

Article

Not peer-reviewed version

All Bi-Unitary Superperfect Polynomials over F2 with at Most Two Irreducible Factors

[Haissam Chehade](#) ^{*}, [Domoo Miari](#) , [Yousuf Alkhezi](#)

Posted Date: 17 October 2023

doi: 10.20944/preprints202310.1091.v1

Keywords: sum of divisors; bi-unitary divisors; polynomials; finite fields; characteristic 2

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article

All Bi-Unitary Superperfect Polynomials over \mathbb{F}_2 with at Most Two Irreducible Factors

Haissam Chehade ^{1,*}, Domoo Miari ¹ and Yousuf Alkhezi ²

¹ Department of Mathematics and Physics, School of Arts and Sciences, The International University of Beirut, Saida, Lebanon; haissam.chehade@liu.edu.lb

² Department of Mathematics, College of Basic Education, Public Authority for Applied Education and Training, Kuwait; ya.alkhezi@paaet.edu.kw

* Correspondence: haissam.chehade@liu.edu.lb

Abstract: In this paper, we give all non splitting bi-unitary superperfect polynomials divisible by one or two irreducible polynomials over the prime field of two elements. We prove the nonexistence of odd bi-unitary superperfect polynomials over \mathbb{F}_2 .

Keywords: sum of divisors; bi-unitary divisors; polynomials; finite fields; characteristic 2

1. Introduction

Let n and k be positive integers and let $\sigma(n)$ (resp. $\sigma^*(n)$) denotes the sum of positive (resp. unitary) divisors of the integer n . A divisor d of n is unitary if d and n/d are coprime. We call the number n a k -superperfect number if $\sigma^k(n) = \underbrace{\sigma(\sigma(\dots(\sigma(n))))}_{k\text{-times}} = 2n$. When $k = 1$, n is called a perfect

number. An integer $M = 2^p - 1$, where p is a prime number, is called a Mersenne number. It is also well known that an even integer n is perfect if and only if $n = M(M + 1)/2$ for some Mersenne prime number M . Suryanarayana [1] considered k -superperfect numbers in the case $k = 2$. Numbers of the form 2^{p-1} (p is prime) are 2-superperfect if $2^{p-1} - 1$ is a Mersenne prime. It is not known if there are odd k -superperfect numbers. Sitaramaiah and Subbarao [2] studied the unitary superperfect numbers, the integers n satisfying $\sigma^{*2}(n) = \sigma^*(\sigma^*(n)) = 2n$. They found all unitary superperfect numbers below 10^8 . The first unitary superperfect numbers are 2, 9, 165, and 238. A positive integer n has a bi-unitary divisor, d , if the greatest common unitary divisor of d and n/d is equal to 1. The arithmetic function $\sigma^{**}(n)$ denotes the sum of positive bi-unitary divisors of the integer n . Wall [3] proved that there are only three bi-unitary perfect numbers ($\sigma^{**}(n) = 2n$), namely 6, 60 and 90. Yamada [4] proved that 2 and 9 are the only bi-unitary superperfect numbers, that is $\sigma^{**2}(n) = 2n$ if and only if $n \in \{2, 9\}$.

Now, let A be a nonzero polynomial defined over the prime field \mathbb{F}_2 . A divisor B of A is unitary (resp. bi-unitary) if $\gcd(B, A/B) = 1$ (resp. $\gcd_u(B, A/B) = 1$), where $\gcd_u(A, A/B)$ denotes the greatest common unitary divisor of B and A/B . We denote by σ the sum of the monic divisors B of A , that is, $\sigma(A) = \sum_{B|A} B$. $\sigma^*(A)$ (resp. $\sigma^{**}(A)$) represents the sum of all unitary (resp. bi-unitary) monic divisors of A . Note that all the functions σ , σ^* and σ^{**} are multiplicative and degree preserving.

A is an even polynomial if it has a linear factor in $\mathbb{F}_2[x]$ else it is an odd polynomial. A polynomial M of the form $1 + x^a(x + 1)^b$ is called Mersenne. The first five Mersenne polynomials over \mathbb{F}_2 are: $M_1 = 1 + x + x^2$, $M_2 = 1 + x + x^3$, $M_3 = 1 + x^2 + x^3$, $M_4 = 1 + x + x^2 + x^3 + x^4$, $M_5 = 1 + x^3 + x^4$. Note that all these polynomials are irreducible, so we call them Mersenne primes.

Let $\omega(A)$ denotes the number of distinct irreducible monic polynomials that divide A . The notion of perfect polynomials over \mathbb{F}_2 was introduced first by Canaday [5]. A polynomial A is perfect if $\sigma(A) = A$. Canaday studied the case of even perfect polynomials with $\omega(A) \leq 3$. In the past few years, Gallardo and Rahavandrainy [6–8] showed the non-existence of odd perfect polynomials over \mathbb{F}_2 with either $\omega(A) = 3$ or with $\omega(A) \leq 9$ in the case where all exponents of the irreducible factors of A are equal to 2. A polynomial A is said to be a unitary (resp. a bi-unitary) perfect if $\sigma^*(A) = A$ (resp. $\sigma^{**}(A) = A$). Also, A is called a unitary (resp. a bi-unitary) superperfect if $\sigma^{*2}(A) = \sigma^*(\sigma^*(A)) = A$

(resp. $\sigma^{**2}(A) = \sigma^{**}(\sigma^{**}(A)) = A$).

