

Review

Not peer-reviewed version

Integration of Plasmonics Structures in Photonics Waveguides: Enabling Novel Electromagnetic Functionalities in Photonic Circuits

[Giovanni Magno](#) ^{*}, [Vy Yam](#) , [Béatrice Dagens](#) ^{*}

Posted Date: 7 November 2023

doi: [10.20944/preprints202310.1041.v2](https://doi.org/10.20944/preprints202310.1041.v2)

Keywords: plasmonics; photonic integrated circuits; surface plasmon; nanotweezers; couplers; strong coupling; magnetoplasmonics; nanoantennas

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Review

Integration of Plasmonics Structures in Photonics Waveguides: Enabling Novel Electromagnetic Functionalities in Photonic Circuits

Giovanni Magno ^{1,*}, Vy Yam ² and Béatrice Dagens ^{2,*}

¹ Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Bari, Italy

² Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France

* G.M: giovanni.magno@poliba.it; B.D: beatrice.dagens@universite-paris-saclay.fr

Abstract: The development of integrated, compact, and multifunctional photonic circuits is crucial to increase the capacity of all-optical signal processing for communications, data management or microsystems. Plasmonics brings compactness to numerous photonic functions, but its integration into circuits is not straightforward due to insertion losses and poor modes matching. The purpose of this article is to detail the integration strategies of plasmonic structures on dielectric waveguides, and to show through some examples the variety and the application prospect of integrated plasmonic functions.

Keywords: plasmonics; photonic integrated circuits; surface plasmon; nanotweezers; couplers; strong coupling; magnetoplasmonics; nanoantennas;

1. Introduction

The use of optical signals for the implementation of complex computing, information processing or communication networks is nowadays essential to meet the growing demand for data exchange. Key features of the all-optical solution include the ability to parallelize optical carriers through spectral multiplexing and specific information encodings. Photonic integrated circuits (PICs) [1–3] have been developed to generate complete optical systems and to simplify the use of different optical functions from source to modulation and signal detection. Leveraging manufacturing techniques inspired by microelectronics, planar waveguide circuits have achieved two complementary objectives: (1) to control the propagation of the optical signal in a 2D system with very low losses; (2) to facilitate the serial or parallel association of several functions without the use of spatial optical elements. Guided planar optics enables the compact integration of optical elements whose lateral dimension is on the order of the wavelength in the material. However, this dimension remains diffraction limited and cannot be further reduced.

Plasmonics has been a heavily researched field since the 2000s due to its unique capability to concentrate light on a sub-wavelength scale [4]. This entails confining light in the form of surface plasmon-polaritons (SPPs): these resonant quasiparticles arise from the strong coupling between an electromagnetic wave and an electrical polarization wave carried by the surface conduction electrons of specific metals. Copper, gold, silver, and aluminum exhibit plasmonic responses, with resonance frequencies ascending from near-infrared (IR) to near-ultraviolet (UV). The electromagnetic wave that is “hooked” to the surface of the metal by plasmonic interaction has an evanescent wave profile on either side of the interface and contains a very high optical power density. Light is slowed down and concentrated at the subwavelength scale on the metal surface, facilitating enhanced interactions with any entity or material on or near the surface. Plasmons can exist in two primary forms: “propagative” on the surface of a metal film and “localized” within metal nanostructures [5–7]. These plasmonic states exhibit several unique properties, resulting from their specific spatial profile and resonance [8]. The integration of plasmonics into photonic circuits holds significant promise for

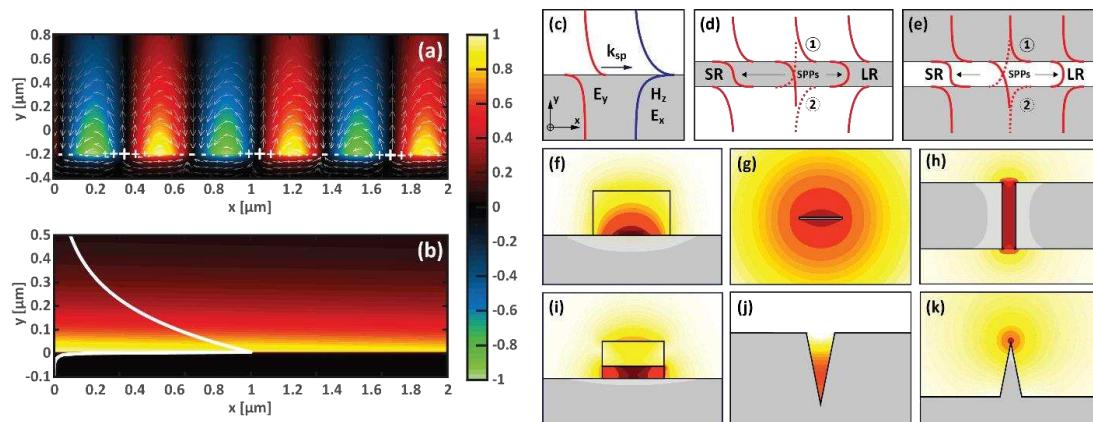
addressing several major issues and challenges in photonics and related fields. The ability to manipulate light propagation at the subwavelength scale is undeniably of vital importance for future integrated photonic circuits. Plasmonics can facilitate the miniaturization of optical functions [9–11], the enhancement of non-linear optical interactions [12,13], display a strong spectral and polarization dependence [14], enable localized heating [15,16] and control of the thermally activated phase change materials [17,18], resulting in a high sensitivity of their resonance to the near environment [19]. For instance, by leveraging plasmonic elements, it is possible to strongly reduce the coupling length between waveguides [20] or the position of self-image in hybrid photonic-plasmonic MMIs [21], thus reducing the overall footprint of PICs.

Finally, the technological manufacture of plasmonic films and structures is compatible with low-cost processes, requiring a reduced number of steps and demonstrating improved tolerance. For all these reasons, plasmonics is expected to lead to densification of circuits, miniaturization of normal integrated optical functions, and incorporation of novel capabilities. Furthermore, plasmonic components which are expected to be ultrafast and ultrasmall [22,23] in the future, can be integrated with photonic circuits to perform on-chip signal processing tasks. These encompass essential functions such as mode conversion [24–26], modulation [27–30], filtering [31–34], and switching [30,35–38], which are essential for the development of faster and more efficient optical communication and data processing systems. In addition, plasmonic materials and structures can be used to create extremely compact light sources [39], including plasmon lasers [40–42] and nanoscale light emitters [43–45]. Plasmonics can enhance the capabilities of purely dielectric platforms thanks to their broadband emitter (with a shorter lifetime) helping in the design of integrated coherent sources of single photons [46] for quantum applications [47–50].

However, two types of constraints limit the utilization of plasmons in optical functions: (1) the high optical losses induced by the interaction of the wave with the metal allow the use of plasmons only sparingly; (2) excitation of plasmons from electromagnetic waves demands complex strategies, primarily due to their propagation constants, which are intrinsically higher, or even significantly higher, than those of electromagnetic waves in the surrounding environment. These two limitations can be simultaneously addressed through a smart integration of photonic circuits and plasmonic structures. In this case, embedding plasmonic structures on waveguides and photonic circuits [51] allows benefiting from the advantages of both components, namely the low losses of dielectric waveguides and compactness of plasmons. In other words, such integration allows inserting plasmonic structures only where needed, and connecting them with other functions of the circuit thanks to low loss dielectric waveguides. Nevertheless, this integration poses a significant challenge due to the substantial differences in spatial extension between dielectric and plasmonic modes, which are accompanied by contrasting propagation constants. In this context, the purpose of this article is twofold. On the one hand, it reviews strategies for integrating plasmonic structures, which support localized or propagative plasmons, on dielectric waveguides. On the other hand, it demonstrates the diversity of potential applications where synergistic integration of plasmonic features can lead to innovations.

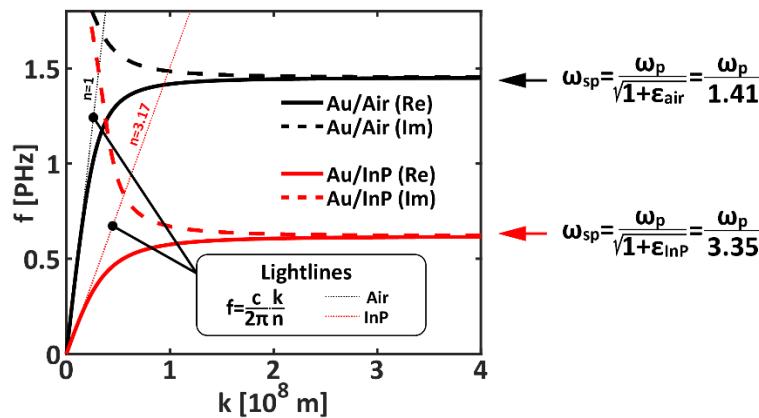
2. Integration and excitation of plasmonic structures

The incorporation of plasmonics into photonic circuits poses a significant challenge due to the contrasting spatial characteristics of plasmonic and dielectric modes. The primary hurdle lies in achieving optimal optical integration and impedance matching, between metallic structures and dielectric waveguides. This integration typically necessitates a mode coupling region, the length of which depends on the specific interfacing mechanism. To assess the quality of the interfacing, the relevant indicator is the coupling efficiency, which is defined by the ratio between the power available in the waveguide at the exit of the transfer zone and that in the dielectric guide before the transfer zone. By this definition, coupling efficiency encompasses all types of losses generated in the coupling region, including ohmic losses and those related to mode mismatch. In this section, we will delve into the challenges related to interfacing strategies for both propagative and localized plasmon families.


