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Abstract: Gain-scheduled autopilots have emerged as a dominant strategy to achieve adaptive 

control of coupled, non-linear engineering complexities, owing to an ability to adapt to changing 

operational conditions and uncertainties. This study focuses on utilizing bilinear interpolation of 

gain-scheduled autopilots, emphasizing enhanced system performance and robustness. Through a 

comprehensive investigation and comparative analysis using three disparate cases, advantages over 

conventional methods are revealed. Strengths and weaknesses of both simple and specialized 

variants (such as linear, and real-time gain-scheduling) are introduced. Three missile guidance case–
studies utilize simulation time and miss distance figures of merit. Potential to achieve precise control 

across various mission scenarios, while ensuring reduced computational complexity is revealed by 

nearly two–hundred percent improved missile miss distances with comparable distances traveled 

and slightly improved computational burden. 

Keywords: gain-scheduled autopilots; nonlinear control; bilinear interpolation; control and  

guidance; control gains; three-dimensional lookup table (3D-LUT) 

 

1. Introduction 

Gain-scheduled autopilots hold immense significance in the field of modern missile technology, 

as they address critical challenges and elevate the capabilities of guidance control in missile systems. 

As the complexity of military operations intensifies, the demand for highly adaptable 

countermeasures and precise missile guidance systems have become paramount. By providing 

dynamic control gains that cater to varying flight conditions, gain-scheduled autopilots offer a robust 

solution for missile defense. This study delves into the fundamental principles, working mechanisms, 

and functional advantages of various designs of gain-scheduled autopilots for missiles, highlighting 

the effectiveness of bilinear interpolation in control systems. 

As a missile travels over vast distances, it encounters diverse atmospheric conditions that impact 

its aircraft stability, experiencing variations in altitude, velocity, and aerodynamic forces. Traditional 

fixed-gain autopilots suffer from limitations in adapting to the constantly changing environment and 

unexpected disturbances, leading to reduced accuracy and compromised performance. Accordingly, 

fixed-gain systems severely lack the ability to counter agile adversaries. Unmanned aerial systems 

(UAS), for instance, can exhibit unpredictable and erratic flight patterns, making them challenging 

targets for traditional fixed-gain autopilots. 

Gain-scheduled autopilots, on the other hand, provide a dynamic and responsive solution. A 

gain-scheduled autopilot can tailor the control gains to suit each phase of the flight based on the real-

time feedback and operational parameters. This adaptability significantly enhances the missile’s 

accuracy and maneuverability, increasing the chances of successful target engagement against 

evasive threats like UAS. Furthermore, in a mission-critical scenario where multiple missiles are 

employed in a salvo attack, gain-scheduled autopilots offer a crucial advantage. With the ability to 

dynamically adjust to surroundings, the missiles can adapt to the specific requirements of each 

individual missile, ensuring that the entire salvo operates cohesively. The ability to coordinate and 
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synchronize multiple missiles makes gain-scheduled autopilots indispensable tools in modern 

warfare scenarios. 

The study explores the advantages of bilinear interpolation of control gains in a three-

dimensional lookup table for gain-scheduled autopilots, including improved robustness, reduced 

control effort, and enhanced adaptability to handle complex, non-linear systems. By intelligently 

blending discrete control gains through simple algorithms, bilinear interpolation unlocks the full 

potential of gain-scheduled autopilots, contributing to the overall efficiency and reliability of missile 

guidance. 

  

(a) (b) 

Figure 1. (a) Original RIM-174 Standard Extended Range Active Missile (ERAM), also known as 

Standard Missile-6 (SM-6) launched off the Hawaiian coast April 6-13, 2017 [1]. (b) guided-missile 

destroyer USS Fitzgerald (DDG 62) launches a Standard Missile-3 (SM-3) [2]. Images credit: U.S. Navy 

in accordance with image use policy [3]. Department of Defense photographs and imagery, unless 

otherwise noted, are in the public domain. 

1.1. Review of the literature 

Current long-range missile defense systems are seemingly much less effective than believed and 

suffer from severe limitations [4], particularly in light of recent improvements in decoys [5], where a 

long list of intercept failures was published in 2021 [6], where mitigation by sensor improvements 

was proposed the following year [7] in a proposal to utilize space–based sensors which was 

reinforced by the U.S. Air Force Association the same year in [8]. 

1.2. State of the art benchmarks 

The following list highlights the current state of the art developments for high–fidelity six degree 

of freedom simulation: 

1. In 2020, reference [9] illustrated ubiquitous use of simplified models and probabilistic 

assessments leading to recommendations on the number of interceptors necessary using a shoot-

look-shoot mode of operations.  

