
Article

Not peer-reviewed version

Two Kadane algorithms for the

maximum sum sub-array problem

Joseph B. Kadane

*

Posted Date: 17 October 2023

doi: 10.20944/preprints202310.1061.v1

Keywords: dynamic programming; Kadane’s algorithm; linear algorithm; maximum subarray problem;

miscommunication

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/167320

Article

Two Kadane Algorithms for the Maximum Sum
Sub-Array Problem

Joseph B. Kadane

Carnegie Mellon University; kadane@stat.cmu.edu

Abstract: The algorithm now known as Kadane’s algorithm for the maximum subarray problem uses

many of the ideas that Kadane proposed, but it is not the algorithm that Kadane intended. This paper

compares the two algorithms in question. They are both linear in time, employ just a few words of

memory, and use a dynamic programming structure. The upshot is two light-weight algorithms for

the maximum subarray problem.

Keywords: dynamic programming; Kadane’s algorithm; linear algorithm; maximum subarray

problem; miscommunication

1. History

In the late 1970’s Jon Bentley and Michael Shamos (Computer Science) and I (Statistics) jointly

taught a seminar course at Carnegie Mellon on the stochastic analysis of algorithms. The idea was to

examine the relative usefulness of worst-case analysis (growing from minimax ideas of von Neumann

and Morgenstern [1]) and average case analysis (growing from Savage’s [2] Bayesian ideas). Although

worst-case analyses were the dominant paradigm in computer-science, it seemed too pessimistic. For

example, linear programming Dantzig [3] has a poor worst-case analysis (Klee and Minty)[4], but had

been used successfully on very large problems.

The course was loosely structured, in part to encourage discussion about whatever technical

issues people wanted to discuss. One day Shamos took the floor to talk about a problem he and Bentley

had been discussing. Ulf Grenander at Brown had been studying how to analyze two-dimensional

array data. The maximum likelihood estimate under his model required finding a contiguous area with

high likelihood. To simplify the problem in the hope of better understanding its structure, he proposed

a one-dimensional problem: given a vector of numbers, find the contiguous subvector with the largest

sum. Grenander knew that a brute force method was of order n3, and had constructed an n2 algorithm.

Shamos had devised a divide-and-conquer n log n algorithm, and Bentley and Shamos reported that

they were having difficulty proving that n log n was the best possible rate for this problem. (The

details of these algorithms are given in Bentley [5]).

I had never heard of this problem before, but it felt to me that Shamos’ algorithm was ignoring

the contiguity constraint rather than using it as part of the solution. So I said "I wouldn’t do it that way,

I’d do it this way." I cannot reconstruct the description I gave of my proposal alteration, but it used

contiguity in an essential way to implement a dynamic programming-type algorithm. This idea was

linear in n, as it scanned the input a single time. And it required only a hand-full of memory locations.

So this explained why Bentley and Shamos were having difficulty proving that n log n was the best

possible rate: it isn’t.

Bentley [5] recounts this history, and gives a linear algorithm he attributes to me. In broad outline,

it is the method I proposed in class. But a key detail is different.

The remainder of this paper is organized as follows: Section 2 gives my way of thinking about the

problem, and the algorithm I thought I was proposing. Section 3 gives Bentley’s version and compares

the algorithms, and Section 4 concludes.

2. Growing champions

There are two simple conditions that the adjacent subsequences with the largest sum must have:

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2023 doi:10.20944/preprints202310.1061.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-1548-5912
https://doi.org/10.20944/preprints202310.1061.v1
http://creativecommons.org/licenses/by/4.0/

2 of 5

(a) a maximal adjacent subsequence cannot have a starting sub-subsequence with a negative sum.

Eliminating such a starting sub-subsequence and starting over must result in a larger sum for the

subsequence, so the original subsequence cannot be optimal.
(b) after eliminating starting sub-subsequences with negative sums, the ensuing sub-subsequence

must start non-negatively, so including it in the subsequence must increase (zeros don’t affect the

sum) the resulting sum. So an optimal subsequence must start immediately after the elimination

of starting sub-subsequences with negative sums.