Note that the function σ^{**2} is degree preserving but not multiplicative, and this is the main challenge in this work. So, working on bi-unitary superperfect polynomial over \mathbb{F}_2 is not an easy task especially when A is divisible by more than 2 irreducible factors.

Many researchers studied the unitary perfect polynomials over \mathbb{F}_2 . The authors in [7,9,10] list the unitary perfect polynomials over \mathbb{F}_2 with $\omega(A) \leq 4$. They list others that are divisible by $x(x+1)P$, P is a Mersenne polynomial, raised to certain powers, see [7]). Beard [11] found many bi-unitary perfect polynomials over \mathbb{F}_{p^d} , some of which are neither perfect nor unitary perfect. He conjectured a characterization of the bi-unitary perfect polynomials which splits over \mathbb{F}_p when $p > 2$. Beard gave examples of non-splitting bi-unitary perfect polynomials over \mathbb{F}_p when $p \in \{2, 3, 5\}$. Rahavandrainy [12] gave all bi-unitary perfect polynomials over the prime field \mathbb{F}_2 , with at most four irreducible factors (Lemmas 12 and 13). Gallardo and Rahavandrainy [13] classified some unitary superperfect polynomials with a small number of prime divisors under some conditions on the number of prime factors of $\sigma^*(A)$.

Notations: We use the following notations throughout the article.

- \mathbb{N} (resp. \mathbb{N}^*) represents the set of non-negative (resp. positive) integers.
- $\deg(A)$ denotes the degree of the polynomial A .
- \bar{A} is the polynomial obtained from A with x replaced by $x+1$, that is $\bar{A}(x) = A(x+1)$.
- P and Q are distinct irreducible non constant polynomials.
- P_i and Q_j are distinct odd irreducible non constant polynomials.

In this paper, we prove the non-existence of odd bi-unitary superperfect polynomials A when A is divisible by at least two irreducible factors (Corollary 4). We give a complete classification for all bi-unitary superperfect polynomials over \mathbb{F}_2 that are divisible by at most two distinct irreducible factors, (Theorem 1). Bi-unitary superperfect polynomials over \mathbb{F}_2 that are neither unitary perfect nor bi-unitary perfect are found. The polynomials $x^4(x+1)^4, x^9(x+1)^9, x^9(x+1)^{13}$, and $x^2(x+1)^{2^n-1}$ are such examples, n is a positive integer.

Our main result is given in the following theorem:

Theorem 1. *If $\omega(A) \leq 2$ and A is a bi-unitary superperfect over \mathbb{F}_2 if and only if $A, \bar{A} \in \{x^2, x^{2^d-1}, x^2(x+1)^2, x^4(x+1)^4, x^9(x+1)^9, x^9(x+1)^{13}, x^2(x+1)^{2^d-1}, x^{2^m-1}(x+1)^{2^n-1}\}$, where $m, n \in \mathbb{N}^*$.*

2. Preliminaries

The following two lemmas are helpful.

Lemma 1. *Let A be a polynomial in $\mathbb{F}_2[x]$, then $\sigma^*(A^{2^n}) = (\sigma^*(A))^{2^n}$, n is a non-negative integer.*

Proof. The result follows since σ^* is multiplicative and $\sigma^*(p^{2^n}) = 1 + p^{2^n} = (1 + p)^{2^n} = (\sigma^*(p))^{2^n}$. \square

Lemma 2. *If A is a unitary superperfect polynomial over \mathbb{F}_2 , then A^{2^n} is also a unitary superperfect polynomial over \mathbb{F}_2 for all non-negative integers n .*

Proof. Let A be a unitary superperfect and let $B = \sigma^*(A)$. By Lemma 1, we have $\sigma^{*2}(A^{2^n}) = \sigma^*(\sigma^*(A^{2^n})) = \sigma^*(B^{2^n}) = (\sigma^*(B))^{2^n} = (\sigma^*(\sigma^*(A)))^{2^n} = A^{2^n}$. \square

Lemma 3. [Lemma 2.4 in [13]] Let A be a polynomial in $\mathbb{F}_2[x]$.

- 1) If P is an odd prime factor of A , then $x(x+1)$ divides $\sigma^*(A)$.
- 2) If $x(x+1)$ divides A , then $x(x+1)$ divides $\sigma^*(A)$.
- 3) If A is unitary superperfect that has an odd prime factor, then $x(x+1)$ divides A .

The following results are needed, and they are a result of Beard [11], and Rahavandrainy [12] works.

Lemma 4. [Theorem 1 and its Corollary in [11]] If A is a non-constant bi-unitary perfect polynomial, then $x(x + 1)$ divides A and $\omega(A) \geq 2$.