2. Russian President Putin boasted to have developed missiles traveling at twenty times the speed 

of sound [10] necessitating increased confidence in engagement analysis.  

3. Tracy, et al. forwarded the notion that “Misperceptions of hypersonic weapon performance have 
arisen from social processes by which the organizations developing these weapons construct 

erroneous technical facts favoring continued investment”, and recommended rigorous, 
quantitative analysis [11]. 

4. In 2022, Bryson, et al. published elaborated a baseline automated gain–scheduling approach for 

three–loop autopilots for high–speed projectiles with supersonic flight envelopes. 

1.3. Novelties presented 

The following proposals are developed in subsequent pages of this manuscript: 
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1. Automatic gain scheduling is proposed and compared to index–search as the comparative 

benchmark. 

2. Bilinear interpolation is proposed and compared to index–search as the comparative benchmark. 

2. Materials and Methods 

2.1. Specification and Initialization 

The missile for the simulation is fictional, a replica of the original RIM-174 Standard Extended 

Range Active Missile (ERAM), also known as Standard Missile-6 (SM-6). SM is the most reliable type 

of surface-to-air missile, still favored by the United States Navy [12]. This study employs the 

aerodynamic fundamentals organized by Raytheon Missile Systems [13,14], and thus the most 

accurate simulation was expected by using SM, whose primary manufacturer is Raytheon. Possibly 

due to security purpose, some specifications of SM are not available publicly. The parameters not 

listed in the table, like total thrust of the actuators, are instead computed from reference velocity 

(~Mach 5) using the drag equation. The bandwidth of the actuator is approximated to a realistic rate. 

The final specification of the missile is shown in Table 1: 

Table 1. Specifications of the missile for the simulation. 

Description Value Unit 

Total Missile Mass 160 kg 

Initial Missile Velocity 1000 𝑚/𝑠 

Maximum Axial Acceleration 400 𝑚/𝑠2 

Reference Area 0.050 𝑚2 

Reference Length 0.300 𝑚 

Pitch Moment of Inertia 180 kg𝑚2 

Actuator Bandwidth 3.000 deg/𝑠 

Maximum Fin Deflection ±30 deg 

The study is focused on the relative performance of different designs of autopilots by comparing 

the simulation time and the miss distance. For this purpose, the target object does not require a 

complex, realistic geometry and it is simplified to a point mass with fixed flight coefficients. In 

contrast, the missile has varying flight coefficients for a more effective analysis of its aerodynamics. 

The initial position of the missile is defined as the origin. The missile initially travels parallel to the 

ground at a velocity of 1000 𝑚/𝑠. To make the iteration process more efficient, the target parameters 

are initialized relative to those of the missile. The target is placed 5000 𝑚 ahead and 1000 𝑚 above 

the missile’s initial position, traveling at a speed half of the initial speed of the missile, in the direction 

parallel to the surface and towards the missile, as seen in Figure 2. 

 

 

 

(a) (b) 
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Figure 2. (a) Flight simulation of missile and target. The red solid line represents the trajectory of the 

missile. The blue dotted line represents the trajectory of the target, cruising horizontally. The red circle 

indicates the point of impact depicted in (b) from [15] where a Standard Missile-6 successfully 

intercepted a mock cruise missile flying low and slow over land at White Sands Missile Range, New 

Mexico. (image credit: Sydney J. Freedberg Jr.). 

2.2. Airframe Dynamics: Force and Moment 

First, the environmental condition is established. The study utilizes the International Standard 

Atmosphere (ISA) model for altitudes between 0 to 20 km. The model takes in the current altitude of 

the missile and returns the climatic data elements, such as temperature, speed of sound, air pressure 

and air density, which are used to compute the full aerodynamics in the equations of motion. 

To enhance the accuracy of the simulation, the force and moment coefficients of the missile are 

adjusted in accordance with the current flight condition. The coefficients are stored in a linearly 

spaced, three-dimensional partition of angle of attack, Mach number, and flight coefficients (𝛼,𝑀,𝐶). 

The coefficients are parametrized as function of incidence angle and Mach number, represented as 

lattice points on the partition. When a flight condition is newly introduced on the grid as a nonlattice 

point, the simulation computes the relative position of the nonlattice point to the nearest lattice 

points. The new coefficient is estimated by a three-dimensional lookup table (‘3D-LUT’) using 
bilinear interpolation. 3D-LUT is explained with further detail in [16]. 

