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Abstract. In this paper, we introduce an innovative approach to distinguish Gliosarcoma (GSM) from 

Glioblastoma (GBM). Our method combines causal fuzzy logic rules with the Big Bird architecture, 

a Transformer-based Deep Learning algorithm. Unlike prior research, which often relied on 

statistical models to reduce dataset dimensions before causal analysis, our approach harnesses the 

complete dataset in tandem with our causal fuzzy Big Bird architecture. Additionally, we 

benchmark our results not only against previous Gliosarcoma/Glioblastoma studies but also against 

GPT-2 for a comprehensive evaluation.  

Keywords. fuzzy logic; causal inference; Causal Deep Learning algorithms 

 

1. Introduction 

Glioblastoma (GBM) is one of the most common brain cancers [1]. GBM generally happens in 

the glial cells [2] and has several variants. Gliosarcoma (GSM) is a cancer classified by the World 

Health Organization (WHO) as a variant of GBM [1,3]. It is particularly important to accurately 

distinguish GSM from GBM [3]. Radiomics is an emerging field for imaging data analysis. It has been 

successfully employed for the differentiation of the central nervous system tumors [4]. In a recent 

paper, Qian et al. [4] conducted a study to identify an optimal machine learning algorithm for the 

differentiation of GSM from GBM based on radiomics data analysis. Baldé and Ghosh [20] studied 

the causal effect of Edema on the differentiation of GSM from GBM by using machine learning 

algorithms in radiomics. To do so, the authors developed a two steps procedure: In the first step, they 

reduced the dataset dimension using the sure independence screening procedure  [5,6]. In the 

second step, they employed the outcome adaptive lasso [7] or the generalized outcome adaptive lasso 

[8].  

To find the causes of Gliosarcoma, most of the previous studies use dimension reduction and/or 

statistical machine learning algorithms.  

In this paper, we will use the entire dataset without applying any dimension reduction 

algorithms. Specifically, we will use causal fuzzy logic rules from [9], combined with Transformer-

based deep learning algorithms [10] to identify the possible causes of Gliosarcoma. To the best of our 

knowledge, we are the first to use Causal Fuzzy Deep Learning Algorithm to detect the causes of 

Gliosarcoma. 

2. Causal reasoning 

In causal reasoning, we are looking how or why something happened and the relationship 

between the causes and their effects. In causal reasoning, we examine the relationship between causes 

and effects, and we try to understand how or why something happened. To calculate the causes of 

an event, current causal models use Individual or Average Treatment Effect (I-ATE). For instance, 

Pearl [11] computes Average Causal Effect by subtracting the means of the treatment and control 
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groups. Pearl uses Directed Acyclic Graphs (DAGs) to visualize and compute the associations or 

causal relationships between a set of elements. He also uses do operators, which are interventions on 

the nodes of DAGs, as well as probability theory, the Markov assumptions, and other 

concepts/methods/tools [11]. 

However, in [12] the authors showed that ATE describes the linear relationship between 

variables and in some examples cannot reflect the causality. Also, Pearl’s approach to causation does 
not allow reasoning in cases of degrees of uncertainty [9]. Since do operators cut the relation between 

two nodes, Pearl’s approach cannot answer gradient questions such as: given that you smoke a little, 
what is the probability that you have cancer to a certain degree?  To solve Pearl’s do operator 
problem the authors in [9,13], used fuzzy logic rules which implement human language nuances such 

as “small” instead of mere zero or one. Furthermore, Janzing [14] showed that at a macro level, Pearl’s 
causal model works well with situations that are rare, such as rare medical conditions but, at a micro 

level, fails with bidirectional nodes. Authors in [12] showed that Janzing’s model [15] works well 

with bidirectional nodes, but fails with situations that are rare [12]. 

In [9] which uses fuzzy logic as the fundamental part of their causal model, there are two types 

of rules which we call association and causal rules. An association rule can be of type A → B. A 

causal rule can be ~A & B. That is, tell me what happens to B when A is missing. In other words, 

using fuzzy logic rules, we can estimate more than fourteen values in the presence and the absence 

of each element (in the dataset context this becomes columns or variables).  