Lemma 5. [Lemma 2.2 in [12]]

- 1) $\sigma^{**}(P^{2a+1}) = \sigma(P^{2a+1})$.
- 2) $\sigma^{**}(P^{2a}) = (1 + P^{a+1})\sigma(P^{a-1}) = (1 + P)\sigma(P^a)\sigma(P^{a-1})$.

Corollary 1. [Corollary 2.3 in [12]] Let $T \in \mathbb{F}_2[x]$ be irreducible. Then

- i) If $a \in \{4r, 4r + 2\}$, where $2r - 1$ or $2r + 1$ is of the form $2^\alpha u - 1$, u odd, then $\sigma^{**}(P^a) = (1 + P)^{2^\alpha} \cdot \sigma(P^{2r}) \cdot (\sigma(P^{u-1}))^{2^\alpha}$, $\gcd(\sigma(P^{2r}), \sigma(P^{u-1})) = 1$.
- ii) If $a = 2^\alpha u - 1$ is odd, with u odd, then $\sigma^{**}(P^a) = (1 + P)^{2^\alpha-1} \cdot (\sigma(P^{u-1}))^{2^\alpha}$.

The proof of the below lemma follows from Lemma 5 and the binomial formula. Table 6 shows some values of $\sigma^{**}(A)$ when A is a power of the first five Mersenne primes.

Lemma 6. Let the polynomial M_i be Mersenne prime and Q_j be an irreducible polynomial over \mathbb{F}_2 and let $a, c \in \mathbb{N}^*$. If $\alpha_j \in \mathbb{N}$, then

- 1) $x(x + 1)$ divides $\sigma^{**}(M_i^c)$.
- 2) $\sigma^{**}(M_1^c) = x^a(x + 1)^a \prod_j Q_j^{\alpha_j}$.
- 3) $\sigma^{**}(M_2^c) = x^a(x + 1)^{2a} \prod_j Q_j^{\alpha_j}$.
- 4) $\sigma^{**}(M_3^c) = x^{2a}(x + 1)^a \prod_j Q_j^{\alpha_j}$.
- 5) $\sigma^{**}(M_4^c) = x^a(x + 1)^{3a} \prod_j Q_j^{\alpha_j}$.
- 6) $\sigma^{**}(M_5^c) = x^{3a}(x + 1)^a \prod_j Q_j^{\alpha_j}$.

Lemma 7. [Corollary 2.4 in [12]]

- 1) $\sigma^{**}(x^a)$ splits over F_2 if and only if $a = 2$ or $a = 2^d - 1$, for some $d \in \mathbb{N}^*$.
- 2) $\sigma^{**}(P^c)$ splits over F_2 if and only if P is Mersenne and $c = 2$ or $c = 2^d - 1$ for some $d \in \mathbb{N}^*$.

Lemma 8 summarizes key results taken from Canaday's paper [5].

Lemma 8. Let T be irreducible in $\mathbb{F}_2[x]$ and let $n, m \in \mathbb{N}$.

- i) If T is a Mersenne prime and if $T = T^*$, then $T \in \{M_1, M_4\}$.
- ii) If $\sigma(x^{2n}) = PQ$ and $P = \sigma((x + 1)^{2m})$, then $2n = 8, 2m = 2, P = M_1$ and $Q = P(x^3) = 1 + x^3 + x^6$.
- iii) If any irreducible factor of $\sigma(x^{2n})$ is a Mersenne prime, then $2n \leq 6$.
- iv) If $\sigma(x^{2n})$ is a Mersenne prime, then $2n \in \{2, 4\}$.

Lemma 9. [Lemma 2.6 in [14]] Let $m \in \mathbb{N}^*$ and M be a Mersenne prime. Then, $\sigma(x^{2m}), \sigma((x + 1)^{2m})$ and $\sigma(M^{2m})$ are all odd and squarefree.

3. Bi-unitary superperfect Polynomials

Recall that A is a bi-unitary superperfect polynomial in $\mathbb{F}_2[x]$ if $\sigma^{**2}(A) = \sigma^{**}(\sigma^{**}(A)) = A$. The polynomial $A = x^4(1 + x)^4$ is a bi-unitary superperfect polynomial over \mathbb{F}_2 . The proof of the following lemmas follow directly.

Lemma 10. If A is a bi-unitary perfect polynomial over \mathbb{F}_2 , then A is also a bi-unitary superperfect polynomial.

Lemma 11. If A is a bi-unitary superperfect polynomial over \mathbb{F}_2 , then $B = \sigma^{**}(A)$ is also a bi-unitary superperfect polynomial.

Rahavandrainy (Lemma 2.6 in [12]) proved that if A is a bi-unitary perfect polynomial over \mathbb{F}_2 where $A = A_1A_2$ such that $\gcd(A_1, A_2) = 1$, then A_1 is a bi-unitary perfect polynomial if and only if A_2 is a bi-unitary perfect polynomial. Rahavandrainy's previous result is not valid in the case of bi-unitary superperfect polynomials because the bi-unitary superperfect polynomial $A = x^2(1+x)^2(1+x+x^2)^2$ is a counterexample over \mathbb{F}_2 . In fact, $A_1 = x^2(1+x)^2$ is a bi-unitary superperfect but $A_2 = (1+x+x^2)^2$ is not a bi-unitary superperfect.

