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Shannon Entropy of Chemical Elements

Szymon Łukaszyk

Łukaszyk Patent Attorneys, ul. Głowackiego 8, 40-052 Katowice, Poland; szymon@patent.pl

Abstract: Hund rule of maximum spin multiplicity is a powerful empirical tool to determine the

electron population of electronic shells. It was recently discovered that electron populations within

an orbital minimize Shannon entropy and maximize spin multiplicity, which seems to be the physical

basis for the Hund rule. This study extends these findings to the Aufbau rule, strengthening its

meaning. We observed that only about half of the elements with ground state configurations that

violate the Aufbau rule have Shannon entropies lower for the actual element’s configurations; the

remaining ones have the same entropies in actual and Aufbau configurations. Furthermore, for the

two nonsingleton sets of consecutive elements that violate the Aufbau rule, the first set (44 ≤ Z ≤ 47)

contains elements having lower entropies and the same spin multiplicities in actual and Aufbau

configurations, except palladium, the only element that violates the higher or equal multiplicity rule.

The second set (89 ≤ Z ≤ 93) contains elements having the same entropies and spin multiplicities.

Keywords: Hund’s rule; Aufbau rule; second law of infodynamics; emergent dimensionality;

mathematical physics

1. Introduction

Hund’s rule of maximum multiplicity is a powerful empirical tool for determining the electron

population of electronic shells. It was recently reported [1] that the real driving force behind Hund’s

rule appears to be the second law of infodynamics [2]

dSin f o

dt
≤ 0, (1)

where Sin f o in this time derivative is the information entropy proportional to Shannon entropy

H =
n

∑
k=1

pk logb

(

1

pk

)

, b ∈ R+ \ {1}, (2)

of a discrete random variable that attains maximum logb(n) if the events are equiprobable (i.e., if

the probabilities pk = 1/n) and vanishes for certain and impossible events1 In other words, electron

populations within an orbital minimize Shannon entropy (2).

It is now generally accepted [1–13] that information in the universe evolves, decreasing the

information entropy Sin f o. Assuming that the total entropy of the universe S is constant and is the sum

of the information entropy and the physical entropy Sphys, we obtain [1]

dSin f o

dt
+

dSphys

dt
= 0. (3)

This study extends the findings of [1] to the Aufbau rule and discusses them from the perspective of

emergent dimensionality [7–14].

1 In the latter case 0 ln(1/0) is not defined. It is, by convention, taken as 0.
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2. Hund’s rule and Shannon entropy

A simple but inventive procedure for calculating Shannon entropies of electron populations was

disclosed in [1]. Any set of N electrons satisfies N = N↑ + N↓, where N↑ and N↓ denote, respectively,

the number of up- and down-spin electrons. Thus, the probabilities of finding ↑ and ↓ electrons within

the set of N electrons are p↑ = N↑/N and p↓ = N↓/N.

Definition 1 (Electron set entropy). An electron set entropy is

H = −p↑ logb(p↑)− p↓ logb(p↓) =

= logb(N)−
N↑

N
logb(N↑)−

N↓

N
logb(N↓).

(4)

This definition was disclosed in [1] but is given here for clarity. Electrons are fermions, so electron

sets populating chemical elements’ orbitals must satisfy the Pauli exclusion principle. For the s orbital,

for example, which can accommodate a maximum of N = 2 electrons, the corresponding probabilities

are p↑ = 1 ∪ p↓ = 1 if the orbital accommodates one electron and p↑ = p↓ = 1/2 if the orbital

accommodates two electrons. Thus, possible electron set entropies (4) are H = {0, logb(2)}.

We do not assume any particular logarithm base b, noting that nature uses natural logarithm

in Landauer’s principle [15] and Boltzmann/Gibbs physical entropy Sphys. Furthermore, the author

of [1] assumes that the electron set entropies of states s1 and s2 are the same, but this assumption is

unjustified, as we shall discuss later.

The situation becomes more diverse for orbitals with a larger angular momentum quantum

number ℓ as multiple sets with different electron set entropies and spin multiplicities are possible, as

shown in Figures 1–4 for orbitals p-g.

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spin multiplicity

S
h

an
n

o
n

 e
n

tr
o

p
y

 (
b

it
s)

Figure 1. Orbital p. pk ↔ {k/2, 0}, for 1 < k < 3, p4 ↔ {1, logb(4) − 3 logb(3)/4}, p5 ↔

{0.5, logb(5)− 3 logb(3)/5 − 2 logb(2)/5}, p6 ↔ {0, logb(2)}.
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Figure 2. Orbital d. dk ↔ {k/2, 0}, for 1 < k < 5, d10 ↔ {0, logb(2)}.
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Figure 3. Orbital f. fk ↔ {k/2, 0}, for 1 < k < 7, f14 ↔ {0, logb(2)}.
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Figure 4. Orbital g. gk ↔ {k/2, 0}, for 1 < k < 9, g18 ↔ {0, logb(2)}.

