

Concept Paper

Not peer-reviewed version

Supercomputers at the Forefront: From Crisis to Preparedness in Pandemic Response

Mujahed Mustafa * and Abdelrafie Makhawi

Posted Date: 19 October 2023

doi: 10.20944/preprints202310.1222.v1

Keywords: Supercomputers; Pandemic; Drug Discovery; Public Health Preparedness

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Concept Paper

Supercomputers at the Forefront: From Crisis to Preparedness in Pandemic Response

Mujahed I. Mustafa * and Abdelrafie M. Makhawi

Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan

* Correspondence: Corresponding author: E-mail: mujahedimustafa@gmail.com

Abstract: The COVID-19 pandemic has unveiled the critical role that supercomputers play in addressing global health crises. This perspective article explores the transformative impact of supercomputing in pandemic response, highlighting how these powerful machines have transitioned from crisis management tools to essential components of preparedness strategies. In this article, we examine the key contributions of supercomputers in combating the pandemic, including their ability to accelerate scientific research, facilitate data analysis, model complex scenarios, and optimize resource allocation. Furthermore, we delve into the role of supercomputing in strengthening public health infrastructure and preparedness. We analyze the lessons learned from the pandemic and emphasize the need for proactive investment in supercomputing capabilities, data infrastructure, and computational expertise as a crucial element of pandemic preparedness efforts. By harnessing the potential of supercomputers, countries can establish robust computational frameworks that enable real-time monitoring, early detection, and effective response to future outbreaks. Moreover, we address the challenges faced by supercomputing initiatives, including the need for enhanced international collaboration, equitable access to computing resources, and the ethical considerations associated with data privacy and security. We discuss potential strategies to overcome these challenges and foster a global network of interconnected supercomputing centers dedicated to pandemic preparedness and response. Finally, we highlight ongoing research and development efforts aimed at advancing supercomputing technologies, such as exascale computing and quantum computing, and their potential to revolutionize pandemic response. We emphasize the importance of sustained investment in research and development to ensure that supercomputing remains at the forefront of future pandemic preparedness strategies.

Keywords: supercomputers; pandemic; drug discovery; public health preparedness

1. Introduction:

Pathogens have been evolving for millions of years. They have developed various mechanisms to survive and thrive in their hosts, including humans [1]. Over time, pathogens have become more adept at evading our immune system and developing resistance to antibiotics and antiviral drugs. This continuous evolution poses a significant challenge to human health [2].

To combat these increasingly intelligent pathogens, it is crucial that we adopt smarter strategies rather than relying solely on traditional approaches. One promising avenue is the utilization of supercomputers in the field of pathogen research [3].

Supercomputers are high-performance computing systems capable of processing vast amounts of data at incredible speeds. They possess immense computational power and can perform complex calculations and simulations that would be impossible for traditional computers or human researchers alone [4].

By harnessing the power of supercomputers, scientists can analyze large datasets containing genomic information about pathogens. This allows them to identify patterns and gain insights into how these organisms evolve and adapt over time. Understanding the genetic makeup of pathogens helps researchers predict their behavior, including how they might mutate or develop drug resistance [5].

Supercomputers also enable scientists to simulate the interactions between pathogens and potential drugs or vaccines. These simulations can help identify effective treatments by predicting

how a pathogen will respond to different interventions. By testing thousands or even millions of scenarios *in silico*, researchers can rapidly narrow down the most promising candidates for further investigation [6].

Furthermore, supercomputers aid in studying the complex dynamics of infectious diseases at a population level. Epidemiological models can be developed using vast amounts of data on disease transmission rates, population demographics, travel patterns, and environmental factors. These models allow scientists to predict how diseases might spread under different scenarios and evaluate the effectiveness of various control measures [7].

In addition to research applications, supercomputers also play a vital role in clinical settings. For instance, they facilitate rapid analysis of patient data such as genomic sequences or medical imaging results. This allows for personalized treatment plans tailored to individual patients, taking into account their specific pathogen characteristics and potential drug interactions [8].

However, it is important to note that supercomputers alone cannot solve all the challenges posed by evolving pathogens. They are just one tool in the arsenal of modern medicine. Collaboration between computational scientists, biologists, clinicians, and epidemiologists is crucial to effectively utilize supercomputers in pathogen research.

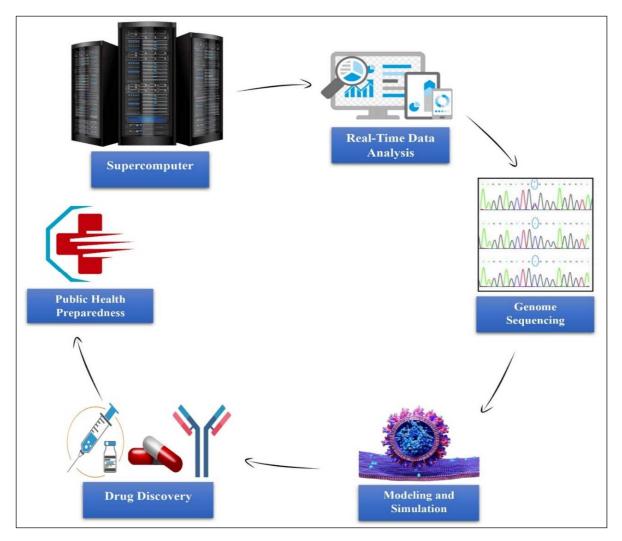
In this article, our primary objective is to engage in an overview discussion regarding supercomputers as a powerful tool in the fight against future pandemics, placing particular emphasis on the ongoing COVID-19 pandemic.

2. Supercomputing Technologies

Supercomputing technologies have emerged as powerful tools in addressing complex challenges, including the ongoing COVID-19 pandemic. In recent years, significant research and development efforts have been directed towards advancing supercomputing technologies, particularly in the areas of exascale computing and quantum computing [9]. These cutting-edge technologies hold immense potential to revolutionize pandemic response by enabling faster and more accurate simulations, data analysis, drug discovery, and vaccine development [10].

