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Abstract: Discussing quantum theory foundations, von Neumann noted that the measurement

process should not be regarded in terms of a temporal evolution. A reason for his claim is

insurmountability of the gap between reversible and irreversible processes. The time operator

formalism that goes beyond such a gap is adequate framework for elaboration of the measurement

problem. It considers signals to be stochastic processes, whether they correspond to variables or

distribution densities. Signal processing like that utilizes statistical properties to perform its tasks,

which is the definition of statistical signal processing. A hierarchy of the measurement process is

indicated by crossing between states and devices, which implies an evolution in the temporal domain.

The concept has generalized to an open system by the use of duality in frame theory.

Keywords: experimental mathematics; general measurement; time operator; frame wavelets; optimal

decomposition

1. Introduction

The uncertainty relation is regarded to be a fundamental principle of quantum theory. Although

it has a long history starting from Sommerfeld and Heisenberg[1,2], the problem came into a focus of

interest due to the discovery of wave mechanics by Schrödinger which led to its formulation in terms

of mathematical physics. The concept of the wave function was utilized by Gabor in order to establish

the communication theory upon decomposing signals into elementary quanta of information[3]. In

that respect, uncertainty comes down to the commutator relation

[
Q, P

]
= i (1)

concerning a pair of canonically conjugate operators.

The paper is aimed to reformulate the measurement problem in the same manner. It considers

signals in a relation to stochastic processes, whether corresponding to variables or distribution densities.

Signal processing like that utilizes statistical properties to perform its tasks, which is the definition

of statistical signal processing. The climax of such a trail should be quantum theory of information,

whereat the measurement is a fundamental conception.[4]

The phrase experimental mathematics comes up a lot in the field of chaos, fractals and non-linear

dynamics[5]. It reemerged during the last century, notwithstanding that mathematicians had always

used some experiments in order to identify properties and patterns. The measurement is therefore

a basic concept not only of geometry, but of mathematics overall. A link between the measurement

problem and experimental mathematics has already been elaborated.[6] The paper should complement

such a discussion and revise some oversights that appeared in the previous one. The multidisciplinary

framework it has implied corresponds to the time operator formalism of the complex systems physics.

The theory originated from the Brussels school of thermodynamics, proposing a unification of reversible

and irreversible processes. A relation to the problem appears in respect to its definition that was

postulated by von Neumann.[7]

Measurement is argued to be the fundamental conception of science.[8] Elaborating issues it raises

is therefore significant for epistemology and methodology of the scientific research. Interrelating some

aspects such as states, devices, probabilities etc., a hierarchy which is designed in that respect should

coincide to the principle of psychophysical parallelism. It is indicated by crossing between states
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and devices, which implies an evolution in the temporal domain.[6] A paradigmatic measurement

corresponds to comensuration of magnitudes by the Euclidean algorithm which is an intensional

procedure producing real numbers of the unit interval. Regarding that, one comes to a general

definition of the process concerning a time series of binary digits.[9]

The paradigm asserts the significance of time for elaboration of the measurement problem, which

has explicated a substantial relation between signals and stochastic processes. In that regard, a signal

corresponds to the ensemble which is originated by a measurement. The problem is formulated

in terms of mathematical physics, notwithstanding any interpretation of physical theories such as

QBism or many worlds. A comparison to the uncertainty relation (1) is a picturesque instance, since

it appears in statistical signal processing no matter of the interpretation imposed. The measurement

problem is therefore a predominantly mathematical issue which is related to the very foundation of

geometry, analysis, probability and other topics. It concerns intensionality that is the manner in which

matemetatics has always applied.[10]

After the Introduction, Section 2 presents the time operator formalism of complex systems.

The concept of ensamble is defined, as well as a link between reversible and irreversible processes.

The measurement hierarchy is elaborated in Section 3, following a paradigm which corresponds to

comensuration of magnitudes by the Euclidean algorithm. It presents a general definition of the

problem in statistical signal processing, whereat an ensemble is related to the distribution density

of a time series. Section 4 considers projective measurements in the hierarchical base, constituting a

measurable space that is the domain of an observable. A hierarchy that has complemented the von

Neumann definition arises form a temporality of the domain.

