Pre prints.org

Article Not peer-reviewed version

RS Transformer: A Two-Stage
Region Proposal Using the Swin
Transformer for Few-Shot Pest
Detection in Automated
Agricultural Monitoring Systems

Tengyue Wu , Liantao Shi, Lei Zhang ~, Xingkai Wen , Jianjun Lu , Zhengguo Li

Posted Date: 18 October 2023
doi: 10.20944/preprints202310.1162.v1

Keywords: Swin Transformer; Pest detection; Diffusion model; Feature extraction; Few-shot learning

. E Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of

E . Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3201145
https://sciprofiles.com/profile/2952224
https://sciprofiles.com/profile/3201508
https://sciprofiles.com/profile/326444
https://sciprofiles.com/profile/886834

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 October 2023 doi:10.20944/preprints202310.1162.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

RS Transformer: A Two-Stage Region Proposal Using
the Swin Transformer for Few-Shot Pest Detection in
Automated Agricultural Monitoring Systems

Tengyue Wu 12, Liantao Shi %, Lei Zhang ?*, Xingkai Wen?, Jianjun Lu3, Zhengguo Li ©*

1 Institute for Carbon-Neutral Technology, Shenzhen Polytechnic University, Shenzhen 518055, China;
xiaoshil108@outlook.com(L.S); Lizhengguo@szpt.edu.cn(Z.L.)

2 School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing
100000, China; 202007020208@stu.bucea.edu.cn(T.W); lei.zhang@bucea.edu.cn(L.Z)

3 College of Economics and Management, China Agricultural University, Beijing 100083, China; ljjun@cau.edu.cn(J.L)

4 School of Mathematics and Statistics, Northeast Normal University, JiLin 130024, China; wenxk@nenu.edu.cn(X.W.)

Correspondence: Lizhengguo@szpt.edu.cn; lei.zhang@bucea.edu.cn

Featured Application: Authors are encouraged to provide a concise description of the specific application or
a potential application of the work. This section is not mandatory.

Abstract: Agriculture is pivotal in national economies, with pest detection significantly influencing food
quality and quantity. Pest classification remains challenging in automated agriculture monitoring systems,
exacerbated by the non-uniform pest scales and the scarcity of high-quality datasets. In this study, we
constructed a pest dataset by acquiring domain-agnostic images from the Internet and resizing them to a
standardized 299x299 pixel format. Additionally, we employed diffusion models to generate supplementary
data. While Convolutional Neural Networks (CNNs) are prevalent for prediction and classification, they often
lack effective global information integration and discriminative feature representation. To address these
limitations, we propose the RS Transformer, an innovative model that combines elements like the Region
Proposal Network, Swin Transformer, and ROI Align. Additionally, we introduce the Randomly Generated
Stable Diffusion Dataset (RGSDD) to augment the availability of high-quality pest datasets. Extensive
experimental evaluations demonstrate the superiority of our approach compared to both two-stage models
(SSD and Faster R-CNN) and one-stage models (YOLOv3, YOLOv4, YOLOv5m, YOLOvS, and DETR). We
rigorously assess performance using metrics such as mean Average Precision (mAP), F1Score, Recall, and mean
Detection Time (mDT). Our research contributes to advancing pest detection methodologies in automated
agriculture systems, promising improved food production and quality.

Keywords: Swin Transformer; pest detection; diffusion model; feature extraction; few-shot learning

1. Introduction

Agriculture directly impacts people's lives and is essential to the development of the global
economy. However, pests in crops often cause great losses. Therefore, it is necessary to prevent pest
control to ensure a high agricultural yield[1]. Because of developments in science and technology,
pest detection methods are continually changing[2]. Early detection relies on field diagnosis by
agricultural experts, but proper diagnosis is difficult due to the complexity of pest conditions, lack of
qualified staff and inconsistent experience at the grassroots level. Furthermore, incorrect pest
identification by farmers has led to an escalation in pesticide usage. This in turn has bolstered pest
resistance[3] and exacerbated the harm inflicted upon the natural environment.