However:

• for 1 ≤ N ≤ Nmax/2, H = 0;
• for N = {1, Nmax − 1, Nmax}, only one electron set is possible; and
• for Nmax/2 + 1 ≤ N ≤ Nmax}, H 6= 0;

wherein nature selects this electron set among the ones allowed by the Pauli exclusion principle that

maximizes spin multiplicity. However, as shown in [1], for Nmax/2 + 1 ≤ N ≤ Nmax − 2}, nature also

selects this electron population among the allowed ones, which minimizes the orbital Shannon entropy.

This rule of populating the sublevels can be stated in the simple theorem illustrated in Figure 5.

Theorem 1 (Orbital entropy). For any orbital capable of storing Nmax = 4n + 2, n ∈ N0 electrons and

storing N electrons and populated to maximize spin multiplicity (i.e. according to Hund’s rule), the orbital

Shannon entropy vanishes iff N ≤ Nmax/2 and amounts

H = logb(N)−
Nmax/2

N
logb

(

Nmax

2

)

−

(

N − Nmax/2

N

)

logb

(

N −
Nmax

2

) (5)

otherwise.

Proof. According to Hund’s rule, for N ≤ Nmax/2 the spin multiplicity is equal to S = ±N/2, while for

N > Nmax/2 is equal to S = ±(Nmax − N)/2. For N ≤ Nmax/2 electrons can freely populate available

Nmax/2 sublevels to maximize the spin multiplicity and therefore H =
N↑
N logb

(

N↑
N

)

= logb(1) = 0

(the same for ↓). For N > Nmax/2 the electrons will begin to repopulate the available Nmax/2 sublevels

following the Pauli exclusion principle up to N = Nmax, where H = logb(N)− logb

(

N
2

)

= logb(2),

which completes the proof.
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Figure 5. Orbital f. Spin multiplicity (red, rescaled) and associated orbital entropy (green).

Some researchers postulate that certain elements are exceptions to Hund’s rule. Chromium, for

example, having the atomic number Z = 24 is between vanadium (Z = 23, electron configuration

[Ar]3d34s2) and manganese (Z = 25, [Ar]3d54s2) within the periodic table of elements. Thus, it should

have electron configuration [Ar]3d44s2, following Hund’s rule, but instead, it has [Ar]3d54s1, as one

electron from 4s moves to 3d to make it more stable. But it is not Hund’s rule that is violated. It is the

Aufbau rule. Hund’s rule governs the electron population of a solitary orbital only.

3. Aufbau rule and Shannon entropy

The Aufbau or Madelung energy ordering rule is another powerful empirical tool for predicting

the electron configurations of chemical elements corresponding to the ground state. It correctly predicts

the electron configurations of most of the elements. However, about twenty chemical elements violate

the Aufbau rule, leading to intriguing exceptions and anomalies. Chromium and copper violations are

attributed to a delicate balance of electron-electron repulsion and the energy gap between the 3d and

4s orbitals [16]. Palladium, often called a "double anomaly" [17], exhibits a rare electron configuration,

[Kr]4d105, where all ten electrons fill the 4d orbital. This exceptional behavior is attributed to the

compactness of 3d orbitals and complex electron interactions [17]. In addition, there are no chemical

elements that have orbital f8 in their electron configurations, although the Aufbau rule predicts f8 for

gadolinium (Z = 64) as [Xe]+6s2+4f8 and for curium (Z = 96) as [Rn]+7s2+5f8. Furthermore, there are

only two nonsingleton sets of consecutive elements violating the Aufbau rule (Nickel has a disputed

configuration). We note that for Z ≥ 105, actual ground states are predicted. Thus, perhaps other

elements, such as darmstadtium (Z = 110) and roentgenium (Z = 111) also violate the Aufbau rule.

The elements that violate the Aufbau rule are listed in Table 1, showing their actual electron

configurations, and the configurations predicted by the Aufbau rule. Furthermore, Table 1 shows the
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spin multiplicities of the elements, i.e., S = |N↑ − N↓|/2. S ∈ N if Z is even and S ∈ 1
2N otherwise.

Furthermore, all but one of the violating elements satisfy a higher or equal multiplicity rule; i.e., actual

spin multiplicity is mostly greater or equal to the spin multiplicity predicted using the Aufbau and

Hund rules. The only exception is palladium (Z = 46).

Table 1. Chemical elements violating Aufbau rule.