The main advancement concerns a consistent realization of psychophysical parallelism that is a

principle which Bohr and von Neumann have already pointed out.[11] It is realized due to a change in

representation which is the operator function of time. General measurements are considered in Section

5, whereat self-duality of the Hilbert space has been replaced by duality in frame theory.[12] In that

manner, crossing between states and devices should generalize to an open system whuch is partially

described by the stochastic process.[13]

2. Time and Complexity in the Physical Science

2.1. Time in Quantum Theory

Von Neumann has indicated two fundamentally diverse types of interventions in a system,

the first of which corresponds to a temporal evolution that is reversible and the second one to an

irreversible measurement[11]. He’s been wondered by the fact that the entropy increase follows

the measurement process not representing any temporal evolution, which is totally opposite to

thermodynamics relating the increase of entropy to an evolution in the temporal domain. The reason

for such an odd situation is the fake concept of time in quantum theory which is a classical one,

considering that it is represented by linear parameterization just like in the Newtonian mechanics.[7]

Von Neumann admits an essential weakness of quantum theory, which concerns the fact that it is

non-relativistic whereas spatial coordinates are represented by operators and time is a mere parameter

making the Poincaré symmetry impossible. The time operator, which should be a chief link between

quantum and relativity theories,[14] is substantially related to the measurement problem.

The uncertainty between time and energy has been discussed frequently[15]. In the classical

formulation of quantum theory, however, there is no operator that satisfies the commutator relation (1)

in respect to a Hamiltonian corresponding to the energy of a system. A reason is that the Hamiltonian

governs evolution by the Schrödinger equation of the wave function which is a stationary state, like

orbits in the Newtonian mechanics[7]. The time operator is but definable in the Liouville-von Neumann

mechanics which considers density operators of ensembles. In that regard, there is T implementing

the commutator relation [
T, L

]
= i (2)
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wherein L is the Liouvillian which governs evolution of density operators by the Liouville equation.

An ensemble is defined by the mapping P 7→ π(P) which assigns a probability π(P) to each

projector P, such that π(0) = 0 π(1) = 1 π

(
∑P∈P P

)
= ∑P∈P π(P) for orthogonal constituents of the

sum[16]. According to the Gleason theorem, there is a density operator ρ that satisfies π(P) = 〈ρ|P〉,
which should be positive semidefinite ρ ≥ 0, Hermitian ρ† = ρ and unity traced Tr ρ = 1. It follows

ρ = FF† whereby F is the root operator which is unity normed, considering that Tr ρ = ‖F‖2.

2.2. Physics of Complex Systems

If ρ = | f 〉 〈 f | for a unity normed signal f , the density is coincident to ρ = | f |2 provided that

tracing the operator corresponds to integrating the function since Tr ρ = 〈ρ|1〉. The projector P f = c f ,

which multiplies signals by a characteristic function, has the probability π(P) = 〈ρ|c〉 that is an

expected value of the variable c. The Koopman-von Neumann mechanics which has been postulated in

that manner concers evolution of densities and variables due to the action of a one-parameter group Gt

onto the measurable space that should preserve a probability measure. Variables upon the probability

space evolve by the group of unitary operators Ut : f 7→ f ◦ Gt and densities are governed by adjoints

Ut† = U−t. In that instance, there is an infinitesimal generator L such that Ut† = eiLt wherefrom it

follows the Liouville equation
∂ρ
i∂t = Lρ which is governing an evolution of the density[17]. In terms of

the evolutionary group, the commutator relation (2) is equivalent to
[
T, Ut

]
= tUt which comes down

to [
T, U

]
= U (3)

supposing the cyclic group generated by U.

If there is an operator T satisfying the commutator relation (3), such a system is termed to be

complex. The time operator formalism of complex systems originated from the Brussels school of

thermodynamics, that was investigating a link between reversible and irreversible processes[7]. It

is realized due to a change in representation Λ = λ(T) that is the operator function of time, which

transfigures the Lie group Ut† into a Markov semigroup

Wt† = ΛUt†Λ−1, t ≥ 0 (4)

The semigroup (4) indicates irreversibility, since operators Wt† for t < 0 are not positivity preserving

and therefore not related to the evolution of a density. The change in representation should preserve

the positivity ρ ≥ 0 ⇒ Λρ ≥ 0, the trace Tr ρ = Tr Λρ, the uniform density 1 = Λ1 and it should be

invertible at a dense subset. Terms of the change imply that Λ maps a density into a density without

any information loss[18].

