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Abstract: Discussing quantum theory foundations, von Neumann noted that the measurement
process should not be regarded in terms of a temporal evolution. A reason for his claim is
insurmountability of the gap between reversible and irreversible processes. The time operator
formalism that goes beyond such a gap is adequate framework for elaboration of the measurement
problem. It considers signals to be stochastic processes, whether they correspond to variables or
distribution densities. Signal processing like that utilizes statistical properties to perform its tasks,
which is the definition of statistical signal processing. A hierarchy of the measurement process is
indicated by crossing between states and devices, which implies an evolution in the temporal domain.
The concept has generalized to an open system by the use of duality in frame theory.
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1. Introduction

The uncertainty relation is regarded to be a fundamental principle of quantum theory. Although
it has a long history starting from Sommerfeld and Heisenberg[1,2], the problem came into a focus of
interest due to the discovery of wave mechanics by Schrodinger which led to its formulation in terms
of mathematical physics. The concept of the wave function was utilized by Gabor in order to establish
the communication theory upon decomposing signals into elementary quanta of information[3]. In
that respect, uncertainty comes down to the commutator relation

[Q P] =i )

concerning a pair of canonically conjugate operators.

The paper is aimed to reformulate the measurement problem in the same manner. It considers
signals in a relation to stochastic processes, whether corresponding to variables or distribution densities.
Signal processing like that utilizes statistical properties to perform its tasks, which is the definition
of statistical signal processing. The climax of such a trail should be quantum theory of information,
whereat the measurement is a fundamental conception.[4]

The phrase experimental mathematics comes up a lot in the field of chaos, fractals and non-linear
dynamics[5]. It reemerged during the last century, notwithstanding that mathematicians had always
used some experiments in order to identify properties and patterns. The measurement is therefore
a basic concept not only of geometry, but of mathematics overall. A link between the measurement
problem and experimental mathematics has already been elaborated.[6] The paper should complement
such a discussion and revise some oversights that appeared in the previous one. The multidisciplinary
framework it has implied corresponds to the time operator formalism of the complex systems physics.
The theory originated from the Brussels school of thermodynamics, proposing a unification of reversible
and irreversible processes. A relation to the problem appears in respect to its definition that was
postulated by von Neumann.[7]

Measurement is argued to be the fundamental conception of science.[8] Elaborating issues it raises
is therefore significant for epistemology and methodology of the scientific research. Interrelating some
aspects such as states, devices, probabilities etc., a hierarchy which is designed in that respect should
coincide to the principle of psychophysical parallelism. It is indicated by crossing between states
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and devices, which implies an evolution in the temporal domain.[6] A paradigmatic measurement
corresponds to comensuration of magnitudes by the Euclidean algorithm which is an intensional
procedure producing real numbers of the unit interval. Regarding that, one comes to a general
definition of the process concerning a time series of binary digits.[9]

The paradigm asserts the significance of time for elaboration of the measurement problem, which
has explicated a substantial relation between signals and stochastic processes. In that regard, a signal
corresponds to the ensemble which is originated by a measurement. The problem is formulated
in terms of mathematical physics, notwithstanding any interpretation of physical theories such as
QBism or many worlds. A comparison to the uncertainty relation (1) is a picturesque instance, since
it appears in statistical signal processing no matter of the interpretation imposed. The measurement
problem is therefore a predominantly mathematical issue which is related to the very foundation of
geometry, analysis, probability and other topics. It concerns intensionality that is the manner in which
matemetatics has always applied.[10]

After the Introduction, Section 2 presents the time operator formalism of complex systems.
The concept of ensamble is defined, as well as a link between reversible and irreversible processes.
The measurement hierarchy is elaborated in Section 3, following a paradigm which corresponds to
comensuration of magnitudes by the Euclidean algorithm. It presents a general definition of the
problem in statistical signal processing, whereat an ensemble is related to the distribution density
of a time series. Section 4 considers projective measurements in the hierarchical base, constituting a
measurable space that is the domain of an observable. A hierarchy that has complemented the von
Neumann definition arises form a temporality of the domain.