The following polynomials are considered over \mathbb{F}_2 :

$$\begin{aligned} C &= 1 + x + x^4, & B_1 &= x^3(x+1)^4M_1, & B_2 &= x^3(x+1)^5M_1^2, \\ B_3 &= x^4(x+1)^4M_1^2, & B_4 &= x^6(x+1)^6M_1^2, & B_5 &= x^4(x+1)^5M_1^3, \\ B_6 &= x^7(x+1)^8M_5, & B_7 &= x^7(x+1)^9M_5^2, & B_8 &= x^8(x+1)^8M_4M_5, \\ B_9 &= x^8(x+1)^9M_4M_5^2, & B_{10} &= x^7(x+1)^{10}M_1^2M_5, & B_{11} &= x^7(x+1)^{13}M_2^2M_3^2, \\ B_{12} &= x^9(x+1)^9M_4^2M_5^2, & B_{13} &= x^{14}(x+1)^{14}M_2^2M_3^2, & R_1 &= x^4(x+1)^5M_1^4C, \\ R_2 &= x^4(x+1)^5M_1^5C^2. \end{aligned}$$

Lemma 12. [Theorem 1.1 in [12]] Let $A \in \mathbb{F}_2[x]$ be bi-unitary perfect polynomial such that $\omega(A) = 3$. Then $A, \bar{A} \in \{B_j : j \leq 7\}$.

Lemma 13. [Theorem 1.2 in [12]] Let $A \in \mathbb{F}_2[x]$ be bi-unitary perfect polynomial such that $\omega(A) = 4$. Then $A, \bar{A} \in \{B_j : 8 \leq j \leq 13\} \cup \{R_1, R_2\}$.

Lemma 14. If $A(x)$ is a bi-unitary superperfect polynomial over \mathbb{F}_2 , then so is $\bar{A}(x)$.

4. Proof of Theorem 1

We start this section by the following corollary.

Corollary 2. If a is a positive integer, then

- 1) $1+x$ divides $\sigma^{**}(x^a)$.
- 2) x divides $\sigma^{**}((1+x)^a)$.

Proof. An immediate result of Lemma 5. \square

Lemma 15. $x(x+1)$ divides $\sigma^{**}(P^a)$, a is a positive integer.

Proof. Since P is odd, then $P(0) = P(1) = 1$. If $a = 2n+1$, then $\sigma^{**}(P^{2n+1})(0) = 1 + \underbrace{P(0) + \dots + P^{2n+1}(0)}_{(2n+1)\text{-times}} = 1 + 2n + 1 = 0$. If $a = 2n$, then $1 + P^{n+1}(0) = 0$. So, x divides $\sigma^{**}(P^a)$ for every $a \in \mathbb{N}$. Similarly, $x+1$ divides $\sigma^{**}(P^a)$. Hence, $x(x+1)$ divides $\sigma^{**}(P^a)$. \square

Lemma 16. Let A be a polynomial in $\mathbb{F}_2[x]$.

- 1) If P is an odd prime factor of A , then $x(x+1)$ divides $\sigma^{**}(A)$.
- 2) If $x(x+1)$ divides A , then $x(x+1)$ divides $\sigma^{**}(A)$.

Proof. 1) We write $A = P^aB$ where $a \in \mathbb{N}^*$ and $B \in \mathbb{F}_2[x]$ such that $\gcd(P, B) = 1$. But, $1+P$ divides $\sigma^{**}(A)$ and the result follows since $x(x+1)$ divides $1+P$.

- 2) In a similar manner, we write $A = x^a(x+1)^bB$ where $a, b \in \mathbb{N}^*$.

\square

Corollary 3. If $A \in \mathbb{F}_2[x]$ and $\omega(A) \geq 2$, then $x(x+1)$ divides $\sigma^{**}(A)$.

Proof. Let $\omega(A) \geq 2$. If $x(x+1)$ divides A , then we are done by Corollary 2. If $x(x+1)$ does not divide A , then A is divisible by an irreducible polynomial $P \notin \{x, 1+x\}$ and the result follows by Lemma 15. \square

Corollary 4. Let A be a polynomial in $\mathbb{F}_2[x]$ with $\omega(A) \geq 2$. If A is a bi-unitary superperfect, then $x(x+1)$ divides A .

Proof. Let $A = \sigma^{**2}(A) = \sigma^{**}(B)$, where $B = \sigma^{**}(A)$. Since $\omega(A) \geq 2$, then either P or $x(x+1)$ divides A . In both cases, $x(x+1)$ divides $\sigma^{**}(A) = B$ (Lemma 16). So, $x(x+1)$ divides $\sigma^{**}(B) = \sigma^{**2}(A)$. \square

The following lemma is similar to Lemma 7.