An effective integrated pest automated monitoring system relies on a high-quality algorithm.
With the development of image processing technology and deep learning, more and more scholars
use pest image data and deep learning to identify pests, which improves the effectiveness of
agricultural pest detection and is also the first application example of intelligent diagnosis.
Classification and detection of agricultural pests is a crucial research field to help farmers effectively
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manage crops and take timely measures to reduce the harm of pests. Object detection models, which
come in one-stage and two-stage varieties, are frequently employed in pest classification detection.
One-stage models like YOLO[4-6] and SSD[7] are renowned for their rapid detection capabilities. In
contrast, two-stage models like Fast R-CNNJ2] and Faster R-CNN[9] excel in achieving high accuracy,
albeit at a slower processing speed compared to their one-stage counterparts. The transformer model
is introduced in 2017[10] and has a lot of potential applications in Al. Based on its effectiveness in
natural language processing (NLP)[11], recent research has extended Transformer to the field of
computer vision (CV)[12]. In 2021 Swin Transformer[13] was proposed as a universal backbone for
CV, which achieves the latest SOTA on multiple dense prediction benchmarks. The differences
between language and vision make the transition from language to vision difficult, such as the vast
range of visual entity scales. But the Swin Transformer can solve this problem well. In this paper, we
use a Vision Transformer with a shift window to detect pests.

Currently, two dataset-related issues affect pest detection: (1) The scarcity of high-quality
datasets. There are only over 600 photos in eight pest datasets, reflecting the lack of agricultural pest
datasets[14]. (2) The challenges of detecting pests at multiple scales. The size difference between large
and micro pests is large, up to 30 times in some cases. For example, the relative size of the largest pest
in the LMPD2020 dataset is 0.9%, while the relative size of the smallest pest is only 0.03%. When the
size difference of the test object is large, it is difficult for the test results at multiple scales to achieve
a high accuracy simultaneously, and the problem of missing detection often occurs. Moreover, the
Transformer also requires a large dataset for training.

In agriculture, there are few high-quality pest datasets available, and some datasets come from
the web with poor clarity and different sizes. To improve the accuracy of pest identification, enable
models to learn more complex semantic information from training data, and complement the
agricultural dataset. This paper proposes a new pest detection method with two key functions: data
generation using diffusion models and pest detection using Swin Transformers. The diffusion
model[15] is first introduced in 2015. It acts as a sequence of denoising autoencoders, and its goal is
to remove Gaussian noise by continually applying it to the training images. A new diffusion
model[16] represents the novel state-of-the-art in-depth image generation. In picture-generating
tasks, it outperforms the original SOTA: GAN (Generative Adversarial Networks)[17] and performs
well in a variety of applications, including CV, NLP, waveform signal processing, time series
modeling and adversarial learning. The Denoising Diffusion Probabilistic Model was proposed later
in 2020[18] applying to image generation. In 2021 Open Al’s paper: Diffusion Model Beat GANs on
Image Synthesis[19] makes machine-generated data even more realistic than GAN. DALL-E2[20]
allows us to use text descriptions to generate the image we want.

Overall, this paper mainly makes the following contributions:

(1) RS Transformer, a novel model based on the Region Proposal Network (RPN), Swin
Transformer, and ROI Align, for few-shot detection of pests at different scales.

(2) RGSDD, a new training strategy method Randomly Generate Stable Diffusion Dataset is
introduced to expand small pest images to effectively classify and detect pests in a short period

(38) Comprehensive experiments on the pest dataset confirmed the success of our proposed
methods contrasting with SSD[7], Faster R-CNNJ[9], YOLOv3[4], YOLOv4[5], YOLOv5m][6], YOLOVS8
and DETR[21].