The main advancement concerns a consistent realization of psychophysical parallelism that is a
principle which Bohr and von Neumann have already pointed out.[11] It is realized due to a change in
representation which is the operator function of time. General measurements are considered in Section
5, whereat self-duality of the Hilbert space has been replaced by duality in frame theory.[12] In that
manner, crossing between states and devices should generalize to an open system whuch is partially
described by the stochastic process.[13]

2. Time and Complexity in the Physical Science

2.1. Time in Quantum Theory

Von Neumann has indicated two fundamentally diverse types of interventions in a system,
the first of which corresponds to a temporal evolution that is reversible and the second one to an
irreversible measurement[11]. He’s been wondered by the fact that the entropy increase follows
the measurement process not representing any temporal evolution, which is totally opposite to
thermodynamics relating the increase of entropy to an evolution in the temporal domain. The reason
for such an odd situation is the fake concept of time in quantum theory which is a classical one,
considering that it is represented by linear parameterization just like in the Newtonian mechanics.[7]
Von Neumann admits an essential weakness of quantum theory, which concerns the fact that it is
non-relativistic whereas spatial coordinates are represented by operators and time is a mere parameter
making the Poincaré symmetry impossible. The time operator, which should be a chief link between
quantum and relativity theories,[14] is substantially related to the measurement problem.

The uncertainty between time and energy has been discussed frequently[15]. In the classical
formulation of quantum theory, however, there is no operator that satisfies the commutator relation (1)
in respect to a Hamiltonian corresponding to the energy of a system. A reason is that the Hamiltonian
governs evolution by the Schrédinger equation of the wave function which is a stationary state, like
orbits in the Newtonian mechanics[7]. The time operator is but definable in the Liouville-von Neumann
mechanics which considers density operators of ensembles. In that regard, there is T implementing
the commutator relation

[T,L] =i 2)
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wherein L is the Liouvillian which governs evolution of density operators by the Liouville equation.
An ensemble is defined by the mapping P — 71(P) which assigns a probability 77(P) to each

projector P, such that 7(0) =07(1) =17 < Ypep P) = Y pep 7(P) for orthogonal constituents of the

sum[16]. According to the Gleason theorem, there is a density operator p that satisfies 77(P) = (p|P),
which should be positive semidefinite p > 0, Hermitian p* = p and unity traced Trp = 1. It follows
p = FF' whereby F is the root operator which is unity normed, considering that Trp = ||F||2.

2.2. Physics of Complex Systems

If p = |f) {f| for a unity normed signal f, the density is coincident to p = |f|? provided that
tracing the operator corresponds to integrating the function since Tr p = (p|1). The projector Pf = cf,
which multiplies signals by a characteristic function, has the probability 7(P) = (p|c) that is an
expected value of the variable c. The Koopman-von Neumann mechanics which has been postulated in
that manner concers evolution of densities and variables due to the action of a one-parameter group G
onto the measurable space that should preserve a probability measure. Variables upon the probability
space evolve by the group of unitary operators U’ : f — f o G' and densities are governed by adjoints
Uttt = U~*. In that instance, there is an infinitesimal generator L such that Ut = ¢'l* wherefrom it
follows the Liouville equation laa—pt = Lp which is governing an evolution of the density[17]. In terms of
the evolutionary group, the commutator relation (2) is equivalent to [T, U] = tU" which comes down
to

[T,U] =U (©)]

supposing the cyclic group generated by U.

If there is an operator T satisfying the commutator relation (3), such a system is termed to be
complex. The time operator formalism of complex systems originated from the Brussels school of
thermodynamics, that was investigating a link between reversible and irreversible processes[7]. It
is realized due to a change in representation A = A(T) that is the operator function of time, which
transfigures the Lie group U'" into a Markov semigroup

W = AUTALE>0 4)

The semigroup (4) indicates irreversibility, since operators W' for t < 0 are not positivity preserving
and therefore not related to the evolution of a density. The change in representation should preserve
the positivity p > 0 = Ap > 0, the trace Tr p = Tr Ap, the uniform density 1 = Al and it should be
invertible at a dense subset. Terms of the change imply that A maps a density into a density without
any information loss[18].