The algorithm is designed to exploit these ideas.

The Champ step eliminates negative starts (see (a) above) and then begins immediately (see (b)

above).

Suppose the algorithm reports S as the largest sum among contiguous intervals. A user might

want to know the starting and ending indices of the interval whose sum is S. Since Algorithm 1

is constructive, it can be modified to record the interval as it advances. This is implemented in

Algorithm 2.

Algorithm 1 Linear algorithm based on Champ

MaxSoFar : = − inf
Champ : = − inf
For I = 1 to N do

Champ : =X[I] + Max(0.0, Champ)
MaxSoFar : = Max(MaxSoFar, Champ).

Algorithm 2 Algorithm 1 modified to report the start and end of the first interval whose sum is
maximum.

MaxSoFar : = − inf
Champ : = − inf
Start : = 1
End : = 1
Cstart : =1
For I = 1 to N do

if Champ < 0 then
Cstart : = I
Champ : = X[I]

else Champ : = X[I] + Champ
if MaxSoFar < Champ

Start : = Cstart
End : = I
MaxSoFar : = Champ.

A user might want to know even more: the start and end of every interval whose sum is maximum.

This might be inadvisable. For example, if the input vector is all zeros, the required storage for all

possible optional intervals is of order n2.

How do we know that Algorithm 1 (2) is correct? Every interval satisfying (a) and (b) is offered to

MaxSoFar. Since the optimal interval must satisfy (a) and (b), the value of MaxSoFar after step N is

optimal.

These algorithms were designed with the thought that the input vector would include both

positive and negative elements. If the input is entirely positive, then the optimal contiguous sequence

is the entire input, and the sum of the input is the optimal sum. But what happens with an entirely

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2023 doi:10.20944/preprints202310.1061.v1

https://doi.org/10.20944/preprints202310.1061.v1

3 of 5

negative input? There are two possible kinds of answer a user might desire. The first is the largest of

the input numbers (smallest in absolute value). Algorithms 1 and 2 deliver this result without change.

The second kind of answer a user might want is the empty set. This can be offered by adding a line at

the end of those algorithms (outside the loop) to report the empty set (designated however one wishes)

if BestSoFar is negative.

3. The linear algorithm Bentley gave me credit for

This algorithm recursively calculates "BestEndingHere" at each stage. Formally it looks like this:

As in Algorithm 1, Algorithm 3 honors (a) by restarting in MaxEndingHere, and (b) by restarting

immediately.

The next question is whether Algorithm 3 can be modified to give the start and end positions of

an optimal subsequence. The following algorithm does that:

Algorithm 3 Same as Algorithm 4 in Bentley [5]

MaxSoFar : = 0.0
MaxEndingHere : = 0.0
for I = 1 to N do

MaxEndingHere : =Max(0.0, MaxEndingHere + X[I])
MaxSoFar : = Max(MaxSoFar, MaxEndingHere).

Algorithm 4 Algorithm 3 modified to report the start and end of an optimal subsequence.

MaxSoFar : = 0
MaxEndingHere : = 0
Start : = 1
End : = 1
Mstart : =1
for I = 1 to N do

if MaxEndingHere + X[I] < 0.0 then
Mstart : = I
MaxEndingHere : = 0.0

else MaxEndHere : = MaxEndhere + X[I]
if MaxSoFar < MaxEndingHere then

MaxSoFar : = MaxEndingHere
Start = MStart
End = I.

The correctness of Algorithm 3 can be seen by induction. If MaxEndingHere at I-1 is correct, then

so is MaxEndingHere at I. Algorithm 3 has found various application, for example in Aygun [6].

An input vector that has only negative numbers leads, using Algorithm 3, to a MaxSoFar of zero,

and the empty set. In this particular, it differs in behavior from Algorithm 1. A result of 0 could also

occur if the input is non-positive and includes at least one 0. Hence an Algorithm 3 result of 0 is

ambiguous.

