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Abstract: Agriculture is pivotal in national economies, with pest detection significantly influencing food 

quality and quantity. Pest classification remains challenging in automated agriculture monitoring systems, 

exacerbated by the non-uniform pest scales and the scarcity of high-quality datasets. In this study, we 

constructed a pest dataset by acquiring domain-agnostic images from the Internet and resizing them to a 

standardized 299x299 pixel format. Additionally, we employed diffusion models to generate supplementary 

data. While Convolutional Neural Networks (CNNs) are prevalent for prediction and classification, they often 

lack effective global information integration and discriminative feature representation. To address these 

limitations, we propose the RS Transformer, an innovative model that combines elements like the Region 

Proposal Network, Swin Transformer, and ROI Align. Additionally, we introduce the Randomly Generated 

Stable Diffusion Dataset (RGSDD) to augment the availability of high-quality pest datasets. Extensive 

experimental evaluations demonstrate the superiority of our approach compared to both two-stage models 

(SSD and Faster R-CNN) and one-stage models (YOLOv3, YOLOv4, YOLOv5m, YOLOv8, and DETR). We 

rigorously assess performance using metrics such as mean Average Precision (mAP), F1Score, Recall, and mean 

Detection Time (mDT). Our research contributes to advancing pest detection methodologies in automated 

agriculture systems, promising improved food production and quality. 

Keywords: Swin Transformer; pest detection; diffusion model; feature extraction; few-shot learning 

 

1. Introduction 

Agriculture directly impacts people's lives and is essential to the development of the global 

economy. However, pests in crops often cause great losses. Therefore, it is necessary to prevent pest 

control to ensure a high agricultural yield[1]. Because of developments in science and technology, 

pest detection methods are continually changing[2]. Early detection relies on field diagnosis by 

agricultural experts, but proper diagnosis is difficult due to the complexity of pest conditions, lack of 

qualified staff and inconsistent experience at the grassroots level. Furthermore, incorrect pest 

identification by farmers has led to an escalation in pesticide usage. This in turn has bolstered pest 

resistance[3] and exacerbated the harm inflicted upon the natural environment. 

An effective integrated pest automated monitoring system relies on a high-quality algorithm. 

With the development of image processing technology and deep learning, more and more scholars 

use pest image data and deep learning to identify pests, which improves the effectiveness of 

agricultural pest detection and is also the first application example of intelligent diagnosis. 

Classification and detection of agricultural pests is a crucial research field to help farmers effectively 
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manage crops and take timely measures to reduce the harm of pests. Object detection models, which 

come in one-stage and two-stage varieties, are frequently employed in pest classification detection. 

One-stage models like YOLO[4–6] and SSD[7] are renowned for their rapid detection capabilities. In 

contrast, two-stage models like Fast R-CNN[2] and Faster R-CNN[9] excel in achieving high accuracy, 

albeit at a slower processing speed compared to their one-stage counterparts. The transformer model 

is introduced in 2017[10] and has a lot of potential applications in AI. Based on its effectiveness in 

natural language processing (NLP)[11], recent research has extended Transformer to the field of 

computer vision (CV)[12]. In 2021 Swin Transformer[13] was proposed as a universal backbone for 

CV, which achieves the latest SOTA on multiple dense prediction benchmarks. The differences 

between language and vision make the transition from language to vision difficult, such as the vast 

range of visual entity scales. But the Swin Transformer can solve this problem well. In this paper, we 

use a Vision Transformer with a shift window to detect pests.  

Currently, two dataset-related issues affect pest detection: (1) The scarcity of high-quality 

datasets. There are only over 600 photos in eight pest datasets, reflecting the lack of agricultural pest 

datasets[14]. (2) The challenges of detecting pests at multiple scales. The size difference between large 

and micro pests is large, up to 30 times in some cases. For example, the relative size of the largest pest 

in the LMPD2020 dataset is 0.9%, while the relative size of the smallest pest is only 0.03%. When the 

size difference of the test object is large, it is difficult for the test results at multiple scales to achieve 

a high accuracy simultaneously, and the problem of missing detection often occurs. Moreover, the 

Transformer also requires a large dataset for training. 