In [9], instead of cutting the relationships between the treatment and its confounding parents, 

the model using fuzzification method assigns fuzzy membership values, such as very low, low, 

medium, and high, to the Treatment. To automatically assign membership values, the authors used 

fuzzy c-mean algorithm [16]  which is widely used for clustering the datasets using fuzzy logic.  

Once, the membership assignments step is done, the model then applies causal fuzzy 

interventional rules from [9] as following 𝑚𝑎𝑥(1 − 𝜇(𝑎), 𝜇(𝑏)). Doing so, it can calculates more than 

fourteen different possible membership degree based fuzzy counterfactual values for each variable 

using different causal fuzzy rules such as 𝑚𝑎𝑥(1 − 𝜇(𝑎), 𝜇(𝑏)), where 𝜇(𝑎) and 𝜇(𝑏) are the highest 

membership degrees of 𝑎 and 𝑏 among all considered fuzzy attributes for 𝑎 and 𝑏, respectively 

[9]. We would like to put more emphasis that using the following causal rules, we are applying 

interventions and estimate fuzzy counterfactuals at the same time.  

Here are some of our fuzzy interventional rules. 𝑚𝑎𝑥(1 − 𝜇(𝑎), 𝜇(𝑏)), 𝑚𝑖𝑛(1 − 𝜇(𝑎), 𝜇(𝑏)), 𝑚𝑎𝑥(min⁡(1 − 𝜇(𝑎), 1 − 𝜇(𝑏)), 𝑏), 

We note that based on the model introduced in [9], each of the above rules has a meaning based 

on a subjective random selection. For instance, 𝑚𝑖𝑛(1 − 𝜇(𝑏), 𝜇(𝑎)) could be seen as the probability 

of subjectively selecting 𝐴 = 𝑎  as 𝐹𝐴  and 𝐵 = 𝑏  as 𝐹(¬𝐵) , where 𝐹𝐴  and 𝐹𝐵  are the fuzzy 

attributes that 𝜇(𝑎) and 𝜇(𝑏) come from, respectively. The model then applies defuzzification to the 

dataset in order to obtain the outputs. The big changes in the fuzzy output values can indicate 

possible causes.   

3. Model description  

Causal models can reason but cannot learn, and Deep Learning algorithms can learn but have 

limited capacity for reasonings [17]. Causal fuzzy rules for the first time were integrated with DLs 

such as Variational Autoencoders [17] and Big Bird architecture [10]- the latter outperformed 

ChatGpt 2 in reasoning [10]. To handle long sequences, Big Bird is equipped with a sparse attention 

mechanism which reduces the computational complexity of self-attention from quadratic to linear. 

Causal fuzzy rules, fuzzification and defuzzification steps were integrated with Big Bird as 

follows: the model first creates a matrix W with randomly generated values between zero and one 
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(Figure 1). W will represent the potential causal relationships between the columns of the dataset D 

[17]. To do this, the model first initialized matrix W with size (n*n) where n is the number of columns 

in D. It then multiplied W by the dataset. The result of this step was then fed into the Transformer’s 
Embedding module. The output of the Embedding module was then fed into the Transformer’s 
Encoder module which then partitioned using the Fuzzy c-means algorithm [16] (shown as FC-mean 

in Figure 1). This partitioning was done to automatically find fuzzy membership intervals without 

requiring an expert to define them. Using the output of the Fuzzy c-means algorithm, the architecture 

then used Fuzzification method (Figure 1) to fuzzify the dataset. In the next step, the Fuzzy causal 

rule set engine (Figure 1) applies the above causal fuzzy rules from [9] to each of the dataset D’s 
columns. Finally, the architecture applies Defuzzification (Figure 1).  

 

Figure 1. Causal Fuzzy Big Bird Architecture (CFT). 

The next step was to incorporate fuzzy rules into the Big Bird’s loss function. According to [5], 
this was done by dividing the Big Bird Loss Function by the variations of fuzzy causal reasoning rules 

obtained from the previous defuzzification step.  

The result of the previous step was then multiplied by the original dataset before being fed into 

the Transformer’s Encoder module. These steps were repeated until the architecture converged. The 
elements of the matrix W, which resulted from the previous steps, are possible causes. 