2.1. Propagative surface plasmon

Propagative surface plasmon is generated at the interface between a metal and a dielectric material. It can propagate at several wavelengths distance along this interface. It has the characteristic profile of transverse magnetic (TM) wave, featuring its primary electric field component perpendicular to the interface and a secondary, smaller component in the propagation direction. Its profile also exhibits an exponential decrease, forming an evanescent profile on each interface side, as shown in Figure 1 (a,b).

Propagative SPP is analytically described by its dispersion curve, which is established by solving the Maxwell equations in the case of the double exponential profile [6]:


$$k_{sp}(\omega) = \frac{\omega}{c} n_{eff} = \frac{\omega}{c} \sqrt{\frac{\epsilon_{ext} \cdot \epsilon_m}{\epsilon_{ext} + \epsilon_m}} \quad (1)$$

where k_{sp} is the wavevector of the SPP, n_{eff} represents the effective refractive index of the mode, and ϵ_{ext} and ϵ_m are the permittivity of the dielectric and the metal materials, respectively. Dispersion curves and dispersion diagrams will be extensively used in this manuscript as a powerful tool to identify the behavior of plasmonics and hybridized plasmonic-photonic modes. This tool helps to identify and engineer various coupling mechanisms. A dispersion diagram shows the relationship between the frequency f (or angular frequency $\omega=2\pi f$) and the wavevector $k=(\omega/c) \times n_{eff}$ of a specific mode within a given observation range. It's important to note that dispersion curves for non-guided waves propagating through homogeneous media exhibit a straight-line shape that passes through the origin of the axes. The slope of these curves indicates the refractive index of the medium. Interaction between two modes with compatible polarization is expected near the crossing point of the corresponding two non-interacting dispersion curves. The result of the interaction will be the formation of two supermodes whose dispersion curves will manifest a gap (anticrossing) in the vicinity of the aforementioned crossing point. The width of the gap formed is representative of the "strength" of the interaction between the two original modes. For more details on reading and using band diagrams, see [52]. In Figure 2, the SPP dispersion curve is represented in the case of air-gold and InP-gold plasmonic modes, where gold permittivity spectrum is approximated by Drude model [53,54] and ω_p represents the plasma resonance angular frequency in the metal. These curves reveal the primary properties of SPPs: (1) the SPP dispersion curve consistently remains below the light line of the surrounding dielectric medium, indicating that SPPs propagate with a higher wavevector (or equivalently a higher effective index) than the electromagnetic wave in this medium; (2) As the SPP frequency approaches the plasmonic resonance, i.e. $f_{sp}=\omega_{sp}/2\pi$, the dispersion curve becomes quasi-horizontal. This indicates that SPPs propagate very slowly, with a near-zero group velocity, and becomes highly confined near the metal (featuring a high k); (3) the plasmonic resonance frequency exhibits a strong dependence on the refractive index of the surrounding medium.

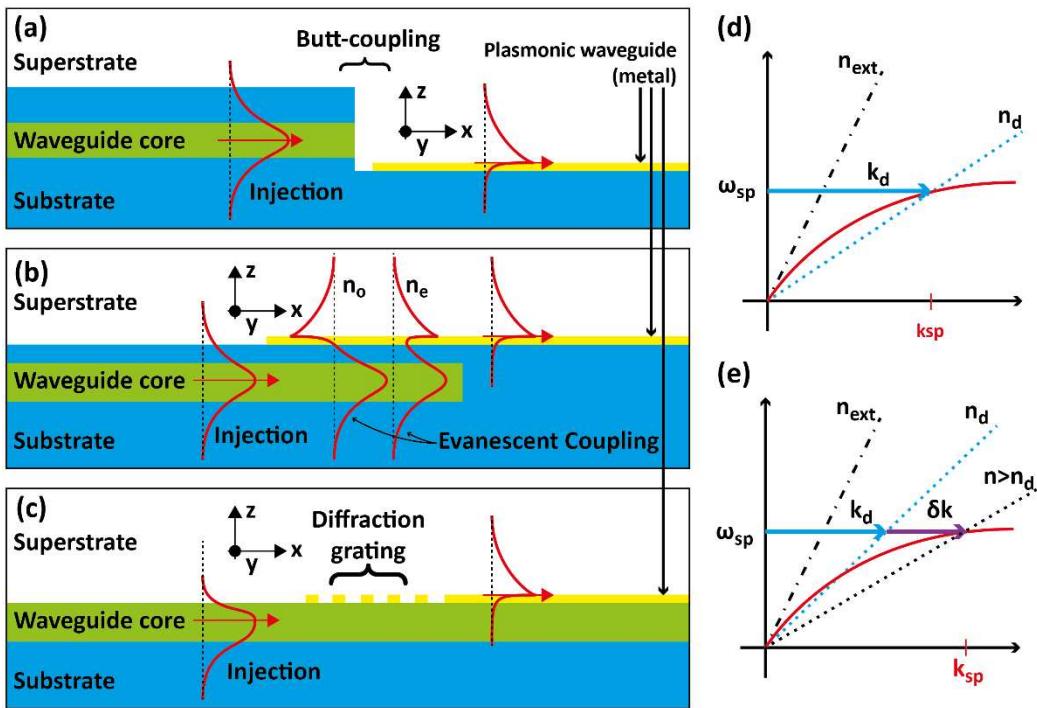
Figure 1. (a,b) Profile of a surface plasmon polariton (SPP) on an air-Au interface: (a) The color scale corresponds to the normalized real part of the x-component of the electric field. More specifically, the

white arrows indicate the orientation of the total E field, while the + and - markers indicate the distribution of free charges on the Au surface. (b) The color gradient indicates the total electric field intensity. The superposed white line depicts the distribution of the intensity of the electric field x-component. (c-k) Plasmonic modes calculated for different waveguide geometries: (c-e) Real part (red) of the electric field y-component when the propagation occurs along the x-direction (in-plane with respect to the figure plane); the label LR (SR) indicates the symmetric (asymmetric) coupling of two surface plasmons (SPPs) generating a "long-range" ("short-range") mode. (f-k) electric field intensity of the wave in the case of propagation occurs along the z-direction (out-of-plane with respect to the figure plane). Structures inspired by [55].

Figure 2. Dispersion curves of propagative surface plasmons at the gold-air interface and gold-InP interface. The solid (dashed) lines represent the contribution solely from the real (imaginary) part of the complex permittivity.

Several types of propagative plasmonic waveguides have been proposed, as schematized in Figure 1(c-k). Some of these are designed for long range propagation (LR) by minimizing the direct interaction between the wave energy and the metal. This is achieved through coupled SPPs on each side of a thin metallic film (Figure 1(d,g)), or in a metallic slot waveguide (Figure 1(e,h,i,j)). The LR-SPP is the supermode having a symmetrical phase profile and reduced losses that arises from the coupling of the two SPP modes propagating on the two side interfaces of the metallic waveguide. Associated with it is the dual supermode, the SR (short range) SPP, which features an asymmetrical phase profile and increased losses [55].

To benefit of their high confinement and compactness while limiting the induced losses, such plasmonic waveguides can be selectively integrated into conventional single-mode dielectric photonic waveguides. The typical interfacing schemes (Figure 3) exploit either progressive transition (such as evanescent coupling or grating coupling) or butt-joint transition between the photonic and the plasmonic waveguides. Butt-joint transition, also called end-fire transition, [56] offers poor performance because of the significant mode shape mismatch between the plasmonic and the photonic modes (Figure 3(a)) and will not be discussed here.


The underlying physical mechanism harnessed through evanescent coupling (depicted in Figure 3(b)) or grating coupling (shown in Figure 3(c)) can be described by examining the dispersion curves of the involved modes (illustrated in Figure 3(d,e)): the dispersion curve of the SPP at the metal-dielectric interface (represented by the red curve) is situated significantly below the light line of the corresponding dielectric (characterized by an index n_{ext}). This is especially true for modes with strong plasmonic character, particularly when the SPP dispersion curve becomes quasi-horizontal. The plasmon cannot be excited by an electromagnetic wave with a propagation constant lower than k_{sp} . In the integrated configuration where the plasmonic waveguide is placed in proximity to a dielectric waveguide (i.e. via a multilayer configuration as depicted in Figure 3(b)), the effective index n_d of the dielectric waveguide mode is higher than the refractive index of the surrounding dielectric material, by construction ($n_d > n_{ext}$): this property can be used to directly excite the SPP when $k_d = k_{sp}$ (phase matching), since both dispersion curves cross each other (see the dispersion diagram in Figure 3(d)).

In this case, when the polarization of the dielectric guided mode supplies the necessary z- and x-electric field components for SPP excitation, modes coupling occurs. This results in the generation of two supermodes having hybrid photonic-plasmonic nature, featuring field symmetric and antisymmetric distributions and effective indices n_e and n_o (as shown in Figure 3(b)), respectively. The half-beating length of these supermodes determines the coupling length L_c of both waveguide modes, which is related to their wavevectors difference:

$$L_c = \left| \frac{1}{2} \frac{\lambda}{n_e - n_o} \right|. \quad (2)$$

After a propagation distance of L_c through the coupling region, the energy of the dielectric guided mode is totally transferred into the SPP. Such mode coupling is called “evanescent coupling” because it involves the evanescent tails of the guided modes. The required condition ($n_d > n_{ext}$) is more easily achieved when the targeted SPP is on the metallic film opposite side with respect to the dielectric waveguide, as shown in Figure 3(b): indeed, the outside material can have a low refractive index, independent of the guided mode effective index. On the dispersion curves map, this interaction induces anticrossing of both curves. In case of high contrast between n_{ext} and n_d , the involved plasmonic mode dispersion curve is almost flat (horizontal), and thus the generated supermodes have very different effective indices: the higher the supermode indices difference, the shorter the coupling length. Thus, such mechanism is particularly efficient when the contrast between n_{ext} and n_d is high. Delacour *et al* [20] have realized this for example in the case of an SOI waveguide and a Cu plasmonic slot waveguide at $1.55\mu\text{m}$. The experimental coupling length equals $0.9\mu\text{m}$ and the coupling efficiency is estimated at 70%. In another example involving polymer waveguides, Magno *et al* [57] demonstrated numerically the coupling between a SU8 on glass waveguide and a buried plasmonic waveguide at 633 nm , with $L=5.3\mu\text{m}$ and a coupling efficiency of 88%. The use of SOI waveguides is particularly interesting since in that case the dielectric waveguide mode has a high effective index. However, when coupling the fundamental TM mode of a high-contrast dielectric waveguide (with a high effective refractive index) to the LR-SPP mode of a thin-film plasmonic waveguide embedded in a low refractive index medium (with a low effective refractive index), it can be beneficial to employ layers of dielectric material with higher refractive indices that encapsulate the plasmonic waveguide. This helps to satisfy the phase-matching condition as shown in [58].