In agriculture, there are few high-quality pest datasets available, and some datasets come from 

the web with poor clarity and different sizes. To improve the accuracy of pest identification, enable 

models to learn more complex semantic information from training data, and complement the 

agricultural dataset. This paper proposes a new pest detection method with two key functions: data 

generation using diffusion models and pest detection using Swin Transformers. The diffusion 

model[15] is first introduced in 2015. It acts as a sequence of denoising autoencoders, and its goal is 

to remove Gaussian noise by continually applying it to the training images. A new diffusion 

model[16] represents the novel state-of-the-art in-depth image generation. In picture-generating 

tasks, it outperforms the original SOTA: GAN (Generative Adversarial Networks)[17] and performs 

well in a variety of applications, including CV, NLP, waveform signal processing, time series 

modeling and adversarial learning. The Denoising Diffusion Probabilistic Model was proposed later 

in 2020[18] applying to image generation. In 2021 Open AI’s paper: Diffusion Model Beat GANs on 

Image Synthesis[19] makes machine-generated data even more realistic than GAN. DALL-E2[20] 

allows us to use text descriptions to generate the image we want. 

Overall, this paper mainly makes the following contributions: 

(1) RS Transformer, a novel model based on the Region Proposal Network (RPN), Swin 

Transformer, and ROI Align, for few-shot detection of pests at different scales. 

(2) RGSDD, a new training strategy method Randomly Generate Stable Diffusion Dataset is 

introduced to expand small pest images to effectively classify and detect pests in a short period  

(3) Comprehensive experiments on the pest dataset confirmed the success of our proposed 

methods contrasting with SSD[7], Faster R-CNN[9], YOLOv3[4], YOLOv4[5], YOLOv5m[6], YOLOv8 

and DETR[21]. 

2. Materials and Methods 

2.1. Pest Dataset 

2.1.1. Real Pest Image Dataset 

This study focuses on crops of high economic value. As a result, the selection of agricultural 

pests is based on small sample sizes. First, we went to the Beizang Village experimental field next to 

the Daxing Campus of Beijing University of Civil Engineering and Architecture to take photos with 

an iPhone 12 pro-Max and collected 400 pictures of pests. Secondly, pests were searched for on the 

IPMImages database[22], National Bureau of Agricultural Insect Resources (NBAIR), Google, Bing, 

etc. Eight common pests are used as the foundation: (1)Tetranychus urticae, TU (2)Bemisia 

argentifolii, BA (3)Zeugodacus cucurbitae, ZC (4)Thrips palmi, TP (5)Myzus persicae, MP 

(6)Spodoptera litura, SL (7)Spodoptera exigua, SE (8)Helicoverpa armigera HA. Figure.1 displays a 

few representative photos from the dataset. Eventually, the resulting pest dataset grows to 1009. 
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Figure 1. The pests dataset. 

2.1.2. Dataset Generation 

Stable diffusion was released by Open AI in 2022[23], a model that can be used to generate 

detailed images conditioned on text descriptions.  

The diffusion model, which produces samples that fit the data after a finite amount of time, is a 

parameterized Markov chain trained via variational inference. [18]. As seen in Figure 2, the 

𝑓𝑜𝑟𝑤𝑎𝑟𝑑	𝑝𝑟𝑜𝑐𝑒𝑠𝑠 and the 𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑝𝑟𝑜𝑐𝑒𝑠𝑠 can be separated from the entire diffusion model. It is 

commonly understood that the forward diffusion process is constantly adding Gaussian noise to the 

image, making it "unrecognizable", while the reverse process reduces the noise and then restores the 

image. The core formula of the diffusion model is, 

𝑥! = /𝑎!𝑥!"# +/1 − 𝑎!𝑧#	 (1) 

 
Figure 2. The diffusion processes. 