Lemma 17. Let $a, b \in \mathbb{N}^*$, then

- 1) If a is even, then $\sigma^{**2}(x^a)$ and $\sigma^{**2}((x+1)^a)$ splits over \mathbb{F}_2 if and only if $a \in \{2, 4, 10, 12\}$.
- 2) If a is odd, then $\sigma^{**2}(x^a)$ and $\sigma^{**2}((x+1)^a)$ splits over \mathbb{F}_2 if and only if $a \in \{5, 9, 13, 2^d - 1\}$ for some $d \in \mathbb{N}^*$.

Proof. 1) If $\sigma^{**}(x^a)$ splits, the $a = 2$ (Lemma 7) and $\sigma^{**2}(x^a) = (x+1)^2$. Suppose, $\sigma^{**}(x^a)$ does not split with $a = 4r, 2r-1 = 2^\alpha u - 1$, (resp. $a = 4r+2, 2r+1 = 2^\alpha u - 1$), u is odd, $r \geq 1$. But $\sigma^{**2}(x^a) = \sigma^{**}((1+x)^{2^\alpha} \cdot \sigma(x^{2r}) \cdot (\sigma(x^{u-1}))^{2^\alpha})$, so $\sigma^{**}((1+x)^{2^\alpha})$ must split. Hence, $\alpha = 1$ and since $\sigma(x^{2r})$ is odd and square free (Lemma 9), then $\sigma(x^{2r})$ has a Mersenne factor. So, $2r \leq 6$ and hence $u \leq 3$.

- 2) Assume $a = 2^\alpha u - 1$, with u is odd. If $\sigma^{**}(x^a)$ splits, then $a = 2^d - 1$, d is positive (Lemma 7). If $\sigma^{**}(x^a)$ does not split, then $a \neq 2^d - 1$ and since $\sigma^{**2}(x^a) = x^{2^\alpha-1} \cdot \sigma^{**}((\sigma(x^{u-1}))^{2^\alpha})$ splits, $u > 1$. Again, by Lemma 9, $\sigma(x^{2r})$ has a Mersenne factor. So, $u-1 \leq 6$ and hence $u \in \{3, 5, 7\}$. For $u = 3$, $\sigma^{**2}(x^a) = x^{2^\alpha-1} \cdot \sigma^{**}((\sigma(x^2))^{2^\alpha}) = x^{2^\alpha-1} \cdot \sigma^{**}(M_1^{2^\alpha})$. Hence, $\alpha = 1$ and the same result is obtained when $u \in \{5, 7\}$.

The same proof is done for $\sigma^{**2}((x+1)^a)$ and the proof is compete. \square

Lemma 18. Let a and b have the form $2^n - 1$ where $n \in \mathbb{N}^*$ and let the polynomial $A = 1 + x^a(x+1)^b$ be Mersenne prime over \mathbb{F}_2 , then $\sigma^{**2}(A) = x^b(x+1)^a$.

Proof. Let $a = 2^{n_1} - 1$ and $b = 2^{n_2} - 1$, then

$$\begin{aligned} \sigma^{**2}(A) &= \sigma^{**2}(1 + x^a(x+1)^b) \\ &= \sigma^{**}(\sigma(1 + x^a(x+1)^b)) \\ &= \sigma^{**}(x^a(x+1)^b) \\ &= x^b(x+1)^a. \end{aligned}$$

\square

4.1. Case $w(A)=1$

We prove that $\sigma^{**}(A)$ can not have more than one prime factor when A is a prime power.

Lemma 19. If $A \in \{x, x+1\}$ and $\sigma^{**2}(A^a)$ splits over \mathbb{F}_2 , then A is a bi-unitary superperfect polynomial.

Proof. Follows from part 1) of Lemma 17. \square

Lemma 20. *If $A = P^\alpha \in \mathbb{F}_2[x]$, then A is not a bi-unitary superperfect polynomial.*

Proof. Assume $A = P^\alpha$ is a bi-unitary superperfect. Since P divides A , then $x(x+1)$ divides $\sigma^{**}(A)$ and by Lemma 16 we have $x(x+1)$ divides $\sigma^{**2}(A) = P^\alpha$. A contradiction. \square

In particular, if M is a Mersenne prime polynomial over \mathbb{F}_2 , then M^c (c is a positive integer) is never a bi-unitary superperfect polynomial.

Corollary 5. *Let $a \in \mathbb{N}^*$ and let $A = P^a$ be a bi-unitary superperfect polynomial over \mathbb{F}_2 , then $P \in \{x, x+1\}$.*

It is clear from the preceding two corollaries that a bi-unitary superperfect polynomial must be even.