The link between reversible and irreversible processes is substantial for elucidation of the

measurement problem. The evolutionary group Ut has become the semigroup Wt for t ≥ 0 due

to a change in representation (4). In that respect, irreversibile evolution corresponds to an increase of

the information entropy which is a measurement characterized by.[7]

3. Wavelets and the Measurement Hierarchy

3.1. Paradigm of the Measurement Process

In the V book of the Elements, Euclid elaborates the doctrine of proportion concerning

commensuration of magnitudes. Due to the Euclidean algorithm, magnitudes a ≤ b measure each

other in terms of continued fraction
a

b
=

1

n1 +
1

n2+
1

...

(5)

which should indicate a process that takes place step by step over time [6].
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The Euclidean algorithm is regarded to be a paradigmatic measurement. The process corresponds

to a sequence

ξ j =
1

n1 +
1

. . .+ 1
nj

whose elements ξ j =
hj

kj
are obtained by the recurrence equation

hj+1 = nj+1hj + hj−1, k j+1 = nj+1k j + k j−1

considering the initial condition h0 = 0, h1 = 1, k0 = 1, k1 = n1. The difference between successive

elements

∆ξ j = ξ j+1 − ξ j =
hj+1

k j+1
−

hj

k j
=

(−1)j

k jk j+1

expands the continued fraction (5) in the alternating series

∆ξ0 + · · ·+ ∆ξ j + · · · = 1

k0k1
− · · · (−1)j

k jk j+1
· · · (6)

which is a sparse representation,[19] composing terms from the redundant dictionary 1
1 , 1

2 . . .

The expansion (6) corresponds to a binary code wherein 0 is assigned to terms of the dictionary

that do not participate in the series and an alternating value ±1 to those that do participate. Such a

representation of the measurement process is highly redundant, since the complete dictionary cannot

be involved in a series. One should therefore eliminate excess zeros, which is realized by coding the

sequence n1, n2, . . . The code is composed of alternative ±1 values at positions n1, n1 + n2, . . . which

gives rise to the Minkowski function

? :
1

n1 +
1

n2+
1

...

7→ 1

2n1−1
− 1

2n1+n2−1
+ · · ·

that is an automorphism transfiguring the continued fraction into the binary representation. The

process is codified by binary digits of a real number

x = 0.0 . . . 0︸ ︷︷ ︸
n1

1 . . . 1︸ ︷︷ ︸
n2

0 . . . 0︸ ︷︷ ︸
···

1 . . . (7)

whose positions concern its temporality.[9]

In that regard, the measurement is conisdered to be a time series of binary digits which is a general

definition of the problem. Time is related to a scale j of the binary tree whose nodes 0 <
2k−1
2j+1 < 1

correspond to both states and devices of the measurement process. A step is concerned by the Rényi

map

R(x) =

{
2x, 0 ≤ x <

1
2

2x − 1, 1
2 < x ≤ 1

(8)

representing a shift in terms of binary digits. It is self-similarity of the binary tree, which maps both

left and right subtrees to the entire one [6].

3.2. Hierarchical Bases of the Signal Space

The binary structure reflects the hierarchy of the signal space representing the measurement

process. It concerns both states Σ and devices ∆ which should be considered in a dual manner [6].

If the signal space Σ has identified states, the topological dual Σ̃ = ∆ corresponds to measurement
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devices. Starting from devices ∆ on the other hand, the topological dual ∆̃ = Σ concerns measurement

states. These options may differ in more than a conceptual sense: taking the dual of the dual does not

necessarily bring back to the departure. Even if it does, there may be some reasons to favor one of

them since an aspect of the process has been obscured.[13]

A sensible solution should consider signals to be both states and devices concurrently, which leads

to a source-detector interchangeability that is termed crossing in quantum theory [13]. It is a reason

for regarding Σ = ∆ to be self-dual, which applies to the Hilbert space L2
µ wherein µ is the Lebesgue

measure over the unit interval. The hierarchy is reflected by wavelets which concern orthonormal

bases realizing the binary hierarchy.[6] The Haar base is paradigmatically designed by translation and

normalized dilatation of the mother wavelet χ(x) =

{
−1, 0 ≤ x <

1
2

+1, 1
2 < x ≤ 1

in the manner of

χj,k(x) =

{
−2j/2, k

2j ≤ x <
k+1/2

2j

+2j/2, k+1/2
2j < x ≤ k+1

2j

(9)

implying that basic elements are zero valued almost elsewhere.