where 𝑎! is experiment constant and it will decrease as t increases. 𝑧# is a standard Gaussian 

noise distribution 𝑁(0, 𝐼) 
The overall structure of the diffusion model is shown in Figure 3. It contains three models. The 

first is the CLIP model (Contrastive Language-Image Pre-Training), which is a text encoder that 

converts text into vectors as input. The image is then generated using the Diffusion model. It is 

performed in the potential space of the compressed image, so the input and output of the expanded 

model are the image features of the potential space, not the pixels of the image itself. During the 

training of the latent diffusion model, an encoder is used to obtain the potentials of the picture 

training set, which are used in the forward diffusion process (each step adds more noise to the latent 

representation). At inference generation, the decoder part of VAE (Variational Auto-Encoder) 

converts the denoised latent signal generated by the reverse diffusion process back into an image 

format. 
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Figure 3. The framework of the diffusion model. 

A stable diffusion model is trained using a real pest dataset. The images generated by Stable 

Diffusion are 299×299 as shown in Figure 4. To increase the chance of generating pest images, we 

chose captions that contain any word from the following list of words: [BA, HA, MP, SE, SL, TP, TU, 

ZC]. After carefully eliminating the last few false positives, we gathered 512 produced pests. 

 
Figure 4. The generated pest dataset. 

2.1.3. Dataset Enhancement 

In this study, the original image was processed using enhancement methods such as rotation, 

translation, flipping, and noise addition., and the enhancement technique AutoAugmentation[24]  is 

applied to operate the color of images. Finally, we got 36,122 pest images. 

2.2. Framework of the Proposed Method 

In this paper, R-CNN[25] is replaced by Swin Transformer and applied to pest target detection 

tasks. A new object detection method, RS Transformer, is proposed. The advantages of our scheme 

are: 

First, a new feature extraction method for the Swin Transformer is proposed and used in the 

feature extraction module. It improves the alignment of global features. The localization accuracy is 

improved and the computing cost of the transformer is significantly reduced by the shift window 

model. 

Second, RS Transformer is proposed which adds RPN, ROI Align, and Feature map. 

Third, a new data composition method RGSDD is proposed. This method is used to train the 

stable diffusion model of the real images collected before, and 512 images are generated randomly 

mixed with 10%, 20%, 30%,40%, and 50% of the number of real images. 

2.3. RS Transformer  

RS Transformer is a two-stage model (Figure 5). It first extracts features using Swin Transformer 

and then generates a series of region proposals.  
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Figure 5. Structure diagram of RS Transformer. 

2.3.1. Swin Transformer Backbone 

The Swin Transformer backbone is introduced in Figure 6. Compared to traditional CNN 

models, it has stronger feature extraction capabilities, incorporates CNN's local and hierarchical 

structure, and utilizes anention mechanisms to produce a more interpretable model and examine the 

anention distribution. 

 
Figure 6. Structure diagram of RS Transformer. 

A 2-layer MLP (Multi-layer Perceptron) with GELU non-linearity follows a shifted window-

based MSA module (W-MSA) in the Swin Transformer block. Each MSA module (Multi-head Self-

Anention) and each MLP have an LN (Layer Norm) layer applied before them, and each module also 

has a residual connection applied after it. Supposing each window contains 𝑀 ×𝑀 patches, the 

computational complexity of a global MSA module and image-based window ℎ	 × 𝑤 patches are: 

Ω(𝑀𝑆𝐴) = 4ℎ𝑤𝐶$ + 2(ℎ𝑤)$𝐶		 (2)	
Ω(𝑊 −𝑀𝑆𝐴) = 4ℎ𝑤𝐶$ + 2𝑀$ℎ𝑤𝐶	 (3) 

The shift window partitioning method can be used to compute the backbones of two consecutive 

Swin Transformers and is denoted as follows: 

𝑧̂% = 𝑊 −𝑀𝑆𝐴F𝐿𝑁(𝑧%"#)H + 𝑧%"#	 (4)	
𝑧% = 𝑀𝐿𝑃F𝐿𝑁(𝑧̂%)H + 𝑧̂% 	 (5)	

𝑧̂%&# = 𝑆𝑊 −𝑀𝑆𝐴F𝐿𝑁(𝑧%)H + 𝑧% 	 (6)	
𝑧%&# = 𝑀𝐿𝑃F𝐿𝑁(𝑧̂%&#)H + 𝑧̂%&#	 (7) 

where 𝑧̂% and 𝑧̂% represent the output of W-MSA and MLP of the 𝑙 block, respectively. 