Exascale computing refers to the capability of performing at least one quintillion (10^18) calculations per second. This level of computational power holds immense potential in accelerating pandemic response [11]. Researchers and scientists can leverage exascale systems to run intricate simulations, such as virus spread modeling, protein folding, and drug discovery, at unprecedented speeds [12]. These simulations can aid in understanding the behavior of the virus, predicting its evolution, and identifying potential drug targets. Exascale computing also facilitates real-time data analysis, enabling rapid identification of trends, patterns, and potential intervention strategies. Ongoing research and development efforts focus on hardware optimizations, algorithmic advancements, and software innovations to harness the full potential of exascale computing for pandemic preparedness [13].

Quantum computing, a rapidly evolving field, offers an entirely new paradigm of computation by harnessing the principles of quantum mechanics. While still in its early stages, quantum computing holds immense promise for revolutionizing pandemic response [14]. Quantum algorithms can provide faster solutions to complex problems, including optimization challenges, molecular modeling, and vaccine design. The ability to simulate large molecules and interactions accurately can significantly expedite the drug discovery process [15]. Moreover, quantum computing's unique capabilities, such as quantum entanglement and superposition, can enhance data encryption techniques, ensuring secure transmission of sensitive medical information. Ongoing research in quantum computing focuses on improving the hardware's stability, developing error-correction mechanisms, and expanding the range of quantum algorithms applicable to pandemic response [15].


Supercomputing technologies, including exascale and quantum computing, are not mutually exclusive but rather complementary [16]. Their combined utilization can unlock even greater potential to revolutionize pandemic response. Exascale systems can be used to optimize and calibrate quantum algorithms, enabling efficient utilization of quantum computing resources. Conversely, quantum computing can be employed to enhance simulations performed on exascale systems, enabling finer-grained molecular modeling and more accurate predictions. The ongoing research

aims to bridge the gap between these two technologies, fostering collaboration and synergy to address the complex challenges posed by pandemics [16].

To fully realize the transformative potential of supercomputing technologies in pandemic response, sustained investment in research and development is paramount. Adequate funding is required to support hardware advancements, algorithmic research, and software development to achieve exascale and quantum computing objectives [17]. Public-private partnerships can facilitate the necessary collaboration, ensuring the exchange of knowledge and resources [18]. Additionally, investment in a skilled workforce is essential to drive innovation in supercomputing technologies [19]. By nurturing scientific talent and providing opportunities for interdisciplinary research, we can foster the development of novel approaches that tackle pandemics more effectively.

3. Supercomputers application during pandemic

Pathogens are indeed becoming smarter and more challenging to combat. To overcome these evolving threats, we must work smarter rather than harder. Supercomputers provide a powerful tool for analyzing vast amounts of data, simulating complex scenarios, and aiding in the development of effective treatments and preventive measures [20]. By leveraging the computational power of supercomputers alongside interdisciplinary collaboration, we can stay one step ahead of these intelligent pathogens and protect human health more effectively (Figure 1).

Figure 1. During a pandemic, supercomputers can play a crucial role in real-time data analysis by processing vast amounts of information quickly. They can analyze data from various sources such as patient records, diagnostic tests, and epidemiological surveys to identify patterns, trends, and potential outbreaks. In genome sequencing, supercomputers can be used to analyze the genetic material of viruses and compare them with existing databases. This helps in understanding the evolution of the virus, tracking its spread, and identifying potential mutations that may affect its behavior or response to treatments. Genome

sequencing data can then be used in modeling and simulating virus-host interactions. Supercomputers can simulate how the virus interacts with human cells at a molecular level, providing insights into its mechanisms of infection and potential targets for therapeutic interventions. Modeling in drug discovery allows scientists to virtually test thousands of compounds against the virus. Supercomputers can perform complex calculations to predict how these compounds interact with viral proteins or disrupt viral replication. This accelerates the drug discovery process by narrowing down potential candidates for further testing. By utilizing supercomputers for real-time data analysis, genome sequencing, modeling virus-host interactions, and drug discovery, public health preparedness is enhanced. Ultimately, this leads to better preparedness strategies and more effective responses to pandemics.

3.1. Real-Time Data Analysis

Risk assessment is a crucial process in understanding and evaluating potential risks associated with viruses. It involves identifying, analyzing, and prioritizing risks to determine their potential impact on individuals, communities, or organizations. By conducting risk assessments, decision-makers can make informed choices about implementing preventive measures and developing effective response strategies [21].

Supercomputers play a significant role in risk assessment by enabling real-time data analysis from various sources, including social media feeds, hospital records, weather patterns, and transportation data. These powerful machines have the capability to process and analyze massive amounts of data quickly and efficiently [22].

One significant application of supercomputers in the context of disease spread is their integration with epidemiological models. Epidemiological models are mathematical representations of how diseases spread within a population. By combining these models with real-time data obtained from different sources, supercomputers can generate accurate predictions about the spread of diseases [23]. For instance, by analyzing social media feeds, supercomputers can identify patterns and trends related to disease symptoms or outbreaks [24]. This information can be used to track the progression of a disease and predict its future spread. Similarly, by analyzing hospital records, supercomputers can identify clusters of cases or detect early signs of an outbreak [24].

Transportation data is another valuable source that supercomputers utilize for disease prediction. By analyzing travel patterns and transportation networks, these machines can identify high-risk areas or potential routes for disease transmission. This information helps authorities allocate resources effectively by focusing on areas that are more likely to be affected [25].

In a study conducted during the COVID-19 pandemic, researchers utilized supercomputers to analyze real-time data on the spread of the virus. By collecting and processing large volumes of data from various sources such as health records, social media, and transportation systems, they were able to track the movement and transmission patterns of the virus in different regions [20].

The accurate predictions generated by supercomputers assist authorities in making informed decisions regarding resource allocation and implementing containment measures [26]. For example, if a model predicts a surge in COVID-19 cases in a particular region, authorities can allocate medical supplies and personnel accordingly to ensure adequate healthcare resources are available [27].

Furthermore, supercomputers enable authorities to evaluate the effectiveness of different containment measures before implementing them on a large scale. By simulating various scenarios using real-time data and epidemiological models, decision-makers can assess the potential impact of interventions such as lockdowns, travel restrictions, or mass testing [28].