3. Dataeset Description 

We used the radiomics data studied in Qian et al. [4]. The dataset contained a sample size n=183 

patients including 100 with GBM and 83 with GSM with 1 303 radiomic features extracted from MRI 

images. In our study, we took “Edema” A (Yes: 1 / No: 0) as the exposure variable (treatment) and 
the outcome variable Y (Y = 1 if the patient had gliosarcoma and Y = 0 if the patient had glioblastoma. 

We used 1 303 radiomics features as potential confounders of the relationship between A and Y. 

5. Results 

In this section, we compare the Causal Fuzzy Big Bird Architecture (CFT) [10] (code on GitHub) 

and the GPT-2 architecture [18] in terms of features selection and accuracy. GPT-2 architecture is a 

powerful deep learning algorithm which is described in the following address1. We applied both CFT 

and GPT-2 to analyze the radiomics dataset. The objective was to identify the key radiomics 

confounders of the causal relationship of Edema and Gliosarcoma. As these confounding features 

 
1 https://github.com/huggingface/transformers 
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can inform the distinction of GSM from GBM.  Based on the analysis, the radiomics features were 

grouped into four categories (Please see Appendix): Group A, Group B, Group C, and Singleton D, 

each representing varying probabilities of being an important potential confounder of the 

relationship between Edema and GSM. 

We added a new embedding layer of size 20K to GPT-2, a language model, so that it could learn 

from numerical data. We used the same embedding size for CFT. We split the dataset into 70% for 

training and 30% for testing. Since the dataset had only 183 rows, we augmented it by 200 folds. We 

trained both models for 500 epochs on a Nvidia A100 with 24 GB RAM. 

Since, Big Bird and GTP-2 are both language models, we used perplexity formula [19] to to 

measure the accuracy of both models. As we can see, GPT-2’s perplexity score is higher than CFT. 
However, this cannot be considered as a good measure for causal inference. 

Table 1. Train/Test accuracy of the Architectures that we have used. 

Architecture Train Accuracy Test Accuracy 

GPT-2    96.5% 93% 

CFT    95% 92% 

One way to support this claim is to compare how GPT-2 and CFT performance on detecting the 

‘original_shape_Sphericity’, which is the most important radiomics feature. GPT-2 fails to detect it, 

while CFT succeeds, even though CFT has a lower test accuracy than GPT-2. 

In the following we provided the result of the CFT and GPT-2 and their comparison. Our results 

agree with the findings in [20], who identified the radiomics feature original_shape_Sphericity as one 

of the key factors informing the distinction of GSM from GBM. That is this feature is a strong potential 

confounder of the relationship of Edema and GSM.  

Once more, we wish to underscore the methodology distinction. In prior research, including the 

work referenced in [20], the standard practice involved the initial application of dimension reduction 

techniques followed by the utilization of statistical and machine learning algorithms, such as Lasso 

[8], to derive their findings. In contrast, our approach for this study involved the direct utilization of 

the entire dataset with our architecture, without any alterations or preprocessing steps. 

The Appendix shows the groups A, B, and C of variables that are most likely to contribute to the 

distinction of GSM from GBM by CFT and GPT-2. However, GPT-2 detected fewer variables than CFT 

in each group. 

Conclusion: 

Unlike previous studies on gliosarcoma detection that relied on statistical models to reduce the 

size of the dataset and then used machine learning, we used the entire dataset for causal inference. 

To do so, we used causal fuzzy logic rules from [9] integrated with Big Bird architecture which is a 

Transformer based Deep Learning algorithm [10]. Our finding is in accordance with the findings in 

[8]. We also compared causal fuzzy Big Bird results with GPT-2 which is one of the well-known DLs. 

Causal fuzzy Big Bird outperformed GPT-2 by detecting "original_shape_Sphericity," as a key 

potential radiomics confounder of the relationship of Edema and GSM. It is worth mentioning that 

DLs need lots of data to learn. However, our causal fuzzy Big Bird architecture used very small 

amount of data to discover the causal variables. This is because our model is equipped with casual 

fuzzy logic rules from [9].  
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Appendix 

In the following list, we have enumerated the variables detected by our CFT architecture. Those 

variables highlighted in yellow represent cases that were not detected by GPT-2 architecture. 

