Table 2. Example Sparse Rule Base Represented with Representative Values.

Rep(A1) Rep(Az) Rep(As) Rep(B)

(
1 0 1
2 1 1
0 2 0
2 0 1
1 1 1

OIN|— N O

Table 3. Frequency Weights of Sparse Rule Base.

Rep(A1) Rep(Az) Rep(As)
REp(B) MO M1 Mz Mo M1 M2 MO M1 Mz
0 0 1 0 05 | 05 0 0 1 0
1 1 0 0 0 0 1 1 0 0
2 0 0 1 05 | 05 0 0 1 0

From the above, again for illustration, suppose that after step (7), the interpolated rule taken
from the pool for checking is R?: [Rep(A1) = 1, Rep(Az) = 2, Rep(A3) = 1, Rep(B) = 0] (whose
interpretation in terms of a conventional product rule for classification is obvious). Matching it
against the frequency weights computed from the existing sparse rule base leads to the following: The
Scorep = [Sgep(B)=0 : 1 +0+1=2,5pep()=1 : 0+1+0=1,Sp,pp)—2 : 0+ 0+1=1]. In this case,
Rep(B) = 0 is associated with the highest score, while the selected rule is concerned with the same
outcome. Therefore, this selected interpolated rule is promoted, becoming a new rule in the sparse
rule base.

4. Experimental Investigations

This section explains the experimental setup and discusses the results of applying the proposed
OPTICS-D-FRI.

4.1. Datasets and Experimental Setup

As an initial attempt towards the development of a comprehensive dynamic fuzzy rule
interpolative reasoning tool, five classical datasets, namely Iris, Yeast, Banana, Glass and Tae, are herein
employed to validate the performance of the methodology presented. Note that given the restriction
on the size of the Iris dataset, which contains just 150 observations, it is necessary to incorporate data
simulation techniques to ensure a more robust assessment of the proposed approach. For this purpose,
the Iris dataset has been artificially expanded using the "faux’ package [28] in the R environment.
Detailed description of all five datasets is presented in Table 4.

Table 4. Description of Datasets.

Iris Yeast Banana Glass Tae

(Expanded)
Features 4 9 2 9 6
Classes 3 10 2 7 3
Sample Size 1500 1484 5300 214 151

For each application problem (i.e., dataset) the dataset is partitioned into three distinct categories.
This partition is randomly carried out other than the sizes of the partitioned sub-datasets being
pre-specified: One of which comprises 50% of the total data is used to form a dense rule base for each
problem, denoted as D. The resulting rule base covers the majority of the problem domain and is
intended to be the gold-standard for subsequent comparative studies when a sparse rule base is used.
Adopting a conventional data-fitting algorithm as delineated in [29] facilitates the rule generation
process. More advanced rule induction techniques (e.g., the method of [30]) may be utilised as the
alternative if preferred, for enhanced outcomes. After the formation of a dense rule base D, a strategic
rule reduction by randomly dropping 30% of the rules from the dense rule base is done to create a
sparse rule base, with the remaining 70% being regarded as the sparse rule base R.
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The other two sub-datasets, each containing 25% of the original data, are used separately for
dynamic fuzzy rule interpolation (when no rules match a novel observation) and final testing. In
particular, the sub-dataset for final testing is adopted to evaluate the performance of the interpolated
and subsequently promoted rule base, P. Additionally, by calculating the membership frequency
weight of the promoted rule base P (which adds the promoted rule into the original sparse rule base
and recalculates the frequency weights of the entire promoted rule base). As a result, the dynamically
promoted rule base with weights Pp, denoted by OPTICS-D-FRI(DW), is also evaluated using this
third sub-dataset.

A 10x10 cross-validation is implemented on the test datasets to evaluate the proposed
OPTICS-D-FRI algorithm. For easy comparison, metrics such as average accuracy and associated
standard deviation regarding the employment of conventional rule-firing with just the sparse rule
base (SRB), T-FRI, OPTICS-D-FRI, and the dynamically weighted OPTICS-D-FRI are presented. Within
these tables, the better performances are shown in bold font.