There are two major types of forces acting on the missile: axial force and normal force. The main 

axial force is drag acting on the missile body. The axial force coefficient is assumed to be constant, 

equal to that of a bullet with a spherical cap [17]. The study assumes the drag caused by the fins is 

negligible. The assumption is valid for fins with small effective surface area. 𝐶𝑥𝑓 ≅ 0 (1) 𝐶𝑥𝛼 = 0.295 (2) 𝐶𝑥𝑡 = 𝐶𝑥𝛼 + 𝐶𝑥𝑓  (3) 

Table 2. Table of proximal variables and nomenclature 1. 

Variable/acronym Definition Variable/acronym Definition 𝐶𝑥𝑓  Drag coefficient of fins 𝐶𝑧𝛼 Lift coefficient of wings 𝐶𝑥𝛼  Drag coefficient of body 𝐶𝑧𝑓 Lift coefficient of fins 𝐶𝑥𝑡  Total drag coefficient 𝐶𝑧𝑡 Total lift coefficient 
1 Such tables are offered throughout the manuscript to aid readability. 

The lift force acts in the direction normal to the direction in which the missile travels. The largest 

contributors to the lift force are the main wings (or angle of attack) and the missile fins. The coefficient 

of the lift force created by the missile fins is estimated in [13]. The lift coefficient of the main wings is 

estimated using the non-linear equation (𝛼, 𝛿) introduced by Shamma, et al. [18] Fin deflection is 

computed using the angle of attack and the velocity at the instant, allowing the simulation to compute 

the actual lift force. The total lift coefficient is the sum of the two lift coefficients. 𝐶𝑧𝛼 = 0.000103𝛼3 − 0.00945𝛼|𝛼| − 0.170𝛼 − 0.034𝛿 (4) 𝐶𝑧𝑓 = 1.2713 (5) 𝐶𝑧𝑡 = 𝐶𝑧𝛼 + 𝐶𝑧𝑓 (6) 
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The pitch moment coefficient of the main wings is calcualted in Equation (7). [18] The pitch 

moment coefficient due to fin deflection is provided in [13]. The total pitch moment coefficient is the 

sum of the moment coefficients. 𝐶𝑚𝛼 = 0.000215𝛼3 − 0.0195𝛼|𝛼| − 0.051𝛼 − 0.206𝛿 (7) 𝐶𝑚𝑓 = 7.5368 (8) 𝐶𝑚𝑡 = 𝐶𝑚𝛼 + 𝐶𝑚𝑓  (9) 

The resulting axial and normal forces are shown in equation (10) and equation (11) where 𝜌 and 𝑆 are the air density and the reference area, respectively. Since the exact dimension of the missile 

elements is not published, the forces are assumed to share the same reference area, provided by 

Mracek, et. al. [13] The equation for the moment includes the moment arm 𝑙, equal to the reference 

length. The resulting forces and the moment are used to compute the flight metrics, such as position, 

velocity, acceleration, and attitude of the aircraft, in 3 degrees-of-freedom equations of motion. The 

metrics are fed into the autopilot, which determines the behavior of the aircraft. 𝐹𝑥 = 12𝜌𝑉2𝐶𝑥𝑡𝑆 (10) 

𝐹𝑧 = 12𝜌𝑉2𝐶𝑧𝑡𝑆 (11) 

𝑀𝑞 = 12𝜌𝑉2𝐶𝑚𝑡𝑆𝑙 (12) 

Table 3. Table of proximal variables and nomenclature 1. 

Variable/acronym Definition Variable/acronym Definition 𝐹𝑥 Axial force 𝐶𝑚𝛼  Moment coefficient of wings 𝐹𝑧 Normal force 𝐶𝑚𝑓  Moment coefficient due to fins 𝑀𝑞 Pitch moment 𝐶𝑚𝑡  Total moment coefficient 
1 Such tables are offered throughout the manuscript to aid readability. 

2.3. Proportional Navigation Guidance Law 

The study utilizes proportional navigation guidance (‘PN guidance’) for the entire homing 
phase. [19] PN guidance is one of the simpler guidance laws to implement. It only requires rate of 

change of line-of-sight (LOS) and closing velocity, allowing the missile to have the minimal sensory 

technology onboard. [19] The relative ease of implementation, however, does not signify its lack of 

performance. In fact, PN guidance has proven to be the most robust guidance system assuming a no-

lag missile: a system that reacts instantly and exactly as commanded. [19] The conventional PN 

guidance law is shown in Equation (13). 𝑎𝑚𝑐 = 𝑁𝑉𝑐𝜆̇ (13) 𝑎𝑚𝑐 is the commanded missile acceleration normal to the LOS. 𝑉𝑐 and 𝜆̇ are the closing velocity and 

the rate of change of LOS, respectively. 𝑉𝑐 is equal to −𝑅̇, where 𝑅 is the range between the missile 

and the target. Note that 𝑅̇  is a negative value during pursuit. For the system to be stable, the 

navigational gain 𝑁 must be larger than 2. 