The link between reversible and irreversible processes is substantial for elucidation of the
measurement problem. The evolutionary group U’ has become the semigroup W' for t > 0 due
to a change in representation (4). In that respect, irreversibile evolution corresponds to an increase of
the information entropy which is a measurement characterized by.[7]

3. Wavelets and the Measurement Hierarchy

3.1. Paradigm of the Measurement Process

In the V book of the Elements, Euclid elaborates the doctrine of proportion concerning
commensuration of magnitudes. Due to the Euclidean algorithm, magnitudes 2 < b measure each
other in terms of continued fraction

R — ©

which should indicate a process that takes place step by step over time [6].
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The Euclidean algorithm is regarded to be a paradigmatic measurement. The process corresponds

to a sequence
1

ni + 1
. 1
.+n7

g =

h; . .
whose elements ¢; = ¢ are obtained by the recurrence equation
]
hiv1 =njahj+hj1, kiyr = njak;+kjq

considering the initial condition iy = 0, by = 1, kg = 1, k1 = nj. The difference between successive

elements " L (<1)
. . —1)J

expands the continued fraction (5) in the alternating series

1 (—1)

Ao+ +AE+ - = — e
o ¢ kok1 kikj1

(6)

which is a sparse representation,[19] composing terms from the redundant dictionary %, % -

The expansion (6) corresponds to a binary code wherein 0 is assigned to terms of the dictionary
that do not participate in the series and an alternating value £1 to those that do participate. Such a
representation of the measurement process is highly redundant, since the complete dictionary cannot
be involved in a series. One should therefore eliminate excess zeros, which is realized by coding the
sequence 11, 1y,... The code is composed of alternative 1 values at positions n1, 11 + 1y, ... which
gives rise to the Minkowski function

1 1 1

: N —
1 21’[171 21’!1“1’11271
n
1 + 1’!2+i

that is an automorphism transfiguring the continued fraction into the binary representation. The
process is codified by binary digits of a real number

S——
nq nyp

x=00...01...10...01... @)
N~

whose positions concern its temporality.[9]

In that regard, the measurement is conisdered to be a time series of binary digits which is a general
definition of the problem. Time is related to a scale j of the binary tree whose nodes 0 < 22’§:11 <1
correspond to both states and devices of the measurement process. A step is concerned by the Rényi
map

R<x>—{ o 9srs ®

representing a shift in terms of binary digits. It is self-similarity of the binary tree, which maps both
left and right subtrees to the entire one [6].

3.2. Hierarchical Bases of the Signal Space

The binary structure reflects the hierarchy of the signal space representing the measurement
process. It concerns both states £ and devices A which should be considered in a dual manner [6].
If the signal space X has identified states, the topological dual > = A corresponds to measurement
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devices. Starting from devices A on the other hand, the topological dual A = ¥. concerns measurement
states. These options may differ in more than a conceptual sense: taking the dual of the dual does not
necessarily bring back to the departure. Even if it does, there may be some reasons to favor one of
them since an aspect of the process has been obscured.[13]

A sensible solution should consider signals to be both states and devices concurrently, which leads
to a source-detector interchangeability that is termed crossing in quantum theory [13]. It is a reason
for regarding > = A to be self-dual, which applies to the Hilbert space Lf{ wherein y is the Lebesgue
measure over the unit interval. The hierarchy is reflected by wavelets which concern orthonormal
bases realizing the binary hierarchy.[6] The Haar base is paradigmatically designed by translation and
-1, 0<x<3

1 lex<l in the manner of
77 =

normalized dilatation of the mother wavelet x(x) =
©)

= 2% ysx<iyl
MESIZ 4202, B2 <y <k

implying that basic elements are zero valued almost elsewhere.
Wavelets on the unit interval have arised from those on the real line, which are orthonormal bases

¥ik(x) = 2/2¥ (2x — k)

obtained by translation and normalized dilatation of a mother wavelet ¥. They reappear in the signal
space Lﬁ due to ji(x) = L, ¥;x(x + n), which gives rise to the periodization axiom

ik =10 (10)

and the annihilation as well
j<0=>l[Jj’k=0 11

In that manner, one gets the pyramid ¢ forj > 0and 1 < k < 2/ which is an orthonormal base of
Lﬁ © 1 representing the orthocomplement of constant signals 1. [20] Signals are decomposed in a
hierarchical base due to the resolution of identity

Yy i) (9|

i>0k=1

wherein (-| corresponds to a state and |-) to a device of the measurement process. The translation
axiom

m
Pix(x = 55) = Yigerm (%) (12)
is also satisfied, which means that variables are equally distributed within each scale.