If the condition $k_d \approx k_{sp}$ cannot be directly fulfilled, the guided dielectric mode must interact with a complementary structure (Figure 3(c)) to increase its wavevector module up to k_{sp} ($k_{sp} = k_d + \delta k$, see Figure 3(e)): the interaction of the dielectric waveguide mode with a periodic grating (period Λ) serves this purpose since it generates spatial harmonics whose constant propagations equal $k = k_d + p \frac{2\pi}{\Lambda}$, where p is a relative integer. The first harmonic ($p=1$) is the most intense: by choosing Λ so that $k_{sp} - k_d = 2\pi/\Lambda$ the grating provides the dielectric waveguide mode with the missing component δk to excite the SPP at the dielectric/metal interface (each surface of the metal can be targeted, by proper choice of δk). In the case of strong mismatch of the dielectric and plasmonic waveguides (i.e., if the targeted mode has a strong plasmonic character, with very high k_{sp}), successive gratings with decreasing period can be used for a progressive adaptation, with the risk of long and lossy transition. Tetienne *et al* [59] have shown an integrated coupler made of a metallic grating for the transition between a semiconductor waveguide and a plasmonic gold film at $1.3\mu\text{m}$: the mode transfers along a $5.5\mu\text{m}$ transition, with a global excitation efficiency of 24%.

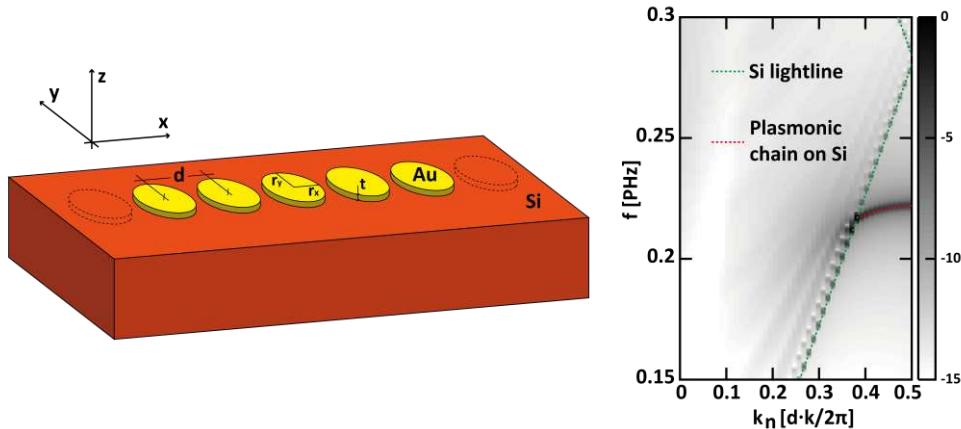


Figure 3. (a,b,c) Diagram illustrating three different typical ways of coupling a dielectric waveguide with a plasmonic waveguide: (a) end-fire coupling, (b) evanescent coupling, and (c) coupling via a diffraction grating. (d) The wave vector k_d of the guided mode in the dielectric waveguide is equal to that required to excite the plasmonic mode, k_{sp} . (e) The wave vector of the dielectric waveguide mode is not sufficient and requires an additional contribution δk , arising from the diffraction grating, to match that of the plasmonic waveguide mode.

2.2. Localized surface plasmon

Localized surface plasmons (LSP) result from the plasmonic excitation in low-dimensional metallic structure with typical dimensions lower than the wavelength in the metal. LSP modes are eigenmodes of such a subwavelength metallic structure, which behaves as a dipole or a multipole. The LSP dipolar response of the nanostructure to the electromagnetic excitation is characterized by its polarizability, which has an analytical expression in case of 'simple' shapes and homogeneous surrounding medium [60].

The excited dipole in a plasmonic nanoparticle radiates itself an electromagnetic wave of the same frequency, which can excite another plasmonic nanostructure with similar resonance: such a way, plasmonic nanostructures assembly may support collective resonances, and/or propagate energy from one to the next [61]. LSP chain dispersion curve can be thus established, by using analytical model in a homogeneous medium [62], or by numerical methods in the general case. For instance, in Figure 4 is reported the dispersion curve of a plasmonic chain constituted of gold nanocylinders with elliptical cross-section placed on top of a semi-infinite Si substrate, calculated by means of the FDTD method. The LSP chain dispersion curve displays a similar overall behavior as the SPP: it is positioned below the light line and exhibits a nearly horizontal slope at the highest k vectors. In other words, the collective modes of the LSP chain propagate through the chain elements as in a waveguide, despite the intrinsic discontinuity of the metallic elements.

Figure 4. (left) Sketch of an infinite plasmonic chain of gold ellipsoidal nanocylinders placed on top of a semi-infinite Si substrate. (right) FDTD calculated dispersion curve of the plasmonic transverse chain mode when $d = 150 \text{ nm}$, $r_x = 42.5 \text{ nm}$, $r_y = 100 \text{ nm}$, and $t = 30 \text{ nm}$. The red and the green dashed curves highlights the plasmonic chain mode and the Si lightline, respectively.

Furthermore, chains of plasmonic nanoantennas have the ability to support topologically non-trivial modes (edge states resembling topological insulators) [63–67], bound states in the continuum [68–70] and surface lattice resonances [71–74].

LSP in a subwavelength structure enables very high light confinement, with enhanced miniaturization and electromagnetic field concentration with respect to 2D plasmonic films. Nevertheless, the excitation of a single LSP structure is very inefficient because of the high mismatch between its resonant mode size and diffraction limited electromagnetic waves. The excitation efficiency of such a single nanostructure deposited on a silicon nitride waveguide reaches less than 10% (9.7% in [75]). To transfer all the energy of the dielectric guided mode into an LSP, a viable solution is to exploit the waveguides evanescent coupling as shown above, considering a plasmonic chain instead of the plasmonic metallic film [76]. The typical structure is made of a MNP metallic nanoparticles (MNPs) chain integrated on or near a dielectric waveguide (Figure 5). The chain can be designed to propagate either TE or TM modes and can be in any position near the waveguide if their relative distance allows the evanescent tail of the dielectric mode to overlap with the LSPs. In addition to enabling the LSP excitation, such strongly coupled structure has specific properties, as described below:

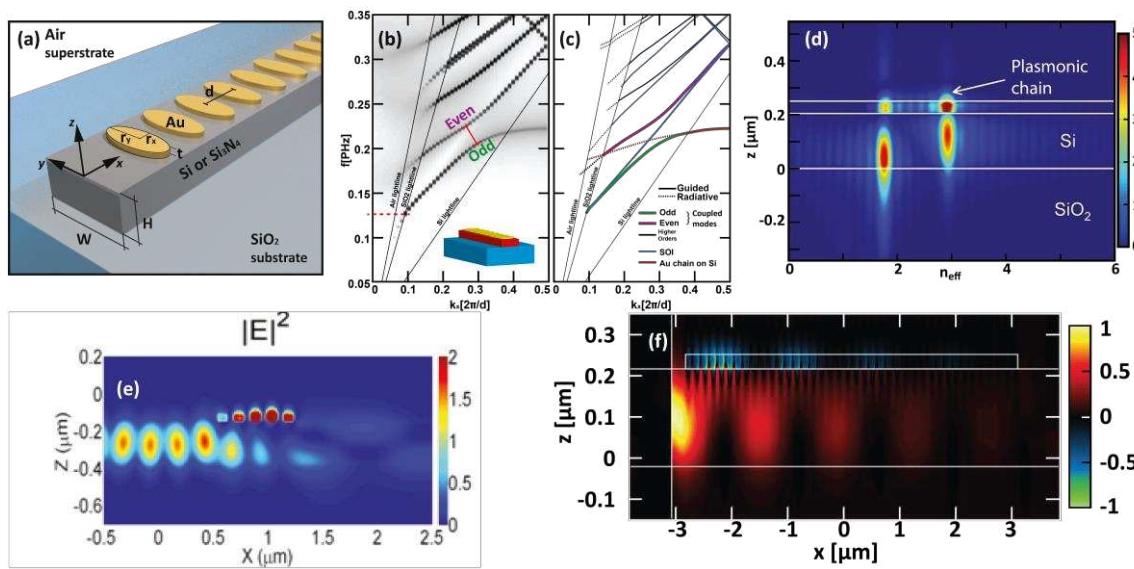

Coupling efficiency:

Figure 5 shows FDTD calculations of a TE mode in a dielectric waveguide evanescently coupled to a LSP chain. The (infinite) LSP chain is directly deposited on a SOI waveguide, and Figure 5 (b,c,d) reveals the anticrossing of both dispersion curves which generates the resulting odd and even supermodes. The strong coupling between both waveguides, in addition to the low slope of the LSP chain curve induces supermodes with very different indices and thus a very short coupling length. Depending on the wavelength, the fundamental TE mode of a SOI waveguide can be totally transferred in the 4th or 5th MNP of the finite chain [76], which corresponds to a ~600 nm coupling length (Figure 5(f)). The coupling efficiency is near 99% in the case of a 5 MNP chain (Figure 5(e)). Due to a lower dielectric effective index, the optimal configuration in the case of a Si_3N_4 waveguide at 633 nm enables a total transfer of the mode energy in an 8 MNP chain with a coupling length ~800 nm.

