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Abstract: In recent years, semantic communication has received significant attention from both

academia and industry, driven by the growing demands for ultra-low latency and high-throughput

capabilities in emerging intelligent services. Nonetheless, a comprehensive and effective theoretical

framework for semantic communication has yet to be established. In particular, finding the

fundamental limits of semantic communication, exploring the capabilities of semantic-aware

networks, or utilizing theoretical guidance for deep learning in semantic communication are very

important yet still unresolved issues. In general, the mathematical theory of semantic communication

and the mathematical representation of semantics are referred to as semantic information theory.

In this paper, we introduce the pertinent advancements in semantic information theory. Grounded

in the foundational work of Claude Shannon, we present the latest developments in semantic

entropy, semantic rate-distortion, and semantic channel capacity. Additionally, we analyze some

open problems in semantic information measurement and semantic coding, providing a theoretical

basis for the design of a semantic communication system. Furthermore, we carefully review

several mathematical theories and tools and evaluate their applicability in the context of semantic

communication. Finally, we shed light on the challenges encountered in both semantic communication

and semantic information theory.

Keywords: semantic information theory; semantic communication; semantic distortion; 6G;

goal-oriented communications; joint source-channel coding; deep learning; information bottleneck

1. Introduction

In recent years, the rapid development of wireless communications and the increasing demand

for intelligent processing have given rise to remarkable growth in various emerging intelligent services.

However, this surge has brought new challenges to communication and computing technology.

On the one hand, the success of these emerging intelligent businesses, such as the industrial Internet,

virtual/augmented/mixed reality, metaverse, and holographic communications, heavily relies on

training large foundational models with extensive datasets. The substantial traffic generated by these

new applications has the potential to overload existing communication networks. Consequently, it

is crucial for the communication infrastructure to integrate intelligence, ensuring the efficient and

organized handling of traffic in a timely manner. It seems that artificial intelligence technology will

trigger and push the rapid developments of semantic information theory in the new era. On the other

hand, these intelligent services require extremely low end-to-end latency. For instance, in the realm

of autonomous driving, vehicles depend on near-instantaneous data exchange to make split-second

decisions, thereby avoiding potential traffic accidents. Similarly, in the context of remote surgery

systems, the timely update of surgical tool positions is necessary to ensure the safety and precision of

medical procedures. As a result, communication technology must take into account the relevance and
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urgency of traffic, enabling the swift and reliable extraction and delivery of task-related information.

This paradigm shift highlights the importance of the evolution of communication network architecture,

shifting from a singular emphasis on high-speed symbol transmission to a prioritization of high-quality

semantic exchange [1–3].

Semantic communication is a novel architecture that seamlessly integrates tasks and user

requirements into the communication process, which is expected to greatly improve communication

efficiency and user experience. It emphasizes the efficient exchange of semantics and the clear

communication of meaning. Furthermore, this innovative paradigm has the potential to fundamentally

address the complex compatibility issues that have plagued traditional data-based communication

systems, including challenges spanning cross-system, cross-protocol, and cross-network domains.

Around 70 years ago, Weaver [4] categorized communications into three levels:

• Level A: How accurately can the symbols of communication be transmitted? (The technical

problem.)
• Level B: How precisely do the transmitted symbols convey the desired meaning? (The semantic

problem.)
• Level C: How effectively does the received meaning affect conduct in the desired way? (The

effectiveness problem.)

Figure 1 illustrates a visual representation of the three-level communication architecture and

its underlying mechanism. The communication framework comprises three distinct levels of

communication, along with theories and methodologies related to information theory and semantic

information theory. At the technical level, a sender transmits a technical message to a receiver through

physical channels, thereby introducing technical noise. The primary objective at this level is for the

receiver to accurately recover the technical message from the symbols that have been subjected to

interference. Moving on to the semantic level, the sender leverages both local and shared knowledge

to encode semantics oriented for specific tasks and scenarios. Likewise, the semantic receiver utilizes

the knowledge to perform semantic decoding, thereby facilitating the transmission of semantics, which

will greatly help to speed up the completion of tasks, or implementation of particular targets. At the

effectiveness layer, the concern is whether the received semantics affect conduct as expected in the

desired way.

Source effectiveness factors Destination

Shared 

konwledges
Semantic 

Receiver

Local 

knowledge

Semantic

Noise

C: Effectiveness

Transmitter

Technical Noise

Receiver

B: Semantic

Semantic 

Transmitter

A: Technical

Local 

knowledge

Intended message

Expressed message

Technical

message

Physical Channel
Probability 

Theory
Statistics

Information 

Bottleneck

Age of 

Information

Knowledge 

Graph

Side 

Information

Joint Source Channel Coding

Shannon 

Information Theory

Semantic 

Information Theory

Figure 1. A three-level communication architecture. This includes the technical problem, semantic

problem, and effectiveness problem of communication, as well as the mathematical foundation behind

Shannon’s information theory and semantic information theory.

Moving from the bottom to the top of Figure 1, one encounters the technical layer, semantic

layer, and effectiveness layer of communication. From the technical layer to the semantic layer,

the goal of communication shifts from the accurate transmission of data to the effective exchange of
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semantics embedded in data. These evolving communication goals necessitate corresponding changes

in mathematical theory. The classic Shannon’s information theory, rooted in probability and statistics,

primarily addresses the technical layer’s concerns, such as data compression and the communication

transmission rate. However, it falls short when applied to the semantic layer since it disregards the

semantics of data information and fails to account for crucial semantic factors, such as task relevance,

time constraints, and urgency.

In general, the mathematical theory of semantic communication and the mathematical

representation of semantics can be attributed to the problem of semantic information theory. Shannon’s

information theory primarily relies on tools derived from probability theory and statistics. In contrast,

semantic information theory extends its toolkit beyond these fundamentals, incorporating additional

methods, such as information bottleneck (IB) and age of information (AoI) to conduct comprehensive

research, while the knowledge bases of tasks related will be involved by artificial intelligent tools.

Although a recognized and unified theoretical framework for semantic information theory is currently

absent, there has been a notable surge in research activities within both academia and industry in recent

years. These endeavors have generated a need for the systematic organization and summarization of

existing research findings, which can serve as a catalyst for further exploration and advancement in

the field of semantic information theory.

Several reviews have introduced the realm of semantic communication. In [5–13], they have

primarily centered on aspects related to systems, algorithms, and architectures, as well as their

connections with deep learning (DL). This article takes a distinctive perspective by focusing on

the theoretical dimension—specifically, semantic information theory. From this point, we aim to

comprehensively review and examine recent advancements and to chart the future directions of

semantic information theory. Grounded in the foundational work of Claude Shannon, we present

the latest developments in semantic entropy, semantic rate-distortion, and semantic channel capacity.

Moreover, we establish connections between semantic information theory and Shannon’s information

theory, with a primary focus on some core concepts of semantic information theory. Furthermore, we

introduce various mathematical theories and tools, including concepts like the AoI and IB, which hold

significant potential to propel semantic information theory forward.

The rest of this article is structured as follows: Section 2 provides an introduction to semantics and

semantic communication. Sections 3–5 constitute an in-depth exploration of the fundamental concepts

within semantic information theory. These sections cover essential topics, including semantic entropy,

semantic rate-distortion, and semantic channel capacity. In Section 6, we introduce the mathematical

theories and tools that are relevant to the domain of semantic communication. Section 7 discusses the

potential challenges that may arise during the development of semantic communication and semantic

information theory. Finally, we conclude the paper in Section 8.

2. Semantic Communication

Although this paper serves as a summary of the latest research advancements in semantic

information theory, it is necessary to establish an intuitive understanding of semantics and semantic

communication before considering the theoretical part. In this section, we present a brief introduction

to semantic communication and introduce a general semantic communication system.

2.1. What Is Semantic Communication?

Semantic communication serves distinct motivations and purposes compared to traditional digital

communication. In Shannon’s landmark 1948 paper, Shannon [14] stated that

The fundamental problem of communication is that of reproducing at one point either exactly or

approximately a message selected at another point.

While Weaver [4] emphasized that
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The semantic problems are concerned with the interpretation of meaning by the receiver, as compared

with the intended meaning of the sender.

These two statements correspond to different levels of communication. Shannon’s sentence

addresses the technical layer, specifically digital communication, while Weaver’s sentence focuses on

the semantic layer, namely, semantic communication. By comparing these two statements, we can find

that the objective of semantic communication is not to replicate the transmitted messages, whether

exact or approximate, but rather to convey their interpretations accurately. For example, consider the

following conversation:

Alice: “Do you like bananas?”

Bob: “No, I hate eating any fruit.”