2.4. Basic Fixed Gain Three-loop Autopilot 

The most basic form of autopilot is fixed gain autopilot. In fixed gain autopilot, the control gains 

are unchanged throughout the operation. The strength of the fixed gain autopilot is the simplicity of 

its structure. It neglects the change in the flight conditions and thus does not require the additional 
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adjustments to optimize the gains during the operation. The key to the design is finding the gains 

that yield the desired time constant, ideally less than 0.2 seconds, and small steady-state error (~3%) 

prior to the main simulation. 

 

Figure 3. Topology of basic three-loop autopilot with fixed control gains [20]. 

The modelling of fixed gain autopilot requires the following steps: 

1. Derive the nonlinear missile dynamics. 

2. Derive the state representation of the linearized dynamics. 

3. Tune the control gains for the nominal flight condition. 

Nonlinear missile dynamics is derived from the longitudinal motion of the missile in the pitch 

plane. Specifically, the derivation of the nonlinear dynamics involves computation of the three critical 

angles in aerodynamics: the angle of attack, the flight-path-angle, and the pitch angle. The geometry 

of the angles is shown in Figure 4, the anatomy of a missile in longitudinal motion. 

 

Figure 4. Nomenclature of critical angles in aerodynamics [9]. 𝑉 is velocity vector; 𝐴𝑧  is normal 

acceleration acting on the missile body; 𝛼 is angle of attack; 𝜃 is pitch angle, 𝛾 is flight-path-angle. 

The velocity of the missile and the required normal acceleration are denoted 𝑉𝑚  and 𝐴𝑧 , 

respectively. 𝛼 is the angle of attack which describes the orientation of the missile relative to the 

airflow. 𝛾 is the flight-path-angle which describes the attitude of the missile. 𝜃 is the pitch angle 

which describes the orientation of the missile relative to the inertial reference frame. Naturally, the 

angle of attack is the difference between the pitch angle and the flight-path angle. 𝛼 = 𝜃 − 𝛾 → 𝛼̇ = 𝜃̇ − 𝛾̇ (14) 

The rate of change in the flight-path-angle, 𝛾̇, can be expressed as a function of the vertical 

component of the normal acceleration, relative to the longitudinal axis, and the velocity vector. When 

the angle of attack is sufficiently small, the vertical component of the normal acceleration is assumed 

to be equal to the total acceleration. For maximum accuracy of the results, the estimation is not made. 𝛾̇ = 𝐴𝑧 cos(𝛼)𝑉  (15) 
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According to Newton’s 2nd law, the vertical acceleration of the missile is the vertical force 

applied to the missile divided by its mass. The final expression for 𝛾̇ is given in Equation (16). The 

nonlinear dynamics are shown in Equation (17) and Equation (18), where 𝑄 is the dynamic pressure, 𝑑 is the reference diameter, and 𝐼𝑌𝑌, 𝐽 is the moment of inertia [13,18,19]. 𝛾̇ = 𝐹𝑧 cos(𝛼)𝑚𝑉  (16) 

𝛼̇ = 𝜃̇ − 𝐹𝑧 cos(𝛼)𝑚𝑉  (17) 

𝜃̈ = 𝐶𝑚𝑡𝑄𝑆𝑑𝐼𝑌𝑌 → 𝑀𝑞𝐽  (18) 

With short-period approximation, the speed of the missile is assumed to be constant. Due to 

linear systems theory, nonlinear differential equations can be approximated in a linear form. 𝜃̈ is 

originally a function of 𝛼 and 𝛿. The analytical state-space model solved in the time domain is: 

[𝛼̇𝜃̈] = [  
 − 𝜕𝐹𝑧𝜕𝛼 1𝑚𝑉 1−𝜕𝑀𝑞𝜕𝛼 1𝐽 0]  

 [𝛼𝜃̇] + [  
 − 𝜕𝐹𝑧𝜕𝛿 1𝑚𝑉−𝜕𝑀𝑞𝜕𝛿 1𝐽 ]  

 𝛿 (19) 

Table 4. Table of proximal variables and nomenclature 1. 