2. Materials and Methods
2.1. Pest Dataset
2.1.1. Real Pest Image Dataset

This study focuses on crops of high economic value. As a result, the selection of agricultural
pests is based on small sample sizes. First, we went to the Beizang Village experimental field next to
the Daxing Campus of Beijing University of Civil Engineering and Architecture to take photos with
an iPhone 12 pro-Max and collected 400 pictures of pests. Secondly, pests were searched for on the
IPMImages database[22], National Bureau of Agricultural Insect Resources (NBAIR), Google, Bing,
etc. Eight common pests are used as the foundation: (1)Tetranychus urticae, TU (2)Bemisia
argentifolii, BA (3)Zeugodacus cucurbitae, ZC (4)Thrips palmi, TP (5)Myzus persicae, MP
(6)Spodoptera litura, SL (7)Spodoptera exigua, SE (8)Helicoverpa armigera HA. Figure.1 displays a
few representative photos from the dataset. Eventually, the resulting pest dataset grows to 1009.
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Figure 1. The pests dataset.

2.1.2. Dataset Generation

Stable diffusion was released by Open Al in 2022[23], a model that can be used to generate
detailed images conditioned on text descriptions.

The diffusion model, which produces samples that fit the data after a finite amount of time, is a
parameterized Markov chain trained via variational inference. [18]. As seen in Figure 2, the
forward process and the reverse process can be separated from the entire diffusion model. It is
commonly understood that the forward diffusion process is constantly adding Gaussian noise to the
image, making it "unrecognizable", while the reverse process reduces the noise and then restores the
image. The core formula of the diffusion model is,

X = \/a—txt—l +Vl-az €Y)

Po(Xe—11Xc)

Xt—1

@ . B

.

q(xelxe—1) — . Reverse process

> Forward process

Figure 2. The diffusion processes.

where a, is experiment constant and it will decrease as t increases. z; is a standard Gaussian
noise distribution N(0,1)

The overall structure of the diffusion model is shown in Figure 3. It contains three models. The
first is the CLIP model (Contrastive Language-Image Pre-Training), which is a text encoder that
converts text into vectors as input. The image is then generated using the Diffusion model. It is
performed in the potential space of the compressed image, so the input and output of the expanded
model are the image features of the potential space, not the pixels of the image itself. During the
training of the latent diffusion model, an encoder is used to obtain the potentials of the picture
training set, which are used in the forward diffusion process (each step adds more noise to the latent
representation). At inference generation, the decoder part of VAE (Variational Auto-Encoder)
converts the denoised latent signal generated by the reverse diffusion process back into an image
format.
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Figure 3. The framework of the diffusion model.

A stable diffusion model is trained using a real pest dataset. The images generated by Stable
Diffusion are 299x299 as shown in Figure 4. To increase the chance of generating pest images, we
chose captions that contain any word from the following list of words: [BA, HA, MP, SE, SL, TP, TU,
ZC]. After carefully eliminating the last few false positives, we gathered 512 produced pests.

Figure 4. The generated pest dataset.

2.1.3. Dataset Enhancement

In this study, the original image was processed using enhancement methods such as rotation,
translation, flipping, and noise addition., and the enhancement technique AutoAugmentation[24] is
applied to operate the color of images. Finally, we got 36,122 pest images.

2.2. Framework of the Proposed Method

In this paper, R-CNNJ25] is replaced by Swin Transformer and applied to pest target detection
tasks. A new object detection method, RS Transformer, is proposed. The advantages of our scheme
are:

First, a new feature extraction method for the Swin Transformer is proposed and used in the
feature extraction module. It improves the alignment of global features. The localization accuracy is
improved and the computing cost of the transformer is significantly reduced by the shift window
model.

Second, RS Transformer is proposed which adds RPN, ROI Align, and Feature map.

Third, a new data composition method RGSDD is proposed. This method is used to train the
stable diffusion model of the real images collected before, and 512 images are generated randomly
mixed with 10%, 20%, 30%,40%, and 50% of the number of real images.

2.3. RS Transformer

RS Transformer is a two-stage model (Figure 5). It first extracts features using Swin Transformer
and then generates a series of region proposals.
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Figure 5. Structure diagram of RS Transformer.

2.3.1. Swin Transformer Backbone

The Swin Transformer backbone is introduced in Figure 6. Compared to traditional CNN
models, it has stronger feature extraction capabilities, incorporates CNN's local and hierarchical
structure, and utilizes attention mechanisms to produce a more interpretable model and examine the
attention distribution.
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i
i
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Transformer
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Transformer
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Figure 6. Structure diagram of RS Transformer.