Wavelets on the unit interval have arised from those on the real line, which are orthonormal bases

Ψj,k(x) = 2j/2Ψ(2jx − k)

obtained by translation and normalized dilatation of a mother wavelet Ψ. They reappear in the signal

space L2
µ due to ψj,k(x) = ∑n Ψj,k(x + n), which gives rise to the periodization axiom

ψj,k = ψj,k+2j (10)

and the annihilation as well

j < 0 ⇒ ψj,k = 0 (11)

In that manner, one gets the pyramid ψj,k for j ≥ 0 and 1 ≤ k ≤ 2j which is an orthonormal base of

L2
µ ⊖ ✶ representing the orthocomplement of constant signals ✶. [20] Signals are decomposed in a

hierarchical base due to the resolution of identity

1 = |1〉 〈1|+ ∑
j≥0

2j

∑
k=1

∣∣∣ψj,k

〉 〈
ψj,k

∣∣∣

wherein 〈·| corresponds to a state and |·〉 to a device of the measurement process. The translation

axiom

ψj,k

(
x − m

2j

)
= ψj,k+m(x) (12)

is also satisfied, which means that variables are equally distributed within each scale.

The evolution of wavelets in a measurement process concerns the operator U : f 7→ f ◦ R which

is induced by the Rényi map (8). The evolutionary axiom holds in terms of its adjoint

U†ψj,k =
1√
2

ψj−1,k (13)

which comes down to

Uψj,k =
1√
2

ψj+1,k +
1√
2

ψj+1,k+2j
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Since R is a measure preserving transformation of the unit interval, the operator U preserves

distribution of a variable. The orthogonality implies that variables are decorrelated, since E ψj,k =〈
1|ψj,k

〉
= 0 = E ψj,k and

(j, k) 6= (l, m) ⇒ E ψj,kψl,m =
〈

ψj,k|ψl,m

〉
= 0 = E ψj,k E ψl,m

The absolute square |ψj,k|2 is a density function as well, which makes the base to generate both states

and devices concurrently.

A step of the measurement hierarchy has corresponded to a scale, which implies the time operator

T = ∑
j≥0

2j

∑
k=1

j
∣∣∣ψj,k

〉 〈
ψj,k

∣∣∣ (14)

that is defined on a dense subset of L2
µ ⊖ ✶ [21]. The commutator relation (3) follows immediately from

the evolutionary axiom, considering that

[
U†, T

]
ψj,k = U† jψj,k − (j − 1)U†ψj,k = U†ψj,k

3.3. Space of Ensembles

A trouble might occur concerning the generation of an evolutionary group, since the operator

U is not invertible. However, it extends naturally to an invertible operator Uχ : F 7→ F ◦ B which is

induced by the baker map

B(x, y) =

{ (
2x,

y
2

)
, 0 ≤ x <

1
2(

2x − 1,
y+1

2

)
, 1

2 < x ≤ 1
(15)

that is a measure preserving transformation of the unit square [22]. It is a reason to embed the signal

space L2
µ into an extended one L2

µ2 = L2
µ ⊗ L2

µ whereat µ2 = µ ⊗ µ is the product measure.[6]

The space of ensembles L2
µ2 = ∆ ⊗ Σ is regarded to be a tensor product of devices and states. The

resolution of identity gives rise to a decomposition

F = |1〉 〈A|+ ∑
j≥0

2j

∑
k=1

∣∣∣ψj,k

〉 〈
Dj,k

∣∣∣

wherein 〈A| = 〈1|F is the approximation coefficient and
〈

Dj,k

∣∣∣ =
〈

ψj,k|F are detail coefficients at a

certain scale of the measurement hierarchy. One implies the matrix multiplication

F1F2(x, y) =
∫

F1(x, t)F2(t, y)dt

The time operator Tχ of the system evolving by Uχ has been explicitly constructed [16]. Its

projection onto the signal space L2
µ concerns the hierarchy of the Haar base (9). The time operator

of any wavelets (14) is obtained through conjugation T = CTχC† by C :
∣∣∣χj,k

〉 〈
χl,m

∣∣ 7→
∣∣∣ψj,k

〉 〈
ψl,m

∣∣
which transforms the Haar base to the other one. It corresponds to the system whose evolution is

governed by U = CUχC† that is also an extension of the evolutionary operator U, which is a reason to

be denoted in the same manner.