A research team employed supercomputing resources to develop predictive models for COVID-19 hospitalizations during the pandemic [29]. By integrating real-time data on infection rates, demographics, healthcare capacity, and other relevant factors from multiple sources into their models, they aimed to forecast the future burden on healthcare systems [30].

The supercomputers enabled rapid processing and analysis of vast amounts of data, allowing for real-time updates of the predictive models. This helped healthcare authorities anticipate surges in hospitalizations, plan resource allocation, and optimize patient care strategies. The study's findings provided valuable insights into the potential impact of different interventions and policy measures on hospitalization rates. By simulating various scenarios, policymakers could make informed decisions regarding lockdowns, social distancing measures, and healthcare system preparedness [31].

Overall, these examples demonstrate how supercomputers have played a crucial role in real-time data analysis during the COVID-19 pandemic. Their immense computational power has enabled

researchers to process large datasets quickly, extract meaningful insights, and inform evidence-based decision-making for effective pandemic response.

3.2. Large-Scale Computational Biology Studies

Supercomputers play a crucial role in enabling researchers to conduct large-scale computational biology studies that delve into the intricate details of host-pathogen interactions at a molecular level. These studies are essential for unraveling the complex mechanisms through which viruses infect cells or evade immune responses [32].

By utilizing supercomputers, researchers can simulate and analyze vast amounts of biological data, including genomic sequences, protein structures, and biochemical pathways [33]. These simulations allow them to explore the dynamic interactions between pathogens and their host organisms in unprecedented detail [33].

One area where supercomputers excel is in modeling the binding of viral proteins to host cell receptors. This process is critical for understanding how viruses gain entry into cells and initiate infection. By simulating these interactions, researchers can identify specific molecular features that facilitate viral entry and potentially develop strategies to block or disrupt this process [34].

Furthermore, supercomputers enable researchers to study how viruses manipulate host cellular machinery to evade immune responses [35]. Viruses have evolved sophisticated strategies to counteract the immune system's defenses, such as inhibiting antiviral signaling pathways or evading detection by immune cells [36]. Computational studies can shed light on these mechanisms by simulating the interplay between viral proteins and host immune components [37].

Understanding the intricacies of host-pathogen interactions at a molecular level has significant implications for developing novel therapeutic strategies [38]. By identifying key molecular targets involved in viral infection or immune evasion, researchers can design drugs or therapies that specifically target these vulnerabilities [39]. For example, if a particular viral protein is found to be crucial for viral entry into cells, scientists can develop drugs that inhibit its function, thereby preventing infection [40].

Additionally, computational studies can aid in the identification of potential drug targets by analyzing large datasets of pathogen genomes and proteomes [41-43]. By comparing these datasets with those of their hosts or related organisms, researchers can pinpoint unique features specific to pathogens that could be exploited for therapeutic intervention [44].

3.2.1. Genome sequencing

During an outbreak, scientists often turn to genome sequencing of pathogens to gain a better understanding of their genetic makeup and track their evolution. This process involves determining the complete DNA sequence of an organism's genome, which provides valuable insights into its characteristics and behavior [45].

Genome sequencing allows scientists to identify the specific genes and genetic variations present in a pathogen. By comparing the genomes of different strains or isolates, researchers can identify mutations that may affect the pathogen's virulence or transmissibility. These mutations can be crucial in understanding how the pathogen is evolving and adapting over time [46].

For instance, during the COVID-19 pandemic, researchers utilized supercomputers to conduct genome sequencing of the SARS-CoV-2 virus [47]. In a study, scientists employed high-performance computing resources to analyze thousands of viral genomes collected from different regions globally. By comparing these genomes, they were able to track the mutations occurring in the virus over time [48]. The study aimed to understand how the virus was evolving and spreading, which is crucial for developing effective diagnostic tests, treatments, and vaccines [48]. The supercomputers allowed researchers to process vast amounts of genomic data quickly and accurately. They employed advanced algorithms and machine learning techniques to identify specific genetic variations that could impact the virus's transmissibility or virulence [49]. The findings provided valuable insights into the genetic diversity of SARS-CoV-2 and its potential implications for public health measures [50]. By understanding how the virus mutates, scientists can better predict its behavior and adapt control strategies accordingly.

Identifying mutations that may affect virulence or transmissibility is particularly important for public health interventions during an outbreak [51]. This information helps researchers understand

how a pathogen is changing and potentially becoming more dangerous or spreading more easily. It allows for targeted interventions such as developing new vaccines or treatments that specifically target the identified mutations [51].

Furthermore, monitoring the emergence of new variants is crucial for outbreak control and prevention strategies. By continuously sequencing and analyzing pathogens' genomes, scientists can detect any changes in their genetic makeup that could lead to increased transmission or resistance to current interventions [52]. This early detection enables public health authorities to implement appropriate measures promptly, such as adjusting vaccination strategies or implementing stricter infection control measures [53].

In study conducted during the COVID-19 pandemic, scientists leveraged supercomputing capabilities to expedite drug discovery efforts against SARS-CoV-2. They focused on identifying potential drug targets within the viral genome that could be exploited for therapeutic interventions [54].

Using high-performance computing clusters, researchers performed extensive computational analyses on the complete genome sequence of SARS-CoV-2. They employed sophisticated algorithms to predict protein structures encoded by different viral genes and identify potential binding sites for small molecules or drugs [55].

By simulating interactions between these proteins and various compounds *in silico*, they rapidly screened thousands of potential drug candidates without requiring physical experiments. This approach significantly accelerated the identification of promising compounds that could inhibit viral replication or mitigate disease severity [56].

The use of supercomputers enabled researchers to process vast amounts of genomic and structural data, facilitating the identification of potential drug targets and accelerating the drug discovery process.