A 2-layer MLP (Multi-layer Perceptron) with GELU non-linearity follows a shifted window-
based MSA module (W-MSA) in the Swin Transformer block. Each MSA module (Multi-head Self-
Attention) and each MLP have an LN (Layer Norm) layer applied before them, and each module also
has a residual connection applied after it. Supposing each window contains M X M patches, the
computational complexity of a global MSA module and image-based window h X w patches are:

Q(MSA) = 4hwC? + 2(hw)2C 2)
QW — MSA) = 4hwC? + 2M?hwC (3)

The shift window partitioning method can be used to compute the backbones of two consecutive
Swin Transformers and is denoted as follows:

28 =W — MSA(LN(z'"1)) + z!71 (4)
zt = MLP(LN(2Y) + 2 (5)
21 = SW — MSA(LN(zY) + Z¢ (6)
z!*1 = MLP(LN(24Y)) + 2141 7

where 2! and 2! represent the output of W-MSA and MLP of the [ block, respectively.

Swin Transformer constructs hierarchical feature graphs and adopts a complexity calculation
method with linear image size. A sample diagram of a hierarchy of small patch size is shown in
Figure 7. In the deeper Transformer layers, it begins with small-size patches and eventually integrates
nearby patches. By using patch splitting modules like ViT, RGB images are divided into non-
overlapping patches, and employ a patch size of 4 X 4, making each patch's feature dimension
4 X 4 x3 = 48. This fundamental feature is projected to any dimension (designated C) using a
linear embedding layer.
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Figure 7. Sample diagram of a hierarchy of small patch size.

2.3.2 RS Transformer neck: FPN

FPN (Feature Pyramid Networks) is proposed to achieve a better fusion of feature maps. As
illustrated in Figure 8, the purpose of FPN is to integrate feature maps from the bottom layer to the
top layer to fully utilize the extracted features at each stage.

Figure 8. FPN structure diagram.

FPN produces a feature pyramid, not just a feature map. Pyramid after RPN will produce many
region proposals. These region proposals are produced by RPN, and ROl is cut out according to the
region proposal for subsequent classification and regression prediction. We use a formula to
determine which k the ROI of wide w and high h should be cut from:

k =ky+log,(Nw x h/299) (8)

Here 224 represents the size of the ImageNet image used for pre-training. k, represents the level
at which the ROI of the area is w X h = 299 X 299should be. Large-scale ROI should be cut from the
feature map of low resolution, which is conducive to the detection of large targets, and small-scale
ROI should be cut from the feature map of high resolution, which is conducive to the detection of
small targets.

2.3.3. RS Transformer Head: RPN, ROI Align

To achieve the prediction of coordinates and scores of each regional suggestion box while
extracting features, the RPN network adds a regression layer (reg-layer) and a classification layer (cls-
layer) to the Swin Transformer. Figure 9 depicts the RPN working principle. RPN centers on a pixel
of the last layer feature map and traverses the feature map through a 3x3 sliding window. The pixel
points mapped from the center of the sliding window to the original image are anchor points. Taking
the anchor point as the original image center, using 15 preset anchor boxes with 5 different areas
(32x32, 64x64, 128x128, 256x256, 512x512), and three distinct aspect ratios (2:1, 1:1, and 1:2), the
original candidate region, k=15 was obtained. RPN sends the candidate regions in the k anchor boxes
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to the regression layer and the category layer respectively for boundary regression and classification
prediction. The regression layer predicts the frame coordinates (X, Y, W, H), so the output is 4k; the
classification layer predicts the type, target, and background, so the output is 2k. Each anchor is then
evaluated with initial over-boundary screening and Non-Maximum Suppression (NMS) from largest
to smallest to retain the top 1000 or 2000 scores. Finally, the candidate boundaries of prediction as
background in the classification layer are removed, and the candidate boundaries of prediction as a
target are retained.

l 2k scores ‘ [ 4k coordinates ‘ Q== k anchor boxes

cls layer ‘ t reg layer

t intermediate layer

|

sliding window:
H
conv feature map .