Variable/acronym Definition Variable/acronym Definition 𝐼𝑌𝑌 Moment of inertia 𝛼̇ Rate of change in AOA 𝐽 Analytic body inertia 𝛾̇ Rate of change in FPA 𝑚 Mass of missile 𝜃̈ Pitch acceleration 
1 Such tables are offered throughout the manuscript to aid readability. 

The state-space model can be linearized via Taylor series expansion around the selected flight 

condition and only keeping the first-order terms. The final state-space model [13] is: 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (20) 

𝑥 = [𝛼𝑞] ; 𝑦 = [𝐴𝑧𝑞𝑚] ;  𝑢 = 𝛿𝑝 (21) 

[𝛼̇𝑞̇] = [  
  1𝑉0 [𝑄̅𝑆𝐶𝑧𝛼𝑚 − 𝐴𝑥] 1𝑄̅𝑆𝑑𝐶𝑚𝛼𝐼𝑌𝑌 0]  

  [𝛼𝑞] + [  
  𝑄̅𝑆𝐶𝑧𝑓𝑚𝑉0𝑄̅𝑆𝑑𝐶𝑚𝑓𝐼𝑌𝑌 ]  

  [𝛿𝑝] (22) 

𝑦 = 𝐶𝑥 + 𝐷𝑢 (23) 

[𝐴𝑧𝑚𝑞𝑚 ] = [𝑄̅𝑆𝐶𝑧𝛼𝑚𝑔 − 𝑄̅𝑆𝑑𝐶𝑚𝛼𝑥̅𝑔𝐼𝑌𝑌 00 1] [𝛼𝑞] + [𝑄̅𝑆𝐶𝑧𝑓𝑚𝑔 − 𝑄̅𝑆𝑑𝐶𝑚𝑓𝑥̅𝑔𝐼𝑌𝑌0 ] [𝛿𝑝] (24) 

Raytheon provides a fully linearized model for both stable and unstable systems [13], well 

aligned with the purpose of the study. The linearized model for an unstable system is: [𝛼̇𝑞̇] = [−1.064 1290.26 0] [𝛼𝑞] + [ −0.25−331.40] [𝛿𝑝] (25) 
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[𝐴𝑧𝑚𝑞𝑚 ] = [−123.34 00 1] [𝛼𝑞] + [−13.510 ] [𝛿𝑝] (26) 

Refer to Equation (32)–Equation (35) in Appendix A for the stable system solution [13]. The 

corresponding open loop transfer functions for the actuator model are: 𝐴𝑧𝑚𝛿𝑝 = −13.51𝑠2 + 16.29𝑠 + 44800𝑠2 + 1.064𝑠 − 290.26  (27) 

𝑞𝑚𝛿𝑝 = −331.4𝑠 − 424.7𝑠2 + 1.06𝑠 − 290.28 (28) 

For simplicity of the study, the actuator model is often assumed to be a linear system due to its 

structural complexity and nonlinear behavior. However, unlike the popular belief, the discrepancy 

raised from the assumption is not significant enough to hurt the validity of a simulation [21]. Hence, 

the second-order approximation of the actuator model is: 𝛿(𝑠)𝛿𝑐(𝑠) = 𝜔𝑎2𝑠2 + 2𝜁𝑎𝜔𝑎 + 𝜔𝑎2 (29) 

𝛿(𝑠)𝛿𝑐(𝑠) = 22500𝑠2 + 210 + 22500 (30) 

Table 5. Table of proximal variables and nomenclature 1. 

Variable/acronym Definition Variable/acronym Definition 𝑔 Gravitational acceleration 𝛿𝑝 Fin deflection 𝜔𝑎 Actuator frequency 𝐴𝑧 Normal acceleration 𝜁𝑎 Actuator damping ratio 𝐴𝑥 Axial acceleration 
1 Such tables are offered throughout the manuscript to aid readability. 

Using the linearized dynamics and the simplified actuator model, the control gains are tuned to 

yield the time constant less than 0.2 seconds. The fixed autopilot gains for the nominal condition are: 𝐾𝑑 = 0.0187; 𝐾𝑎 = 0.9188; 𝐾𝑖 = 0.0168; 𝐾𝑔 = 0.6832  

2.5. Various Gain-scheduled Autopilots 

Gain-scheduled autopilot is an augmented version of fixed gain autopilot with the ability to 

optimize flight performance in the middle of operation. Unlike fixed gain autopilots which have 

predetermined, unchanging control gains, gain-scheduled autopilot swaps out the gain values from 

an index of previously stored gains, allowing the autopilot to perform optimally in the current flight 

condition. Particularly, the ability to adjust gain values is most highlighted at the end game of pursuit 

where the flight conditions are most rapidly changing. 