Theorem 2. *Let A be a polynomial over \mathbb{F}_2 with $\omega(A) = 1$, then A is a bi-unitary superperfect polynomial if and only if $A, \bar{A} \in \{x^2, x^{2^d-1}\}$, where $d \in \mathbb{N}^*$.*

Proof. By Corollary 5, $A = x^\alpha$ or $(x+1)^\alpha$. Assume $A = x^\alpha$ and $\alpha = 2m$, then $\sigma^{**2}(A) = \sigma^{**}\left((x^{m+1}+1) \frac{x^m-1}{x-1}\right)$. Both $x^{m+1}+1$ and x^m+1 split over \mathbb{F}_2 only when $m = 1$. Thus, $\sigma^{**2}(A) = \sigma^{**}(x^2+1) = x^2$. If $\alpha = 2m+1$, then $\sigma^{**2}(A) = \sigma^{**}\left(\frac{x^{2(m+1)}-1}{x-1}\right)$. The expression $x^{2(m+1)}+1$ splits over \mathbb{F}_2 when $2m+2 = 2^d$, $d \in \mathbb{N}^*$. Then, $\sigma^{**2}(A) = \sigma^{**}\left(\frac{x^{2^d}-1}{x-1}\right) = A = x^{2^d-1}$. The sufficient condition follows by a direct computation and the result follows since if A is a bi-unitary superperfect, then so is \bar{A} . \square

4.2. Case $w(A)=2$

We consider the polynomial $A = P^a Q^b$ and $a, b \in \mathbb{N}^*$. Note that $A = x^2(1+x)^2$ and $A = x^{2^a-1}(1+x)^{2^a-1}$ are bi-unitary superperfect polynomials over \mathbb{F}_2 , see Lemma 10 and (Theorem 5 in [11]).

Corollary 6. *If A is a bi-unitary superperfect polynomial over \mathbb{F}_2 , then $A = x^a(x+1)^b$.*

Proof. Follows directly from Corollary 4. \square

Lemma 21. [Lemma 3.1 in [12]] If the polynomial $\sigma^{**}(x^a(x+1)^b)$ does not split, then ($a \geq 3$ or $b \geq 3$) and ($a \neq 2^n - 1$ or $b \neq 2^m - 1$ for any $n, m \geq 1$).

Lemma 22. *Let $a, b, d \in \mathbb{N}^*$. The polynomial $A = x^a(x+1)^b$ is a bi-unitary superperfect over \mathbb{F}_2 if and only if one of the following is true.*

- 1) If a and b are odd and $\sigma^{**}(x^a(x+1)^b)$ splits, then a and b are of the form $2^d - 1$.
- 2) If a and b are odd and $\sigma^{**}(x^a(x+1)^b)$ does not split, then $(a, b) \in \{(9, 9), (9, 13), (13, 9)\}$.
- 3) If a and b are even, then $a = b \in \{2, 4\}$.
- 4) If a is odd and b is even, then $(a, b) \in \{(2, 2^d - 1), (2^d - 1, 2)\}$.

Proof. 1) If $a = 2m+1$ and $b = 2n+1$, then $\sigma^{**2}(A) = \sigma^{**}(\sigma^{**}(x^a)(1+x)^b)$. But $\sigma^{**}(x^{2m+1})$ and $\sigma^{**}(x+1)^{2n+1}$ split over \mathbb{F}_2 when $2m+1$ and $2n+1$ are of the form $2^d - 1$ (Lemma 7).

2) If $a = 2^\alpha u - 1$ and $b = 2^\beta v - 1$, u, v are odd. We have $u > 1$ and $v > 1$, since $\sigma^{**}(x^a(x+1)^b)$

does not split. $\sigma^{**}(x^a(x+1)^b) = \sigma^{**}\left((1+x)^{2^a-1}(\sigma(x^{u-1}))^{2^a}x^{2^b-1}\sigma((x+1)^{v-1})^{2^b}\right)$. By Lemma 21 ($u-1 \geq 3$ and $\alpha=1$) or ($v-1 \geq 3$ and $\beta=1$). Also, $\sigma(x^{u-1})$ and $\sigma((x+1)^{v-1})$ does not split since $\sigma^{**}(x^a(x+1)^b)$ does not split. So, there exist Mersenne primes M (resp. M') that divides $\sigma(x^{u-1})$ (resp. $\sigma((x+1)^{v-1})$). Hence, $(u-1 \leq 6)$ or $(v-1 \leq 6)$ and we have $u, v \in \{5, 7\}$. If $u=v=5$, then $a=b=9$. If $u=5$ and $v=7$, then $a=9$ and $b=13$. If $u=v=7$, then $a=b=13$ is dismissed. 3) If a, b even, then $a \in \{4r, 4r+2\}$ such that $2r-1, 2r+1$ is of the form $2^\alpha u-1$ with u is odd and $b \in \{4r', 4r'+2\}$ such that $2r'-1, 2r'+1$ is of the form $2^\beta v-1, v$ odd. Thus,

$$\sigma^{**}(A) = (1+x)^{2^a-1}\sigma(x^{2r})\left(\sigma(x^{u-1})\right)^{2^a}x^{2^b-1}\sigma((x+1)^{2r'})\left(\sigma((x+1)^{v-1})\right)^{2^b}.$$

If $\sigma(x^{2r}), \sigma((x+1)^{2r'}), \sigma(x^{u-1})$ and $\sigma((x+1)^{v-1})$ are Mersenne, then $2r, 2r', u-1, v-1 \in \{2, 4\}$. So, $a=b=4$. If $\sigma(x^{2r}), \sigma(x^{u-1}), \sigma((x+1)^{2r'})$ and $\sigma((x+1)^{v-1})$ are not Mersenne, then $r, r', u-1, v-1 > 2$ and $\omega(\sigma^{**2}(A)) > 2$, a contradiction. For $a=b=2$, A is bi-unitary perfect and hence A is a bi-unitary superperfect.