In this conversation, Alice serves as a semantic sender while Bob assumes the role of a semantic

receiver. Bob is able to interpret the meanings of the received message and relate it to his existing

vocabulary. He knows that “hate” is an antonym of “like”, and “banana” falls under the category of

“fruit”. Consequently, he can infer that “hate eating any fruit” implies “do not like bananas”, despite

the fact that the two statements have distinct syntactical structures [15]. Now, consider a conversation

between three persons:

Alice: “Bob, does Carol like bananas?”

Bob: “Carol, if you enjoy bananas?”

Carol: “No, I do not enjoy any fruit.”

In this context, Bob acts as a semantic channel between Alice and Carol. While Bob may not

precisely replicate Alice’s original message, he adeptly retains its intended meaning. While assessing

the success of communication in a purely literal sense, there might be an engineering failure. However,

there is no failure at the semantic level.

From these two examples, we can see that the objective of semantic communication lies in the

effective exchange of semantics. In other words, whether the meaning carried by the symbol can be

understood by the receiver. This model of communication capitalizes on the participants’ perception

of the world and their responses to various concepts, thereby giving symbols a deeper and more

abstract connotation. In summary, semantic communication is not to reproduce, but to convey after

understanding. In the aforementioned examples, semantics is explored within a conversational context.

Over 70 years of development, the concept of semantics has evolved beyond its initial confines within

language. It now extends its reach into diverse dimensions, encompassing images, videos, audio,

and more. Semantics has become intricately connected to specific scenarios and tasks, and is adept at

extracting features that align more closely with the requirements of the specific task.

2.2. What Is a Semantic Communication System?

In general, current semantic communication systems are constructed upon digital communication

frameworks. In other words, these systems still depend on the physical channel to transmit specific

symbols and are not entirely detached from Shannon’s paradigm, which is consistent with Weaver’s

viewpoint. A semantic communication system usually comprises the following key components [7]:

• Semantic Encoder: This component is responsible for detecting and extracting the semantic

content from the source message. It may also compress or eliminate irrelevant information to

enhance efficiency.
• Channel Encoder: The role of the channel encoder is to encode and modulate the semantic

features of the message as signals to combat any noise or interference that may occur during

transmission.
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• Channel Decoder: Upon receiving the signal, the channel decoder demodulates and decodes it,

recovering the transmitted semantic features.
• Semantic Decoder: The semantic decoder interprets the information sent by the source and

converts the received signal features into a format that is comprehensible to the destination user.
• Knowledge Base: The knowledge base serves as a foundation for the semantic encoder and

decoder, enabling them to understand and infer semantic information accurately and effectively.

In general, a semantic communication system includes the five mentioned components, with the

flexibility to add more as required for specific tasks. Figure 2 illustrates a general semantic

communication architecture for the transmission task of image recognition. Rather than transmitting

bit sequences that represent the entire image, the semantic transmitter in this architecture extracts

only the features crucial for recognizing the object—in this case, a dog—from the source. Irrelevant

information, like the image background, is intentionally omitted to minimize the transmitted data

while maintaining performance quality [5]. In this model, the knowledge base empowers the semantic

encoder and decoder to generate and reconstruct semantics related to image recognition, respectively.

Knowledge Base

Semantic 

Encoding

Channel

Encoding

Physical

Channel

Channel

Decoding

Semantic 

Decoding

Dog

Figure 2. A general semantic communication architecture [5]. It is oriented to the image recognition

task and only transmits task-relevant feature content.

In summary, a semantic communication system is not a hypothetical concept but is built on

a digital communication system, as it relies on physical channels to transmit essential symbols.

The information carried by symbols results from the empowerment of the knowledge base. In the

following section, we introduce several important concepts and theorems within semantic information

theory, while also highlighting its distinctions from classical information theory.

3. Semantic Entropy

Entropy, which measures the uncertainty of a random variable, constitutes a fundamental concept

in Shannon’s information theory. Likewise, the quantification of semantic information forms the

cornerstone of semantic information theory, referred to as semantic entropy. Semantic entropy serves

as a metric for quantifying semantic uncertainty or the amount of semantic information. However,

formulating an intuitive and universally applicable mathematical description of semantic entropy

remains a formidable task. On the one hand, the semantic connotation is elusive to define and

quantify. On the other hand, the generation mechanisms and processes of semantics remain obscure [3,

8,16]. In this section, we introduce the essence of semantics and examine various definitions of

semantic entropy.

3.1. Statistical and Logical Probability

Let X be a discrete random variable with alphabet X and probability mass function p(x) ≙ Pr{X ≙
x}, x ∈ X . In Shannon’s information theory, the entropy H(X) of a discrete random variable X is

defined by

H(X) ≙ − ∑
x∈X

p(x) log p(x). (1)
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In Equation (1), p(x) is the statistical probability of x, reflecting its frequency information.

However, statistical probability is no longer the exclusive mathematical tool of choice for semantic

communication. In general, probability includes two aspects, one is about logical probability and the

other is about statistical probability [17].

• Logical Probability: Logical probability pertains to the degree of confirmation of a hypothesis

with respect to an evidence statement, such as an observation report. A sentence regarding this

concept relies on logical analysis rather than the direct observation of facts.
• Statistical Probability: Statistical probability refers to the relative frequency (in the long run) of

one property of events or things with respect to another. A sentence concerning this concept is

grounded in factual and empirical observations.

Shannon chose statistical probability as the mathematical foundation of information theory due

to its ability to leverage principles from probability theory and stochastic processes. Through the

application of the law of large numbers, Shannon can derive an asymptotic equipartition property,

paving the way for the derivation of several key theorems in information theory. Nonetheless,

when it comes to semantic entropy, there is no widely accepted consensus on whether to employ

statistical probability or logical probability. In the following discussion, we will see that semantic

entropy was initially formulated using logical probability and subsequently evolved into various

distinct formulations.

3.2. Semantic Entropy

Semantic information represents the semantic features carried by a message or symbol within

specific scenarios and tasks. It is tailored to particular contexts. Semantic entropy serves as a tool

for quantifying semantic information including feature representation and knowledge distillation.

Consequently, semantic entropy can be computed, manipulated, and compared for analytical purposes.

Semantic entropy originates from the analysis of natural language. In 1952, Carnap and Bar-Hillel [18]

proposed the concept of semantic entropy as a means to quantify the amount of semantic information

conveyed by a sentence. This concept aimed to assess the depth of meaning within a sentence,

capturing its richness in conveying information. Let m(e) be the logical probability of event e, which

signifies the likelihood that the sentence holds true in all possible situations. Then, the semantic

entropy Hs(e) is defined by

Hs(e) ≙ − log m(e). (2)

It is evident that the higher the logical probability of a sentence, the lower the semantic

entropy. However, this gives rise to a paradox. Any statement that contradicts itself will possess

an infinite amount of semantic information, such as Hs(e, ¬e) (“¬e” represents the counter-event or

complementary event of “e”), which becomes infinite.

In 2004, Floridi [19] proposed the strong semantic information theory, which resolved this

paradox by utilizing the distance from actual events to represent the quantity of information. In 2011,

D’Alfonso [20] provided a quantitative description of semantic information based on truthlikeness.

Both Floridi and D’Alfonso measured the semantic information of a particular event relative to a

reference event, yielding a value ranging from 0 to 1. However, these measurements heavily depend on

the existence of reference events. Without a reference event, it becomes impossible for them to quantify

the semantic entropy. Essentially, their work provides a measure of semantic similarity between two

sentences, rather than a gauge of semantic uncertainty or informativeness. In alignment with Carnap’s

definition, several works have enriched and provided a more specific representation of semantic

entropy by extending the connotation of m(e) [21]. In 2011, Bao [15] used propositional logic to expand

the representation of m(e). For a message (sentence) e, let We be the set of its models, i.e., worlds in

which x is “true”, Wx ≙ {w ∈ W∣w ⊢ x} (⊢ is the logical entailment relation). Let µ(w) be the statistical

probability of model w. Then, the logical probability of e is
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m(e) ≙
µ(We)
µ(W)

≙
∑w∈W,w⊢e µ(w)

∑w∈W µ(w)
. (3)

Equation (3) shows that what matters is the total probability of the sentence model, not the

model set’s cardinality. With the development of technologies such as artificial intelligence, scholars

have a new understanding of semantics. The scope of semantics is no longer limited to sentences

but also has new connotations in images, videos, audio, etc., especially for feature representations

based on knowledge bases. Semantics is oriented to specific scenarios, extracting features that align

more seamlessly with the demands of the present task. In addition to the aforementioned research for

sentences, we classify the work on semantic entropy into several distinct categories. Moreover, some

of these methods are not limited to probability theory, attempting to define semantic entropy using

other mathematical theories.

(1) Task-oriented: The meaning and mechanism of semantic entropy should have various

representations to suit different tasks. Chattopadhyay et al. [22] proposed the quantification of

task-related semantic entropy, defined as the minimum number of semantic queries about data X

required to solve the task V. It can be expressed as

Hs(X; V) ≜ min
E

E∥∣CodeE
Q(X)∣∥, (4)

where CodeE
Q(x) represents the query vector extracted from x using semantic encoder E.