Due to its effectiveness, gain-scheduled autopilot is widely adopted in modern systems. It is still 

being actively studied and thus has many variations in its design. This study analyzes the relative 

performance of three methods of gain-scheduled autopilots, each with a unique method of 

optimizing a family of linear controllers. 

2.5.1. Index-search 

Index-search is the simplest form of gain-scheduled autopilot. The study considers a three-loop 

autopilot with four control gains: 𝐾𝑑 , 𝐾𝑎 , 𝐾𝑖 , and 𝐾𝑔 . The control gains are tuned at each flight 

condition and stored in their respective indices. When an aircraft reaches a certain flight condition, 

the gain values are selected strictly from the stored gain values. The number of sets of gain values is 

equal to the number of available flight conditions. The design process is as following: 
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1. Trim and linearize the nonlinear plant models for each flight condition. 

2. Tune the control gains for each linear mode. 

3. Store the linear controllers into a family of controllers. 

4. Swap the control gains based on the current flight condition. 

The trimming and linearization process is like the process previously introduced in Section 2.4. 

In short, one must find steady-state values of elevator deflection and pitch rate that yield steady angle 

of attack at a chosen velocity. The angle of attack and the velocity are called scheduling variables, 

used to determine the actual flight condition. Once a family of linear controllers is established, the 

autopilot can swap the control gains. As the scheduling variables shift during the operation, autopilot 

chooses the gains from one of the pre-existing flight conditions that is in the closest vicinity to the 

actual flight condition. Although the method ensures a more desirable performance than a fixed-gain 

autopilot, it is unable to fully describe the plant behavior of controllers that are not linearized in prior 

and hence not included in the family. 

2.5.2. Bilinear Interpolation in 3D-LUT 

Bilinear interpolation allows the autopilot to estimate control gains for plant models that are 

unlisted in the family. Unlike index-search, the number of sets of gains is not limited to the number 

of linear controllers. Rather, the autopilot can generate control gains as necessary regardless of the 

current flight condition. Hence, the transition of control gains is much smoother in the second method 

than the first method. 

1. Trim and linearize the nonlinear plant models for each flight condition. 

2. Tune the control gains for each linear model. 

3. Create a 3D-LUT, a linearly spaced partition of 𝛼, 𝑉, and 𝐾; 

4. Store the tuned 𝐾 to their respective lattice points (𝛼, 𝑉) on the partition. 

5. When aircraft enters a new flight condition, determine the relative position of the new nonlattice 

point to the nearest lattice points. 

6. Perform bilinear interpolation (𝛼, 𝑉) to estimate the new control gain. 

The center of the design is the estimation of the control gains via bilinear interpolation. Consider 

a three-dimensional lookup table (‘3D-LUT’), a partition with control gains as its lattice points whose 
coordinates are (𝛼, 𝑉). The autopilot determines where the new condition, represented as a nonlattice 

point, falls on the partition when an aircraft enters a new flight condition. Particularly, autopilot 

checks the position of the new point by comparing 𝛼 and 𝑉 to those of the nearest points. Using the 

difference in the positions of the nonlattice point and the nearest points, the new control gain 𝐾 is 

computed by performing two consecutive bilinear interpolation. However, it must be noted that the 

generated control gains may not work optimally with nonlinear plant models. 

  

(a) (b) 
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(c) (d) 

Figure 5. Two-dimensional gain surfaces visualized in three-dimensional lookup table. (a) is 𝐾𝑑, (b) 

is 𝐾𝑏, (c) is 𝐾𝑖, (d) is 𝐾𝑔. 

2.5.3. Automatic Real-time Tuning 

The third method is to parametrize the control gains as first-order polynomials of the scheduling 

variables. A conventional method of tuning control gains involves a brutal amount of variables. This 

novel approach, the parametrization of gains, reduces the number of variables to four, allowing the 

system to compute the gains instantaneously with minimal computational burden. Consider a gain 

parametrized as a polynomial function of the scheduling variables. [22] 𝐾(𝛼, 𝑉) = 𝐾0 + 𝐾1𝛼 + 𝐾2𝑉 + 𝐾3𝛼𝑉 (31) 

The simplest way to tune the polynomial coefficients is to convert the polynomials into tunable 

surfaces in MATLAB. The tunable surfaces can be tuned automatically using MATLAB functions, 

such as <systune> and <looptune>. The control gains must be initialized prior to the tuning. The tuning 

requirements, time constant and steady-state error, are equal to those introduced in Section 2.4. The 

detailed tutorial on the automatic tuning of tunable surfaces is included in [22]  

The obvious strength of the method is that the tuned control gains are always optimal for their 

respective flight conditions. Unlike the previous methods, the gains are neither compromised nor 

estimated from linear models, allowing the autopilot to perform at utmost accuracy in nonlinear 

environments. However, automatic tuning requires the most computational power which raises the 

system requirements on board. 