In fact, the energy transfer efficiency is improved with respect to a single MNP case as soon as a second MNP is involved ('dimer' chain). In return, however, the chain length increase implies ohmic losses increase. In order to exploit the high electromagnetic power density at the surface of a nanoparticle, the best compromise must be thus identified between the efficient energy transfer induced by the collective resonance in the chain and the ohmic losses limitation.

Strong coupling:

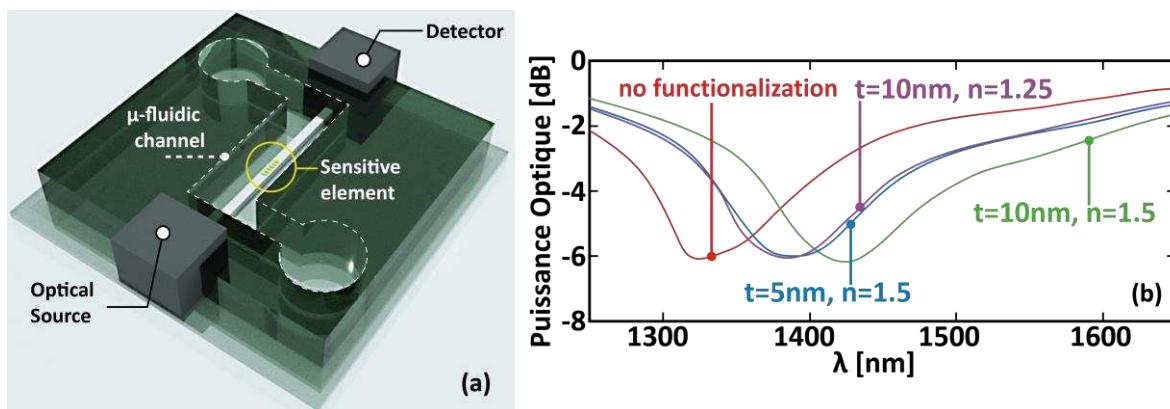
In the configuration presented in Figure 5(a), the strong coupling [77] between the plasmonic and SOI waveguides induces additional distinctive characteristics specific to this system. Firstly, over a wide range of frequencies, the supermodes propagate in a vortex-like manner. These vortices are related to slow modes [78] and can be also characterized by their phase profile along the chain [79]. Secondly, due to strong coupling, supermodes can be excited also beyond the light lines of the different materials surrounding the plasmonic chain. This entails that they can be excited as radiative modes above the light line of the confinement layer (silica here), and/or below the highest index material light line (silicon here), in the non-guided mode region (see the dispersion diagrams in Figure 5 (b) and (c)). In consequence the plasmonic mode hybridization can modify their radiative or guided nature, or even extend their possible frequency range.

Figure 5. Localised plasmon waveguide integrated on SOI (TE mode) (a) Sketch of the structure. (b,c) FDTD calculated dispersion curves for $d = 150$ nm, $r_x = 42.5$ nm, $r_y = 100$ nm, $t = 30$ nm (the permittivity of gold is obtained using a Drude model fitted to ellipsometric measurements). (d) A typical spatial distribution of the two supermodes. (e,f) Electric field intensity in the case of a finite chain of (e) 5 or (f) 20 nanoparticles. Inspired by [78].

Moreover, nanoantenna arrays integrated on waveguides can take advantage of tapering their dimensions within the integration plane to achieve enhanced control over coupling characteristics. For instance, tapering the period of the plasmonic array enables efficient mode conversion and excitation of higher-order modes in the waveguide [80].

3. Surface plasmons in photonic integrated circuits

Surface plasmons in PICs are expected to considerably improve some photonic functions thanks to the subwavelength light concentration and the local field enhancement they induce. Reciprocally the use of guided photonics to excite plasmonic structures leads to very efficient light coupling in these structures. Improvement is particularly marked in the case of very compact localized plasmonic patterns. We will focus here on four examples of different uses of integrated plasmonics.


3.1. LSPR for molecules biosensing

Plasmonic biosensing [81–85] was firstly mainly based on functionalized gold films and propagative plasmons (SPR technology), before to exploit localized surface plasmons in metallic nanostructures arrays on glass (LSPR technology) [19,86], as in present commercialized setups. Such

functionalized substrates are used in 3D complex optics systems made of prisms and lenses with the following principle: metallic (gold) nanostructures are grafted with molecule receptors (often thiols), and molecules to be detected are brought to these receptors by microfluidic system. The trapping of the molecules is detected by the plasmonic resonance shift induced by the complex index modification near the metallic structure, where a diffraction limited laser beam in Kretschmann configuration excites the plasmon [87]. In LSPR systems, the sensor sensitivity is limited by the optical power available for each functionalized nanostructure, because of poor mode matching as explained above. By using the same detection principle, excitation of LSPs can be realized in guided configurations, with two main advantages:

- the excitation electromagnetic energy can be fully transferred in the LSP, like in the case of a 5 MNP chain [88], leading to an improved sensitivity,
- parallel or series sensing areas can be implemented on the chip, with the same optical source: the global analysis capacity is considerably enhanced.

Figure 6 shows such a guided LSPR sensor including a chain of 5 MNPs, and the resonance spectral shift induced by grafted thiol molecules which forms an equivalent layer of thickness $t=2\text{nm}$ and of index $n=1+\Delta n$. This shift $\Delta\lambda$ has been numerically evaluated and experimentally checked as corresponding to the relation $\Delta\lambda(\text{nm}) \approx 27 (t(\text{nm}) \times \Delta n)^{0.75}$. The expected sensitivity to environment of this sensor integrated on SOI can reach a value up to 270nm/RIU (Refractive Index Unit) [88].

Figure 6. (a) Sketch of a sensor exploiting LSPRs: a chain of gold nanocylinders is integrated on top of a SOI waveguide within a microfluidic circuit. (b) Transmittance calculated for different equivalent thicknesses t of molecules grafted onto the metal pads [88]. Specifically, t represents the thickness of a layer having an index equal to n covering each NP. This result has been validated experimentally for $t = 2\text{ nm}$.

3.2. Plasmonic nano-tweezers and nano-manipulators

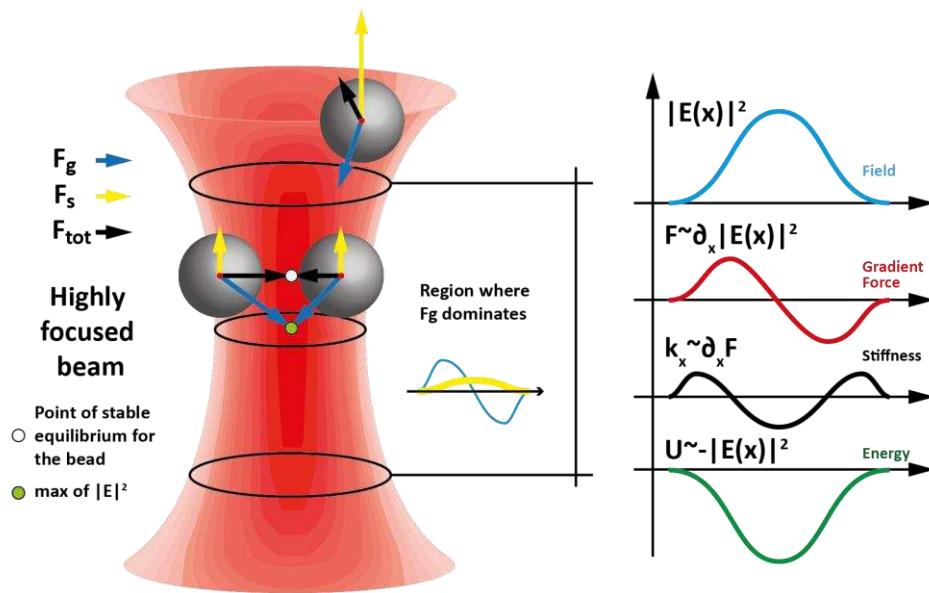
Tweezers and manipulators at nanoscale are in very high demand for biosensing and analysis of nano-objects. High electromagnetic density variation around plasmonic nanostructures enables optical tweezing based on the gradient force [89], which results from mechanical and optical momentum exchange between the object and the photons. Gradient force acts as an elastic trap for an object entering its influence area, with a stiffness proportional to the local optical power derivative.