One defines the density opeartor of an ensemble ρ = FF†, whereupon the root F should be

unity normed. The density evolves by an adjoint of Uρ = (UF)(UF)†, which is the superoperator
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U†ρ = U†ρU. The time operator T that concerns the evolution by U is relevant to U as well, considering

that the commutator relation (3) is satisfied

[
T,U

]
ρ =

[
T, U

]
ρU† = Uρ

It induces a change in representation Λ = λ(T) which should transfigure the evolutionary group

generated by U† to a semigroup (4) generated by

W† = ΛU†Λ−1 (16)

4. Orthonormal Wavelets and Projective Measurements

4.1. Measurement in the Hierarchical Base

The von Neumann measurement corresponds to a complete set of orthogonal projectors in the

Hilbert space. Considering the paradigmatic measurement, one should suppose a hierarchy that is

realized by the time series of binary digits. It is a reason to represent orthonormal wavelets ψj,k in

terms of projectors Pj,k =
∣∣∣ψj,k

〉 〈
ψj,k

∣∣∣, which concerns an embedment of L2
µ ⊖ ✶ into (L2

µ ⊖ ✶)2.

Projectors constitute the Boolean algebra which is isomorphic to an algebra of sets due to the

Stone representation theorem. It is the measurable space corresponding to devices which an observable

has been defined upon.[10] A measurement state on the other hand corresponds to a density ρ = FF†

which is defined upon the same domain. One concludes that it should commute with each of projectors

which comes down to the requirement ρ = ∑j,k Pj,kρPj,k. In that manner, a density reduces to the

subspace of commutative operators

Mρ = ∑
j,k

Pj,kρPj,k = ∑
j,k

‖Dj,k‖2Pj,k

and the measurement problem concerns the issue of how such a reduction has taken place.

It is obvious that the problem occurs only if the measurable space has not accorded to the state. If

one measures a density itself, there is no reduction since devices are generated by eigenprojectors Po
j,k

of the density operator. Such a measurement

Moρ = ∑
j,k

Po
j,kρPo

j,k = ∑
j,k

‖Do
j,k‖2Po

j,k

is termed to be optimal, considering that the density operator ρ = Moρ is an invariance of the process.

Starting from the decomposition F = ∑j,k

∣∣∣ψo
j,k

〉 〈
Do

j,k

∣∣∣ of an ensemble from (L2
µ ⊖ ✶)2, one

obtains ρ = ∑j,k,l,m

∣∣∣ψo
j,k

〉 〈
Do

j,k|Do
l,m

〉 〈
ψo

l,m

∣∣∣ as well as Moρ = ∑j,k ‖Do
j,k‖2

∣∣∣ψo
j,k

〉 〈
ψo

j,k

∣∣∣. It follows that

(j, k) 6= (l.m) ⇒
〈

Do
j,k|Do

l,m

〉
= 0, meaning that detail coefficients are decorrelated in the optimal

base.[9,10] In respect to another base ψl,m that is suboptimal, the same ensemble is decomposed by

coefficients 〈
Dl,m

∣∣ = ∑
j,k

〈
ψl,m

∣∣ψo
j,k

〉 〈
Do

j,k

∣∣∣

Since basic elements ψo
j,k and ψl,m are almost entirely supported by domains [ k−1

2j , k
2j ] and [ l−1

2m , l
2m ]

respectively, values

〈
ψl,m

∣∣∣∣ψo
j,k

〉
are negligible if these segments do not intersect. It follows an

approximate decorrelation of the ensemble, which implies that correlation between detail coefficients

predominantly concerns inheritance along branches of the binary tree.

The wavelet domain hidden Markov model which is obtained like that has been proven

tremendously useful in a variety of applications, including speech recognition and artificial intelligence

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 October 2023                   doi:10.20944/preprints202310.1216.v1

https://doi.org/10.20944/preprints202310.1216.v1


8 of 12

[26]. The model is based upon approximate decorrelation of detail coefficients D =
(

Dj,k

)
. Correlation

is transmitted only through the Markovian tree of hidden variables S =
(

Sj,k

)
which have attributed

to each node and out of such an interdeptitide the ensemble is considered decorrelated. The conditional

distibution D|S is supposed to be normal, which implies that Dj,k|Sj,k are independent variables.