4.2. Experimental Results

The results of performance evaluation are presented in the following five tables, with each
corresponding to a given dataset. According to these results, the proposed OPTICS-D-FRI methodology
proficiently clusters rules for unmatched observations. The introduction of the frequency weight
method enables a dynamic equilibrium between T-FRI interpolated rules and those from the original
sparse rule base, demonstrating a capability to simulate human reasoning. The inference outcomes
from using the present approach improve significantly over those attainable by running conventional
FRI methods given just a sparse rule base. The performance is strengthened by utilising the frequency
weights derived from the sparse rule base. The promoted rules exhibit an accuracy that is at least equal
to, and often higher than, the interpolated rules.

Table 5. 10 x 10 cross-validation on Expanded Iris dataset, with four membership functions defined for
each antecedent variable.

OPTICS: OPTICS: OPTICS:
xi=0.08 xi=0.05 xi=0.05
MinSample=5 | MinSample=5 | MinSample=10
Expanded Iris
(AccuracytStandard Deviation)

SRB 0.474-+0.147 0.5240.084 0.556+0.125
T-FRI 0.809+£0.099 0.788+0.108 0.747+0.142
OPTICS-D-FRI 0.825-+0.072 0.813-+0.082 0.789+0.097
OPTICS-D-FRI{DW) 0.818+0.072 0.811+0.069 0.787+0.096

Rule Base Coverage (Avg.)

SRB

OPTICS-D-FRI

0.54
0.88

0.58
0.93

0.63
0.86

Table 6. 10x 10 cross-validation on Yeast dataset, with four membership functions defined for each

antecedent variable.

OPTICS: OPTICS: OPTICS:
xi=0.08 xi=0.05 xi=0.08
MinSample=5 | MinSample=5 | MinSample=10

Yeast

(Accuracy+Standard Deviation)

SRB 0.23840.039 0.24940.045 0.2340.054

T-FRI 0.28140.073 0.2994-0.061 0.308+0.034
OPTICS-D-FRI 0.2984-0.064 0.3144-0.052 0.331:0.043
OPTICS-D-FRI(DW) 0.29510.062 0.3124-0.049 0.325+0.04

Rule Base Coverage (Avg.)

SRB

OPTICS-D-FRI

0.56
0.82

0.57
0.81

0.52
0.75
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Table 7. 10x 10 cross-validation on Banana dataset, with four membership functions defined for each

antecedent variable.

OPTICS: OPTICS: OPTICS:
xi=0.05 xi=0.05 xi=0.1
MinSample=10 | MinSample=20 | MinSample=10
Banana

(Accuracy+tStandard Deviation)

SRB

T-FRI

OPTICS-D-FRI

OPTICS-D-FRI{DW)

SRB

OPTICS-D-FRI

0.3544-0.096 0.3640.123 0.3351+0.113
0.466+0.099 0.545+0.083 0.454+0.07
0.5151+-0.062 0.5651-0.054 0.5061-0.047
0.5114+-0.0614 0.5641-0.053 0.5114-0.047
Rule Base Coverage (Avg.)
0.57 0.56 0.54
099 0.98 098

Table 8. 10x10 cross-validation on Glass dataset, with four membership functions defined for each

antecedent variable.

OPTICS: OPTICS: OPTICS:
xi=0.3 xi=0.3 xi=0.1
MinSample=2 | MinSample=3 | MinSample=2
Glass
(Accuracy+Standard Deviation)

SRB 0.207+£0.064 0.209+0.05 0.17940.063

T-FRI 0.369+0.063 0.323+0.06 0.414+0.04
OPTICS-D-FRI 0.3851-0.066 0.353+0.057 0.414-+0.039
OPTICS-D-FRI(DW) 0.38240.065 0.349+0.053 0.411+0.038

Rule Base Coverage (Avg.)

SRB

036

OPTICS-D-FRI

0.53

0.38
0.46

0.32
0.57

Table 9. 10x10 cross-validation on Tae dataset, with four membership functions defined for each

antecedent variable.