Swin Transformer constructs hierarchical feature graphs and adopts a complexity calculation 

method with linear image size.  A sample diagram of a hierarchy of small patch size is shown in 

Figure 7. In the deeper Transformer layers, it begins with small-size patches and eventually integrates 

nearby patches. By using patch splining modules like ViT, RGB images are divided into non-

overlapping patches, and employ a patch size of 4 × 4, making each patch's feature dimension 

4 × 	4	 × 3	 = 	48. This fundamental feature is projected to any dimension (designated 𝐶) using a 

linear embedding layer. 
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Figure 7. Sample diagram of a hierarchy of small patch size. 

2.3.2 RS Transformer neck: FPN 

FPN (Feature Pyramid Networks) is proposed to achieve a bener fusion of feature maps. As 

illustrated in Figure 8, the purpose of FPN is to integrate feature maps from the bonom layer to the 

top layer to fully utilize the extracted features at each stage. 

      

      
Figure 8. FPN structure diagram. 

FPN produces a feature pyramid, not just a feature map. Pyramid after RPN will produce many 

region proposals. These region proposals are produced by RPN, and ROI is cut out according to the 

region proposal for subsequent classification and regression prediction. We use a formula to 

determine which k the ROI of wide w and high h should be cut from: 

𝑘 = 𝑘' + 𝑙𝑜𝑔$(√𝑤 × ℎ/299) (8)	
Here 224 represents the size of the ImageNet image used for pre-training. 𝑘' represents the level 

at which the ROI of the area is 𝑤 × ℎ = 299 × 299should be. Large-scale ROI should be cut from the 

feature map of low resolution, which is conducive to the detection of large targets, and small-scale 

ROI should be cut from the feature map of high resolution, which is conducive to the detection of 

small targets. 

2.3.3. RS Transformer Head: RPN, ROI Align 

To achieve the prediction of coordinates and scores of each regional suggestion box while 

extracting features, the RPN network adds a regression layer (reg-layer) and a classification layer (cls-

layer) to the Swin Transformer. Figure 9 depicts the RPN working principle. RPN centers on a pixel 

of the last layer feature map and traverses the feature map through a 3×3 sliding window. The pixel 

points mapped from the center of the sliding window to the original image are anchor points. Taking 

the anchor point as the original image center, using 15 preset anchor boxes with 5 different areas 

(32×32, 64×64, 128×128, 256×256, 512×512), and three distinct aspect ratios (2:1, 1:1, and 1:2), the 

original candidate region, k=15 was obtained. RPN sends the candidate regions in the k anchor boxes 
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to the regression layer and the category layer respectively for boundary regression and classification 

prediction. The regression layer predicts the frame coordinates (X, Y, W, H), so the output is 4k; the 

classification layer predicts the type, target, and background, so the output is 2k. Each anchor is then 

evaluated with initial over-boundary screening and Non-Maximum Suppression (NMS) from largest 

to smallest to retain the top 1000 or 2000 scores. Finally, the candidate boundaries of prediction as 

background in the classification layer are removed, and the candidate boundaries of prediction as a 

target are retained. 

 
Figure 9. RPN working principle diagram. 

ROI Align  

The function of ROI Pool and ROI Align is to find the feature map corresponding to the 

candidate box, then process the feature map of different size proportions into a fixed size, so that it 

can be input into the subsequent fixed-size network. Mask RCNN proposed an ROI Alignment[26] 

based on the ROI pool. The bilinear interpolation method is used to determine the eigenvalue of each 

pixel in the region of interest of the original image, which avoids the error caused by quantization 

operation and improves the accuracy of frame prediction and mask prediction. 