4.2. Psychophysical Parallelism

The projective measurement M = ∑j Mj has temporally decomposed into the sum of

superprojectors Mj = ∑k Pj,k, whereby each Pj,kρ = Pj,kρPj,k is superprojection onto the ensemble

Pj,k =
∣∣∣ψj,k

〉 〈
ψj,k

∣∣∣. If one defines UP = UPU†, it holds for j ≥ 1

U †Pj,kρ =





2
∣∣∣ψj−1,k

〉 〈
ψj−1,k(x)

∣∣∣
∫ 1/2

0 F(x, t)F†(t, y)dt
∣∣∣ψj−1,k(y)

〉 〈
ψj−1,k

∣∣∣ , k ≤ 2j−1

2
∣∣∣ψj−1,k−2j−1

〉 〈
ψj−1,k−2j−1(x)

∣∣∣
∫ 1

1/2 F(x, t)F†(t, y)dt
∣∣∣ψj−1,k−2j−1(y)

〉 〈
ψj−1,k−2j−1

∣∣∣ , k > 2j−1

In that respect,

U †Mj = U † ∑
k≤2j−1

Pj,k + U † ∑
k>2j−1

Pj,k = ∑
k

2Pj−1,k = 2Mj−1

and since U is unitary

Mj = 2UMj−1 = 2jU jM0 = 2jUjM0U
j† (17)

which relates all superprojectors to the primary measurement M0ρ = P0ρP0.

The evolutionary operator U that maps a scale of the measurement hierarchy to the next one is

extended to the space of ensembles ∆ ⊗ Σ due to the baker map (15). It crosses information between

coordinates of the domain in such a manner that the first binary digit of one, which has been lost by the

Rényi map, becomes the first digit of another. The induced operator should cross spaial components,

which is evident in the relation Uχ |χ〉 〈1| = |1〉 〈χ| and likewise for other wavelets. Considering

identifications |·〉 →֒ |·〉 〈1| and 〈·| →֒ |1〉 〈·|, the operator has crossed a measurement device into a

state.[6]

The superprojector (17) is factorized into measurement operators Mjρ = MjρM†
j whereat MjF =

2j/2U jP0U j†F. First of all, it concerns the evolution by U† crossing states into devices. Thereafter P0

projects the ensemble onto a primary device, which annihilates all devices out of the measurement

display. Finally, the evolution by U crosses devices into states. Supposing the measurement hierarchy

that is reflected by the Haar base, the primary device corresponds to the ensemble χ0 = |χ〉 〈1| which

produces by the evolution χj = U
j
χχ0 the base of ensembles ∏j∈(j1<···<jn) χj [16]. Each element χ~j is

specified by an increasing sequence of integers~j = (j1 < · · · < jn) and it evolves by Uχχ~j = χ~j+1

wherein~j + 1 = (j1 + 1 < · · · < jn + 1). The measurement operator Mj = 2j/2U
j
χP0U

j†
χ implies the

process U
j†
χ χ~j = χ~j−j

due to which some states have become devices. The projector P0 should fix an

element χ~j = χj1 · · · χjn if it is started by the primary device χj1 = χ0 and annihilate it if not, which

means that all devices out of the measurement display come to be annihilated. The terminal step

concerns the evolution U
j
χχ~j = χ~j+j

whereat some devices have become states. In that respect, crossing

between them due to an evolution in the temporal domain is substantial for a hierarchy [6].

The measurement display defines boundary between states and devices, which is arbitrary to

a very large extent. Self-duality of the signal space representing both states and devices concerns

the principle of psychophysical parallelism, as has been noticed by von Neumann [11]. The problem

occurs in that the principle is violated so long as it is not demonstrated that the display has been placed

in an arbitrary manner, which is achieved by crossing due to the evolutionary operator. In that regard,

the evolution of measurement operators corresponds to its displacement by designating another χj to

be a primary device. Devices of the measurement process are continually crossing into states and the

term psychophysics is used in order to transcend any separation between the two.[6]
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Von Neumann made a reference to Bohr, who was the first to have pointed out that the dual

description of quantum theory relates to the principle of psychophysical parallelism [11]. Although

Bohr never mentioned it in the print, he had adopted Fechner’s psychophysics as taught to him by

Høffding [23]. The most significant source for phychophysical parallelism is the foreword and the

introduction from the Elements of Psychophysics [24]. Fechner’s attitude is termed the identity view,

since the observer is not to be considered a conglomeration of two substances but one single entity.

The outer psychophysics, which is a link between sensation and stimulation, is realized through the

neuroesthetical computation that relates sensation to neural activity, which is termed by Fechner to be

the inner psychophysics [25].