These algorithms look very similar. The driving mechanism of Algorithm 1 is

Champ = X[I] + Max(0.0, Champ), (1)

while that of algorithm 3 is

MaxEndingHere = Max(0.0, MaxEndingHere + X[I]. (2)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2023 doi:10.20944/preprints202310.1061.v1

https://doi.org/10.20944/preprints202310.1061.v1

4 of 5

To make them look even more similar, (1) can be rewritten as

Champ = Max(X[I], Champ + X[I]. (3)

Nonetheless, they are different. The relationship between the two algorithms is given in the

following proposition:

MaxEndingHere = Max(0, Champ). (4)

The proof of 4 is given in the Appendix.

Table 1 compares them.

Table 1. Comparison of Algorithms 1 and 3.

Algorithm 1 Algorithm 3

Time 0(n) 0(n)
Space 0(1) 0(1)

Correct? Yes Yes
Modify to report start and end Algorithm 2 Algorithm 4

Negative input Either empty set or
largest element Empty set only

I slightly prefer Algorithms 1 and 2 to Algorithms 3 and 4 because they handle the

all-negative-input case more smoothly.

4. Discussion

Memories are tricky things. Bentley (private communication) was writing his column some five

years after the seminar. He believes that, at the time of the seminar he understood my algorithm to

be Algorithm 1, but that his later reconstruction of it resulted in Algorithm 3. That it took 40 years to

recognize that such a misunderstanding had occurred is entirely on me.

We now have two similar but different light-weight algorithms for the maximum subarray

problem. Even though algorithmically they are virtually identical, they reflect different ways of

thinking about the maximum subarray problem. That there are two is a gain in our knowledge, and

raises new questions. Are there other such algorithms that are similarly light-weight, or are these two

unique in some sense? Can the ideas behind these algorithms aid in the two-dimensional problem of

Grenander, either with an exact algorithm or heuristically? Algorithms are continuously fascinating.

Appendix A. Proof of 4

Proof. Proof by induction on I.

At I = 1, Champ[1] = X[1]; MaxEndHere[1] = Max(0, X[1]) = Max(0, Champ[1]).

Suppose the proposition is true at I.

Case 1: Champ[I] ≥ 0. Then by the inductive hypothesis,

MaxEndingHere[I] = Champ[I] ≥ 0

so
MaxEndingHere[I + 1] = Max(0, MaxEndingHere[I] + X[I + 1]

= Max(0, Champ[I] + X[I + 1]

= Max(0, Champ[I + 1].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2023 doi:10.20944/preprints202310.1061.v1

https://doi.org/10.20944/preprints202310.1061.v1

5 of 5

Case 2: Champ[I] < 0. Then by inductive hypothesis, MaxEndingHere[I] = 0 then

MaxEndingHere[I + 1] = Max(0, MaxEndsHere[I] + X[I + 1]

= Max(0, X[I + 1]).

Champ[I + 1] = X[I + 1] + Max(0, Champ[I] = X[I + 1].

Hence

MaxEndingHere[I + 1] = Max(0, Champ[I + 1]

References

1. von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: New

Jersey, 1944.

2. Savage, L.J. Foundations of Statistics; J. Wiley and Sons: New York, 1954.

3. Dantzig, G. Linear Programming and Extensions; Princeton University Press, 1963.

4. Klee, V.; Minty, G.J. How good is the simplex algorithm? In Inequalities III (Proceedings of the Third Symposium

on Inequalities held at the University of California, Los Angeles, Calif., September 1–9, 1969, dedicated to the memory

of Theodore S. Motzkin), Shisha, Oved (ed.); Academic Press: New York-London:, 1972; pp. 159–175.

5. Bentley, J. Algorithm Design Techniques. Communications of the ACM 1984, (9) 27, 865–871.

6. Aygun, R.S. Using Maximum Sum Subarrays for Approximate String Matching. Annals of Data Science 2017,

4, 503–531.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2023 doi:10.20944/preprints202310.1061.v1

https://doi.org/10.20944/preprints202310.1061.v1

	History
	Growing champions
	The linear algorithm Bentley gave me credit for
	Discussion
	Appendix A
	References