For translation tasks, Melamed [23] proposed a method to measure the semantic entropy of words

in a text. Specifically, let w represent a given word, the semantic entropy can be expressed as

Hs(w) ≙ H(T∣w)+ N(w) ≙ ∑
t∈T

p(t∣w) log p(t∣w)+ p(Null∣w) log F(w). (5)

Among these components, p(t∣w) is the statistical transition probability, H(T∣w) represents the

translation inconsistency, signifying the uncertainty when translating a word, where T represents the

set of target words. N(w) reflects the impact of empty links for word w, indicating the likelihood of

encountering translation difficulties between languages. F(w) represents the frequency of word w,

and p(Null∣w) is the probability of encountering problems when translating w.

For classification tasks, Liu et al. [24] introduced the concepts of matching degree and membership

degree to define semantic entropy. Membership degree, a concept from fuzzy set theory [25], is

challenging to express analytically. It is generally given based on experience. If we denote µς(x) as the

membership degree of each x ∈ X, then for a specific category Cj, the matching degree is defined as

Dj(ς) ≙
∑x∈XCj

µς(x)

∑x∈X µς(x)
. (6)

For category Cj, its semantic entropy is defined as HCj
(ς) ≙ −Dj(ς) log Dj(ς). To obtain the overall

semantic entropy for X, one can sum the semantic entropy contributions from all categories, which is

expressed as

Hs(ς) ≙ ∑
j

HCj
(ς). (7)

(2) Knowledge-based: Semantics involves the comprehension of symbols, and knowledge plays a

crucial role in the process of semantic encoding and representation. Choi et al. [26] explored the

semantic entropy of a sentence from the perspective of knowledge bases using logical probability.

Let the knowledge base be denoted as K. Let m∥K ⊢ e∥ be the probability that e is true relative to
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the knowledge base K, which can be simplified as me. Then, the semantic entropy of e relative to

K is calculated as:

Hs(e) ≙ −me log me + (1−me) log(1−me), (8)

which quantifies the semantic entropy of e with respect to the knowledge base K.

Moreover, expansion has the capability to amalgamate simple elements into complex systems,

potentially leading to the emergence of intelligence. In the realm of human language, sentences

are constructed from components such as subjects, predicates, objects, and attributive complements,

enabling the expression of profound meanings that single words cannot convey. Xin and Fan [27,28]

advocated for the extensibility of semantics, emphasizing that the representation of semantic entropy

should encompass the notion of expansion. As semantics expand, knowledge often involves collisions.

This can be likened to the phenomenon where as a country expands its territory, armed conflicts may

arise. Semantics is a product born from the interaction between knowledge and signals. For instance,

while “Apple Inc.” falls under the category of a business company, and “fifteenth” is a numerical

concept, their collision can give rise to a new word—“iPhone”—signifying a mobile communication

product. Let X1 and X2 denote signals, and let K1
A and K2

A represent two instances of knowledge. Let

T and T̂ be the semantics of the transmitter and receiver, respectively. Then, one step of the expansion

architecture of semantic communication is described:

X
(a)
Ð→ X̂

⇑ ⇓

T ← X1 ⊕X2 X̂1 ⊕ X̂2 → T̂

↑ (c) ↑ (d)

K1
A ⊙K2

A

(b)
⇢ K1

B ⊙K2
B

(9)

where (a) is the explicit channel, (b) is the implicit channel, and (c) and (d) are the semantic encoding

and decoding, respectively. The semantic entropy can be expressed as Hs(X1 ⊕X2, K1
A ⊗K2

A), where ⊕
denotes expansion and ⊗ represents collision.

(3) Context-related: The forms of derivation for semantic entropy also vary depending on the specific

context. Kountouris and Pappas [8] defined a context-dependent entropy as

HS(P) ≙ − ∑
x∈X

φ(x)P(x) log P(x), (10)

where P is a statistical probability mass function on a discrete set X . Additionally,

φ(⋅) is a function that weights the different outcomes with respect to their utility for a

specific goal. Moreover, Kowlchinsky and Wolpert [29] defined semantic information as

grammatical information that describes the relationship between a system and its environment.

Venhuizen et al. [30] derived semantic entropy from a language understanding model grounded

in background knowledge. Lu [31] introduced general information theory and employed concepts

such as the Bayesian formula, logical probability, and fuzzy sets to mathematically describe

semantic information.

4. Semantic Rate Distortion

In the communication process, achieving a perfect performance is not always possible. It is

conceivable for the receiver to obtain symbols that do not align with those sent by the sender.

Additionally, describing an arbitrary real number necessitates an infinite number of bits. Therefore,

representing a continuous random variable with a finite representation can never be flawless.

To approach this question appropriately, it is necessary to establish the quality of a source’s

representation. This is achieved by defining a distortion measure, which serves as a metric for
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evaluating the disparity between the random variable and its representation. In Shannon’s information

theory, rate-distortion theory addresses the coding problem of continuous random variables or vectors

in the presence of distortion [32].

If we possess a source capable of generating a sequence X1, X2, . . . , Xn, i.i.d. ∼ p(x), x ∈ X . The encoder

describes the source sequence Xn by an index fn(Xn) ∈ {1,2, . . . , 2nR}. The decoder represents Xn by

an estimate X̂n ∈ X̂ n. A distortion function, or distortion measure, is a mathematical mapping denoted

as d ∶ X × X̂ → R+. It operates on pairs of elements, each drawn from the source alphabet X and the

reproduction alphabet X̂ , and produces non-negative real numbers as its output. The distortion, denoted as

d(x, x̂), quantifies the cost associated with representing the symbol x using the symbol x̂. When considering

sequences, such as xn and x̂n, the distortion d(xn, x̂n) is calculated as the average per-symbol distortion

across the elements of the sequence. Based on this, one can define the rate-distortion function.

Definition 1. The rate-distortion function for a source X ∼ p(x) and distortion measure d(x, x̂) is

R(D) ≙ min
p(x̂∣x)

I(X; X̂), (11)

where the minimization is over all conditional contributions p(x̂∣x) for which the joint distribution p(x, x̂) ≙
p(x)p(x̂∣x) satisfies the expected distortion constraint E(d(X, X̂)) ≤ D.

The value R(D) represents the infimum of rates R achievable for a given distortion D. Building

upon the foundation of the rate-distortion function, Shannon subsequently derived the influential

rate-distortion theorem.

Theorem 1. (Rate-distortion theorem) If R > R(D), there exists a sequence of codes X̂n(Xn) with the number

of codewords ∣X̂n(⋅)∣ ≤ 2nR and E d(Xn, X̂n(Xn))→ D. If R ≤ R(D), no such codes exist.

The rate-distortion theorem addresses two fundamental results regarding distortions: Firstly,

given a source distribution and a distortion measure, it determines the minimum expected distortion

achievable at a specific rate. Secondly, it establishes the minimum rate description required to achieve a

particular distortion. In this section, we introduce the semantic level of rate-distortion theory, drawing

upon Shannon’s foundation work. We explore topics such as semantic mismatch, the semantic

rate-distortion theorem, and semantic coding.

In the field of semantic information theory, the exploration of semantic rate-distortion holds

significant importance. In related studies, two distortion measurement functions, namely, semantic

distortion and symbol distortion, are commonly employed to assess the effects of coding on

communication quality. Utilizing established semantic evaluation criteria, defining and implementing

semantic rate-distortion becomes more accessible when compared to the complexities of semantic

entropy and semantic channel capacity. Next, we first introduce the semantic mismatch evaluation

criteria for various objects.

4.1. Metrics for Semantic Mismatch

In general, the quality of semantic communication diverges from the traditional measure of the bit

error rate (BER) and the symbol error rate (SER) commonly used in digital communication. Semantic

communication often employs metrics capable of assessing semantic similarity, which aligns more

closely with human perception. Furthermore, there is no universal metric for semantic mismatch.

One-size-fits-all is unrealistic and impossible in semantic communication. It generally adapts to specific

tasks for information sources. In this work, we will concentrate on a select set of representative metrics.

We begin by introducing the performance metrics employed in contemporary semantic communication

systems for images, text, and audio, respectively.
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(1) Image: The measurement of similarity between two images, denoted as A and B, is expressed as

follows:

L(A, B) ≙ ∥ f (A) − f (B)∥22, (12)

where f (⋅) represents the image embedding function, which maps an image to a point in

Euclidean space, as outlined in [5]. While the peak signal-to-noise ratio (PSNR) and the structural

similarity index (SSIM) serve as common image metrics, it is necessary to note that these

metrics primarily operate at the per-pixel level, failing to capture differences in semantics and

human perception.