Ground state electron configuration Spin multiplicity Shannon entropy (Hact(Z) ≤ HA/H(Z) ∀Z)
Z actual Aufbau Sact(Z) SA/H(Z) Hact(Z) HA/H(Z)

Cr 24 [Ar]3d54s1 [Ar]3d44s2 3 2 5 logb(2) 6 logb(2)
Ni 28 [Ar]3d84s2 (or [Ar]3d94s1) [Ar]3d84s2 1 1 logb

(

237/9325−5/9
)

logb

(

293−3/85−5/8
)

Cu 29 [Ar]3d104s1 [Ar]3d94s2 1/2 1/2 6 logb(2) logb

(

246/9325−5/9
)

Nb 41 [Kr]4d45s1 [Kr]4d35s2 5/2 3/2 9 logb(2) 9 logb(2)
Mo 42 [Kr]4d55s1 [Kr]4d45s2 3 2 9 logb(2) 9 logb(2)
Ru 44 [Kr]4d75s1 [Kr]4d65s2 2 2 logb

(

254/75−5/77
)

logb

(

21035−5/6
)

Rh 45 [Kr]4d85s1 [Kr]4d75s2 3/2 3/2 logb

(

2113−3/85−5/8
)

logb

(

261/75−5/77
)

Pd 46 [Kr]4d10 [Kr]4d85s2 0 1 9 logb(2) logb

(

2123−3/85−5/8
)

Ag 47 [Kr]4d105s1 [Kr]4d95s2 1/2 1/2 9 logb(2) logb

(

273/9325−5/9
)

La 57 [Xe]5d16s2 [Xe]4f16s2 1/2 1/2 12 logb(2) 12 logb(2)
Ce 58 [Xe]4f15d16s2 [Xe]4f26s2 1 1 12 logb(2) 12 logb(2)
Gd 64 [Xe]4f75d16s2 [Xe]4f86s2 4 3 12 logb(2) logb

(

2157−7/8
)

Pt 78 [Xe]4f145d96s1 [Xe]4f145d86s2 1 1 logb

(

2163−3/85−5/8
)

logb

(

2163−3/85−5/8
)

Au 79 [Xe]4f145d106s1 [Xe]4f145d96s2 1/2 1/2 13 logb(2) logb

(

2109/9325−5/9
)

Ac 89 [Rn]6d17s2 [Rn]5f17s2 1/2 1/2 16 logb(2) 16 logb(2)
Th 90 [Rn]6d27s2 [Rn]5f27s2 1 1 16 logb(2) 16 logb(2)
Pa 91 [Rn]5f26d17s2 [Rn]5f37s2 3/2 3/2 16 logb(2) 16 logb(2)
U 92 [Rn]5f36d17s2 [Rn]5f47s2 2 2 16 logb(2) 16 logb(2)
Np 93 [Rn]5f46d17s2 [Rn]5f57s2 5/2 5/2 16 logb(2) 16 logb(2)
Cm 96 [Rn]5f76d17s2 [Rn]5f87s2 4 3 16 logb(2) logb

(

2142/9327−7/9
)

Lf 103 [Rn]5f147s27p1 [Rn]5f146d17s2 1/2 1/2 17 logb(2) 17 logb(2)

Italic Z - the same entropy; underlined Z - higher multiplicity; bold Z - the exception to the higher or
equal multiplicity rule.

As the entropies of independent systems are additive quantities, we can calculate the Shannon

entropies of chemical elements by summing the orbital entropies of electron configurations using the

relation (5).

Definition 2. An element’s ground-state Shannon entropy is the sum of the orbital entropies in the electron

configuration of this element, neglecting the principal quantum number.

For example, the electron configuration of oxygen is [He]2s22p4 → s2s2p4, where H(s2) = logb(2)

and H(p4) is given by the relation (5). Thus, the Shannon entropy for oxygen is equal to

HO =

= logb(2) + logb(2) + logb(4)−
3

4
logb(3)−

4 − 3

4
logb(4 − 3) =

= 4 logb(2)−
3

4
logb(3).

(6)

Similarly, for chromium [Ar]3d54s1 → 3 × s2 + 2 × p6 + d5 + s1 → HCr = 3 logb(2) + 2 logb(2) + 0 +

0 = 5 logb(2), and so on.

Shannon entropies Hact and HH/A for 0 ≤ Z ≤ 118 are shown in Figure 6 based on actual ground

state configurations and configurations obtained using the Aufbau rule.
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Figure 6. Shannon entropy of chemical elements (green) showing Aufbau rule violations (red) and

elements of the same entropy (blue).

4. Conclusions

We observed that the following holds for the elements violating the Aufbau rule:

• for less than half (10/21) of them, the element’s entropy is lower for the actual and Aufbau

configurations, the remaining ones have the same entropies in actual and Aufbau configurations;
• the first nonsingleton set 44 ≤ Z ≤ 47 contains four elements having lower entropies and the

same spin multiplicities, with the exception of Z = 46, the only element that violates the higher

or equal multiplicity rule;
• the second nonsingleton set 89 ≤ Z ≤ 93 contains five elements having the same entropies and

spin multiplicities.

Overall, these results significantly strengthen the meaning of the Aufbau rule.

We finally note that the Shannon entropy HH of hydrogen is zero, not logb(2). In emergent

dimensionality [7–14], neither one nor two electrons exist. Therefore, s1 is populated before s2 not

because one electron is less than two electrons, but because the Shannon entropy for one electron H = 0

is lower than the Shannon entropy H = logb(2) for two electrons.
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