The evolution of wavelets in a measurement process concerns the operator U : f — f o R which

is induced by the Rényi map (8). The evolutionary axiom holds in terms of its adjoint

1
Ut = okl (13)

which comes down to

1 1
Uy = \ﬁl/’jﬂ,k + ﬁlijrl,kJrzf
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Since R is a measure preserving transformation of the unit interval, the operator U preserves
distribution of a variable. The orthogonality implies that variables are decorrelated, since Ey;; =

<1|l/)j,k> =0= EW and

(7, k) # (L m) = Efxpm = (iklgim) = 0 = EPrEp

The absolute square |1p]-,k|2 is a density function as well, which makes the base to generate both states
and devices concurrently.
A step of the measurement hierarchy has corresponded to a scale, which implies the time operator

T= ,-;:_E]f i) (i (14)

that is defined on a dense subset of L’% © 1 [21]. The commutator relation (3) follows immediately from
the evolutionary axiom, considering that

U, Tl = Ut — (= DU g = Uy

3.3. Space of Ensembles

A trouble might occur concerning the generation of an evolutionary group, since the operator
U is not invertible. However, it extends naturally to an invertible operator U, : F +— F o B which is
induced by the baker map

2x, %), 0<ux
B(x/]/) :{ (2x(— 1/2_1/)-;1)/ %<x

that is a measure preserving transformation of the unit square [22]. It is a reason to embed the signal
space Lf, into an extended one Liz = Lfl ® let whereat %> = y ® p is the product measure.[6]

1
<3
o1 (15)

The space of ensembles Liz = A ® X is regarded to be a tensor product of devices and states. The
resolution of identity gives rise to a decomposition

F=11)(Al+}, i \¢f/k> <fo’<‘

j>0k=1

wherein (A| = (1|F is the approximation coefficient and <Dj,k’ = <1pj,k|F are detail coefficients at a
certain scale of the measurement hierarchy. One implies the matrix multiplication

FiB(x,y) = / Fi(x, ) Es(t, y)dt

The time operator T), of the system evolving by U, has been explicitly constructed [16]. Its
projection onto the signal space Li concerns the hierarchy of the Haar base (9). The time operator

= ‘lpj,k> (Yrm
which transforms the Haar base to the other one. It corresponds to the system whose evolution is
governed by U = CU,C" that is also an extension of the evolutionary operator U, which is a reason to
be denoted in the same manner.

One defines the density opeartor of an ensemble p = FF', whereupon the root F should be
unity normed. The density evolves by an adjoint of $lp = (UF)(UF)*, which is the superoperator

of any wavelets (14) is obtained through conjugation T = CT,C' by C : ‘ )(]',k> (XLm
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Ufp = UTpU. The time operator T that concerns the evolution by U is relevant to $l as well, considering
that the commutator relation (3) is satisfied

T,40p = [T, U]pU" = tip

It induces a change in representation A = A(T) which should transfigure the evolutionary group
generated by U' to a semigroup (4) generated by

wt = AUTA! (16)

4. Orthonormal Wavelets and Projective Measurements

4.1. Measurement in the Hierarchical Base

The von Neumann measurement corresponds to a complete set of orthogonal projectors in the
Hilbert space. Considering the paradigmatic measurement, one should suppose a hierarchy that is
realized by the time series of binary digits. It is a reason to represent orthonormal wavelets ¥;; in

, which concerns an embedment of Li © 1 into (Lf, o1)2

terms of projectors Pjx = ‘l[)]',k> <¢j,k

Projectors constitute the Boolean algebra which is isomorphic to an algebra of sets due to the
Stone representation theorem. It is the measurable space corresponding to devices which an observable
has been defined upon.[10] A measurement state on the other hand corresponds to a density p = FF'
which is defined upon the same domain. One concludes that it should commute with each of projectors
which comes down to the requirement p = }_;x P; xoP;j . In that manner, a density reduces to the
subspace of commutative operators

Mo =Y PipPix =Y IDjyl*Pix
iF [

and the measurement problem concerns the issue of how such a reduction has taken place.

It is obvious that the problem occurs only if the measurable space has not accorded to the state. If
one measures a density itself, there is no reduction since devices are generated by eigenprojectors P]-O,k
of the density operator. Such a measurement

— — 2
Mp = Zpﬁkppﬁk = Z ”D}),kH P]q,k
ik ik
is termed to be optimal, considering that the density operator p = M°p is an invariance of the process.