DL-based image similarity metrics have the capacity to capture semantics to a certain extent.

Johnson et al. [33] introduced two concepts known as perceptual loss functions, which enable the

measurement of high-level perceptual and semantic distinctions between images. These perceptual

loss functions are constructed using a loss network denoted as ϕ, which is pre-trained for image

classification. It is worth noting that these perceptual loss functions themselves are deep convolutional

neural networks. The perceptual loss functions consist of a feature reconstruction loss and a style

reconstruction loss. Let ϕj(A) be the activations of the j-th layer of the network ϕ when processing the

image A, and let L represent the shape. Then, the feature reconstruction loss is the Euclidean distance

between feature representations:

Lfeat(A, B) ≙
1

L
∥ϕ(A) − ϕ(B)∥22. (13)

The style reconstruction loss is responsible for capturing the stylistic characteristic of images. It

is defined as the squared Frobenius norm of the difference between the Gram matrices, G
ϕ

l
, of two

images, and it is expressed as follows:

Lstyle(A, B) ≙ ∥Gϕ

l
(A) −G

ϕ

l
(B)∥2F. (14)

Deep features have proven to be highly effective in semantic tasks and serve as robust models for

understanding human perceptual behavior. Notably, Zhang et al. [34] conducted a comprehensive

evaluation of deep features across various architectural designs and tasks. Their research compared

these deep features with traditional metrics, and the results demonstrated a significant superiority of

deep features. They outperformed previous metrics by substantial margins, particularly on a newly

introduced dataset focused on human perceptual similarity judgments.

In a related development, Wang et al. [35] proposed a deep ranking model designed to learn

fine-grained image similarity models. It utilizes a triplet-based hinge loss ranking function to

characterize fine-grained image similarity relationships. It also incorporates a multiscale neural

network architecture capable of capturing both global visual properties and image semantics.

Additionally, in 2023, Zhu et al. [36] proposed ViTScore, a novel semantic similarity evaluation

metric for images. ViTScore relies on the pre-trained image model ViT (Vision Transformer) and

represents a cutting-edge approach to assessing semantic similarity in the context of images.

(2) Text: In the context of text transmission, conventional metrics, such as the word-error rate (WER),

often struggle to effectively address semantic tasks, as pointed out by Farsad et al. [37]. In

response to this challenge, several metrics based on semantics have been proposed to reflect the

dissimilarity of word meanings, such as the semantic error measure [38]. Specifically, the bilingual

evaluation understudy (BLEU) metric, initially designed for machine translation evaluations by

Papineni et al. [39], has found utility in the domain of semantic communication. BLEU assesses
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the quality of semantic communication as follows: Let la and lb represent the word lengths of

sentences a and b, respectively, then the BLEU score is defined by

log BLEU ≙ min(1−
la

lb
, 0) +

N

∑
n≙1

wn log pn, (15)

where wn is the weight of the n-grams, and pn denotes the n-grams score, which is defined as

pn ≙
∑k min(Ck(ŝ, Ck(s)))
∑k min(Ck(ŝ))

, (16)

where Ck(⋅) is the frequency count function for the k-th element in the n-th gram.

The concept of sentence similarity, as proposed in [40], serves as a metric for quantifying the

semantic similarity between two sentences. It is expressed as:

τ(ŝ, s) ≙
BΦ(s) ⋅ BΦ(ŝ)T

∥BΦ(s)∥∥BΦ(ŝ)∥
. (17)

where BΦ(⋅) represents the BERT model [41], which maps a sentence to its semantic vector space. This

model is pre-trained on a massive dataset comprising billions of sentences, enabling it to capture rich

semantic information.

(3) Audio: In the realm of semantic communication, novel perception-based audio metrics are

employed, including the perceptual evaluation of speech quality (PESQ) [42], the short-time

objective intelligibility (STOI) [43], and the unconditional Frechet deep speech distance (FDSD)

[44], etc. These metrics provide valuable insights into the semantic aspects of audio quality and

perception. In general, these metrics assess the similarity between two audios at a semantic or

higher-dimensional feature level. For example, given the samples X and Y, the FDSD is defined

as

LFDSD ≙ ∥µX − µY∥
2
2 + Tr(ΣX +ΣY − 2(ΣXΣY)

1/2), (18)

where µX , µY and ΣX , ΣY are the means and covariance matrices of X and Y, respectively.

4.2. Semantic Rate-Distortion Theorem

In the context of semantic communication, the process of feature extraction and coding

representation at the semantic level plays a crucial role in reducing information redundancy and

extracting the most salient semantic features, thus improving the effectiveness of semantic transmission.

The semantic rate-distortion theorem is a theoretical framework designed to address the challenges

associated with distortion and encoding in semantic communication. It offers solutions and insights

into optimizing the trade-off between preserving semantic content and achieving efficient encoding.

Liu et al. [45] introduced a comprehensive semantic rate-distortion theory framework. In this

framework, they consider a memoryless information source represented as a tuple of random variables,

denoted as (S, X). It has a joint probability distribution denoted as p(s, x)within a product alphabet

S ×X . Here, S represents the intrinsic state, capturing the “semantic” aspect of the source, which is not

directly observable. On the other hand, X represents the extrinsic observation of the source, capturing

the “appearance” as perceived by an observer.

For a length-n independent and identically distributed (i.i.d.) sequence from the source, denoted

as (Sn, Xn), a source encoder fn with a rate of R is a mapping that transforms Xn into an index within

the set {1, 2, . . . , 2nR}. This encoder corresponds to a decoder that maps the index back into a pair of

sequences, denoted as (Ŝn, X̂n), where these sequences are drawn from the product alphabet Ŝ × X̂ .

This process is illustrated in Figure 3.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2024                   doi:10.20944/preprints202310.1208.v2

https://doi.org/10.20944/preprints202310.1208.v2


12 of 30

In this framework, two distortion metrics are considered: ds(s, ŝ) representing the semantic

distortion, and da(x, x̂) representing the appearance distortion. These metrics map elements from

alphabets S × Ŝ and X × X̂ to non-negative real numbers. Consequently, the block-wise distortions are

defined as:

ds(sn, ŝn) ≙
1

n

n

∑
i≙1

ds(si, ŝi), (19)

da(xn, x̂n) ≙
1

n

n

∑
i≙1

da(xi, x̂i). (20)

Figure 3. A semantic communication framework for introducing semantic rate-distortion [45]. In this

framework, two distortion metrics are considered: ds(s, ŝ) representing semantic distortion, and da(x, x̂)

representing appearance distortion.

Moreover, the framework defines the semantic rate-distortion function as

R(DS, Da) ≙ min I(X; Ŝ, X̂), (21)

s.t. E d̂s(X, Ŝ) ≤ Ds, E d̂a(X, X̂) ≤ Da (22)

where S and Ŝ represent the semantic understanding of the sender and the receiver, while X and X̂ are

their respective semantic representations. Expanding on this, Guo et al. [46] proposed the analysis of

semantic rate-distortion involving two users, considering the perspective of side information. This

perspective can be expressed as:

R(D1, D2, Ds) ≙ min I(X1, X2; X̂1, X̂2, Ŝ∣Y), (23)

where X1 and X2 are the semantic representations of two users, respectively. Y represents the side

information. In 2022, Stavrou and Kountouris [47] further studied the characteristics of this system,

particularly focusing on the Hamming distortion metric.

4.3. Semantic Coding

Semantic rate-distortion theory directly corresponds to coding technology. For a given

transmitting task, a semantic coding strategy needs to achieve two potentially conflicting goals:

• Maximizing the expected faithfulness (minimizing expected semantic distortion).
• Minimizing the expected coding length.

An ideal semantic coding strategy should simultaneously minimize both the expected semantic

distortion and the expected coding length. However, achieving this delicate balance is highly complex

and challenging. In current practice, a common approach involves the use of a dual distortion

metric to represent the semantic coding. Shao et al. [48] used the semantic distortion and the

semantic cost to define the achievable region for semantic coding. The semantic distortion reflects the
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disparities in semantic understanding between the receiver and the sender. The semantic cost, which

quantifies the simplicity or understandability of information, is often represented as the length of the

corresponding bit sequence. The definition of the achievable distortion-cost regions can be expressed

as: A distortion-cost pair (L, D) is achievable if there exists a semantic encoding scheme U if DU ≙ D,

LU ≙ L.

Agheli [49] et al. explored semantic coding within a multi-user context. They introduced an

approach where observations from an information source are filtered and sent to two monitors

depending on their importance for each user’s specific objectives. By optimizing the codeword

lengths using semantics-aware utility functions, substantial reductions in the amount of communicated

status updates can be achieved. Xiao et al. [50] proposed the rate-distortion theory of strategic

semantic communication. Their approach integrates game theory models with rate-distortion theory

to characterize how information interaction between semantic encoders and decoders impacts

communication distortion performance. Furthermore, Tang et al. [51] considered a semantic source

that consists of a set of correlated random variables whose joint probabilistic distribution can be

described by a Bayesian network. Their work focuses on characterizing the limits of lossy compression

for semantic sources and establishing upper and lower bounds for the rate-distortion function.