CFT output 

Groupe C Proportion of 

times each 

radiomics 

group features 

was selected 

1. original_shape_MajorAxis, 
original_shape_Maximum2DDiameterRow,  

2. original_shape_Sphericity, 
original_gldm_DependenceNonUniformity,  

3. 3-0-mm-3D_glszm_GrayLevelNonUniformity,  

4. original_shape_SurfaceVolumeRatio, log-sigma-3-0-mm-
3D_glszm_SizeZoneNonUniformity,  

5. log-sigma-3-0-mm-3D_gldm_DependenceNonUniformity,  

6. log-sigma-5-0-mm-3D_glszm_GrayLevelNonUniformity,  

7. LHH_glcm_ClusterShade, 
8.  waveletLHH_glcm_Idn,  

9. wavelet-HLL_firstorder_10Percentile,  

10. waveletHLL_firstorder_MeanAbsoluteDeviation,  

11. wavelet-HLL_firstorder_Skewness,  

12. waveletHLH_firstorder_Minimum, wavelet-
HLH_glcm_JointAverage,  

13. original_shape_SurfaceVolumeRatio,  

14. waveletHLH_gldm_SmallDependenceHighGrayLevelEmphasis,  

15. waveletHHL_gldm_LowGrayLevelEmphasis 

 

 > 85% 

 
 
 
 

Groupe D Proportion of times each radiomics 

group features was selected 

original_shape_Sphericity > 95% 
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Groupe B Proportion 

of times 

each 

radiomics 

group 

features 

was 

selected 

1. original_shape_MajorAxis,  

2. original_shape_Maximum2DDiameterRow,  

3. original_shape_SurfaceVolumeRatio,  

4. original_shape_Maximum3DDiameter,  

5. original_shape_Sphericity,  

6. original_glszm_SizeZoneNonUniformity,  

7. original_gldm_DependenceNonUniformity, 3-0-mm-
3D_glszm_GrayLevelNonUniformity,  

8. logsigma-3-0-mm-3D_glszm_SizeZoneNonUniformity,  

9. log-sigma-3-0-mm-3D_gldm_DependenceNonUniformity,  

10. log-sigma-5-0-mm-3D_glszm_GrayLevelNonUniformity,  

11. LHH_glcm_ClusterShade,  

12. wavelet-LHH_glcm_Idn,  

13. wavelet-HLL_firstorder_10Percentile,  

14. wavelet-HLL_firstorder_MeanAbsoluteDeviation,  

15. wavelet-HLL_firstorder_Skewness,  

16. waveletHLH_firstorder_Minimum,  

17. wavelet-HLH_glcm_JointAverage,  

18. original_shape_SurfaceVolumeRatio,  

19. waveletHLH_gldm_SmallDependenceHighGrayLevelEmphasis,  

20. waveletHHL_gldm_LowGrayLevelEmphasis 

 

> 75% 
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Groupe A 
Proportion of 

times each 

radiomics group 

features was 

selected 

1. original_shape_MajorAxis, 
original_shape_Maximum2DDiameterRow,  

2. original_shape_Maximum2DDiameterSlice,  

3. original_shape_Maximum3DDiameter,  

4. original_shape_Sphericity, original_shape_SurfaceArea,  

5. original_glszm_SizeZoneNonUniformity,  

6. original_gldm_DependenceNonUniformity, 
7.  log-sigma-3-0-mm-3D_glszm_GrayLevelNonUniformity,  

8. log-sigma-3-0-mm-3D_glszm_SizeZoneNonUniformity,  

9. log-sigma-3-0-mm-3D_gldm_DependenceNonUniformity,  

10. log-sigma-5-0-mm-3D_glszm_GrayLevelNonUniformity,  

11. wavelet-LLL_glszm_LargeAreaEmphasis,  

12. wavelet-LLL_glszm_ZoneEntropy,  

21. wavelet-
LLH_glrlm_GrayLevelNonUniformityNormalized,  

22. wavelet-LLH_glrlm_RunEntropy, 
23. wavelet-LHL_firstorder_Variance,  

24. waveletLHL_glcm_Correlation, wavelet-
LHL_glrlm_LowGrayLevelRunEmphasis,  

25. waveletLHL_glrlm_RunVariance, 
26. wavelet-

LHL_glszm_SmallAreaHighGrayLevelEmphasis,  

27. waveletLHL_glszm_ZoneVariance, wavelet-
LHL_gldm_SmallDependenceLowGrayLevelEmphasis,  