3. Results 

The relative performance of the three methods of gain-scheduled autopilot is investigated. Each 

method is tested in three missile behavioral profiles. Particularly, the missile is configured to (1) 

stable-low-velocity profile, (2) stable-high-velocity profile, and (3) unstable-high-velocity profile. It is 

expected that an autopilot with a more advanced method for obtaining the control gains will deliver 

finer results. Respectively, a shorter simulation time and a smaller miss distance signify greater 

efficiency and higher accuracy. 

3.1. Simulation Results 

3.1.1. Simulation Time 

The simulation time, or the time taken for target acquisition, varies noticeably across the 

autopilots. As shown in Table 2, the third autopilot exhibits the shortest simulation time while the 

first autopilot requires a significantly longer time on average (~5%). The second autopilot reaches the 

target almost simultaneously with the third autopilot, running nearly equally in efficiency. Initially, 

the control effort was expected to heavily affect the simulation time. Rather, it appears the simulation 

time is dictated by how effectively a controller commands a missile to pursue the optimal trajectory. 

For instance, the third autopilot has the most fluid transition in its control gains, allowing the 

controller to give fin demands that prevent the missile from escaping the optimal trajectory. 
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Table 6. Simulation time and percent comparison. 

Case Method Simulation time [seconds] Percent difference 

1 

Index-search 4.233 0% 

Bilinear interpolation 4.071 -3.90% 

Automatic 4.063 -4.09% 

2 

Index-search 4.192 0% 

Bilinear interpolation 3.980 -5.19% 

Automatic 3.974 -5.34% 

3 

Index-search 4.300 0% 

Bilinear interpolation 4.016 -6.83% 

Automatic 4.001 -7.20% 

3.1.2. Range Traveled 

To help visualize the actual efficiency of each autopilot, the total range traveled by the target is 

collected. On the exterior, the longer the range covered by the target the more imminent the threat 

becomes. The difference between the range covered by the targets in the second and the third 

autopilots is almost negligible. The target has traveled approximately 2% longer range with the first 

autopilot. 

Table 7. Range traveled by target and percent comparison. 

Case Method Range traveled [meters] Percent Difference 

1 

Index-search 1352.96 0% 

Bilinear Interpolation 1341.85 -0.82% 

Automatic 1340.88 -0.89% 

2 

Index-search 1339.31 0% 

Bilinear Interpolation 1310.77 -2.15% 

Automatic 1310.02 -2.21% 

3 

Index-search 1362.71 0% 

Bilinear Interpolation 1324.90 -2.81% 

Automatic 1322.03 -3.03% 

3.1.3. Miss Distance 

The most important factor in determining the effectiveness of an autopilot is the miss distance. 

The study assumes that a missile must denotate near its target within 10 m for effective blast 

fragmentation. In other words, the miss distance must be smaller than 10 m for a reliable hit-to-kill. 

The miss distance of the first autopilot in the third case is frighteningly close to the threshold distance. 

In other words, the first autopilot may not be reliable in scenarios with more evasive targets. The miss 

distance of the second and the third autopilot is safely within the explosion radius. Particularly, both 

the second and third autopilots exhibit minimal miss distance, less than 1m, in all of the cases 

provided. 

Table 8. Miss distance and percent comparison. 

Case Method Miss Distance [meters] Percent Difference 

1 

Index-search 6.8411 0% 

Bilinear Interpolation 0.4684 -174.37% 

Automatic 0.0710 -195.89% 

2 

Index-search 8.1884 0% 

Bilinear Interpolation 0.4552 -178.94% 

Automatic 0.0702 -196.60% 

3 Index-search 9.8919 0% 
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Bilinear Interpolation 0.4583 -182.29% 

Automatic 0.0863 -196.54% 

In summary, the second autopilot, which uses bilinear interpolation, demonstrates capability 

comparable to the third autopilot in efficiency and accuracy. The simple interpolation algorithm 

reduces the control effort significantly while maintaining nearly perfect guidance for interception. 

Owing to its simple structure, the second autopilot can be easily fitted to any system and be a 

compelling candidate for control engineers seeking a robust, accessible alternative to the 

conventional autopilots. 