ROI Alignment algorithm's primary steps are: (1) Traverse each candidate region on the feature 

map, keeping the floating-point boundary unquantized; (2) In Figure 10, the candidate region is 

evenly divided into k×k bins, and the edge of each bin keeps the floating-point number without 

quantization; (3) Take 2×2 sample points for each bin, and use the bilinear interpolation method to 

calculate the pixel values of each sampling point's neighboring four pixels. Finally, the pixel value in 

each bin is maximized to obtain the value of each bin. 

 
Figure 10. ROI Align diagram. 

3. Results and Discussion 

This section may be divided by subheadings. It should provide a concise and precise description 

of the experimental results, their interpretation, as well as the experimental conclusions that can be 

drawn. 
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3.1. Experiment Setup 

The experiments are conducted on the Autodl platform, which provides low-cost GPU 

computing power and a configuration environment that can be rented at any time. For researchers 

and universities without high-performance GPUs or servers, Autodl offers a wide range of high-

performance GPUs to use. The experiments were implemented using the Pytorch 1.10.0 framework, 

Python 3.8, CUDA 11.3, and Nvidia RTX 2080Ti GPUs with 11GB memory. 

3.2. Evaluation Indicator 

To evaluate the performance of the proposed model, Precision, Average Precision (AP), Recall, 

Precision-Recall Curve, mean Average Precision (mAP), and F1 Score were selected as evaluation 

metrics. 

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃(
𝐹𝑃( + 𝑇𝑃( 	 (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃(
𝐹𝑁( + 𝑇𝑃( 	 (9) 

𝐴𝑃 = Y 𝑝(𝑟)𝑑𝑟
#

'

= 𝑇𝑃
𝑇𝑃 + 𝐹𝑃	 (10) 

Average Precision (AP): The average precision under different recall rates. The higher the 

accuracy, the higher the AP. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁	 (11)	

Recall: The average recall rate at different levels of precision. The higher the recall, the higher 

the AR. 

𝑚𝐴𝑃 = 1
𝑁[𝐴𝑃)

*

)+#

	 (12) 
mean Average Precision (mAP): During the picture categorization procedure, it is usually a 

multi-classification problem. According to the above calculation process, the AP of each analog is 

obtained, and then the average value is mAP.  

𝐹#	𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅 	 (13) 

3.3. Experimental Baselines 

To evaluate the performance of RS Transformer, SSD[7], Faster R-CNN[9], YOLOv3[4], 

YOLOv4[5] and YOLOv5m[6], YOLOv8 and DETR[27] were chosen as baseline models for 

comparison. 

Table 1. Different baselines. 

Models Backbone Parameters(M) 

SSD VGG16 28.32 

Faster R-CNN VGG16 138 

YOLOv3 Darknet-53 64.46 

YOLOv4 CSPDarknet53 5.55 

YOLOv5m CSPDarknet53 20.66 

YOLOv8 C2f 30.13 

DETR ResNet-50 40.34 

RS Transformer Swin Transformer 30.17 

3.4. Experimental Results and Analysis 

On a dataset with five models, we assessed the performance of popular deep learning models to 

adequately illustrate the performance of the proposed model (Table 2). Enter a fixed image resolution 

with a size of 299 × 299 pixels. 
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Compared to other models, our proposed method achieves significant improvements, with mAP 

of 90.18% - representing gains of 13.27%, 17.53%, 29.8%, 13.97%, 9.89%, 5.46% and 4.62% over SSD, 

Faster-RCNN, YOLOv3, YOLOv4, YOLOv5m, YOLOv8 and DETR respectively. The proposed 

method achieves 20.1 ms mDT for the detection time of each image. 

Table 2. Comparison of different indexes. 