5. Semantic Channel Coding

Channel capacity is the most successful and central contribution to Shannon’s information theory.

On the one hand, it provides the maximum number of distinguishable signals through repeated use of

a communication channel. By appropriately mapping the source into “widely spaced” input sequences

for the channel, one can transmit a message with an exceedingly low probability of error, subsequently

reconstructing the source message at the output. On the other hand, the channel capacity represents

the rate at which reliable information can be transmitted through a noisy channel, as discussed by

Verdú in ‘Fifty Years of Shannon Theory’ [52].

Similarly, the issue of capacity holds immense significance within the realm of semantic

communication. In this section, we introduce the concepts of semantic noise and semantic channel

capacity. Furthermore, several widely considered questions about semantic channel capacity are raised

and addressed. Finally, we attempt to give a general description of the semantic channel capacity.

In the domain of digital communications, a discrete channel is defined as a system comprising an

input alphabet denoted by X , an output alphabet represented by Y , and a probability transition matrix

p(y∣x) that quantifies the probability of observing the output symbol y when transmitting the message

x.

Definition 2. The channel capacity of a discrete memoryless channel is defined as

C ≙ max
p(x)

I(X; Y), (24)

where the maximum is taken over all possible input distributions p(x) provided by the channel transition

probability function p(y∣x).

For the sake of convenient comparison, we commonly refer to this as the physical channel capacity.

Moreover, Shannon’s theorem established that information can be transmitted reliably through a

physical channel at any rate up to the channel capacity, known as the channel coding theorem.

Theorem 2. (Channel coding theorem) For a discrete memoryless channel, all rates below the capacity C

are achievable. Specifically, for every rate R < C, there exists a sequence of (2nR, n) codes with a maximum

probability of error λ(n) → 0, as n →∞. Conversely, any sequence of (2nR, n) codes with λ(n) → 0, as n →∞,

must have R ≤ C.
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The channel coding theorem states that all rates below the capacity C are achievable, while rates

exceeding this capacity are unachievable. This leads us to contemplate the significance and formulation

of the channel capacity in the context of semantic communication, a topic of interest among scholars

in the field. In the exploration of semantic information theory, we try to address the following three

fundamental questions regarding capacity.

1. Is there an analogous concept of channel capacity in semantic communication, which we may

term the ’semantic channel capacity’?
2. Is it possible that the semantic channel capacity is greater than the physical channel capacity?
3. Is there a universal expression for the semantic channel capacity?

Next, we will address these three fundamental questions and introduce the semantic noise along

with the semantic channel capacity theorem.

5.1. Semantic Noise

Noise introduces uncertainty into communication systems and also poses challenges to

communication technologies. In the absence of noise, the transmission and exchange of any information

are perfect and lossless, rendering capacity a meaningless concept. Generally, semantic noise exists

widely in semantic communication. Prior to the formal introduction, it is essential to clarify that

semantic noise and semantic channel noise are distinct concepts. In most of the scholarly literature,

semantic noise refers to the mismatch of semantics. The semantic channel noise commonly refers to

the discrepancies in the knowledge background of both parties in semantic communication. It is worth

noting that semantic noise may be added either at the physical channel or at the semantic channel.

In their respective works, Qin et al. [5], Shi et al. [7], and Hu et al. [53] offered similar definitions

of semantic noise within the context of semantic communication. Qin et al. defined semantic noise

as a disturbance that affects the interpretation of a message, characterized by a semantic information

mismatch between the transmitter and receiver. Similarly, Shi et al. described semantic noise as noise

introduced during the communication process, leading to misunderstanding and incorrect reception of

semantic information. It can be introduced at various stages, including encoding, data transportation,

and decoding. Hu et al. defined semantic noise as a unique form of noise in semantic communication

systems, denoting the misalignment between intended semantic symbols and received ones.

Semantic noise varies across different source categories. Semantic noise in text refers to semantic

ambiguity, which slightly changes the semantic meaning of a sentence. In the case of images, it can

be modeled by using adversarial samples. The following examples illustrate instances of semantic

ambiguity in the text, categorized by communication channel [15]:

• The meaning of a message is changed due to transmission errors, e.g., from “contend’’ to “content”

(Physical channel)
• Translation of one natural language into another language where some concepts in the two

languages have no precise match (Semantic channel)
• Communicating parties use different background knowledge to understand the message (e.g.,

Apple has different meanings in vegetable markets and mobile phone stores) (Semantic channel)

An illustrative example of an adversarial image is presented in Figure 4, in which the adversarial

samples are added. It is apparent that the image when perturbed with adversarial noise, can mislead

DL models in their classification, while remaining visually indistinguishable from the original image

to human observers [54].

In summary, semantic noise encompasses both semantic channel noise and physical channel noise.

It represents a discrepancy in semantic information between the transmitter and the receiver within

the context of semantic communication.
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+ 0.007 × ≙

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3% confidence

Figure 4. An example of the adversarial sample in the image [54].

5.2. Semantic Capacity

For the first question in Section 5, we argue that determining the capacity of the semantic channel

is a challenging task, and expressing it using current mathematical tools remains elusive. On the one

hand, to the best of our knowledge, it is still an open problem to effectively model the local knowledge

and global knowledge shared by both communicating parties. On the other hand, quantifying and

representing the semantic channel noise is also difficult. However, there are some studies that introduce

semantic capacity. We would like to clarify that the semantic channel capacity studied in most current

works is the capacity at the semantic level, rather than the capacity of the semantic channel. In the

subsequent sections of this paper, the semantic channel capacity we refer to is also the information

capacity at the semantic level.

In 2016, Okamoto [55] argued that the semantic channel capacity represents the maximum rate of

semantic information that can be transmitted over the semantic channel, or the ratio of the maximum

semantic communication amount to the communication data size. Similarly, Bao et al. [15] defined

the semantic channel capacity as the capacity limit such that a transmission rate can be achieved

with arbitrarily small semantic errors within the limit. Specifically, they derived the semantic channel

coding theorem.

Theorem 3. (Semantic Channel Coding Theorem I) For every discrete memoryless channel, the channel capacity

Cs ≙ sup
P(X∣Z)

{I(X; Y) −H(Z∣X) +HS(Y)} (25)

has the following property: For any ϵ > 0 and R ≤ Cs, there is a block coding strategy such that the maximal

probability of semantic error is not greater than ϵ.

Among them, X and Y serve as the input and output of the channel, while Z is the semantic

representation. I(X; Y) denotes the mutual information between X and Y. H(Z∣X) represents the

semantic uncertainty associated with the encoding. Additionally, HS(Y) represents the average logical

information of the received message.

Based on the theorem presented above, we can see that the semantic capacity may be higher or

lower than the physical channel capacity, depending on whether HS(Y) or H(Z∣X) is larger. This

observation implies that through the utilization of a semantic encoder with minimal semantic ambiguity

and a semantic decoder possessing robust inference capabilities or an extensive knowledge base, it is

possible to achieve high-rate semantic communication using a low-rate physical channel.

It is worth noting that in semantic communication, even when some symbolic errors occur,

the underlying semantics may still remain unchanged. In other words, semantic communication

may allow a certain level of bit errors, signified by a non-zero BER. Consequently, in cases where the

communication system permits a given non-zero BER (Pe,b ≥ 0), the transmission rate R can exceed the

physical channel capacity C. As a response to the second question, Figure 5 shows the error probability

of the communication system. It indicates that when R > C, the Pe,b becomes greater than zero, while

the Pe,s (semantic error) may still remain at zero.
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Rate

Figure 5. Error probability of the communication system.

Consider a semantic communication system, as illustrated in Figure 6. In this system, a semantic

sender aims to reliably transmit a latent semantic message S within the message W at a rate R bits per

transmission to a semantic receiver over a noisy physical channel. The source message set is defined

as ∥1 ∶ 2nR∥ ≙ {1, 2, . . . , 2nR}, which contains a semantic message subset ∥1 ∶ 2⌈αnR⌉∥ ≙ {1, 2, . . . , 2⌈αnR⌉},

where the coefficient α falls within the range 0 ≤ α < 1. Thus, given the semantic mapping ∥1 ∶ 2nR∥→

∥1 ∶ 2αnR∥ and the discrete memoryless channel p(y∣x), Ma et al. [56] define the semantic channel Cs as

follows:

Cs ≙ max
p(x)

I(X; Y)

α
. (26)

Moreover, they further give the following theorem concerning semantic channel coding:

Theorem 4. (Semantic Channel Coding Theorem II) For every bit rate R < Cs ≙ maxp(x)
I(X∶Y)

α , there exists a

sequence of (2nR, n) codes with an average probability of error P
(n)
e,s that tends to zero as n →∞.