Basis on optical tweezers

Optical tweezers are made of a focused optical beam, diffraction limited in the case of free space beam, which generates two forces on an object (Figure 7, left): the gradient force and the pressure (or diffusion or absorption) force. The former pulls the object towards the highest optical density, usually transversally to the optical beam and up to its center; the latter pushes the object along the beam propagation axis and direction. These forces are expressed as follows:

$$\text{Gradient force: } \mathbf{F}_g = \frac{1}{4} \alpha_{Re} \nabla |\mathbf{E}|^2$$

$$\text{Pressure force: } \mathbf{F}_s = -\frac{1}{2} \alpha_{Im} \text{Im}\{\mathbf{E} \cdot \nabla(\mathbf{E}^*)\}$$

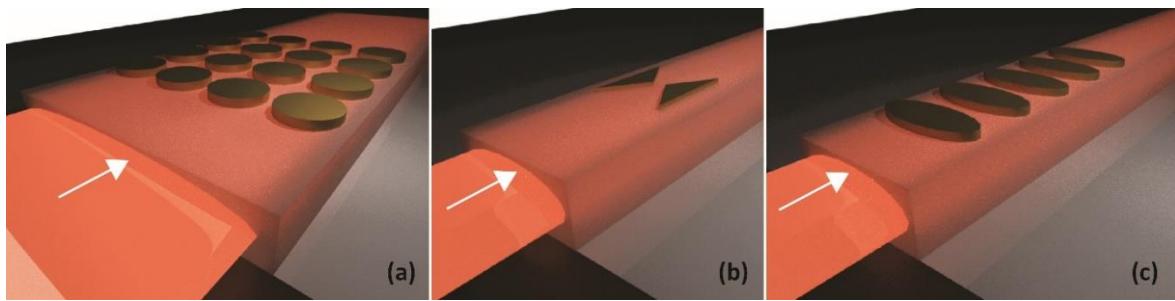

$$\text{where } \alpha \text{ is the object polarizability: } \alpha = \alpha_{Re} + j\alpha_{Im}$$

The gradient force is thus the trapping force. It is proportional to the optical power density (or the electric field square modulus) gradient and to the object polarizability real part. The trapping strength is represented by its stiffness, defined by the exerted forces derivative. Negative (positive) stiffness corresponds to attractive (repulsive) force.

The trap characteristics can be evaluated as follows:

- If the trapped object doesn't modify the local electromagnetic field, the optical density map is calculated first, and then the trap characteristics are deduced from \mathbf{F}_g et \mathbf{F}_s calculation for different object positions.
- if the presence of the object induces a non-negligible perturbation, the optical field must be calculated, and the Maxwell stress tensor must be fully integrated for all the possible positions of the object.

Optimal trap, in terms of temporal and spatial stability, is obtained for object sizes slightly higher than the optical beam (or than the optical power density high variations area) to benefit from the highest gradients. Stable trapping criteria (from Ashkin [89]) state that the potential well must be higher than ten times the thermal energy $k_B T_0$. The total optical power can thus be used to increase the stability as well as the stiffness of a trap.


Figure 7. Sketch of optical tweezing in a gaussian beam. The total force \mathbf{F}_{tot} represents the sum of the gradient force \mathbf{F}_g and of the scattering force \mathbf{F}_s .

Optical beams enable the trapping of around 1 μm objects within a few mW power, compatible with biological objects whose index is around 1.3 (water). To trap smaller or less dense objects (for air or water quality analysis), more abrupt optical density gradients are required, such as those generated around plasmonic structures.

Plasmonic tweezers

Plasmonic (nano-)tweezers have been extensively studied, mainly in non-integrated configurations. Integrated localized plasmonics may enable extremely high gradient forces thanks to the powerful combination "high optical density" and "high excitation efficiency" of integrated resonant structures. Numerical and experimental demonstrations aim at trapping polystyrene beads of different diameters in the three published examples represented in Figure 8. In the first case (Figure 8(a)) the dimensions of metal nanostructures enable only propagative plasmons: the 5 μm diameter disks are positioned along a 15 μm grid on the top of a multimode waveguide; 1 μm diameter PS beads

are trapped with an injected power of 20 mW, leading to a trap stiffness of $-17\text{fN}/\mu\text{m}$. The second structure (Figure 8(b)) is designed for the trapping of 20 nm diameter beads, concentrating the light in the narrow gap of the butterfly structure: the theoretically achievable force reaches more than 650pN/W in the case of a 5nm gap. Comparable results are obtained by varying the dimer geometry within the integration plane, as illustrated in [90]. The third example corresponds to the integrated MNP chain which maximizes the LSP excitation: in the case of a 4 MNP chain, with a 150nm period, the exerted force on a 500nm diameter PS bead reaches $\sim 40\text{pN/W}$ with a stiffness of -2408 fN/nm/W . The considered power refers to the power injected in the waveguide.

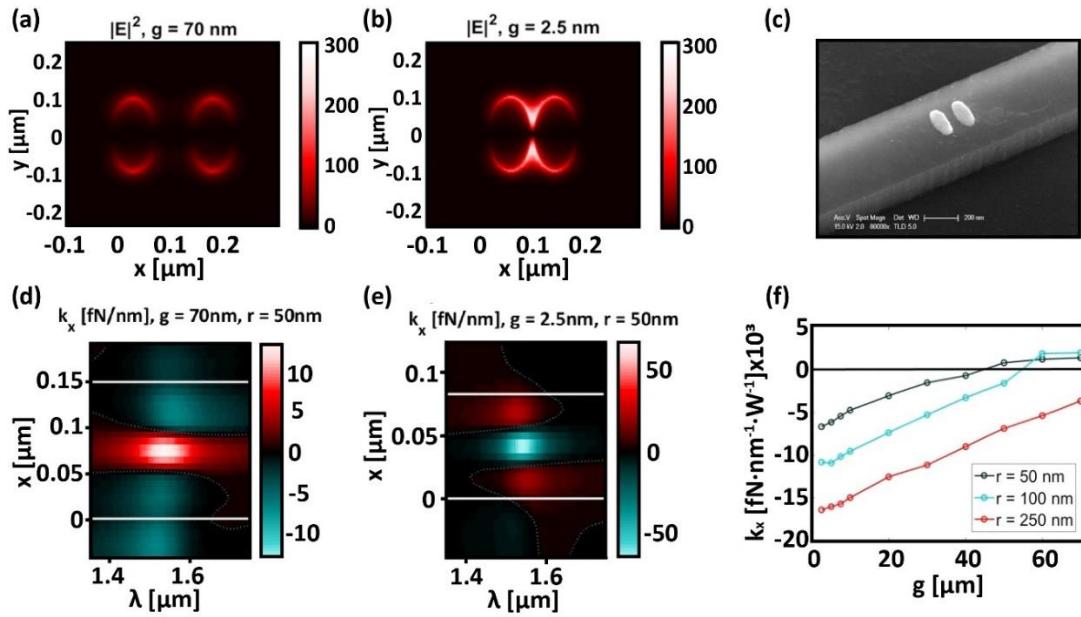
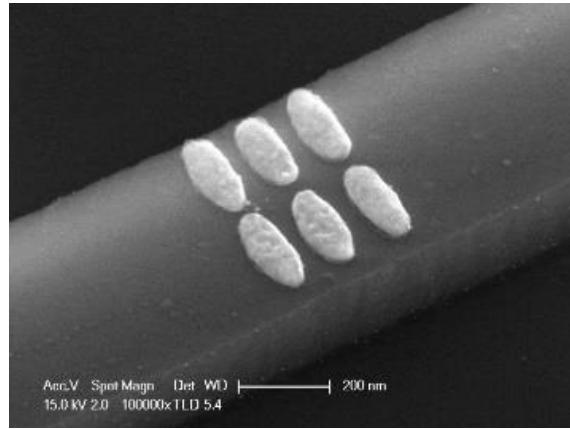


Figure 8. Plasmonic nanostructures integrated on top of a waveguide: (a) array of metallic pads supporting propagative resonances (SPP) (according to [91]); (b) single bowtie nanoantenna (according to [89]); (c) chain of coupled nanocylinders (according to [92]).


In this kind of chain, plasmonic modes generate high spot at the ellipsoidal nanocylinders edges, separated by around 200nm (see Figure 9(a)). To trap nano-objects, the trap must be compact. The gap between MNP can be smaller to create a resonant nano-gap, like in the longitudinal dimer represented in Figure 9(b). As simulated in Figure 9 (bottom, right), a gap lower than 40 nm is required to trap a 50 nm radius PS bead with an injected power of 10 mW [92]. Experimentally, 500 nm diameter PS beads have been trapped by injecting 6mW (at 1550nm) in a waveguide functionalized by a 20 gold NP chain, with a measured stiffness of $-5.1\ 10^{-1}\text{ fN.nm}^{-1}$ in the propagation direction (x). Considering the fibered optical injection losses in the waveguide, the stiffness is estimated at $-10^2\text{ fN.nm}^{-1}\text{W}^{-1}$.

Chains of metallic nanostructures can be realized for any shape of resonant nanoparticles (disks, ellipsoidal cylinders, butterflies, ...), and thus adapted for different objects to be trapped, as represented in Figure 10 for a transverse dimer chain.

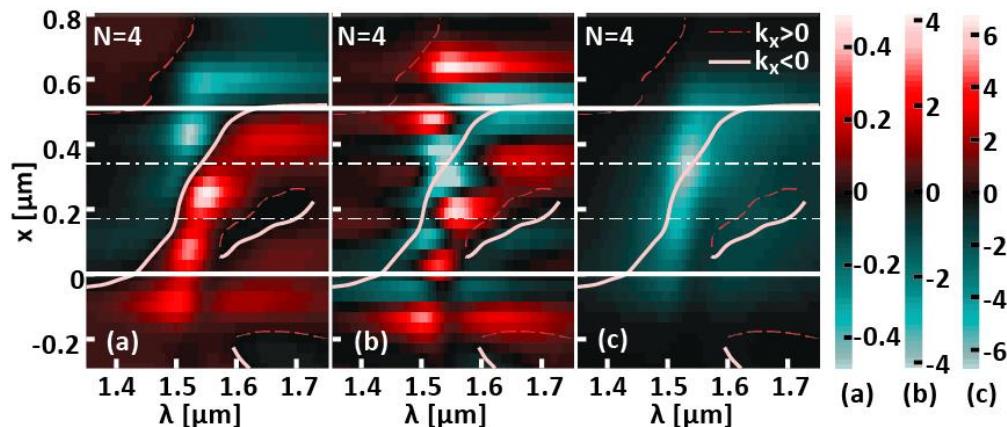

Besides, the spectral and spatial dependence of the MNP chains excitation allows realizing all-optical trapped object manipulation. Figure 11 shows the stable trapping positions (pale pink lines) versus the excitation wavelength in the case of a 4 MNP chain and 10mW injected power [93]. In this case, the integrated nanotweezers is designed to manipulate a biological object modelled as a spherical bead with a radius of 250 nm and with a refractive index as low as 1.38. By adjusting the source wavelength to regulate the phase mismatch of the supermodes housed by the structure, it is possible to manipulate the trapped object along the plasmonic chain. Other configurations of integrated plasmonic “conveyor belt” have been proposed, based on the MNP size diversity [94]. Such structures are also able to trap and self-assemble groups of nano-objects [95].