3.2.2. Modeling and Simulation

During an outbreak, supercomputers play a crucial role in modeling and simulation, offering immense computational power to process and analyze large volumes of data. These machines are capable of running complex simulations that aid researchers in understanding the behavior of viruses, predicting their spread, and evaluating the effectiveness of various intervention strategies [57]. Here are some reasons why supercomputers are essential during a pandemic:

- Virus Behavior Understanding: Supercomputers enable scientists to simulate the behavior of viruses at a molecular level, which is vital for developing effective treatments and vaccines. By modeling the structure and dynamics of viral proteins, researchers can gain insights into how viruses interact with host cells, replicate, and evolve [58].
- Spread Prediction: Supercomputers can simulate the spread of a virus within populations by considering various factors such as population density, mobility patterns, social interactions, and environmental conditions [59]. By incorporating real-time data like infection rates and contact tracing information, these simulations can provide valuable predictions on how the virus might propagate over time.
- Intervention Strategy Evaluation: Supercomputers allow researchers to evaluate different intervention strategies to control the spread of a virus. They can simulate scenarios like lockdowns, social distancing measures, mask mandates, or vaccination campaigns to assess their potential impact on reducing infections and saving lives [60]. These simulations help policymakers make informed decisions based on scientific evidence.

One example of a previous study using supercomputers in modeling and simulating SARS-CoV-2 with host cells during the COVID-19 pandemic is the work done by researchers at Oak Ridge National Laboratory (ORNL) in the United States. In this study, the researchers used the Summit supercomputer, one of the world's most powerful supercomputers, to simulate the interaction between SARS-CoV-2 and human cells [6]. By simulating the spike protein's interactions with ACE2 receptors on human cells, they were able to gain insights into how the virus enters and infects host cells. The simulations provided detailed information about the structural changes that occur in both the spike protein and ACE2 receptor during their interaction. This knowledge helped identify potential sites on both molecules that could be targeted by drugs or antibodies to disrupt viral entry into host cells. By running large-scale simulations on Summit, which has a peak performance of 200

petaflops (quadrillions of calculations per second), the researchers were able to simulate longer timescales and capture rare events that are critical for understanding viral infection dynamics [6]. This study demonstrated how supercomputers can accelerate research efforts in understanding SARS-CoV-2 infection mechanisms and aid in drug discovery by providing detailed molecular-level insights.

3.3. Drug Discovery

Supercomputers have revolutionized the field of drug discovery and vaccine development by significantly speeding up the process and reducing costs. Traditional methods for identifying potential treatments or vaccines involve time-consuming and expensive laboratory experiments, which often require years of research and testing. However, with their immense computational capabilities, supercomputers can analyze vast databases of chemical compounds in a fraction of the time [61].

One crucial aspect of drug discovery is identifying molecules that can inhibit viral replication [62]. Supercomputers can rapidly screen millions or even billions of chemical compounds against specific viral targets to identify potential candidates that could disrupt the replication process [54]. By simulating the interactions between these compounds and viral proteins, supercomputers can predict their effectiveness in inhibiting viral replication. For example, a study focused on utilizing supercomputing resources for structure-based drug design targeting specific viral proteins involved in COVID-19 infection [63]. Researchers employed molecular dynamics simulations and free energy calculations to explore different binding sites on these proteins and identify potential small molecule inhibitors. The high-performance computing capabilities enabled them to perform extensive sampling and generate accurate binding affinity predictions, facilitating the rational design of novel drug candidates with improved efficacy against SARS-CoV-2 [63]. This research demonstrated how supercomputers can play a crucial role in accelerating the development of effective therapeutics during a global health crisis like the COVID-19 pandemic.

Moreover, supercomputers enable researchers to perform virtual screening experiments on a massive scale. They can simulate the behavior of thousands or even millions of molecules simultaneously to identify those with desirable properties such as high binding affinity to a target protein or low toxicity. This computational approach significantly accelerates the identification of promising drug candidates or vaccine components [64]. For example, scientists leveraged supercomputing capabilities to perform virtual screening of natural compounds against SARS-CoV-2. They employed molecular dynamics simulations and computational docking techniques to evaluate the binding affinity and inhibitory potential of various natural compounds against viral proteins [65]. The immense computational power provided by supercomputers allowed them to efficiently screen a large number of compounds, leading to the identification of several promising natural molecules that could potentially serve as antiviral agents in the fight against COVID-19 [66].

Supercomputers also aid in optimizing drug molecules or vaccine formulations through molecular modeling and simulations. Researchers can use these powerful machines to simulate how different modifications to a molecule's structure affect its interactions with target proteins or its stability within the body [67]. This information helps refine and improve candidate molecules before they undergo costly experimental validation. For example, in this study, scientists utilized supercomputers to design and optimize therapeutic antibodies specifically targeting the spike protein of SARS-CoV-2 [68]. Using advanced computational algorithms and molecular docking simulations on a powerful supercomputer cluster, researchers screened millions of antibody sequences against different regions of the spike protein [69]. The simulations predicted binding affinities, epitope coverage, and potential side effects associated with each candidate antibody [70]. The supercomputing infrastructure enabled rapid parallel processing, allowing researchers to evaluate an extensive library of antibody candidates within a short timeframe. The simulations provided valuable insights into the structural and functional characteristics of the designed antibodies, aiding in the selection of lead candidates for further experimental validation [71]. This study demonstrated how supercomputers can significantly expedite the design and optimization of therapeutic antibodies against COVID-19. By leveraging computational techniques, researchers can efficiently explore a vast sequence space, leading to the identification of highly specific and potent antibodies that could potentially be used as effective treatments for COVID-19 patients.

3.4. Public Health Preparedness

The COVID-19 pandemic has unequivocally demonstrated the dire consequences of our unpreparedness in implementing measures to mitigate potential risks before they escalate into major health crises. This global crisis has further exacerbated the existing health disparities within and between nations, leading to disproportionately higher infection and mortality rates among marginalized communities [72]. Appallingly, it has unveiled a distressing reality of unequal access to essential pandemic resources, particularly for vulnerable populations such as indigenous communities. Moreover, it has shed light on the inadequacy of our healthcare systems in delivering crucial services and the lack of collaborative efforts across sectors and One Health capacity [73]. We must not allow history to repeat itself; we must take decisive action to prevent such catastrophic events from occurring again.

To do so, supercomputers play a crucial role in public health preparedness by providing the ability to simulate various scenarios and evaluate the effectiveness of different public health interventions [20]. This is particularly important in pandemic response, where quick decision-making and resource allocation are essential.