28. wavelet-LHH_firstorder_Entropy,  

29. wavelet-LHH_firstorder_Variance,  

30. waveletLHH_glcm_ClusterShade,  

31. wavelet-LHH_glcm_Idn,  

32. wavelet-HLL_firstorder_10Percentile,  

33. wavelet-HLL_firstorder_MeanAbsoluteDeviation,  

34. wavelet-HLL_firstorder_Skewness,  

35. waveletHLH_firstorder_Minimum,  

36. wavelet-HLH_glcm_JointAverage,  

37. original_shape_SurfaceVolumeRatio,  

> 60% 
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38. wavelet-
HLH_gldm_SmallDependenceHighGrayLevelEmphasis, 
waveletHHL_gldm_LowGrayLevelEmphasis 

 

In the following we show GPT-2’s output: 

 
 
 

Groupe C Proportion of times 

each radiomics group 

features was selected 

1. original_shape_MajorAxis, 
original_shape_Maximum2DDiameterRow,  

2. 3-0-mm-
3D_glszm_GrayLevelNonUniformity,  

3. original_shape_SurfaceVolumeRatio,  

4. log-sigma-3-0-mm-
3D_glszm_SizeZoneNonUniformity,  

5. waveletHLH_firstorder_Minimum, wavelet-
HLH_glcm_JointAverage,  

6. original_shape_SurfaceVolumeRatio,  

7. waveletHLH_gldm_SmallDependenceHigh
GrayLevelEmphasis,  

 

 

• > 85% 

 
  

Groupe D Proportion of times each radiomics 

group features was selected 

Null > 90% 
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Groupe B Proportion of 

times each 

radiomics 

group features 

was selected 

1. original_shape_SurfaceArea,  

2. original_glszm_SizeZoneNonUniformity,  

3. original_gldm_DependenceNonUniformity, 
4. wavelet-LLL_glszm_ZoneEntropy,  

5. wavelet-
LLH_glrlm_GrayLevelNonUniformityNormalized,  

6. waveletLHL_glcm_Correlation, wavelet-
LHL_glrlm_LowGrayLevelRunEmphasis,  

7. wavelet-
LHL_glszm_SmallAreaHighGrayLevelEmphasis,  

8. waveletLHL_glszm_ZoneVariance, wavelet-
LHL_gldm_SmallDependenceLowGrayLevelEmphasis,  

9. wavelet-LHH_glcm_Idn,  

10. wavelet-HLL_firstorder_10Percentile,  

11. wavelet-HLL_firstorder_MeanAbsoluteDeviation,   

12. waveletHLH_firstorder_Minimum,  

13. wavelet-
HLH_gldm_SmallDependenceHighGrayLevelEmphasis,  

 

> 75% 
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• Groupe B • Proportion of times each 
radiomics group features 
was selected 

14. original_shape_MajorAxis,  

15. original_shape_Maximum2DDiameter
Row,  

16. original_shape_SurfaceVolumeRatio,  

17. original_shape_Maximum3DDiameter,  

18. original_shape_MajorAxis,  

19. waveletLHL_glrlm_RunVariance, 
20. wavelet-LHH_firstorder_Entropy,  

21. wavelet-LHH_firstorder_Variance,  

22. wavelet-HLH_glcm_JointAverage,  

23. original_shape_SurfaceVolumeRatio,  

24. original_shape_Maximum2DDiameter
Slice,  

25. log-sigma-5-0-mm-
3D_glszm_GrayLevelNonUniformity,  

26. wavelet-LLH_glrlm_RunEntropy, 
27. wavelet-LHL_firstorder_Variance,  

28. original_gldm_DependenceNonUnifor
mity,  

29. log-sigma-3-0-mm-
3D_gldm_DependenceNonUniformity,  

30. log-sigma-5-0-mm-
3D_glszm_GrayLevelNonUniformity,  

31. log-sigma-3-0-mm-
3D_gldm_DependenceNonUniformity,  

32. original_shape_SurfaceVolumeRatio,  

33. waveletHLH_gldm_SmallDependence
HighGrayLevelEmphasis,  

 

• > 60% 
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