4) Now, let $a=2m+1$ and $b=2n$. Since $\sigma^{**}((x+1)^{2n})$ splits over \mathbb{F}_2 only when $n=1$, then $\sigma^{**2}(A) = \sigma^{**}(\sigma^{**}(x^{2m+1})\sigma^{**}((x+1)^2))$. But $\sigma^{**}(x^{2m+1})$ splits over \mathbb{F}_2 if $2m+1$ is of the form 2^d-1 . If $a=2m$ and $b=2n+1$, then $a=2$ and $b=2^d-1$. The sufficient condition can be easily verified. \square

The proof of Theorem 1 is now complete.

5. Conclusion

In conclusion, a non constant bi-unitary superperfect polynomial A over \mathbb{F}_2 can be divisible by one irreducible polynomial x or $x+1$ and its exponent is 2 or 2^n-1 for a positive integer n . Moreover, the only bi-unitary superperfect polynomials over \mathbb{F}_2 with exactly two prime factors are $x^a(x+1)^b$ with $a, b \in \{2, 4, 9, 13, 2^d-1\}$, d is a positive integer and $a=b$ if and only if $a, b \in \{2, 4\}$.

6. Table

Consider the polynomials $C_1 = x^4 + x + 1$, $C_2 = x^6 + x^5 + x^4 + x^2 + 1$, $C_3 = x^6 + x^5 + x^4 + x + 1$, and $C_4 = x^{10} + x^9 + x^8 + x^7 + x^2 + x + 1$. The below table lists the values of $\sigma^{**}(A)$ and $\sigma^{**2}(A)$ for $A \in \{x^a, (x+1)^a, M_i^b\}$ with $1 \leq a \leq 13, 1 \leq b \leq 7$.

A	a	σ^{**}	σ^{**2}
x^a	1	x	$x + 1$
	2	x^2	$(x + 1)^2$
	3	x^3	$(x + 1)^3$
	4	x^2M_1	$x(x + 1)^3$
	5	xM_1^2	$x^2(x + 1)^3$
	6	x^4M_1	$x(x + 1)^3M_1$
	7	x^7	$(x + 1)^7$
	8	x^4M_5	$x^3(x + 1)^3M_1$
	9	xM_5^2	$x^6(x + 1)^3$
	10	$x^2M_1^2M_5$	$x^5(x + 1)^5$
	11	$x^3M_1^4$	$x^2(x + 1)^5C_1$
	12	$x^2M_1^2M_2M_3$	$x^5(x + 1)^7$
	13	$xM_2^2M_3^2$	$x^6(x + 1)^7$
<hr/>			
$(1 + x)^a$	1	x	$x + 1$
	2	x^2	$(x + 1)^2$
	3	x^3	$(x + 1)^3$
	4	x^2M_1	$x(x + 1)^3$
	5	xM_1^2	$x^2(x + 1)^3$
	6	x^4M_1	$x(x + 1)^3M_1$
	7	x^7	$(x + 1)^7$
	8	x^4M_5	$x^3(x + 1)^3M_1$
	9	xM_5^2	$x^6(x + 1)^3$
	10	$x^2M_1^2M_5$	$x^5(x + 1)^5$
	11	$x^3M_1^4$	$x^2(x + 1)^5C_1$
	12	$x^2M_1^2M_2M_3$	$x^5(x + 1)^7$
	13	$xM_2^2M_3^2$	$x^6(x + 1)^7$
<hr/>			
M_1^a	1	$x(x + 1)$	$x(x + 1)$
	2	$x^2(x + 1)^2$	$x^2(x + 1)^2$
	3	$x^3(x + 1)^3$	$x^3(x + 1)^3$
	4	$x^2(x + 1)^2C_1$	$x^3(x + 1)^3M_1$
	5	$x(x + 1)C_1^2$	$x^3(x + 1)^3M_1^2$
	6	$x^4(x + 1)^4C_1$	$x^3(x + 1)^3M_1^3$
	7	$x^7(x + 1)^7$	$x^7(x + 1)^7$
<hr/>			
M_2^a	1	$x(x + 1)^2$	$x^2(x + 1)$
	2	$x^2(x + 1)^4$	$x^2(x + 1)^2M_1$
	3	$x^3(x + 1)^6$	$x^4(x + 1)^3M_1$
	4	$x^2(x + 1)^4M_1M_5$	$x^6(x + 1)^4M_1$
	5	$x(x + 1)^2M_1^2M_5^2$	$x^{10}(x + 1)^5$
	6	$x^4(x + 1)^8M_1M_5$	$x^8(x + 1)^4M_1M_5$
	7	$x^7(x + 1)^{14}$	$x^8(x + 1)^7M_2M_3$