One of the key applications of supercomputers in public health preparedness is simulating the spread of infectious diseases [74]. By using complex mathematical models and vast amounts of data, supercomputers can simulate how a disease might spread within a population under different conditions [59]. These simulations take into account factors such as population density, mobility patterns, and social interactions to provide insights into how an outbreak might evolve [59]. For example, a study utilized supercomputers to simulate the spread of COVID-19 in a specific region. By incorporating various factors such as population density, mobility patterns, and social distancing measures, the study aimed to provide insights into the effectiveness of different public health interventions [75].

These simulations can also evaluate the impact of different public health interventions, such as social distancing measures or vaccination campaigns [76]. Supercomputers can model the effects of implementing these interventions at various scales, from local communities to entire countries [74]. Policymakers can then assess the potential effectiveness of these measures in controlling the spread of a disease and make informed decisions about their implementation.

Resource allocation is another critical aspect that supercomputers contribute to in public health preparedness [77]. A study employed supercomputing capabilities to predict hospital bed capacity, ventilators, or personal protective equipment under different outbreak scenarios [20]. By analyzing real-time data on infection rates, hospital admissions, and patient outcomes, the researchers developed models that could assist healthcare systems in allocating resources effectively and planning for potential surges in demand [78]. These information's help them plan for adequate resource availability and distribution before an outbreak occurs, ensuring that healthcare systems are well-prepared to handle potential surges in demand.

4. Perspective

In the wake of the devastating COVID-19 pandemic, it has become abundantly clear that we need to be better prepared for future outbreaks. As we reflect on the lessons learned [79], one technology stands out as a potential secret weapon against the next pandemic: supercomputers. These powerful machines have the potential to revolutionize our ability to predict, prevent, and respond to infectious diseases [80].

Supercomputers possess immense computational power, enabling them to process vast amounts of data in record time. This capability is crucial in understanding the complex nature of viruses and their transmission patterns [78]. By analyzing massive datasets, supercomputers can help scientists identify potential outbreaks before they occur, allowing for early intervention and containment measures.

Investing in supercomputing infrastructure is not a luxury; it is a necessity for pandemic preparedness. Governments and organizations must recognize the urgency of sustained investment in these technologies. Supercomputers can accelerate the development of vaccines and antiviral drugs by simulating their effectiveness against different strains of viruses. This would significantly reduce the time required for clinical trials and expedite their deployment during an outbreak [81].

Moreover, supercomputers can aid in modeling scenarios and predicting how a virus might spread within communities or across borders. By simulating various interventions such as social distancing measures or travel restrictions, policymakers can make informed decisions based on data-driven insights rather than relying solely on guesswork or intuition .[82]

However, harnessing the full potential of supercomputers requires global cooperation and coordination. Viruses do not respect borders; they can quickly spread from one country to another. Therefore, sharing data, research findings, and computational resources across nations is essential for effective pandemic response [83].

International collaboration should extend beyond sharing information during an outbreak; it should involve joint efforts in developing standardized models and protocols for data collection and analysis [84]. By establishing a global network of interconnected supercomputers dedicated to monitoring infectious diseases, we can create an early warning system that transcends national boundaries.

Furthermore, global cooperation can help bridge the technological divide between developed and developing nations. By providing access to supercomputing resources and expertise, we can ensure that all countries have the tools necessary to respond effectively to future pandemics [85]. This inclusivity is crucial in preventing the disproportionate impact that pandemics often have on vulnerable populations.

5. Conclusion

Supercomputers have emerged as a powerful tool in the fight against future pandemics. Their ability to process vast amounts of data and simulate complex scenarios has proven invaluable in predicting the spread of diseases, identifying potential treatments, and optimizing public health strategies. By harnessing the immense computational power of supercomputers, we can enhance our preparedness and response capabilities, ultimately saving lives and mitigating the devastating impact of future pandemics. However, it is crucial that governments and organizations continue to invest in these technologies, ensuring their accessibility and affordability for all nations. Supercomputers have the potential to be our secret weapon against the next pandemic, but only if we prioritize their development and integration into global health systems.

Authors' Contributions: MIM: wrote initial and final draft, conceptualization, Illustration, collected and organize data. AMM: wrote initial and final draft, supervision, conceptualization. All authors have critically reviewed and approved the final draft.

Source of funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgments: The authors acknowledge the Deanship of Scientific Research at University of Bahri for the supportive cooperation.

Conflicts of Interest: The authors declare that they have no competing interests.

Ethical approval: There is no ethical issue.

References

- 1. R. E. Baker *et al.*, "Infectious disease in an era of global change," *Nature Reviews Microbiology*, vol. 20, no. 4, pp. 193-205, 2022.
- 2. D. E. Bloom, M. Kuhn, and K. Prettner, "Modern infectious diseases: macroeconomic impacts and policy responses," *Journal of Economic Literature*, vol. 60, no. 1, pp. 85-131, 2022.
- 3. K. Watanabe, W. Ren, Q. Zhao, R. Iwatsuki, N. Nishida, and Y. Sugita, "Exploring the conformational dynamics of the disordered Lid region of HDM2 N-terminal domain with molecular dynamics simulation," *Biophysical Journal*, vol. 122, no. 3, p. 137a, 2023.
- 4. S. Vikram and M. H. Ansari, "Supercomputer: In Indian Perspective," *International Research Journal of Innovations in Engineering and Technology*, vol. 7, no. 2, p. 107, 2023.
- 5. H. Peréz-Sánchez, A. Fassihi, J. M. Cecilia, H. H. Ali, and M. Cannataro, "Applications of high performance computing in bioinformatics, computational biology and computational chemistry," in *Bioinformatics and Biomedical Engineering: Third International Conference, IWBBIO 2015, Granada, Spain, April 15-17, 2015. Proceedings, Part II 3, 2015:* Springer, pp. 527-541.