2 2
‘/’]C",k> <D]C.’,k‘ of an ensemble from (Ly © 1), one

obtains 0 = Yj 1 ‘¢f,k> <D]C",k|D?,m> <1pl°m‘ as well as M%p = Y ;¢ |Dﬁk 2 ‘4’;",k> <¢]q,k
(j k) # (IL.m) = <D]0 | Dy m> = 0, meaning that detail coefficients are decorrelated in the optimal

Starting from the decomposition F = }_;;

. It follows that

base.[9,10] In respect to another base 1 ,,, that is suboptimal, the same ensemble is decomposed by

coefficients
(Dim| = Z<lpl,m|lp;‘),k> < ik

jk

Since basic elements 7, and ¢y, are almost entirely supported by domains [kz;]l, 2—"]] and [, 5]

respectively, values <1[J[,m IP;?k> are negligible if these segments do not intersect. It follows an

approximate decorrelation of the ensemble, which implies that correlation between detail coefficients
predominantly concerns inheritance along branches of the binary tree.

The wavelet domain hidden Markov model which is obtained like that has been proven
tremendously useful in a variety of applications, including speech recognition and artificial intelligence
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[26]. The model is based upon approximate decorrelation of detail coefficients D = (Dj,k) . Correlation

is transmitted only through the Markovian tree of hidden variables § = (S j,k) which have attributed
to each node and out of such an interdeptitide the ensemble is considered decorrelated. The conditional
distibution D|S is supposed to be normal, which implies that D;|S;x are independent variables.

4.2. Psychophysical Parallelism

The projective measurement M = };M; has temporally decomposed into the sum of
superprojectors 9M; = ) P, x, whereby each B;p = P;pP;x is superprojection onto the ensemble

Pip= ’¢j,k> <1,b]«,k‘. If one defines UP = LPUT, it holds for j > 1

1/2 i
U — 2 ’¢j71,k> <¢jfl,k(x)‘ Ja/2 F(x, t)Ft (t,y)dt ’¢jfl,k(y)> <l/"jfl,k , k<21
ke = 1 i
2 ‘¢j—1,k—2f*1> <1/Jj—1,k—2f*1(x)‘ Ji2 F(x,t)F'(t,y)dt ‘lpj_l,k_zj—l (y)> <1/Jj_1,k_2]‘,1 L k>2-1
In that respect,
UM =U" Y B+ U Y Pk = L2k =2
k<2i-1 k>2i-1 k
and since U/ is unitary
M; = 2UM;_q = 2UMy = WMo (17)

which relates all superprojectors to the primary measurement Mpp = PypPp.

The evolutionary operator U that maps a scale of the measurement hierarchy to the next one is
extended to the space of ensembles A ® X due to the baker map (15). It crosses information between
coordinates of the domain in such a manner that the first binary digit of one, which has been lost by the
Rényi map, becomes the first digit of another. The induced operator should cross spaial components,

which is evident in the relation U, |x) (1| = |1) (x| and likewise for other wavelets. Considering
identifications |-) < |-) (1] and (-| < |1) (|, the operator has crossed a measurement device into a
state.[6]

The superprojector (17) is factorized into measurement operators 90;0 = M]'pM]J.r whereat M;F =

2//2U PyUI F. First of all, it concerns the evolution by U crossing states into devices. Thereafter Py
projects the ensemble onto a primary device, which annihilates all devices out of the measurement
display. Finally, the evolution by U crosses devices into states. Supposing the measurement hierarchy
that is reflected by the Haar base, the primary device corresponds to the ensemble xo = |x) (1| which
produces by the evolution x; = U xo the base of ensembles [Tje(j <--<jn) Xj [16]. Each element X7 is

specified by an increasing sequence of integers f = (1 < -+ < ju) and it evolves by Uy X = Xin

wherein j+1 = (j +1 < - - < j, + 1). The measurement operator M; = 2i/ zl,Ichol,I;;r implies the
process Ug: X; =X due to which some states have become devices. The projector Py should fix an
element Xi=Xi o Xin if it is started by the primary device x;, = xo and annihilate it if not, which
means that all devices out of the measurement display come to be annihilated. The terminal step
concerns the evolution Ll;( X7 = Xiyj whereat some devices have become states. In that respect, crossing
between them due to an evolution in the temporal domain is substantial for a hierarchy [6].