M_3^a	1	$x^2(x+1)$	$x(x+1)^2$
	2	$x^4(x+1)^2$	$x^2(x+1)^2M_1$
	3	$x^6(x+1)^3$	$x^3(x+1)^4M_1$
	4	$x^4(x+1)^2M_1M_4$	$x^4(x+1)^6M_1$
	5	$x^2(x+1)M_1^2M_4^2$	$x^5(x+1)^{10}$
	6	$x^8(x+1)^4M_1M_4$	$x^4(x+1)^8M_1M_4$
	7	$x^{14}(x+1)^7$	$x^7(x+1)^8M_2M_3$
.....
M_4^a	1	$x(x+1)^3$	$x^3(x+1)$
	2	$x^2(x+1)^6$	$x^4(x+1)^2M_1$
	3	$x^3(x+1)^9$	$x(x+1)^3(M_5)^2$
	4	$x^2(x+1)^6M_1C_2$	$x^7(x+1)^4M_1M_2$
	5	$x(x+1)^3M_1^2C_2^2$	$x^9(x+1)^5M_2^2$
	6	$x^4(x+1)^{12}M_1C_2$	$x^5(x+1)^4M_1^3M_2^2M_3$
	7	$x^7(x+1)^{21}$	$x(x+1)^7$ C_4^2
.....
$(M_5)^a$	1	$x^3(x+1)$	$x(x+1)^3$
	2	$x^6(x+1)^2$	$x^2(x+1)^4M_1$
	3	$x^9(x+1)^3$	$x^3(x+1)M_4^2$
	4	$x^6(x+1)^2M_1C_3$	$x^4(x+1)^7M_1M_3$
	5	$x^3(x+1)M_1^2C_3^2$	$x^5(x+1)^9M_3^2$
	6	$x^{12}(x+1)^4M_1C_3$	$x^4(x+1)^5M_1^3M_2M_3^2$
	7	$x^{21}(x+1)^7$	$x^7(x+1)(\sigma(x^{10}))^2$

References

1. Suryanarayana, D. Super Perfect Numbers. *Elemente der Mathematik* **1969**, *24*, 16–17.
2. Sitaramaiah, V.; Subbarao, M. On the Equation $\sigma^{**}(n)) = 2n$. *Utilitas Mathematica* **1998**, *53*, 101–124.
3. Wall, C. Bi-unitary perfect numbers. *Proceedings of the American Mathematical Society* **1972**, *33*, 39–42.
4. Yamada, T. 2 and 9 are the only biunitary superperfect numbers. *Annales Univ. Sci. Budapest* **2018**, *48*, 247–256.
5. Canaday, E.F. The sum of the divisors of a polynomial. *Duke Mathematical Journal* **1941**, *8*, 721–737.
6. Gallardo, L.H.; Rahavandrainy, O. Odd perfect polynomials over \mathbb{F}_2 . *Journal de théorie des nombres de Bordeaux* **2007**, *19*, 165–174.
7. Gallardo, L.H.; Rahavandrainy, O. On even (unitary) perfect polynomials over \mathbb{F}_2 . *Finite Fields and Their Applications* **2012**, *18*, 920–932.
8. Gallardo, L.H.; Rahavandrainy, O. All unitary perfect polynomials over \mathbb{F}_2 with at most four distinct irreducible factors. *Journal of Symbolic Computation* **2012**, *47*, 492–502.
9. Gallardo, L.H.; Rahavandrainy, O. Even perfect polynomials over \mathbb{F}_2 with four prime factors. *International Journal of Pure and Applied Mathematics* **2009**, *52*, 301–314.
10. Gallardo, L.H.; Rahavandrainy, O. There is no odd perfect polynomial over \mathbb{F}_2 with four prime factors. *Portugaliae Mathematica* **2009**, *66*, 131–145.
11. Beard, J.T. Bi-unitary perfect polynomials over $GF(g)$. *Annali di Matematica Pura ed Applicata* **1987**, *149*, 61–68.
12. Rahavandrainy, O. All bi-unitary perfect polynomials over \mathbb{F}_2 with at most four irreducible factors. *arXiv preprint arXiv:2205.08392* **2022**.
13. Gallardo, L.H.; Rahavandrainy, O. Unitary superperfect binary polynomials. *Finite Fields: Theory and Applications: Theory and Applications: Ninth International Conference on Finite Fields and Applications*, July 13–17, 2009, Dublin, Ireland. American Mathematical Soc., 2010, Vol. 518, p. 155.
14. Gallardo, L.H.; Rahavandrainy, O. Characterization of Sporadic perfect polynomials over \mathbb{F}_2 . *Functiones et Approximatio Commentarii Mathematici* **2016**, *55*, 7–21.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.