Conversely, for every sequence of (2nR, n) codes with a probability of error P
(n)
e,s that tends to zero as

n →∞, the rate must satisfy R ≤ Cs ≙ maxp(x)
I(X;Y)

α .

For the third question, we believe that the semantic channel capacity should be related to the

specific task and the background knowledge possessed by both parties—in other words, it is task

and goal-oriented. Additionally, we contend that this semantic channel capacity should be dynamic,

adapting to the temporal relevance of information. Consequently, establishing a universally applicable

expression for the semantic channel capacity becomes a complex undertaking. However, if we try to

describe it, we propose that it possesses three distinct characteristics.

Semantic

Source

Semantic

Encoder
Channel

Semantic

Decoder

Figure 6. A semantic communication system [56].

1. It takes the form of conditions. These conditions at least shall include tasks, public knowledge,

private knowledge, and goals.
2. It has the capability to reflect the temporal value of information. For instance, in situations

demanding low latency, messages with slow transmission rates will possess a low information

value density.
3. It should encompass the concept of physical channel capacity since the semantic channel does

not really exist, and the transmission of symbols must still be achieved through the real physical

channel.
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6. Related Mathematical Theories and Methods

In this section, we introduce some mathematical tools and concepts that are highly relevant to

semantic communication. Strictly speaking, these elements do not fall within the scope of semantic

information theory, but have been used by several scholars in the study of semantic communication,

so we also include them in this review for the sake of comprehensiveness. These include the age

of information (AoI), information bottleneck (IB), large language models (LLMs), and joint source

channel coding (JSCC). In fact, these methods have already been extensively applied within the realm

of semantic communication and have demonstrated their effectiveness. They are expected to become

an auxiliary or part of semantic information theory.

6.1. Age of Information (AoI)

In the context of semantic communication, the transmitted semantics are usually task-oriented.

Many of these tasks require low latency and are sensitive to the freshness of the message. Regardless

of how accurately the message can be recovered, if it arrives too late, it can be rendered completely

useless, as highlighted by Gündüz in their work [2]. For example, in the realm of autonomous driving,

vehicles depend on near-instantaneous data exchange to make split-second decisions, thereby avoiding

potential traffic accidents. Similarly, in the context of remote surgery systems, the timely update of

surgical tool positions is necessary to ensure the safety and precision of medical procedures. However,

this does not imply that the transmitter should update the current state as rapidly as possible. When

the network is congested, such a strategy could lead to a monitor receiving delayed updates that were

backlogged in the communication system.

Conversely, it is important to note that neither the source statistics nor quality measures change

over time in digital communications. Therefore, there exists a necessity to acquire the status of remote

sensors or systems. In other words, semantic communication needs to take into account the temporal

aspect and its impact on the overall effectiveness of the communication process.

The AoI serves as an end-to-end performance metric, providing a means to quantify the timeliness

of a monitor’s knowledge about a particular entity or process [57]. It has the potential to empower

semantic communication to measure the freshness of semantics. We will discuss several kinds of AoI

and the relationship that exists between semantic communication and the AoI.

As depicted in Figure 7, a source continuously generates new updates to a network that are

subsequently delivered to a destination monitor. In this context, the source is represented as a random

process denoted as X(t), while the monitor possesses the capability to estimate the current state X̂(t).
Each update packet is associated with a timestamp, denoted as u, and its age at time t ≥ u is defined

as t − u. An update is said to be fresh when its timestamp matches the current time t, resulting in an

age of zero [58]. When the monitor’s most recently received update at time t has a timestamp of u(t),
the AoI is defined as

△(t) ≙ t − u(t). (27)

Source MonitorNetwork

Figure 7. Updates from a source pass through the network to a destination monitor.

Figure 8 depicts a visualization of the AoI at the monitor over time. In this scenario, the transmitter

sends update packets according to a first-come-first-served (FCFS) queuing discipline, allowing only

one packet transmission at any given time. Since the monitor sees updates that are delivered at times

t
′

j after traveling through the network, its age process△t is reset to△(t
′

i) ≙ t
′

j − tj, which is the age of
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update j when it is delivered. Building upon this foundation, various representations of age can be

derived, such as the time average age and the peak age.

Figure 8. AoI evolution vs. time for n update packets [59].

For an interval of observation (0,T ), the time average age of a status update system is defined as

△T ≙
1

T ∫
T

0
△(t)dt. (28)

As T →∞, the time average age is calculated as

△ ≙ lim
T →∞

△T ≙
E∥Qn∥

E∥Tn∥
≙
E∥XnTn∥ +E∥X

2
n∥/2

E∥Tn∥
, (29)

where Qn, Tn, Xn are depicted in Figure 8. Qn corresponds to the dark area in Figure 8. Xn represents

the interarrival time of the nth update, and Tn denotes the corresponding system time.

On the other hand, the difficulty in evaluating E∥XnTn∥ prompted the introduction of the peak

age of information (PAoI) [60], an alternative and more manageable metric for age assessment. The

PAoI metric is defined as the value of the age achieved immediately before receiving the nth update

An ≙ Xn + Tn. (30)

Moreover, the average peak age of a status update system is calculated as

AT ≙ lim
N→∞

1

N

N(T )

∑
n≙1

An, (31)

where N(T ) is the number of samples that are completed by time T . The peak age can be utilized

in applications where the worst-case age is of interest or where there is a need to apply a threshold

restriction on age.

While the AoI proves valuable in assessing the freshness of information and has seen widespread

application across various system contexts employing diverse queuing disciplines, it falls short in

effectively capturing the informational content of transmitted packets and the monitor’s current

knowledge. In fact, even when the monitor has perfect knowledge of the underlying process in

question, the AoI continuously increases over time, leading to unnecessary penalties. This motivated

the introduction of a novel metric, known as the age of incorrect information (AoII), which addresses

the limitations of the conventional AoI and error penalty functions within the framework of status

updates [61]. The AoII is defined as
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△(t) ≙ (t − v(t)) ⋅✶{X(t) ≠ ˆX(t)}, (32)

where ✶ is the indicator function. When ✶{X(t) ≠ ˆX(t)} ≙ 0, the monitor has the most updated

information about X(t) irrespective of when the status update was received. The AoII extends the

notion of fresh updates and adequately captures the information content that the updates bring to

the monitor.

In a given scenario, a transmitter observes the source process X(t) and sends samples/updates

regarding this source over time to a monitor. The primary objective is to reconstruct the original

process, X(t), at the monitor utilizing the received samples/updates [62]. In this general setup,

the transmitter has two key decisions to make during each time slot: (i) whether to sample X(t) or not,

and (ii) whether to transmit the available or newly generated sample/update or not. The real-time

compression/transmission has been explored in the literature, with relevant studies such as [63,64].

Moreover, the objective function that takes into account semantic awareness can be formulated as:

S ≙ lim
T→∞

1

T

T

∑
t≙1

c(t), (33)

where c(t) represents a cost function that is selected appropriately. For instance, c(t) can be chosen as

c(t) ≙ a(t) ⋅✶{X(t) ≠ ˆX(t)}, (34)

where a(t) is a function of t. When one does not take channel or transmission delays into account,

the problem described above can be viewed as a rate-distortion problem. Nevertheless, the primary

objective in this context is to devise sampling and transmission policies that minimize the average

distortion with consideration for the delay sensitivity.

In their work, Gündüz et al. [2] represented three distinct sampling and transmission policies

that have subtle connections between the age metrics and semantics of information: AoI-aware,

source-aware, semantics-aware sampling and transmission policy. The third policy addresses the

limitations of the prior ones by considering not only the state of the source signal but also the

status of the reconstructed signals at the monitor. It is expected to be introduced into the semantic

communication systems to reflect the impact of time on semantics.

In semantic communication, combining the AoI/AoII and semantic distortion can be a way to

evaluate delay-sensitive distortion. In [65], a multi-user uplink non-orthogonal multiple access system

is constructed to analyze its transmission performance by harnessing the age of incorrect information.

The semantic similarity [40] is adopted as the performance metric and the AoII as the time delay; thus,

the instantaneous AoII of the k-th user in the scenario can be expressed as

Ψ
k(t) ≜△AoII(Xt, X̂t, t) (35)

≙ (1−ψk
n(s, ŝ)) ⋅△(t) (36)

≙ (1−
BΦ(s) ⋅ BΦ(ŝ)T

∥BΦ(s)∥∥BΦ(ŝ)∥
)(t − u(t)). (37)

By minimizing the average cost of the system, the optimization problem of multiple users can be

solved. This system utilizes the AoII as a metric while simultaneously assessing the semantic similarity

and AoI performance.