The contrast in mAP is visually presented in Figure 11. It is evident that the mAP of the three 

compared models exhibits an upward trend during the training process, albeit with substantial 

fluctuations. Conversely, our model's mAP shows a more consistent trajectory, stabilizing at 77.73% 

approximately after 75 epochs. Subsequently, the RS Transformer model anains its peak 

performance, achieving a maximum mAP of 90.18%. These findings collectively affirm the stability 

of the RS Transformer, its capacity to enhance network performance, and its ability to expedite 

convergence. 

 
Figure 11. Comparisons of mAP. 

The RS Transformer exhibits a robust capacity for discerning similar pests and demonstrates 

superior overall performance compared to other models, as detailed in Table 3(models’ mAP) and 

illustrated in Figure 12. Furthermore, in challenging scenarios such as the TU dataset the model 

maintains a remarkable recognition rate of 90.24%. 

Models mAP (%) 𝐹1𝑆𝑐𝑜𝑟𝑒 (%) Recall mDT (ms) 

SSD 76.91 67.62 70.12 22.9 

Faster R-CNN 72.65 65.57 69.31 24.5 

YOLOv3 60.38 52.38 57.78 17.7 

YOLOv4 76.31 69.55 74.97 10.7 

YOLOv5m 80.29 75.58 79.14 13.6 

YOLOv8 84.72 80.32 82.11 9.8 

DETR 85.56 81.18 82.82 19.2 

RS Transformer 90.18 85.89 87.31 20.1 
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Figure 12. Comparisons of mAP to identify similar pests. 

Table 3. Comparison of different mAP indexes. 

The dataset has been generated using the diffusion model (see Figure 13), and subsequently, it 

has been combined at varying proportions of 10%, 20%, 30%, 40%, and 50%. These datasets were then 

utilized as inputs for the RS Transformer model, followed by rigorous testing procedures, 

culminating in the presentation of the results in Table 4. 

Applying the RGSDD method to the RS Transformer, it is evident that upon incorporating 30% 

of the generated data, the model anains its peak performance, resulting in a notable increase of 5.53% 

in mAP. 

 
Figure 13. Mixed data model diagram. 

Table 4. RGSDD using in RS Transformer. 

Models BA HA MP SE SL TP TU ZC 

SSD 77.29 73.12 77.48 73.88 79.91 80.21 78.26 74.08 

Faster R-CNN 75.89 69.26 69.76 73.81  71.33 74.75 70.10 73.02 

YOLOv3 57.20 63.69 61.51 60.66 62.63 58.93 58.00 64.05 

YOLOv4 72.55 74.47 75.40 79.11 74.24 76.13 80.05 78.51 

YOLOv5m 84.22 79.51 77.17 79.57 80.79 79.73 83.06 81.16 

YOLOv8 81.53 88.45 82.18 84.44 85.56 84.73 83.95  83.21 

DETR 83.53 82.07 87.33 85.61 87.62 83.23 88.52 85.52 

RS Transformer 87.13 91.36 89.13 86.61 92.53 91.04 90.24  91.52 
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The RGSDD methodology has also been applied to enhance the performance of the Faster R-

CNN, YOLOv5m, YOLOv8, and DETR models. The results of these experiments demonstrate that 

RGSDD contributes positively to model enhancement, as evidenced in Tables 5–8. 

Table 5. RGSDD using Faster R-CNN. 

Table 6. RGSDD using YOLOv5m. 

Table 7. RGSDD using YOLOv8. 

Table 8. RGSDD using DETR. Civilization starts from me to create a civilized city 

These data underscore the practical applicability of RGSDD, as visually depicted in Figure 14. 

Specifically, in the case of the YOLOv8 model with 30% incorporation, it yielded a substantial 3.79% 

improvement in mAP. Similarly, for the DETR model with 40% incorporation, there was a noticeable 

Models percentage mAP	(%)	 F1	Score	(%)	 Recall	(%)	 mDT	(ms)	
RS Transformer 0% 90.18 85.89 87.31 20.1 

10% 90.98 85.13 83.53 20.1 

20% 93.64 86.75 90.42 20.1 

30% 95.71 94.82 92.47 20.2 

40% 95.56 90.67 93.10 20.2 

50% 94.98 91.03 93.06 20.2 

Models percentage mAP	(%)	 F1	Score	(%)	 Recall	(%)	 mDT	(ms)	
Faster R-CNN 0% 72.65 65.57 69.31 24 