Figure 9. (a-f) Integrated longitudinal dimer chain for trapping nano-objects [92]. (a, b, e, f) FDTD simulation obtained for an injected power of 10 mW. (a, b) Squared absolute value of the electric field and (d, e) stiffness along the x-axis k_x calculated on the plane of the dimer top facet when the dimer gap g is equal to (a) 70 nm and (b) 2.5 nm, respectively. (f) Stiffness k_x as a function of the gap g calculated for different values of the radius of the bead interacting with the device. (c) Scanning electron microscope image of the fabricated sample.

Figure 10. Scanning electron microscope image of a 3-periods dimer chain integrated on a SOI waveguide.

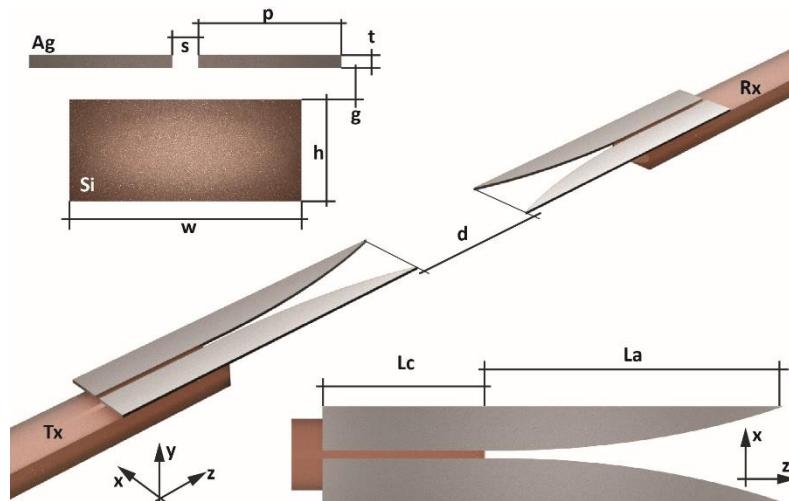


Figure 11. (a) Optical force [pN] and (b) stiffness [fN/nm] along the x-axis, as well as (c) optical force [pN] along the z-axis, calculated as a function of the wavelength and of the position of a spherical biological object. The latter is grazing along the x-axis on the top facet of a plasmonic chain composed of 4 NPs integrated on top of a SOI waveguide. The chain element spacing (centre to centre) is 150 nm. This device enables the trapping and displacement of the biological object along the plasmonic chain axis [93].

3.3. Plasmonic antennas

The integration of plasmonic antenna into photonic circuits presents opportunities for mutual benefits. On the one hand, nanoantennas can take advantage of feeding schemes embedded in PICs. These schemes can be interconnected and combined with circuit elements that enable the control of the feed phase [96–99], facilitating functions such as beam shaping and steering [100]. Integrated coupling methods can also lead to highly effective excitations of the radiating elements. On the other hand, integrating plasmonic nanoantennas into PICs holds potential for short-range on-chip and chip-to-chip wireless communication [101,102]. The growing demand for high-speed data communications within data centers and high-performance computing platforms, driven by advancements in electronic devices and multi-core architectures, has led to rapidly increasing speed requirements. To address the limitations of copper-based interconnections [103,104], such as high power consumption, heat dissipation, latency, signal losses, crosstalk, and bandwidth constraints, the development of parallel optical short-range links has been proposed and pursued [101,102,105]. Various types of antennas, such as Vivaldi type antennas (leveraging propagative plasmons, [106–108]), Yagi-Uda antennas (acting as resonator-collector) or LSP chain antennas can be considered for this purpose. As previously discussed, the energy transfer between the PIC waveguide and the antenna is the key issue for the function efficiency.

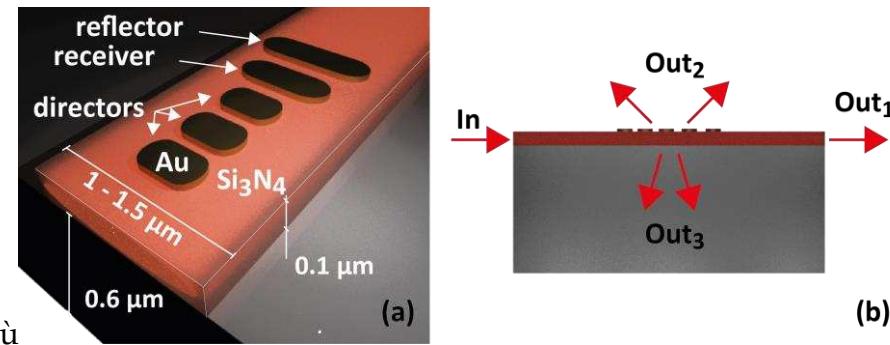

In all these cases, it is imperative for the plasmonic structure to exhibit radiative behavior, meaning its dispersion curve must fall within the light cone, while also effectively coupling with the waveguide modes. In the case of Vivaldi antenna, these properties are obtained by changing progressively the antenna shape and the waveguide structure along the propagation. A progressive energy transfer is realized by evanescent coupling, and the excited plasmon radiates at the end of the suspended antenna. The integrated directivity is similar to the free space Vivaldi antenna and enables to target the receiver, itself integrated, as represented in Figure 12.

Figure 12. Vivaldi antenna integrated on a SOI waveguide as part of an on-chip optical interconnection system (inspired by [108]).

Integrated Yagi-Uda antenna is made of a resonant plasmonic “receiver”, positioned between the “director” (made of several resonance-shifted resonators) and a “reflector” (wider metallic element). The radiative part of the antenna is the “receiver”, whereas the other elements play roles of

confinement (of incident signal) or directivity (of radiated signal) in the axis of the “director” chain. When the Yagi-Uda plasmonic antenna is integrated on a substrate or a waveguide, as represented in Figure 13, the emission is slightly deviated from the axis of the antenna elements in case of surrounding optical index asymmetry. The typical radiation diagram shows thus emission towards the higher index medium, usually the substrate. The angle depends mainly on the index contrast.

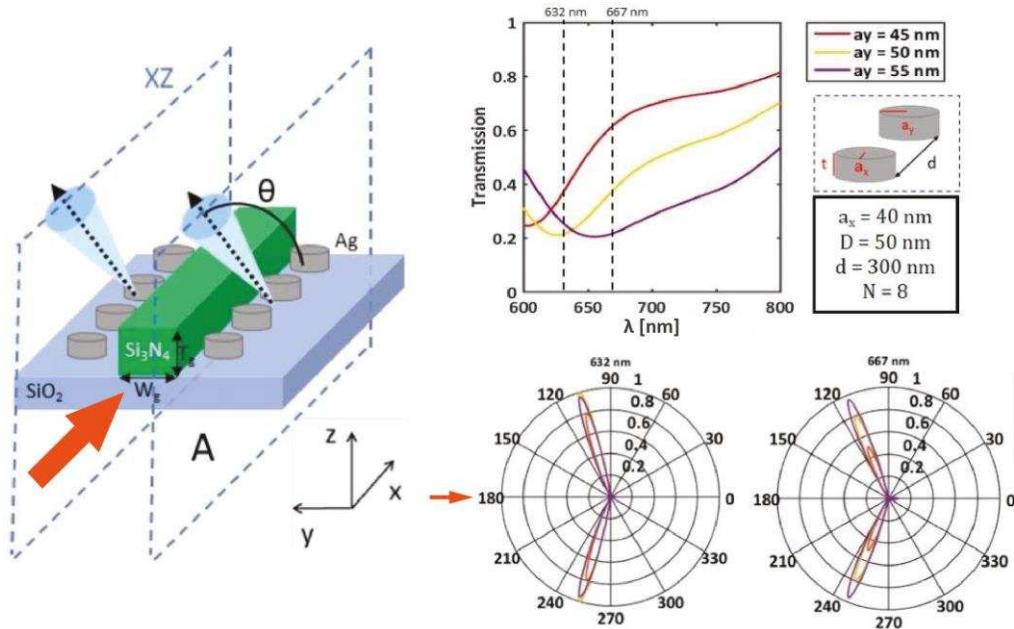
Figure 13. Yagi-Uda antenna integrated in a waveguide. The radiation is preferentially directed towards the highest optical index (substrate). Inspired by [109].

Recently, it has been demonstrated that specific engineered arrangements of elementary nanoantennas, strategically positioned on the surface of a silicon waveguide, can couple the two orthogonal polarizations of incident light into different directions and modes of the underlying waveguide, thus achieving a demultiplexing function [110].

A periodic chain made of identical MNP can also realize controlled directivity “LSP” antenna, evanescently coupled to a dielectric waveguide. In order to obtain collective and radiative resonance, the chain is designed as a diffraction grating while keeping a sufficiently short period to enable dipole coupling along the chain [111,112]. The latter property enables efficient interfacing of the antenna with the dielectric waveguide (Figure 14). The diffraction grating controls the emission direction (period) and directivity (chain length). For symmetry reasons, as soon as the grating order is higher than 1 the light is diffracted simultaneously in two directions, toward the substrate and the superstrate. The emission angle is defined with respect to the guided propagation axis as follows, in the case of homogeneous surrounding index n_s : $\theta = \arcsin \left(\frac{n_{eff}}{n_s} - \frac{m\lambda}{d \cdot n_s} \right)$ where d is the grating period, m the grating order and n_{eff} the effective index of the guided mode. With respect to usual dielectric or metallic gratings, this resonant chain grating offers additional degrees of freedom:

- The chain resonance modifies the coupling efficiency independently of the emission angle and directivity control: the MNP size is chosen to have resonant or resonant-shifted chain.
- The chain can be positioned freely around the waveguide, without diffraction efficiency modification as long as the chain and waveguide modes overlap remains similar.
- The chain period determines the emission angle, independently of the coupling efficiency.
- Several chains can be simultaneously excited, for example to shape the radiation diagram: two chains on both sides of the waveguide generate radiation similar to Young’s slits interferences.