An important repercussion of von Neumann’s solution to the measurement problem is that the

irreversibility takes place in the presence of the observer’s mind, which seems to play an active role

in the process. The only manner to make such an unpleasant situation compatible to psychophysical

parallelism concerns switching into the inner psychophysics by a change in representation [6]. In

that manner, the inner psychophysics should corresponds to a Markovian tree of the wavelet domain

hidden Markov model.[25]

The irreversibility is actually manifested by the fact that a state before the measurement process

results in the sum of diverse states thereafter. The primary measurement designed by an operator

M0 = P0 is not irreversible in that respect, since it corresponds to the projector onto a single state. The

problem occurs considering that the measurement operator Mj = 2j/2UjP0 = ∑k 2j/2Pj,k evolves into a

combination of diverse projectors. It concerns the evolution represented by U whose irreversibility

comes to prominence due to a change in representation (16). The evolution Mj+1 =
√

2UMj in terms of

the Markov process W becomes Mj+1 =
√

2U∑k 2j/2Pj,k =
√

2 ∑k Λ†WΛ−1†2j/2Pj,k and one denotes

Sj,k = Λ−1†2j/2Pj,kF = 2j/2Λ−1†
∣∣∣ψj,k

〉 〈
Dj,k

∣∣∣ which has indicated an irreversible evolution of hidden

variables
√

2W∑k Sj,k = ∑k Sj+1,k. In that manner, the change of representation should transfigure

detail coeffieicnets D = (Dj,k) into a Markovian tree S = (Sj,k).

The outer psychophysical information of an ensemble is independent of orthonormal wavelets,

considering that H(CD) = H(D) + log |det C| = H(D) for any operator C which should be unitary

since it represents a base substitution. The canonical relation H(D) = H(S) + H(D|S) separates the

inner psychophysical information H(S) from an irreducible randomness H(D|S) [25]. The global

entropy H(S) is related to the increase of the local one H(Sj,k) in the temporal domain corresponding to

the scale of the measurement hierarchy [27]. The optimal decomposition concerns the most significant

increase of the information entropy, which is the measurement process characterized by [11].

5. Frame Wavelets and General Measurements

5.1. Duality in Frame Theory

The concept of frame refers to elements ψj,k such that

A ≤ ∑
j≥0

2j

∑
k=1

∣∣∣ψj,k

〉 〈
ψj,k

∣∣∣ ≤ B

for positive numbers A and B which are termed frame bounds [12]. If A = B = 1, i.e., 1 =

∑j,k

∣∣∣ψj,k

〉 〈
ψj,k

∣∣∣, such a frame is the Parseval one. It is termed to be frame wavelets on the unit interval if

axioms (10) – (13) hold.

ψ̃j,k is a dual frame of ψj,k if the resolution of identity applies

1 = ∑
j,k

∣∣∣ψ̃j,k

〉 〈
ψj,k

∣∣∣

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 October 2023                   doi:10.20944/preprints202310.1216.v1

https://doi.org/10.20944/preprints202310.1216.v1


10 of 12

If there is an operator [] such that ψ̃j,k = []ψj,k, the frame is canonical dual. Let ] be an invertible operator

such that ]ψj,k is the Parseval frame and [ its ajoint. In that regard,

1 = ∑
j,k

[
]
ψj,k

〉 〈
ψj,k

∣∣∣ = []∑
j,k

]−1
]
ψj,k

〉 〈
ψj,k

[
[−1= []]−1 ∑

j,k

]
ψj,k

〉 〈
ψj,k

[
[−1= []]−1[−1

wherefrom it follows that [] is factorized into the product of operators [ and ].

The general measurement Mρ = ∑j,k Mj,kρM†
j,k is characterized by operators Mj,k satisfying

1 = ∑j,k M†
j,k Mj,k, which means

TrMρ = ∑
j,k

‖Mj,kF‖2 =

〈
F

∣∣∣∣∑
j,k

M†
j,k Mj,kF

〉
= ‖F‖2 = Tr ρ

that a density is mapped into a density. In order to elucidate how it relates to the frame concept,

one should consider operators Qj,k =
∣∣∣ψ̃j,k

〉 〈
ψj,k

∣∣∣ that meet the resolution of identity 1 = ∑j,k Qj,k.

Under the term ‖ψ̃j,k‖ = 1, it follows 1 = ∑j,k

]
ψj,k

〉 〈
ψj,k

[
= ∑j,k]Q

†
j,kQj,k[ which has implied that

Qj,k[=
∣∣∣ψ̃j,k

〉 〈
ψj,k

[
is the measurement operator Mj,k. Its evolution requires the Parseval frame ]ψj,k

and the dual one ψ̃j,k to be wavelets satisfying (10) – (13).