3.2. Validation of Results 

It is crucial to examine whether the second autopilot ensures the structural integrity of the 

missile while pursuing a target. Most structural failures occur when the acceleration experienced by 

the missile is too large or when the rate of change in the fin angle is too drastic. In particular, the 

acceleration in the direction normal to the surface of the missile and the maximum fin demand are 

investigated. 

 

Figure 6. Acceleration acting normal to the surface of the missile. The underscore numbers represent 

their respective case numbers. 

Table 9. Inspection of aerodynamic stress on the structure of the missile. 

Case Maximum normal acceleration [G] Threshold margin [G] 

1 53.813 6.187 

2 

3 

52.055 

53.392 

7.945 

6.608 

The normal acceleration must be lower than 60 G, the typical maximum acceleration experienced 

by an aerobatic missile. [23] The missile is most likely to suffer the largest acceleration in Case 2 and 

Case 3 where the missile maintains high velocity. Their respective maximum acceleration is 52.055G 

and 53.392G. All of the maximum accelerations are below the threshold with reasonable margin, 

implicating the feasibility of the selected autopilot. Moreover, angle of attack and fin deflection do 

not exhibit any cusp or discontinuity in their trends, as seen in Error! Reference source not found., 

meaning the autopilot is viable for a real mission. 
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(a) (b) 

Figure 7. (a) Angle of attack; (b) Commanded fin deflection. Any discontinuity signifies the selected 

autopilot method may not be applicable to a real system. 

4. Discussion 

Bilinear interpolation of control gains in 3D-LUT provides a simple and robust solution to 

control design of gain-scheduled autopilot. The straightforward interpolation algorithm makes the 

autopilot easy to implement, thus reducing control effort and complexity of the technology onboard. 

In fact, the overall performance of the autopilot with bilinear interpolation is comparable to that of 

the state-of-the-art autopilot with severely higher computational burden. In conclusion, the study 

shows that bilinear interpolation of control gains offers a practical and competent way to enhance 

control system performance, adapt to changing conditions, and achieve robustness and stability, 

making it a valuable tool in the arsenal for aerospace control. Engineers and researchers can leverage 

the insights gained from this study to design highly efficient and robust autonomous control systems 

for a wide range of applications not limited to aerial guidance, accelerating advancements in adaptive 

control technology, and fostering the development of more sophisticated and reliable autonomous 

systems.  

Future research could explore innovative ways of leveraging big data and machine learning 

algorithms to learn and adapt to system dynamics in real-time. By incorporating data-driven gain-

scheduling, gain-scheduled autopilots may better address unforeseen disturbances and changing 

system characteristics, ultimately leading to more robust and resilient autonomous control systems. 

Supplementary Materials: The data presented in this study are available on request from the corresponding 

author. The data are not publicly available due to privacy decisions. 

Author Contributions: Conceptualization, S.M.K.; methodology, S.M.K.; software, S.M.K.; validation, S.M.K. 

and T.S.; formal analysis, S.M.K.; investigation, S.M.K.; resources, S.M.K. and T.S.; writing—original draft 

preparation, S.M.K.; writing—review and editing, S.M.K. and T.S.; visualization, S.M.K.; supervision, S.M.K.; 

All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Data supporting reported results can be obtained by contacting the corresponding 

author. 

Acknowledgments: Engineers from Cornell University and Naval Postgraduate School for the development of 

the skeleton code of 6DOF aerodynamic system. 

Conflicts of Interest: The authors declare no conflict of interest. All the authors declare the work has not any 

kind of relation or/and conflict of interest with any military company or military project. It is solely the 

independent thoughts and work of the two individual authors. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 October 2023                   doi:10.20944/preprints202310.1145.v1

https://doi.org/10.20944/preprints202310.1145.v1


 14 

 

Appendix A 

Raytheon provides the solution to the short period dynamics of a lightly damped, fast, stable 

system [2]. The state space representation of a stable system is [𝛼̇𝑞̇] = [ −1.064 1−290.26 0] [𝛼𝑞] + [ −0.25−331.39] [𝛿𝑝] (32) 

[𝐴𝑧𝑚𝑞𝑚 ] = [−101.71 00 1] [𝛼𝑞] + [−13.510 ] [𝛿𝑝] (33) 

and the corresponding open loop transfer functions are as follows: 𝐴𝑧𝑚𝛿𝑝 = −13.51𝑠2 + 10.91𝑠 + 29780𝑠2 + 1.064𝑠 + 290.26  (34) 

𝑞𝑚𝛿𝑝 = −331.4𝑠 − 280.3𝑠2 + 1.064𝑠 + 290.26 (35) 
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