The measurement display defines boundary between states and devices, which is arbitrary to
a very large extent. Self-duality of the signal space representing both states and devices concerns
the principle of psychophysical parallelism, as has been noticed by von Neumann [11]. The problem
occurs in that the principle is violated so long as it is not demonstrated that the display has been placed
in an arbitrary manner, which is achieved by crossing due to the evolutionary operator. In that regard,
the evolution of measurement operators corresponds to its displacement by designating another yx; to
be a primary device. Devices of the measurement process are continually crossing into states and the
term psychophysics is used in order to transcend any separation between the two.[6]
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Von Neumann made a reference to Bohr, who was the first to have pointed out that the dual
description of quantum theory relates to the principle of psychophysical parallelism [11]. Although
Bohr never mentioned it in the print, he had adopted Fechner’s psychophysics as taught to him by
Hoffding [23]. The most significant source for phychophysical parallelism is the foreword and the
introduction from the Elements of Psychophysics [24]. Fechner’s attitude is termed the identity view,
since the observer is not to be considered a conglomeration of two substances but one single entity.
The outer psychophysics, which is a link between sensation and stimulation, is realized through the
neuroesthetical computation that relates sensation to neural activity, which is termed by Fechner to be
the inner psychophysics [25].

An important repercussion of von Neumann’s solution to the measurement problem is that the
irreversibility takes place in the presence of the observer’s mind, which seems to play an active role
in the process. The only manner to make such an unpleasant situation compatible to psychophysical
parallelism concerns switching into the inner psychophysics by a change in representation [6]. In
that manner, the inner psychophysics should corresponds to a Markovian tree of the wavelet domain
hidden Markov model.[25]

The irreversibility is actually manifested by the fact that a state before the measurement process
results in the sum of diverse states thereafter. The primary measurement designed by an operator
My = Py is not irreversible in that respect, since it corresponds to the projector onto a single state. The
problem occurs considering that the measurement operator M; = 20724 Py =y 21/ szlk evolves into a
combination of diverse projectors. It concerns the evolution represented by 4 whose irreversibility
comes to prominence due to a change in representation (16). The evolution M;, 1 = \/iﬂMj in terms of
the Markov process 2 becomes M1 = V24 Y 2//2P; = /2, A"QA~112//2P;  and one denotes
Sik = AT/ 2P]',kl—“ =20/2p~ 1 ‘1/)]',,{> <D]~,k‘ which has indicated an irreversible evolution of hidden
variables /220 Y. S ik = Lk Sj+1k- In that manner, the change of representation should transfigure
detail coeffieicnets D = (D, ) into a Markovian tree S = (S; ;).

The outer psychophysical information of an ensemble is independent of orthonormal wavelets,
considering that H(CD) = H(D) + log | det C| = H(D) for any operator C which should be unitary
since it represents a base substitution. The canonical relation H(D) = H(S) + H(D|S) separates the
inner psychophysical information H(S) from an irreducible randomness H(D|S) [25]. The global
entropy H(S) is related to the increase of the local one H(S; ) in the temporal domain corresponding to
the scale of the measurement hierarchy [27]. The optimal decomposition concerns the most significant
increase of the information entropy, which is the measurement process characterized by [11].

5. Frame Wavelets and General Measurements

5.1. Duality in Frame Theory

The concept of frame refers to elements ¢; ; such that

2/
A<Y' Y ‘¢j,k> <1Pj,k’ <B
j>0k=1
for positive numbers A and B which are termed frame bounds [12]. f A = B = 1, ie, 1 =
ik "/Jj,k> <1[J]-,k , such a frame is the Parseval one. It is termed to be frame wavelets on the unit interval if
axioms (10) — (13) hold.
@Tk is a dual frame of ¢; x if the resolution of identity applies

1= L[k (i
ik
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If there is an operator [| such that %vk = [|9; , the frame is canonical dual. Let | be an invertible operator
such that |y;  is the Parseval frame and [ its ajoint. In that regard,

1= Y0 (o] = 007 i) (o[ 1= 17V e ) (e[ = 0010

ik Jik ik

wherefrom it follows that [] is factorized into the product of operators [ and |.
The general measurement Mp = }; Mj,kpM;.rk is characterized by operators M;; satisfying

1=k M]J.rkM]'lk, which means

TeMp =) | MF|* = <F ZM;,ij,kF> = |[F|> =Trp

jik jk
that a density is mapped into a density. In order to elucidate how it relates to the frame concept,
one should consider operators Q;; = ‘Q)ﬁ> <1,b]-,k‘ that meet the resolution of identity 1 = Y x Q) x-

Under the term H@ﬁ” =1, it follows 1 = Y ] ¢j,k> <¢]}k[ = Zj,k}Q}Lij,k[ which has implied that
Qiv[= |vix i | is the measurement operator M, ;. Its evolution requires the Parseval frame |¢;
ikl= ¥j, ji p i’ q i

and the dual one %\; to be wavelets satisfying (10) — (13).