10% 75.07 68.83 69.73 24 

20% 73.47 67.26 70.62 24 

30% 73.72 67.37 74.84 24 

40% 71.80 69.78 72.39 24.1 

50% 73.13 68.29 70.47 24.1 

Models percentage mAP (%) F1 Score (%) Recall (%) mDT (ms) 

YOLOv5m 0% 80.29 75.58 76.14 13.6 

10% 83.96 74.72 76.48 13.6 

20% 85.43 75.90 81.91 13.6 

30% 82.31 76.24 78.38 13.6 

40% 84.37 76.12 79.82 13.7 

50% 75.53 70.41 73.76 13.7 

Models percentage mAP (%) F1 Score (%) Recall (%) mDT (ms) 

YOLOv8 0% 84.72 80.32 82.11 9.8 

10% 87.38 75.77 72.31 9.8 

20% 88.42 85.17 84.78 9.8 

30% 88.51 85.89 85.31 9.8 

40% 82.32 81.76 80.11 9.9 

50% 75.35 70.32 71.58 9.9 

Models percentage mAP (%) F1 Score (%) Recall (%) mDT (ms) 

DETR 0% 85.56 81.18 82.82 20.1 

10% 85.94 83.10 80.62 20.1 

20% 86.37 82.99 84.67 20.1 

30% 87.71 86.75 85.72 20.2 

40% 89.92 85.02 87.89 20.2 

50% 88.90 87.19 85.97 20.2 
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enhancement of 4.36% in mAP. Furthermore, it becomes evident that when 50% of the generated data 

is included, the model's performance experiences a significant decline. This subset of data appears to 

introduce interference and is potentially treated as noise to some extent, resulting in adverse effects 

on model performance. 

 
Figure 14. (a) RS Transformer with RGSDD  (b) Faster R-CNN with RGSDD  (c) YOLOv5m with 

RGSDD (d) YOLOv8 with RGSDD  (e) DETR with RGSDD. 

Figure 15 compares the mAP, F1 Score (%) and Recall of different networks, it can be found that 

RS Transformer is still bener than others, even when RGSDD is used. In the optimal value, mAP 

outperforms Faster R-CNN by 9.29% and YOLOv5m by 4.95 %. 

 

Figure 15. (a) mAP (b) F1 Score (c) Recall (d) mDT. 

Figure 16 presents the outcomes achieved by the RS Transformer model integrated with RGSDD. 

Notably, the results highlight RGSDD's exceptional accuracy in effectively identifying multi-scale 

pests across various species.  
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Figure 16. RS transformer, Faster R-CNN, YOLOv8 and DETR output through the RGSDD system. 

5. Conclusions 

The Swin Transformer, introduced here as the foundational network for pest detection, 

represents a pioneering contribution. In conjunction with this innovation, the RS Transformer is 

developed, building upon the inherent strengths of the R-CNN framework. Furthermore, we employ 

a diffusion model to create a novel pest dataset, accompanied by introducing an innovative training 

approach tailored for the Randomly Generated Stable Diffusion Dataset (RGSDD). This approach 

involves the judicious fusion of synthetic data generated through RGSDD with real data, calibrated 

as a percentage of the total dataset. Our study comprehensively compares the performance of the RS 

Transformer and RGSDD against established models including SSD, Faster R-CNN, YOLOv3, 

YOLOv4, YOLOv5m, YOLOv8, and DETR. The experimental results unequivocally demonstrate the 

superiority of the RS Transformer and the efficacy of the RGSDD dataset, surpassing prevailing 

benchmarks. Significantly, our method achieves an optimal balance between accuracy and network 

characteristics. These findings hold substantial implications for future ecological informatics 

research, offering fresh insights into the domain of ecological pest and disease control. The presented 

approach promises to advance the state-of-the-art and contribute to more effective ecological 

management strategies. 
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