4.3. Discussion

QOPTICS: OPTICS: OPTICS:
xi=0.05 xi=0.05 xi=0.02
MinSample=2 | MinSample=4 | MinSample=2
Tae
(AccuracytStandard Deviation)
SRB 0.2£0.046 0.202+0.024 0.18940.051
T-FRI 0.328+0.053 0.341+0.087 0.32740.055
OPTICS-D-FRI 0.336+0.045 0.361+0.082 0.343+0.053
OPTICS-D-FRI(DW) 0.33840.045 0.363+0.08 0.34740.049
Rule Base Coverage (Avg.)
SRB 0.33 0.38 0.37
OPTICS-D-FRI 0.48 0.51 0.52

In implementing both OPTICS and T-FRI, the Euclidean distance metric is uniformly employed for
distance measurement. Within the OPTICS algorithm, the parameter denoted as MinSample dictates
the general size of the resulting clusters, essentially controlling the number of samples assigned
to a specific cluster. Prior to parameter configuration, conducting an exploratory analysis of the
problem domain (or dataset) is required. As an illustration, the Iris dataset has four features with
distinctive clustering boundaries spanning four distinct classes. Conversely, the Yeast dataset is
distributed across nine features, pairing with ten classes. Exploring the dataset and investigating the
clustering performance is therefore necessary instead of randomly setting up OPTICS parameters;

domain-specific insights can facilitate optimal cluster formation.

In empirical studies, it is observed that the MinSample parameter controls the size of the clusters.
Consequently, in the present preliminary experimental investigations, the other parameter, MinPts
(the minimum number of samples to form a cluster), is fixed at two. Furthermore, the number of
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membership functions is equally assigned onto the span of antecedent space without any designated
design, which may lead to the overall low accuracy on these datasets. This does not adversely affect
this study since it is the relative performance that is considered amongst different approaches. An
optimised domain partition can be expected to produce better outcomes. From the results obtained,
the promoted rules not only enlarge the coverage of the original sparse rule base but also enable the
inference system to attain better accuracy in comparison to the use of traditional T-FRI.

Upon closer examination of the experimental results, it can be observed that certain promoted
rules align with some of those rules (intentionally removed for testing purposes) from the original
dense rule base. This observation underscores the effectiveness of the proposed approach. This
suggests that promoted rules can help improve the efficiency of the over inference system, particularly
when observations close to previously unmatched data are introduced. It allows the execution of
reasoning under such conditions with simple pattern-matching, subsequently reducing the need
of FRI processes and hence, saving computational efforts while strengthening reasoning accuracy.
Furthermore, merging a dynamic attribute weighting mechanism with the traditional T-FRI method,
which accounts for the newly promoted rules in frequency weight calculation, offers considerable
promise in enhancing the performance of a fuzzy rule-based system.

5. Conclusion

This paper has proposed an initial approach for creating a dynamic FRI framework by integrating
the OPTICS clustering algorithm with the conventional T-FRI. It works by extracting information
embedded within interpolated rules in relation to new and unmatched observations. It also introduces
a novel way of determining populated regions, by clustering the new observations and annotating
the group of interpolated rules, thereby eliminating the need for predefined hyper-cubes. Notably,
the proposed OPTICS-D-FRI demonstrates enhanced performance over traditional FRI in inference
accuracy.

Being an initial attempt to combine OPTICS and T-FRI for a dynamic FRI framework, this study
also identifies several critical aspects for further refinement. For example, the current method requires
specific predefined parameters, including MinSample and ¢ for OPTICS. Investigating a mechanism
to automatically evaluate observations and determine such parameters remains as further research.
Also, the foundational framework combining OPTICS is not strictly bound to the T-FRI method used
in this study. Thus, a possible future direction is to examine the integration of alternative FRI methods
and to evaluate their performance.

Recent advancements in the FRI literature highlight the efficacy of approximate reasoning that
utilise attribute-weighted rules or rule base stricture [31], with an emphasis on employing attribute
ranking mechanisms, as proposed in [32,33]. A density-based approach for fuzzy rule interpolation
has also been proposed recently [34]. Frequency weighting benefits both attribute ranking and
FRI, especially when integrating higher-order FRI [35] with rule induction and feature selection
strategies [36], to address more complex application scenarios. Another exciting exploration involves
assessing dynamically weighted attribute frequency calculations, particularly with the inclusion of
newly promoted rules. Lastly, while the present validation is based on five classical datasets, broader
empirical investigations involving more complex datasets, such as mammographic risk analysis [37,38],
are necessary to reveal the potential and limitations of the proposed framework fully.
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