Figure 9. RPN working principle diagram.

ROI Align

The function of ROI Pool and ROI Align is to find the feature map corresponding to the
candidate box, then process the feature map of different size proportions into a fixed size, so that it
can be input into the subsequent fixed-size network. Mask RCNN proposed an ROI Alignment[26]
based on the ROI pool. The bilinear interpolation method is used to determine the eigenvalue of each
pixel in the region of interest of the original image, which avoids the error caused by quantization
operation and improves the accuracy of frame prediction and mask prediction.

ROI Alignment algorithm's primary steps are: (1) Traverse each candidate region on the feature
map, keeping the floating-point boundary unquantized; (2) In Figure 10, the candidate region is
evenly divided into kxk bins, and the edge of each bin keeps the floating-point number without
quantization; (3) Take 2x2 sample points for each bin, and use the bilinear interpolation method to
calculate the pixel values of each sampling point's neighboring four pixels. Finally, the pixel value in
each bin is maximized to obtain the value of each bin.

feature map

=

Grid points of >. o * Y

bilinear interpolation

‘e
Variable size ROI l
@
o N N

Figure 10. ROI Align diagram.

b

3. Results and Discussion

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions that can be
drawn.


https://doi.org/10.20944/preprints202310.1162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 October 2023 doi:10.20944/preprints202310.1162.v1

3.1. Experiment Setup

The experiments are conducted on the Autodl platform, which provides low-cost GPU
computing power and a configuration environment that can be rented at any time. For researchers
and universities without high-performance GPUs or servers, Autodl offers a wide range of high-
performance GPUs to use. The experiments were implemented using the Pytorch 1.10.0 framework,
Python 3.8, CUDA 11.3, and Nvidia RTX 2080Ti GPUs with 11GB memory.

3.2. Evaluation Indicator

To evaluate the performance of the proposed model, Precision, Average Precision (AP), Recall,
Precision-Recall Curve, mean Average Precision (mAP), and F1 Score were selected as evaluation

metrics.
Percision = % (8)
Recall = % 9
AP = J:p(r)dr = % (10)

Average Precision (AP): The average precision under different recall rates. The higher the
accuracy, the higher the AP.

Recall = —2 (11)
TP EN
Recall: The average recall rate at different levels of precision. The higher the recall, the higher
the AR.
N
1

mAP = NZ AP, (12)

i=1

mean Average Precision (mAP): During the picture categorization procedure, it is usually a
multi-classification problem. According to the above calculation process, the AP of each analog is
obtained, and then the average value is mAP.
2XPXR

P+R (13)

F, Score =
3.3. Experimental Baselines

To evaluate the performance of RS Transformer, SSD[7], Faster R-CNN[9], YOLOv3[4],
YOLOvV4[5] and YOLOv5m[6], YOLOv8 and DETR[27] were chosen as baseline models for

comparison.
Table 1. Different baselines.

Models Backbone Parameters(M)
SSD VGG16 28.32
Faster R-CNN VGGIl6 138
YOLOvV3 Darknet-53 64.46
YOLOv4 CSPDarknet53 5.55
YOLOv5m CSPDarknet53 20.66
YOLOvVS8 C2f 30.13
DETR ResNet-50 40.34
RS Transformer Swin Transformer 30.17

3.4. Experimental Results and Analysis

On a dataset with five models, we assessed the performance of popular deep learning models to
adequately illustrate the performance of the proposed model (Table 2). Enter a fixed image resolution
with a size of 299 x 299 pixels.


https://doi.org/10.20944/preprints202310.1162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 October 2023 doi:10.20944/preprints202310.1162.v1

9

Compared to other models, our proposed method achieves significant improvements, with mAP
of 90.18% - representing gains of 13.27%, 17.53%, 29.8%, 13.97%, 9.89%, 5.46% and 4.62% over SSD,
Faster-RCNN, YOLOv3, YOLOv4, YOLOv5m, YOLOv8 and DETR respectively. The proposed
method achieves 20.1 ms mDT for the detection time of each image.

Table 2. Comparison of different indexes.