The evolutionary operator U = CUχC† on the space of ensembles is obtained through conjugation

of the natural extension Uχ by C :
∣∣∣χj,k

〉 〈
χj,k

∣∣∣ 7→
∣∣∣ψ̃j,k

〉 〈
ψj,k

[
which transforms the Haar base to the

Parseval frame and the dual one. Crossing devices into states due to the evolution by U concerns

a duality relation Σ = ∆̃. [13] The signal space of the general measurement might not be self-dual,

but it separates into dual spaces generated by ψj,k and ψ̃j,k respectively of which the first one should

correspond to states and the second one to devices [12].

5.2. Measuring an Open System

According to the Naimark theorem, states of the measurement extend to a direct sum Σ∗ = Σ ⊕ Σ′

wherein the Parseval frame
〈

ψj,k

[
corresponds to the projection of an orthonormal base

{
ψj,k

[
onto

the subspace Σ. Likewise, the dual frame concerns measurement devices which are extended to

∆∗ = ∆ ⊕ ∆′. The measurement operator Mj,k is restriction of the projector M∗
j,k = [−1 ψ̃j,k

}{
ψj,k

[

onto ∆ ⊗ Σ and in that manner, the projective measurement M∗ restricts to the general one M by

neglecting an environment which has remained out of the scope [28]. The general measurement is

therefore related to an open system that has been partially described by the stochastic process. Devices

and states might be some subspaces of signals, respecting the duality between them. In that regard,

frames
〈

ψj,k

∣∣∣ and
∣∣∣ψ̃j,k

〉
are projection of the Riesz base

{
ψj,k

∣∣∣ and its dual
∣∣∣ψ̃j,k

}
=

[]
ψj,k

}
which are

biorthonormal [12].

A practical realization of the Naimark theorem implies a method analogous to heterodyne

detection in communication engineering: the ensemble to be observed combines with another one,

which is termed ancilla [29]. Thereafter, the von Neumann measurement corresponding to projectors

M∗
j,k has been performed on the combined space ∆∗ ⊗Σ∗ that is the tensor product of states and devices

which are extended by the environment. The amount of information which is obtained in that manner

might be larger than if the observer is restricted to the von Neumann measurements without ancilla.

Optimal measurements are therefore not even close to be just projective ones which correspond to

orthonormal wavelets in statistical signal processing [28].

A frame ψj,k should be optimal for the ensemble from ∆ ⊗ Σ if the orthonormal base
]
ψj,k

}
is

optimal for an ensemble in the combined space ∆∗ ⊗ Σ∗. One assumes F = ∑j,k

∣∣∣ψ̃o
j,k

〉 〈
Do

j,k

∣∣∣ wherein

ψo
j,k is the optimal frame. Detail coefficients correspond to those of F∗ = ∑j,k

[
−1ψ̃o

j,k

} 〈
Do

j,k

∣∣∣ in the base
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[
−1ψ̃o

j,k

}
=

]
ψo

j,k

}
which is orthonormal, though it might not imply any hierarchy (10) – (13). In that

respect, general measurements spread the optimal decomposition to some ensembles which cannot

be decorrelated in a hierarchical base but which has restricted to the frame providing a hierarchy of

devices and states.

6. Conclusion

The measurement problem is formulated in terms of mathematical physics, notwithstanding

any interpretation of physical theories. The significance of time for its elaboration has explicated a

substantial relation between signals and stochastic processes, which is the definition of statistical signal

processing. A paradigmatic measurement concerns commensuration of magnitudes by the Euclidean

algoritm producing a time series of binary digits. It constitutes the hierarchy of the binary tree whose

nodes correspond to both states amd devices of the measurement process.

The time operator formalism of complex systems which has proposed a unification of reversible

and irreversible processes relates the problem in respect to its definition that was postulated by von

Neumann. He’s indicated two fundamentally diverse types of interventions in a system, the first of

which corresponds to a temporal evolution that is reversible and the second one to an irreversible

measurement. The main advancement concerns a formulation of the measurement process in terms of

a temporal evolution, whereat irreversibility has occured due to the change in representation switching

from outer to inner psychophysics. The principle of psychophysical parallelism that was pointed out

by Bohr and von Neumann should consistently realize in that manner.

The optimal measurement corresponds to the most significant increase of the information entropy

in the temporal domain. It has implied decorrelation of the ensemble, which is a consequence of its

invariance under the process. Generalization to an open system is performed by the use of duality in

frame theory, spreading the optimal decomposition to some ensembles which cannot be decorrelated

in a hierarchical base.
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