The evolutionary operator U = CU,C" on the space of ensembles is obtained through conjugation
of the natural extension Uy by C : ‘ )(j,k> < Xj,k‘ — ‘@;> <¢j/k [ which transforms the Haar base to the
Parseval frame and the dual one. Crossing devices into states due to the evolution by U concerns
a duality relation & = A. [13] The signal space of the general measurement might not be self-dual,
but it separates into dual spaces generated by ¥, x and ﬁf; respectively of which the first one should
correspond to states and the second one to devices [12].

5.2. Measuring an Open System

According to the Naimark theorem, states of the measurement extend to a direct sum £* = X ¥/
wherein the Parseval frame <l/J]',k [ corresponds to the projection of an orthonormal base {lp]-,k { onto
the subspace X. Likewise, the dual frame concerns measurement devices which are extended to
A* = A® N'. The measurement operator M;y is restriction of the projector Mj*,k =[! %Vk} {lp]-,k {
onto A ® X and in that manner, the projective measurement 91" restricts to the general one 9 by
neglecting an environment which has remained out of the scope [28]. The general measurement is
therefore related to an open system that has been partially described by the stochastic process. Devices
and states might be some subspaces of signals, respecting the duality between them. In that regard,
frames <1Pj,k‘ and ‘ﬁ> are projection of the Riesz base {l,l}j,k’ and its dual ‘ﬁ} = H l/J]-,k} which are
biorthonormal [12].

A practical realization of the Naimark theorem implies a method analogous to heterodyne
detection in communication engineering: the ensemble to be observed combines with another one,
which is termed ancilla [29]. Thereafter, the von Neumann measurement corresponding to projectors
Mj*,k has been performed on the combined space A* ® £* that is the tensor product of states and devices
which are extended by the environment. The amount of information which is obtained in that manner
might be larger than if the observer is restricted to the von Neumann measurements without ancilla.
Optimal measurements are therefore not even close to be just projective ones which correspond to
orthonormal wavelets in statistical signal processing [28].

A frame ¢;; should be optimal for the ensemble from A ® X if the orthonormal base } lp]',k} is
optimal for an ensemble in the combined space A* @ X*. One assumes F =}, ; ‘@ﬁ> <D]U k‘ wherein

1/,1;.’,,( is the optimal frame. Detail coefficients correspond to those of F* =}, x {_11,?;?;{} <D;-’,k in the base
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ik
respect, general measurements spread the optimal decomposition to some ensembles which cannot
be decorrelated in a hierarchical base but which has restricted to the frame providing a hierarchy of
devices and states.

{—17} = } ;7 k} which is orthonormal, though it might not imply any hierarchy (10) — (13). In that

6. Conclusion

The measurement problem is formulated in terms of mathematical physics, notwithstanding
any interpretation of physical theories. The significance of time for its elaboration has explicated a
substantial relation between signals and stochastic processes, which is the definition of statistical signal
processing. A paradigmatic measurement concerns commensuration of magnitudes by the Euclidean
algoritm producing a time series of binary digits. It constitutes the hierarchy of the binary tree whose
nodes correspond to both states amd devices of the measurement process.

The time operator formalism of complex systems which has proposed a unification of reversible
and irreversible processes relates the problem in respect to its definition that was postulated by von
Neumann. He’s indicated two fundamentally diverse types of interventions in a system, the first of
which corresponds to a temporal evolution that is reversible and the second one to an irreversible
measurement. The main advancement concerns a formulation of the measurement process in terms of
a temporal evolution, whereat irreversibility has occured due to the change in representation switching
from outer to inner psychophysics. The principle of psychophysical parallelism that was pointed out
by Bohr and von Neumann should consistently realize in that manner.

The optimal measurement corresponds to the most significant increase of the information entropy
in the temporal domain. It has implied decorrelation of the ensemble, which is a consequence of its
invariance under the process. Generalization to an open system is performed by the use of duality in
frame theory, spreading the optimal decomposition to some ensembles which cannot be decorrelated
in a hierarchical base.
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