In Figure 14, such a double 8 ellipsoidal MNP chain with $d=300\text{nm}$ is positioned at $D=50\text{nm}$ from a silicon nitride waveguide. The minima of optical transmission through the waveguide indicate the chain resonances for three values of ellipses long axis radius a_y . The radiation diagrams are calculated for two different wavelengths: they show the independence of the emission angle and the coupling efficiency (proportional to the radiative power). This control of the coupling efficiency was verified experimentally [113]. It can vary from 10 to 50% by changing only the major axis of the nanocylinders a_y , offering control of the radiated power without changing the radiation diagram.


3.4. Integrated magnetoplasmonics

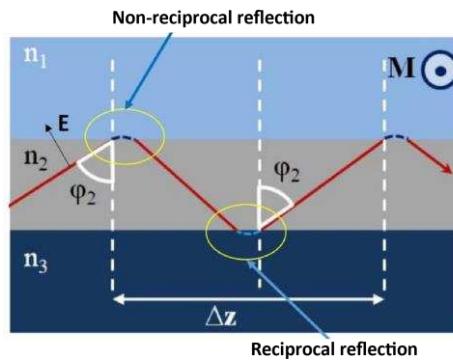
Plasmonics is particularly relevant for enhancing perturbative physical effects such as magneto-optics (MO) [114]. Magneto-optical effects are related to the action of the magnetization of a material

on the propagation of an optical wave through it. This action is expressed by the non-diagonal elements of the permittivity tensor of the MO material, which is as follows, in the case of otherwise isotropic material:

$$\varepsilon = \begin{pmatrix} \varepsilon_{iso} & +ig_z & -ig_y \\ -ig_z & \varepsilon_{iso} & +ig_x \\ +ig_y & -ig_x & \varepsilon_{iso} \end{pmatrix} \quad (3)$$

where g_u ($u=x,y,z$) are the gyrotropy constants, which are complex values in the most general case. The interaction of an electromagnetic wave with a MO material impacts its electric field through the complex coupling of its components (E_x, E_y, E_z), which can modify the wave polarisation, amplitude and/or phase. Since the permittivity tensor is antisymmetric, this interaction is non-reciprocal: it is inverted by inversion of the propagation direction or the magnetisation direction. In other words, this effect induces time-symmetry breaking. Usual MO materials are either metallic (Fe, Co, Ni, and alloys), or dielectric like ferrite or garnet oxides (BIG, YIG, Ce:YIG). Combined with a plasmonic metal, these materials induce magneto-plasmonic effects, with enhanced effective complex gyrotropies. Magneto-plasmonic multilayered structures have been mainly studied in non-guided configurations such as single nanostructures or hybrid membrane [115], array of nanostructures [116,117], alternating silver and garnet layers metamaterials [118], or reconfigurable metasurface or array of nanoantenna [119,120]. Magneto-optical interaction with propagative plasmons have been also studied in grating structuration [121,122].

Figure 14. Array of integrated plasmonic nanoantennas dedicated to the independent control of directivity, direction and intensity of radiation, inspired by [113]. a_x and a_y represent the radii of the ellipsoidal sections of the NPs, t their thickness, N their number per chain, d their centre-to-centre distance, D their closest distance to the dielectric guide. The red arrow indicates the direction of light injection.


Nevertheless only a few (theoretical) magnetoplasmonic structures were proposed in waveguiding configurations [123,124]. The main interest of these MO or magneto-plasmonic structures is to realize integrated non-reciprocal transmission of the light, like optical isolation or circulation. Such functions can considerably enrich the architecture of photonic circuits.

The non-reciprocal transmission is obtained only if all the spatial symmetries are also broken, in addition to the time-symmetry breaking. The non-reciprocity of an integrated isolator is defined as the ratio between its forward and backward transmissions, denoted as T^+ et T^- , often expressed in

decibel as $10\log(T^+ / T^-)$. A figure of merit (FoM) Δ can be defined to account the trade-off between non-reciprocity and insertion losses:

$$\Delta = \begin{cases} \frac{T^+ - T^-}{T^+} & \text{if } T^+ > T^- \\ \frac{T^+ - T^-}{T^-} & \text{if } T^+ < T^- \end{cases} \quad (4)$$

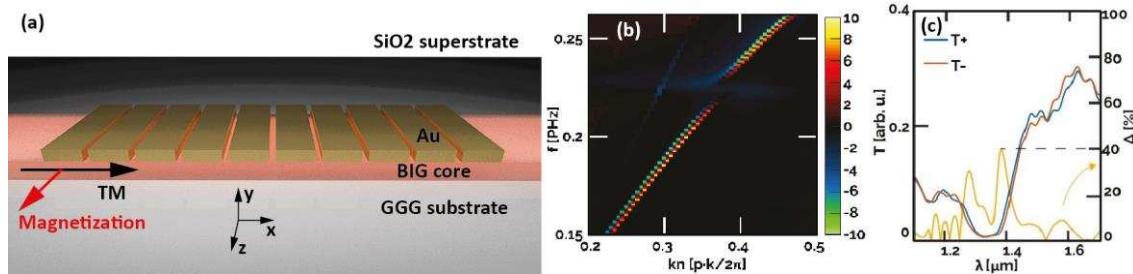

Several MO effects have been identified, all related to the permittivity tensor and gyrotropies, but considering different configurations of light polarisation, magnetization orientations, and interaction nature (bulk or at interfaces) [125]. Among all these configurations, the most relevant for integrated guided structures is the TMOKE (Transverse Magneto-Optical Effect): indeed, TMOKE preserves the light polarisation, it only modifies the propagation wavevector of the light and it occurs at interfaces between MO and dielectric or metallic materials. Such a configuration is easily obtained in multi-layered planar structures, and spatial symmetry breaking is also just a matter of appropriate geometry (Figure 15).

Figure 15. TMOKE (transverse magneto-optical Kerr effect) applied to a planar waveguide. The top layer (n_1) is a material with magneto-optical properties.

Many guided structures based on TMOKE have been demonstrated, based on: MO metallic layer deposited on dielectric or semiconductor waveguide, interacting with TE [126] or TM [127] mode; MO garnet transferred on a semiconductor interferometer [128] or on a ring resonator [129]; garnet interferometer including a thin silver film [124]; gold grating on a garnet waveguide [130]. In the latter structure, the non-reciprocal effect is enhanced by plasmonic light concentration, and in addition its sign is controlled by the grating slit modes coupling with the propagative surface plasmon. Such a way, non-reciprocity can be inverted by proper grating design, while keeping unchanged the magnetization direction.

Such a structure is represented in Figure 16: the gold grating is placed on the top of a MO garnet (BIG) waveguide, whose magnetization is in z direction. The guided TM mode is injected in the structure and interacts with the plasmonic top-grating and with the Fabry-Perot modes inside the grating slits. Their coupling induces anticrossing in the dispersion curves (Figure 16(b)) and non-reciprocity enhancement on each side of this anticrossing. Because of the resonant character of the structure, the isolation is limited to a narrow bandwidth, and the FoM reaches 40%.

Figure 16. (a) Sketch of a non-reciprocal waveguide with integrated plasmonic grating on garnet. Here, the BIG layer is the magneto-optical material. (b) Non-reciprocal shift of the bandstructure and (c) non-reciprocal transmittances obtained by means of FDTD simulations [130].

Following the same principle, by positioning the plasmonic grating on the side of the waveguide, TE mode undergoes isolation ratio higher than 20dB (8 dB), with possible sign inversion and FoM above 1 (0.2) [131], with a gyrotropy of 0.1 (0.01).

More generally, in this kind of structure, plasmonics may also modify the global properties of the MO material: indeed, in the case of a purely real gyrotropy MO material, TMOKE only induces non-reciprocal phase shift on the propagating wave; thanks to the plasmonic interaction at the TMOKE interface, the global non-reciprocity also applies on the amplitude of the propagating wave [132].

Table 1. Comparison of coupling efficiency and length obtained or evaluated for different plasmonic waveguides or nanostructures excited by dielectric waveguide.