6.2. Information Bottleneck (IB)

Since deep neural networks (DNNs) have demonstrated excellent performance in extracting

features and key information, many semantic communication systems use them as a tool adopted

in encoders and decoders. IB, an information-theoretic principle, can explore the interplay between

the informativeness of extracted features and its effect on communication goals. It offers a novel
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paradigm for analyzing deep neural networks (DNNs) and tries to shed light on their layered structure,

generalization capabilities, and learning dynamics [66], which has been informed by machine learning

and information theory [67]. The interaction of IB and DNNs reported in the literature can be divided

into two main categories. The first is to use the IB theories in order to analyze DNNs and the other is

to use the ideas from IB to improve the DNN-based learning algorithms [68]. Therefore, the IB theory

may also be a powerful mathematical tool for the development of semantic communication.

The IB method was introduced as an information-theoretic principle for extracting relevant

information from an input random variable X ∈ X with respect to an output random variable Y ∈ Y
[69]. In the IB framework, the objective is to compress the information that variable X carries about

variable Y through a compact ’bottleneck’ represented as T. Either way, the basic trade-off is between

minimizing the compression information and maximizing the relevant information [70]. An illustration

of this idea is given in Figure 9.

Figure 9. The information between X and Y is squeezed through the compact “bottleneck”

representation, T. In particular, under some constraint over the minimal level of relevant information,

I(T; Y), one is trying to minimize the compression information, I(T; X).

Given a joint probability distribution p(x, y), the IB optimization problem can be formulated

as follows: find T such that the mutual information I(T; X) is minimized, subject to the constraint

that I(T; Y) does not exceed a predetermined threshold D̂. Consequently, it is intuitive to introduce a

mathematical function analogous to the rate-distortion function

R̂(D̂) ≜ min
{p(t∣x)∶I(T;Y)≤D̂}

I(T; X). (38)

In a word, R̂(D̂) represents the minimal achievable compression information, for which the

relevant information is above R̂(D̂). Moreover, the optimal assignment can be determined by

minimizing the corresponding functional

L ≙ I(T; X) − βI(T; Y), (39)

where β is the Lagrange multiplier attached to the constrained meaningful information while

maintaining the normalization of the mapping p(t; x) for every x. At β ≙ 0, the quantization is the

most sketchy possible; everything is assigned to a single point, while as β →∞, we are pushed toward

arbitrarily detailed quantization. By varying the parameter β, one can explore the trade-off between

preserving meaningful information and achieving compression at different levels of resolution [71].

When applying the IB method to enhance semantic communication systems, a common approach

involves utilizing IB to extract task-related information while eliminating redundant features.

Barbarossa et al. [72] presented an approach to semantic communication building on the IB principle.

It used the IB as a way to identify relevant information and adapt the IB online, as a function of

the wireless channel state, in order to strike an optimal trade-off between the transmit power, the

reconstruction accuracy, and the delay. More specifically, Barbarossa et al. considered the case where
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the transmitted data are corrupted by noise, so that the receiver does not have direct access to T,

but only to a corrupted version T + η, where η is the channel noise. Then, they redefined the bottleneck

optimization problem as

min
A,M

I(X; T) + β ⋅MSE(Y, Ŷ), (40)

where T ≙ A ⋅X + ξ denotes a linear encoder, including additive noise ξ, while Ŷ ≙ M ⋅ (T + η) is a linear

estimate of Y. β is a scalar parameter that allows it to tune the trade-off between complexity and

relevant information; small values of β lead to small complexity encoders, but possibly large distortion.

Conversely, larger values of β lead to reduced distortion at the expense of increased complexity.

Li et al. [73] used the IB framework to extract distinguishable features in distribution data

while keeping their compactness and informativeness. Wei et al. [74] presented a federated semantic

learning framework to collaboratively train the semantic-channel encoders of multiple devices with the

coordination of a base-station-based semantic-channel decoder. In this approach, the IB is leveraged to

drive the loss design by formalizing a rate-distortion trade-off. This trade-off serves to eliminate the

redundancies of semantic features while maintaining task-relevant information.

In 2018, Zaslavsky et al. [75] presented empirical evidence that IB may give rise to human-like

semantic representations. They conducted research into how human languages categorize colors. Their

findings indicated that human languages appear to evolve under pressure to efficiently compress

meanings into communication signals by optimizing the IB trade-off between informativeness

and complexity. Furthermore, Tucker et al. [76] studied how trading-off three factors—utility,

informativeness, and complexity—shapes emergent communication, including compared to human

communication. Their study not only shed light on these factors’ impact on communication but also

made comparisons to human communication processes.

6.3. Joint Source Channel Coding (JSCC)

From the perspective of structural design in communication systems, two primary categories

emerge: separate source and channel coding, and JSCC. In the case of JSCC, as depicted in Figure 10a,

there exists only an encoder and decoder. In this setup, the system optimizes both source coding and

channel coding. These coding schemes are integrated into a unified process. Conversely, Figure 10b

illustrates the separate source and channel coding system. These two design approaches differ

significantly. In Shannon’s theory, the source codes are designed independently to achieve efficient data

representation, while the channel codes are designed separately, tailored to the specific characteristics

of the channel.

Encoder Channel Decoder

(a) JSCC.

Source

Encoder

Channel

Encoder
Channel

Source

Encoder

Channel

Encoder

(b) Separate source and channel coding.

Figure 10. The joint/separate source and channel coding system.

Shannon’s separation theorem is a fundamental result in information theory. It established that

separate encoders can achieve the same rates as the joint encoder. Specifically, it tied together the two

basic theorems of information theory: data compression and data transmission, as outlined in [32].

The data compression theorem is an outcome of the asymptotic equipartition property (AEP), which

shows that there exists a “small” subset (of size 2nH) of all possible source sequences that contain
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most of the probability. Consequently, one can represent the source with a small probability of error

using an average of H bits per symbol. The data transmission theorem, on the other hand, is based

on the joint AEP. It capitalizes on the fact that for long block lengths, the output sequence of the

channel is very likely to be jointly typical with the input codeword, while any other codeword is jointly

typical with probability ∼2−nI . As a result, we can employ approximately 2nI codewords while still

having a negligible probability of error. The source-channel separation theorem shows that one can

design the source code and the channel code separately and combine the results to achieve the same

optimal performance.

Shannon’s separation theorem proves that the two-step source and channel coding approach is

theoretically optimal in the asymptotic limit of infinitely long source and channel blocks. However,

in practical applications, it is widely recognized that JSCC surpasses the separate approach in terms

of performance especially for limited source and channel coding complexity. Furthermore, JSCC is

resilient to variations in channel conditions and does not suffer from abrupt quality degradations,

commonly referred to as the “cliff effect” in digital communication systems [77]. Nonetheless, semantic

communication is often oriented towards emerging intelligent applications from the Internet-of-Things

to autonomous driving and the tactile Internet requires transmission of image/video data under

extreme latency, bandwidth, and energy constraints. This precludes computationally demanding

long-block-length source and channel coding techniques. Therefore, JSCC may represent a potential

trend in semantic communication systems.

In recent years, semantic communication systems employing JSCC have demonstrated superior

performance across various domains, surpassing separate design approaches and offering new

potential applications and advantages [78,79]. In 2019, a noteworthy development known as

Deep JSCC [77] introduced encoder and decoder functions parameterized by two convolutional

neural networks, trained jointly. It is designed for the transmission of images. The results show

that the Deep JSCC scheme outperforms digital transmission concatenating JPEG or JPEG2000

compression with a capacity-achieving channel code at low SNR and channel bandwidth values

in the presence of additive white Gaussian noise (AWGN). Building upon this foundation, Deep

JSCC-f [80] investigated how noiseless or noisy channel output feedback can be incorporated into

the Deep JSCC to improve the reconstruction quality at the receiver. With the advancement of DL,

more novel neural network structures have been introduced into semantic communication [81]. These

structures replace autoencoders to achieve the semantic transmission of images, resulting in improved

performance.

JSCC also shows excellent performance across various carriers. Xie et al. [40] proposed DeepSC,

a DL-based semantic communication system designed for text transmission. In comparison to

traditional communication systems that do not account for semantic information exchange, DeepSC

exhibits remarkable robustness to channel variations and superior performance, particularly in low

SNR conditions. For speech signals, DeepSC-S [82] was designed, which outperforms traditional

communications in both cases in terms of the speech signals metrics, such as the signal-to-distortion

ratio and the perceptual evaluation of speech distortion. Lastly, MU-DeepSC [83] represents a

multi-user semantic communication system for transmitting multimodal data. Its transceiver is

ingeniously designed and optimized to capture features from correlated multimodal data, facilitating

task-oriented transmission. These recent advancements highlight the growing potential and versatility

of JSCC in semantic communication systems across a range of data types and applications.