- 7. J. J. Grefenstette *et al.*, "FRED (A Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations," *BMC public health*, vol. 13, no. 1, pp. 1-14, 2013.
- 8. S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, "Big data in healthcare: management, analysis and future prospects," *Journal of big data*, vol. 6, no. 1, pp. 1-25, 2019.
- 9. L. M. Abbo and I. Vasiliu-Feltes, "Disrupting the infectious disease ecosystem in the digital precision health era innovations and converging emerging technologies," *Antimicrobial agents and chemotherapy*, pp. e00751-23, 2023.
- 10. M. Al-Shammari, A. Haque, and M. H. Rahman, "Static Evaluation of a Midimew Connected Torus Network for Next Generation Supercomputers," *Sustainability*, vol. 15, no. 8, p. 6766, 2023.
- 11. H. Kettani, "Towards exascale computing," in 2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), 2017: IEEE, pp. 78-80.
- A. P. Bhati et al., "Pandemic drugs at pandemic speed: infrastructure for accelerating COVID-19 drug discovery with hybrid machine learning-and physics-based simulations on high-performance computers," *Interface focus*, vol. 11, no. 6, p. 20210018, 2021.
- 13. S. S. Gill *et al.*, "AI for next generation computing: Emerging trends and future directions," *Internet of Things*, vol. 19, p. 100514, 2022.
- 14. S. Gupta, S. Modgil, P. C. Bhatt, C. J. C. Jabbour, and S. Kamble, "Quantum computing led innovation for achieving a more sustainable Covid-19 healthcare industry," *Technovation*, vol. 120, p. 102544, 2023.
- 15. S. Pal, M. Bhattacharya, S. Dash, S.-S. Lee, and C. Chakraborty, "Future Potential of Quantum Computing and Simulations in Biological Science," *Molecular Biotechnology*, pp. 1-18, 2023.
- 16. K. Amunts *et al.*, "Linking brain structure, activity, and cognitive function through computation," *eneuro*, vol. 9, no. 2, 2022.
- 17. U. A. Betz *et al.*, "Game changers in science and technology-now and beyond," *Technological Forecasting and Social Change*, vol. 193, p. 122588, 2023.
- 18. S. M. Ali *et al.*, "Drivers for Internet of Things (IoT) adoption in supply chains: Implications for sustainability in the post-pandemic era," *Computers & Industrial Engineering*, vol. 183, p. 109515, 2023.
- J. Southworth et al., "Developing a model for AI Across the curriculum: Transforming the higher education landscape via innovation in AI literacy," Computers and Education: Artificial Intelligence, vol. 4, p. 100127, 2023
- 20. Q. Wang, M. Su, M. Zhang, and R. Li, "Integrating digital technologies and public health to fight Covid-19 pandemic: key technologies, applications, challenges and outlook of digital healthcare," *International Journal of Environmental Research and Public Health*, vol. 18, no. 11, p. 6053, 2021.
- 21. R. Burdzik, "An Application of the DHI Methodology for a Comparison of SARS-CoV-2 Epidemic Hazards in Customer Delivery Services of Smart Cities," *Smart Cities*, vol. 6, no. 2, pp. 965-986, 2023.
- 22. W. Chen, Z. Milosevic, F. A. Rabhi, and A. Berry, "Real-Time Analytics: Concepts, Architectures and ML/AI Considerations," *IEEE Access*, 2023.
- 23. S. Wang, X. Zhao, J. Qiu, H. Wang, and C. Tao, "WDCIP: spatio-temporal AI-driven disease control intelligent platform for combating COVID-19 pandemic," *Geo-spatial Information Science*, pp. 1-25, 2023.
- 24. I. Biri, U. T. Kucuktas, F. Uysal, and F. Hardalac, "Forecasting the future popularity of the anti-vax narrative on Twitter with machine learning," *The Journal of Supercomputing*, pp. 1-31, 2023.
- 25. V. V. Estrela *et al.*, "Remote Sensing Applications in Disease Mapping and Public Health Analysis," in *Intelligent Healthcare Systems*: CRC Press, pp. 185-202.
- 26. I. Kaur *et al.*, "Artificial intelligence as a fundamental tool in management of infectious diseases and its current implementation in COVID-19 pandemic," *Environmental Science and Pollution Research*, vol. 28, no. 30, pp. 40515-40532, 2021.
- 27. R. C. Maves *et al.*, "Triage of scarce critical care resources in COVID-19 an implementation guide for regional allocation: an expert panel report of the task force for mass critical care and the American College of Chest Physicians," *Chest*, vol. 158, no. 1, pp. 212-225, 2020.
- 28. K. R. Bisset, J. Chen, X. Feng, Y. Ma, and M. V. Marathe, "Indemics: an interactive data intensive framework for high performance epidemic simulation," in *Proceedings of the 24th ACM International Conference on Supercomputing*, 2010, pp. 233-242.
- 29. S. Wollenstein-Betech, C. G. Cassandras, and I. C. Paschalidis, "Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: hospitalizations, mortality, and the need for an ICU or ventilator," *International Journal of Medical Informatics*, vol. 142, p. 104258, 2020.
- 30. S. Endres-Dighe *et al.*, "Lessons learned from the rapid development of a statewide simulation model for predicting COVID-19's impact on healthcare resources and capacity," *PloS one*, vol. 16, no. 11, p. e0260310, 2021.