Models mAP (%) F1Score (%) Recall mDT (ms)
SSD 76.91 67.62 70.12 229
Faster R-CNN 72.65 65.57 69.31 24.5
YOLOvV3 60.38 52.38 57.78 17.7
YOLOv4 76.31 69.55 74.97 10.7
YOLOv5m 80.29 75.58 79.14 13.6
YOLOvS8 84.72 80.32 82.11 9.8
DETR 85.56 81.18 82.82 19.2
RS Transformer 90.18 85.89 87.31 20.1

The contrast in mAP is visually presented in Figure 11. It is evident that the mAP of the three
compared models exhibits an upward trend during the training process, albeit with substantial
fluctuations. Conversely, our model's mAP shows a more consistent trajectory, stabilizing at 77.73%
approximately after 75 epochs. Subsequently, the RS Transformer model attains its peak
performance, achieving a maximum mAP of 90.18%. These findings collectively affirm the stability
of the RS Transformer, its capacity to enhance network performance, and its ability to expedite
convergence.

0.8

mAP

0.0 T T T T T 1
0 50 100 150 200 250 300

Epochs
RS Transformer YOLO v8

Faster R-CNN
Figure 11. Comparisons of mAP.

The RS Transformer exhibits a robust capacity for discerning similar pests and demonstrates
superior overall performance compared to other models, as detailed in Table 3(models’ mAP) and
illustrated in Figure 12. Furthermore, in challenging scenarios such as the TU dataset the model
maintains a remarkable recognition rate of 90.24%.
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Figure 12. Comparisons of mAP to identify similar pests.
Table 3. Comparison of different mAP indexes.
Models BA HA MP SE SL TP TU ZC
SSD 77.29 73.12 77.48 73.88 79.91 80.21 78.26 74.08
Faster R-CNN 75.89 69.26 69.76 73.81 71.33 74.75 70.10 73.02
YOLOvV3 57.20 63.69 61.51 60.66 62.63 58.93 58.00 64.05
YOLOv4 72.55 74.47 75.40 79.11 74.24 76.13 80.05 78.51
YOLOv5Sm 84.22 79.51 77.17 79.57 80.79 79.73 83.06 81.16
YOLOvVS8 81.53 88.45 82.18 84.44 85.56 84.73 83.95 83.21
DETR 83.53 82.07 87.33 85.61 87.62 83.23 88.52 85.52
RS Transformer  87.13 91.36 89.13 86.61 92.53 91.04 90.24 91.52

The dataset has been generated using the diffusion model (see Figure 13), and subsequently, it
has been combined at varying proportions of 10%, 20%, 30%, 40%, and 50%. These datasets were then
utilized as inputs for the RS Transformer model, followed by rigorous testing procedures,
culminating in the presentation of the results in Table 4.

Applying the RGSDD method to the RS Transformer, it is evident that upon incorporating 30%
of the generated data, the model attains its peak performance, resulting in a notable increase of 5.53%
in mAP.

| Real dataset ! |

!
: . !
| i : Generate |
[l Pest dataset i eneratet» pest datset !
| i !
|

RS Transformer

Merge dataset o
Algorithmically

generated data

Figure 13. Mixed data model diagram.

Table 4. RGSDD using in RS Transformer.
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Models percentage mAP (%) F1 Score (%) Recall (%) mDT (ms)
RS Transformer 0% 90.18 85.89 87.31 20.1
10% 90.98 85.13 83.53 20.1
20% 93.64 86.75 90.42 20.1
30% 95.71 94.82 92.47 20.2
40% 95.56 90.67 93.10 20.2
50% 94.98 91.03 93.06 20.2

The RGSDD methodology has also been applied to enhance the performance of the Faster R-
CNN, YOLOv5m, YOLOvVS, and DETR models. The results of these experiments demonstrate that
RGSDD contributes positively to model enhancement, as evidenced in Tables 5-8.

Table 5. RGSDD using Faster R-CNN.