6.4. Large Language Models (LLMs)

In a semantic communication system, the knowledge base plays a crucial role in enabling the

semantic encoder and decoder to comprehend and infer semantic information. In general, knowledge

includes public knowledge and private knowledge. The former is shared by all communication

participants, while the latter is unique to a user. In fact, the knowledge base is a key feature

that distinguishes semantic communication from conventional communication systems. However,
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the representation and updating of knowledge is a challenging task, which is also one of the factors

that make semantic communication difficult to mathematically model. In recent years, LLMs have

developed rapidly and have shown great potential in intelligent tasks [84]. In this subsection, we will

introduce the feasibility of introducing LLMs into semantic communication. We believe that LLMs

may play a potential role in knowledge bases for semantic communication.

Language models (LMs) are computational models that have the capacity to understand and

generate human language [85]. These models possess the transformative ability to predict the

likelihood of word sequences or to generate new text based on a given input [86]. In the context

of a sequence denoted as X, LM tasks aim to predict the next token, denoted as y. The model

is trained by maximizing the probability of the given token sequence conditioned on the context,

i.e., P(y∣X) ≙ P(y∣x1, x2, . . . , xn−1), where x1, x2, . . . , xn−1 are the tokens in the context sequence, and n

is the current position. Utilizing the chain rule, the conditional probability can be decomposed into a

product of probabilities at each position:

p(y∣X) ≙
N

∏
n≙1

P(yt∣x1, x2, . . . , xt−1), (41)

where N represents the length of the sequence. Consequently, the model predicts each token at each

position in an autoregressive manner, ultimately generating a complete text sequence.

LLMs are advanced language models with massive parameter sizes and exceptional learning

capabilities. The core module behind many LLMs, such as GPT-3 [87], InstructGPT [88], and GPT-4, is

the self-attention module in the Transformer [89] architecture. This self-attention module serves as the

foundational building block for various language modeling tasks.

A fundamental characteristic of LLMs lies in their capability for in-context learning. This means

the model is trained to generate text based on a provided context or prompt. This capability empowers

LLMs to produce responses that are not only more coherent but also contextually relevant, making

them well-suited for interactive and conversational applications. Another crucial aspect of LLMs is

reinforcement learning from human feedback (RLHF) [90]. This technique involves fine-tuning the

model by using human-generated responses as rewards, enabling the model to learn from its mistakes

and to progressively enhance its performance over time.

Since LLMs use a large amount of data, parameters, and even human feedback during training,

they have a perception and understanding of the world, which can be called the knowledge base to a

certain extent. On the other hand, due to the excellent performance and capabilities of LLMs, they

have the potential to be applied in a variety of intelligent tasks. Zhao et al. [91] formulated the general

planning paradigm of LLMs for solving complex tasks. We think it provides insights into semantic

communication based on LLMs, which is illustrated in Figure 11.

Figure 11 illustrates the process by which LLMs help the transmitter’s semantic encoder extract

semantics. In this paradigm, there are typically three components: a task planner, a semantic encoder,

and an environment. Specifically, the task planner, which is played by LLMs, aims to generate the

whole plan to solve a target task-oriented communication. The plan can be presented in various forms,

e.g., a visual question answering task [83] or a text transmission task [40]. Then, the semantic encoder

is responsible for executing the actions in the plan and generating semantics. It can be implemented

by models like LLMs for textual tasks. Furthermore, the environment refers to where the semantic

encoder generates the semantics, which can be set differently according to specific tasks. It provides

feedback about the execution result of the action to the task planner, either in the form of natural

language or from other multimodal signals.
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Figure 11. An illustration of the formulation for prompt-based planning by LLMs for semantic

communication (transmitter) [91].

The knowledge base is a significant feature and a crucial component of semantic communication,

directly impacting its performance. LMs contain quite a substantial amount of knowledge and have

the potential to serve as a knowledge base for semantic communication. Jiang et al. [92] proposed the

use of LMs as knowledge bases in semantic communication, representing three LM-based knowledge

bases in semantic communication models: (1) GPT-Based: utilizing ChatGPT as the knowledge base for

textual data, it enables the extraction of key content from the input text, tailored to user requirements.

(2) SAM-Based: employing SAM [93] as a knowledge base for image-related semantic communication,

which could be capable of segmenting various objects within an image and recognizing their respective

categories and relationships. (3) WavLM-Based: utilizing WavLM [94] as a knowledge base for

semantic communication systems involving audio. This includes applications such as automatic

speech recognition, speaker identification, and speech separation.

7. Discussion

Although this review extensively surveys and analyzes various works related to semantic

information theory, delving into aspects such as the semantic entropy, semantic channel capacity,

and semantic rate-distortion, along with the methodologies adopted by scholars in semantic

communication research, it is important to note that both semantic information theory and semantic

communication are still in their initial stages of development. Currently, a unified consensus and

a comprehensive theoretical framework have not yet been established. Practical and effective

applications in these fields remain a distant prospect at this point in time.

On the other hand, we firmly believe that semantic information theory is not intended to replace

classical information theory; rather, it serves as an extension of classical information theory at the

semantic level by inputting some new elements or factors from the viewpoints of applications.

Nevertheless, there are still some significant differences between them, which is exactly the problem

that semantic information theory aims to address. Distinguishing semantic information theory from

classical information theory reveals several notable disparities:

• Whether a message is true or not is irrelevant in classical information theory.
• Whether a message is related to the task/time is immaterial in classical information theory.
• Whether a message can effectively convey meaning is not a concern of classical information

theory.
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However, these differences or concerns about semantic communication are challenging issues at a

theoretical level. In fact, the development of semantic information theory is in its infancy, with a large

number of open problems that have not yet been solved, such as:

1. The Role of Semantics in Data Compression and Reliable Communication: How can semantics

contribute to data compression and enhance the reliability of communication to some targets in

applications?
2. Relationship Between Semantic and Engineering Coding: What is the interplay between semantic

coding/decoding techniques and conventional engineering coding/coding problems?
3. Fundamental Limits of Semantic Communication: Are there established limits or boundaries in

semantic coding?
4. Enhancing Efficiency and Reliability in Semantic Communication: What factors should be taken into

account to improve efficiency and reliability in semantic communication?
5. Principles for DL-Based Semantic Communication: How should we architect the framework of a

semantic communication system rooted in DL, and what theoretical guidance exists?
6. Capacity of Semantic-Aware Networks: What is the capacity of a semantic network, and how can

we evaluate the performance limits of a semantic transmission network?
7. The effect of communication networking topologies: What is the effect of communication

networking topologies on semantic communication? For example, the key feature of semantic

communication over ad hoc networks [95], relay networks [96,97], multiple access/broadcast

networks [98], as well as distributed free cell networks [99], also need to be investigated in the

near future.

Currently, solving these theoretical challenges is formidable, but necessary. The resolution of these

issues is pivotal for semantic information theory to achieve the same depth and solidity as classical

information theory. Beyond the theoretical realm, semantic communication systems present an array

of open challenges:

1. Scheduling and Energy Optimization: Delving into scheduling and resource allocation policies

within semantic communication, with a concentrated effort on optimizing energy utilization.
2. Complexity of Semantic-Enabled Networks: Semantic-enabled networks face high complexity

due to the need to share knowledge with users. This necessitates a framework for evaluating the

complexity and necessity of semantic communication networks.
3. Multi-criteria Optimization: Developing strategies for semantic communication in scenarios

where multiple tasks and objectives coexist.
4. Knowledge Updates Tracking: Recognizing that knowledge can evolve over time within semantic

networks.
5. Applications: Identifying specific use cases and applications that align with semantic

communication systems.
6. Performance Metrics: Defining comprehensive performance metrics for assessing the

effectiveness and efficiency of semantic communication systems.

In this section, we introduce open issues within semantic information theory and semantic

communication, with the aim of stimulating further exploration and fostering meaningful discussions

among researchers.

8. Concluding Remarks

Semantic communication, as an innovative communication structure, has revolutionized the

traditional data transmission paradigm and has the potential to provide fresh insights into large-scale

intelligent processing services. Nevertheless, it is important to note that the field of semantic

communication is still in its infancy, offering abundant opportunities for further exploration

and research.
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This article systematically summarized the development of semantic information theory,

encompassing a comprehensive review of related advancements. Beginning with an exploration

of semantic entropy, we further introduced statistical probability, logical probability, semantic

rate-distortion, semantic encoding, semantic noise, and semantic channel capacity. Moreover, the article

presented a structured exposition of the mathematical theories and methodologies relevant to semantic

communication, including concepts like the AoI, IB, and JSCC.

In addition, we investigated the prevalent challenges and open problems within the realm of

semantic information theory and semantic communication. We believe that this article will make a

meaningful contribution to the establishment of semantic information theory and the rapid evolution

of semantic communication.
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