- 32. A. Bhardwaj, S. Kishore, and D. K. Pandey, "Artificial intelligence in biological sciences," *Life*, vol. 12, no. 9, p. 1430, 2022.
- 33. T. Lappalainen, A. J. Scott, M. Brandt, and I. M. Hall, "Genomic Analysis in the Age of Human Genome Sequencing," (in eng), *Cell*, vol. 177, no. 1, pp. 70-84, Mar 21 2019, doi: 10.1016/j.cell.2019.02.032.
- 34. L. Dey, S. Chakraborty, and A. Mukhopadhyay, "Machine learning techniques for sequence-based prediction of viral–host interactions between SARS-CoV-2 and human proteins," *Biomedical journal*, vol. 43, no. 5, pp. 438-450, 2020.
- 35. E. Gianti and S. Percec, "Machine Learning at the Interface of Polymer Science and Biology: How Far Can We Go?," *Biomacromolecules*, vol. 23, no. 3, pp. 576-591, 2022.
- 36. Y. M. Fan, Y. L. Zhang, H. Luo, and Y. Mohamud, "Crosstalk between RNA viruses and DNA sensors: Role of the cGAS-STING signalling pathway," *Reviews in medical virology*, vol. 32, no. 5, p. e2343, 2022.
- 37. A. Soorajkumar, E. Alakraf, M. Uddin, S. S. Du Plessis, A. Alsheikh-Ali, and R. K. Kandasamy, "Computational Analysis of Short Linear Motifs in the Spike Protein of SARS-CoV-2 Variants Provides Possible Clues into the Immune Hijack and Evasion Mechanisms of Omicron Variant," *International journal of molecular sciences*, vol. 23, no. 15, p. 8822, 2022.
- 38. M. Y. Wang, R. Zhao, L. J. Gao, X. F. Gao, D. P. Wang, and J. M. Cao, "SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development," (in eng), *Frontiers in cellular and infection microbiology*, vol. 10, p. 587269, 2020, doi: 10.3389/fcimb.2020.587269.
- 39. A. Patil, N. Singh, and K. Bange, "Antiviral Pathogenesis and Interventions: New Understandings and Developments," *Acta Scientific MICROBIOLOGY (ISSN: 2581-3226)*, vol. 6, no. 8, 2023.
- 40. S. R. Dash and C. N. Kundu, "Advances in nanomedicine for the treatment of infectious diseases caused by viruses," *Biomaterials Science*, 2023.
- 41. N. Akhtar *et al.*, "Immunoinformatics-Aided Design of a Peptide Based Multiepitope Vaccine Targeting Glycoproteins and Membrane Proteins against Monkeypox Virus," *Viruses*, vol. 14, no. 11, p. 2374, 2022.
- 42. S. W. S. Mujahed I. Mustafa, "Immunoinformatic Guided Rational Design of a Next Generation Multi Epitope Based Peptide Vaccine against Marburg Virus Disease Combined with Molecular Docking Studies," 2022, doi: 10.20944/preprints202205.0143.v1.
- 43. M. I. Mustafa, S. W. Shantier, M. I. Abdelmageed, and A. M. Makhawi, "Epitope-based peptide vaccine against Bombali Ebolavirus viral protein 40: An immunoinformatics combined with molecular docking studies," *Informatics in Medicine Unlocked*, vol. 25, p. 100694, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.imu.2021.100694.
- 44. A. Patronov and I. Doytchinova, "T-cell epitope vaccine design by immunoinformatics," (in eng), *Open biology*, vol. 3, no. 1, p. 120139, Jan 8 2013, doi: 10.1098/rsob.120139.
- 45. R. Lu *et al.*, "Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding," (in eng), *Lancet (London, England)*, vol. 395, no. 10224, pp. 565-574, Feb 22 2020, doi: 10.1016/s0140-6736(20)30251-8.
- 46. J. D. Orkin, L. F. K. Kuderna, and T. Marques-Bonet, "The Diversity of Primates: From Biomedicine to Conservation Genomics," (in eng), *Annual review of animal biosciences*, vol. 9, pp. 103-124, Feb 16 2021, doi: 10.1146/annurev-animal-061220-023138.
- 47. M. S. Hakim, "SARS-CoV-2, Covid-19, and the debunking of conspiracy theories," *Reviews in medical virology*, vol. 31, no. 6, p. e2222, 2021.
- 48. R. Lorenzo-Redondo *et al.*, "A clade of SARS-CoV-2 viruses associated with lower viral loads in patient upper airways," *EBioMedicine*, vol. 62, 2020.
- 49. M. Nagasaki *et al.*, "Design and implementation of a hybrid cloud system for large-scale human genomic research," *Human Genome Variation*, vol. 10, no. 1, p. 6, 2023.
- 50. R. Haque *et al.*, "Monitoring SARS-CoV-2 variants in wastewater of Dhaka City, Bangladesh: approach to complement public health surveillance systems," *Human Genomics*, vol. 17, no. 1, p. 58, 2023.
- 51. A. Aleem, A. B. Akbar Samad, and A. K. Slenker, "Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19)," in *StatPearls*. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC., 2022.
- 52. C. Chakraborty, M. Bhattacharya, and A. R. Sharma, "Emerging mutations in the SARS-CoV-2 variants and their role in antibody escape to small molecule-based therapeutic resistance," *Current Opinion in Pharmacology*, vol. 62, pp. 64-73, 2022.
- 53. Z. Fang, V. S. Monteiro, A. M. Hahn, N. D. Grubaugh, C. Lucas, and S. Chen, "Bivalent mRNA vaccine booster induces robust antibody immunity against Omicron lineages BA.2, BA.2.12.1, BA.2.75 and BA.5," (in eng), *Cell discovery*, vol. 8, no. 1, p. 108, Oct 11 2022, doi: 10.1038/s41421-022-00473-4.
- 54. A. Acharya *et al.*, "Supercomputer-based ensemble docking drug discovery pipeline with application to COVID-19," *Journal of chemical information and modeling*, vol. 60, no. 12, pp. 5832-5852, 2020.