Models percentage mAP (%) F1 Score (%) Recall (%) mDT (ms)
Faster R-CNN 0% 72.65 65.57 69.31 24
10% 75.07 68.83 69.73 24
20% 73.47 67.26 70.62 24
30% 73.72 67.37 74.84 24
40% 71.80 69.78 72.39 24.1
50% 73.13 68.29 70.47 24.1

Table 6. RGSDD using YOLOv5m.

Models percentage mAP (%) F1 Score (%) Recall (%) mDT (ms)
YOLOv5m 0% 80.29 75.58 76.14 13.6
10% 83.96 74.72 76.48 13.6
20% 85.43 75.90 81.91 13.6
30% 82.31 76.24 78.38 13.6
40% 84.37 76.12 79.82 13.7
50% 75.53 70.41 73.76 13.7

Table 7. RGSDD using YOLOVS.

Models percentage mAP (%) F1 Score (%) Recall (%) mDT (ms)

YOLOvS 0% 84.72 80.32 82.11 9.8
10% 87.38 75.77 72.31 9.8
20% 88.42 85.17 84.78 9.8
30% 88.51 85.89 85.31 9.8
40% 82.32 81.76 80.11 9.9
50% 75.35 70.32 71.58 9.9

Table 8. RGSDD using DETR. Civilization starts from me to create a civilized city

Models percentage mAP (%) F1 Score (%) Recall (%) mDT (ms)
DETR 0% 85.56 81.18 82.82 20.1
10% 85.94 83.10 80.62 20.1
20% 86.37 82.99 84.67 20.1
30% 87.71 86.75 85.72 20.2
40% 89.92 85.02 87.89 20.2
50% 88.90 87.19 85.97 20.2

These data underscore the practical applicability of RGSDD, as visually depicted in Figure 14.
Specifically, in the case of the YOLOv8 model with 30% incorporation, it yielded a substantial 3.79%
improvement in mAP. Similarly, for the DETR model with 40% incorporation, there was a noticeable
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enhancement of 4.36% in mAP. Furthermore, it becomes evident that when 50% of the generated data
is included, the model's performance experiences a significant decline. This subset of data appears to
introduce interference and is potentially treated as noise to some extent, resulting in adverse effects
on model performance.
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Figure 14. (a) RS Transformer with RGSDD (b) Faster R-CNN with RGSDD (c) YOLOv5m with
RGSDD (d) YOLOvVS8 with RGSDD (e) DETR with RGSDD.

Figure 15 compares the mAP, F1 Score (%) and Recall of different networks, it can be found that
RS Transformer is still better than others, even when RGSDD is used. In the optimal value, mAP
outperforms Faster R-CNN by 9.29% and YOLOv5m by 4.95 %.
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Figure 15. (a) mAP (b) F1 Score (c) Recall (d) mDT.

Figure 16 presents the outcomes achieved by the RS Transformer model integrated with RGSDD.
Notably, the results highlight RGSDD's exceptional accuracy in effectively identifying multi-scale
pests across various species.
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Figure 16. RS transformer, Faster R-CNN, YOLOvS8 and DETR output through the RGSDD system.

5. Conclusions

The Swin Transformer, introduced here as the foundational network for pest detection,
represents a pioneering contribution. In conjunction with this innovation, the RS Transformer is
developed, building upon the inherent strengths of the R-CNN framework. Furthermore, we employ
a diffusion model to create a novel pest dataset, accompanied by introducing an innovative training
approach tailored for the Randomly Generated Stable Diffusion Dataset (RGSDD). This approach
involves the judicious fusion of synthetic data generated through RGSDD with real data, calibrated
as a percentage of the total dataset. Our study comprehensively compares the performance of the RS
Transformer and RGSDD against established models including SSD, Faster R-CNN, YOLOVS3,
YOLOvV4, YOLOv5m, YOLOvVS, and DETR. The experimental results unequivocally demonstrate the
superiority of the RS Transformer and the efficacy of the RGSDD dataset, surpassing prevailing
benchmarks. Significantly, our method achieves an optimal balance between accuracy and network
characteristics. These findings hold substantial implications for future ecological informatics
research, offering fresh insights into the domain of ecological pest and disease control. The presented
approach promises to advance the state-of-the-art and contribute to more effective ecological
management strategies.
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