- 55. A. Oujja *et al.*, "High-performance computing for SARS-CoV-2 RNAs clustering: a data science–based genomics approach," *Genomics & Informatics*, vol. 19, no. 4, 2021.
- 56. N. Liu *et al.*, "Identification of a Putative SARS-CoV-2 Main Protease Inhibitor through In Silico Screening of Self-Designed Molecular Library," *International journal of molecular sciences*, vol. 24, no. 14, p. 11390, 2023.
- 57. C. Chang, V. L. Deringer, K. S. Katti, V. Van Speybroeck, and C. M. Wolverton, "Simulations in the era of exascale computing," *Nature Reviews Materials*, vol. 8, no. 5, pp. 309-313, 2023.
- 58. A. Frances-Monerris *et al.*, "Molecular basis of SARS-CoV-2 infection and rational design of potential antiviral agents: modeling and simulation approaches," *Journal of Proteome Research*, vol. 19, no. 11, pp. 4291-4315, 2020.
- 59. J. Li, T. Xiang, and L. He, "Modeling epidemic spread in transportation networks: A review," *Journal of Traffic and Transportation Engineering (English Edition)*, vol. 8, no. 2, pp. 139-152, 2021.
- 60. M. Guzmán-Merino *et al.*, "Assessing population-sampling strategies for reducing the COVID-19 incidence," *Computers in biology and medicine*, vol. 139, p. 104938, 2021.
- 61. Y. A. Almofti, K. A. Abd-Elrahman, and E. E. M. Eltilib, "Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)," (in eng), *BMC immunology*, vol. 22, no. 1, p. 22, Mar 25 2021, doi: 10.1186/s12865-021-00412-0.
- 62. H. H. Bui, J. Sidney, W. Li, N. Fusseder, and A. Sette, "Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines," (in eng), *BMC bioinformatics*, vol. 8, p. 361, Sep 26 2007, doi: 10.1186/1471-2105-8-361.
- 63. N. G. Bajad *et al.*, "Systematic review on role of structure based drug design (SBDD) in the identification of anti-viral leads against SARS-Cov-2," *Current Research in Pharmacology and Drug Discovery*, vol. 2, p. 100026, 2021.
- 64. B. Bonde, "Edge, Fog, and Cloud Against Disease: The Potential of High-Performance Cloud Computing for Pharma Drug Discovery," in *High Performance Computing for Drug Discovery and Biomedicine*: Springer, 2023, pp. 181-202.
- 65. S. Iqbal and S.-X. Lin, "Deep Drug Discovery of Mac Domain of SARS-CoV-2 (WT) Spike Inhibitors: Using Experimental ACE2 Inhibition TR-FRET Assay, Screening, Molecular Dynamic Simulations and Free Energy Calculations," *Bioengineering*, vol. 10, no. 8, p. 961, 2023.
- 66. J. Kuan, M. Radaeva, A. Avenido, A. Cherkasov, and F. Gentile, "Keeping pace with the explosive growth of chemical libraries with structure-based virtual screening," *Wiley Interdisciplinary Reviews: Computational Molecular Science*, p. e1678, 2023.
- 67. A. C.-L. Lee, J. L. Harris, K. K. Khanna, and J.-H. Hong, "A comprehensive review on current advances in peptide drug development and design," *International journal of molecular sciences*, vol. 20, no. 10, p. 2383, 2019
- 68. J. Chen *et al.*, "Rational optimization of a human neutralizing antibody of SARS-CoV-2," *Computers in Biology and Medicine*, vol. 135, p. 104550, 2021.
- 69. G. Floresta, C. Zagni, D. Gentile, V. Patamia, and A. Rescifina, "Artificial intelligence technologies for COVID-19 de novo drug design," *International journal of molecular sciences*, vol. 23, no. 6, p. 3261, 2022.
- 70. F. Guarra and G. Colombo, "Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens," *Journal of Chemical Theory and Computation*, 2023.
- 71. M. Wieczor *et al.*, "Pre-exascale HPC approaches for molecular dynamics simulations. Covid-19 research: A use case," *Wiley Interdisciplinary Reviews: Computational Molecular Science*, vol. 13, no. 1, p. e1622, 2023.
- 72. O. Adeola, "The COVID-19 Pandemic and the UN's Sustainable Development Goals: A General Overview," *Gendered Perspectives on Covid-19 Recovery in Africa: Towards Sustainable Development*, pp. 17-38, 2021.
- 73. A. D. Kaye *et al.*, "Economic impact of COVID-19 pandemic on healthcare facilities and systems: International perspectives," *Best Practice & Research Clinical Anaesthesiology*, vol. 35, no. 3, pp. 293-306, 2021.
- 74. J. B. Awotunde, S. Oluwabukonla, C. Chakraborty, A. K. Bhoi, and G. J. Ajamu, "Application of artificial intelligence and big data for fighting COVID-19 pandemic," *Decision Sciences for COVID-19: Learning Through Case Studies*, pp. 3-26, 2022.
- 75. M. M. Rahman, K. C. Paul, M. A. Hossain, G. M. N. Ali, M. S. Rahman, and J.-C. Thill, "Machine learning on the COVID-19 pandemic, human mobility and air quality: A review," *Ieee Access*, vol. 9, pp. 72420-72450, 2021
- 76. L. Calzone, V. Noël, E. Barillot, G. Kroemer, and G. Stoll, "Modeling signaling pathways in biology with MaBoSS: From one single cell to a dynamic population of heterogeneous interacting cells," *Computational and Structural Biotechnology Journal*, 2022.
- 77. M. Stasevych and V. Zvarych, "Innovative Robotic Technologies and Artificial Intelligence in Pharmacy and Medicine: Paving the Way for the Future of Health Care—A Review," *Big Data and Cognitive Computing*, vol. 7, no. 3, p. 147, 2023.
- 78. S. Aminizadeh *et al.*, "The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things," *Computer Methods and Programs in Biomedicine*, p. 107745, 2023.

- 80. J. Rocklöv *et al.*, "Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond," *The Lancet Regional Health–Europe*, vol. 32, 2023.
- 81. P. Kalita, T. Tripathi, and A. K. Padhi, "Computational Protein Design for COVID-19 Research and Emerging Therapeutics," *ACS Central Science*, vol. 9, no. 4, pp. 602-613, 2023.
- 82. O. E. Santangelo, V. Gentile, S. Pizzo, D. Giordano, and F. Cedrone, "Machine learning and prediction of infectious diseases: a systematic review," *Machine Learning and Knowledge Extraction*, vol. 5, no. 1, pp. 175-198, 2023.
- 83. S. Valiee *et al.*, "Strategies for maintaining and strengthening the health care workers during epidemics: a scoping review," *Human Resources for Health*, vol. 21, no. 1, pp. 1-12, 2023.
- 84. J. Bedson *et al.*, "A review and agenda for integrated disease models including social and behavioural factors," *Nature human behaviour*, vol. 5, no. 7, pp. 834-846, 2021.
- 85. C. Phil Yang *et al.*, "Challenges and opportunities of the spatiotemporal responses to the global pandemic of COVID-19," *Annals of GIS*, vol. 28, no. 4, pp. 425-434, 2022.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.