	Structure	Mechanism	Coupling efficiency	$\lambda [\mu\text{m}]$	Coupling length L_c (Footprint)	ref	year
SPP waveguide	Cu slot waveguide/SOI waveguide	Evanescence coupling	70% (LRSPP)	1.55	0.9 μm	[20]	2010
	'buried plasmonic waveguide'/SU8 waveguide/glass	Evanescence coupling	88% (LRSPP)	0.633	5.3 μm	[57]	2012
	Si waveguide/buried plasmonic waveguide/glass	Evanescence coupling	95.5% (LRSPP)	1.55	2.85 μm	[133]	2013
	Gold film/semiconductor waveguide	Grating based coupling	24%	1.3	5.5 μm	[59]	2011
	SOI waveguide/plasmonic slot waveguide	Butt-coupling/end-fire coupling	61% numerical/43% measured	1.55	(>10 μm)	[134]	2010
LSP, LSP chain waveguide	InP membrane waveguide/plasmonic slot waveguide	Butt-coupling/end-fire coupling	~55% numerical/~13% measured	1.55	(~5 μm)	[56]	2020
	1 single NP/Si3N4 waveguide	Evanescence excitation	9.7 %	0.850 μm	NP width (<100nm)	[75]	2013
	LSP subwavelength chain/SOI waveguide	Evanescence coupling	99%	1.55	0.6 μm	[76]	2012
Antenna on waveguide	LSP subwavelength chain/Si3N4 waveguide /SiO ₂	Evanescence coupling	/	1.4	1.635 μm	[78]	2017
	Vivaldi antenna /SOI waveguide	Evanescence coupling	91% (numerical)	1.55	1.63 μm	[108]	2017
	Yagi-Uda antenna/SOI waveguide	Evanescence excitation	20% in-coupling	0.85	(~1 μm)	[109]	2012
	LSP nanoantenna/silicon	Evanescence excitation	~4%	1.55	(400 nm)	[110]	2017
	LSP gratings (antenna) aside Si ₃ N ₄ waveguide	Evanescence coupling	Tunable, from 10% to 50%	0.633	~0.8 μm	[113]	2018

4. Conclusions

The integration of propagative or localized plasmonic structures on photonic waveguides brings a breakthrough toward the PICs miniaturisation, provided that their interfacing is efficient. Achieving high efficiency can be made possible through the engineering of guided mode coupling mechanisms. Table 1 summarizes the main approaches proposed to integrate plasmonic structures, and introduced along this paper, showing a particular interest for evanescent coupling configuration. Evanescent coupling refers here to the case of two coupled waveguides, one dielectric and one plasmonic, which enables energy transfer thanks to supermode beating. Such a way coupling efficiency reaches more than 90% within a very short propagation distance due to plasmonic properties. This engineering enables the utilization of plasmons within photonic circuits with moderation, only where needed, offering an optimal balance between compactness, enhanced physical effects, and minimized losses. As shown here, numerous and diversified applications can be considered, especially thanks to the ease of technological processes. Indeed, nanofabrication of metallic structures is realized with standard process of photonics, without any additional complexity. Moreover, these structures are compatible with other planar systems like microfluidic systems for lab-on-chip (biosensors, optical tweezers, plasmonic manipulators, etc.), electronic systems for electron beam or X-rays sources, optoelectronic systems combining electrical injection, electrical generation of plasmons, or active photonic functions.

Author Contributions: Literature search, B.D., Writing draft of manuscript, G.M, B.D. Revision and proof reading, B.D, V.Y., G.M. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The work presented in this article was partly supported by the RENATECH national network of technology centers, the French Defense Innovation Agency, and the PhOVéA OpenLab (CNRS-Stellantis). G.M is supported by a grant from Regione Puglia "Research for Innovation" (REFIN). REFIN is an intervention co-financed by the European Union under the POR Puglia 2014-2020, Priority Axis OT X "Investing in education, training and professional training for skills and lifelong learning" - Action 10.4 - DGR 1991/2018 - Notice 2/FSE/2020 n. 57 of 13/05/2019 (BURP n. 52 of 16/06/2019).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Le lit, M.; Słowikowski, M.; Filipiak, M.; Juchniewicz, M.; Stonio, B.; Michalak, B.; Pavlov, K.; Myśliwiec, M.; Wiśniewski, P.; Kaźmierczak, A.; et al. Passive Photonic Integrated Circuits Elements Fabricated on a Silicon Nitride Platform. *Materials (Basel)*. 2022, 15.
2. Albiero, R.; Pentangelo, C.; Gardina, M.; Atzeni, S.; Ceccarelli, F.; Osellame, R. Toward Higher Integration Density in Femtosecond-Laser-Written Programmable Photonic Circuits. *Micromachines* 2022, 13.
3. Korthorst, T.; Bogaerts, W.; Boning, D.; Heins, M.; Bergman, B. Photonic Integrated Circuit Design Methods and Tools. In *Integrated Photonics for Data Communication Applications*; Glick, M., Liao, L., Schmidtke, K.B.T.-I.P. for D.C.A., Eds.; Elsevier, 2023; pp. 335–367 ISBN 978-0-323-91224-2.
4. Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface Plasmon Subwavelength Optics. *Nature* 2003, 424, 824–830, doi:10.1038/nature01937.
5. Maier, S. *Plasmonics: Fundamentals and Applications*; Springer, 2007; ISBN 0387331506.
6. Raether, H. *Surface Plasmons on Smooth and Rough Surfaces and on Gratings*; Springer-Verlag: Berlin, 1998;
7. Cheng, C.-W.; Gwo, S. Fundamentals of Plasmonic Materials. In *Plasmonic Materials and Metastructures*; Gwo, S., Alù, A., Li, X., Shih, C.-K.B.T.-P.M. and M., Eds.; Elsevier, 2024; pp. 3–33 ISBN 978-0-323-85379-8.
8. Ebbesen, T.W.; Genet, C.; Bozhevolnyi, S.I. Surface-Plasmon Circuitry. *Phys. Today* 2008, 61, 44–50, doi:10.1063/1.2930735.
9. Luo, Y.; Chamanzar, M.; Apuzzo, A.; Salas-Montiel, R.; Nguyen, K.N.; Blaize, S.; Adibi, A. On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform. *Nano Lett.* 2015, 15, 849–856, doi:10.1021/nl503409k.
10. Liang, L.; Zheng, Q.; Wen, L.; Cumming, D.R.S.; Chen, Q. Miniaturized Spectroscopy with Tunable and Sensitive Plasmonic Structures. *Opt. Lett.* 2021, 46, 4264–4267, doi:10.1364/OL.426624.
11. Rasolian Lafmejani, S.; Khatir, M. Miniaturized Plasmonic Magneto-Optic Mach-Zehnder Isolator Using

Graphene and Optical Gain Medium. *Optik (Stuttg)*. **2021**, *228*, 166200, doi:<https://doi.org/10.1016/j.ijleo.2020.166200>.

- 12. Tuniz, A.; Bickerton, O.; Diaz, F.J.; Käsebier, T.; Kley, E.-B.; Kroker, S.; Palomba, S.; de Sterke, C.M. Modular Nonlinear Hybrid Plasmonic Circuit. *Nat. Commun.* **2020**, *11*, 2413, doi:10.1038/s41467-020-16190-z.
- 13. Tuniz, A. Nanoscale Nonlinear Plasmonics in Photonic Waveguides and Circuits. *La Riv. del Nuovo Cim.* **2021**, *44*, 193–249, doi:10.1007/s40766-021-00018-7.
- 14. Huttunen, M.J.; Dolgaleva, K.; Törmä, P.; Boyd, R.W. Ultra-Strong Polarization Dependence of Surface Lattice Resonances with out-of-Plane Plasmon Oscillations. *Opt. Express* **2016**, *24*, 28279–28289, doi:10.1364/OE.24.028279.
- 15. Baffou, G.; Cichos, F.; Quidant, R. Applications and Challenges of Thermoplasmonics. *Nat. Mater.* **2020**, *19*, 946–958, doi:10.1038/s41563-020-0740-6.
- 16. Ciraulo, B.; Garcia-Guirado, J.; de Miguel, I.; Ortega Arroyo, J.; Quidant, R. Long-Range Optofluidic Control with Plasmon Heating. *Nat. Commun.* **2021**, *12*, 2001, doi:10.1038/s41467-021-22280-3.
- 17. Rudé, M.; Simpson, R.E.; Quidant, R.; Pruneri, V.; Renger, J. Active Control of Surface Plasmon Waveguides with a Phase Change Material. *ACS Photonics* **2015**, *2*, 669–674, doi:10.1021/acsphotonics.5b00050.
- 18. Kats, M.A.; Blanchard, R.; Genevet, P.; Yang, Z.; Qazilbash, M.M.; Basov, D.N.; Ramanathan, S.; Capasso, F. Thermal Tuning of Mid-Infrared Plasmonic Antenna Arrays Using a Phase Change Material. *Opt. Lett.* **2013**, *38*, 368–370, doi:10.1364/OL.38.000368.
- 19. Kabashin, A. V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.A.; Atkinson, R.; Pollard, R.; Podolskiy, V.A.; Zayats, A. V. Plasmonic Nanorod Metamaterials for Biosensing. *Nat. Mater.* **2009**, *8*, 867–871, doi:10.1038/nmat2546.
- 20. Delacour, C.; Blaize, S.; Grosse, P.; Fedeli, J.M.; Bruyant, A.; Salas-Montiel, R.; Lerondel, G.; Chelnokov, A. Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: Toward Metal-Oxide-Silicon Nanophotonics. *Nano Lett.* **2010**, *10*, 2922–2926, doi:10.1021/nl101065q.
- 21. Wang, J.; Ning, N.; Wang, Z.; Li, G.; Xu, J.; Lu, Y. Compact General Interference Hybrid-Plasmonic Multimode Interferometers Used for Optical Hybrid. *Appl. Opt.* **2019**, *58*, 5320–5327, doi:10.1364/AO.58.005320.
- 22. Celebrano, M. Plasmonics: The Future Is Ultrafast and Ultrasmall. *Front. Photonics* **2022**, *3*.
- 23. Schirato, A.; Crotti, G.; Gonçalves Silva, M.; Teles-Ferreira, D.C.; Manzoni, C.; Proietti Zaccaria, R.; Laporta, P.; de Paula, A.M.; Cerullo, G.; Della Valle, G. Ultrafast Plasmonics Beyond the Perturbative Regime: Breaking the Electronic-Optical Dynamics Correspondence. *Nano Lett.* **2022**, *22*, 2748–2754, doi:10.1021/acs.nanolett.1c04608.
- 24. Ono, M.; Taniyama, H.; Xu, H.; Tsunekawa, M.; Kuramochi, E.; Nozaki, K.; Notomi, M. Deep-Subwavelength Plasmonic Mode Converter with Large Size Reduction for Si-Wire Waveguide. *Optica* **2016**, *3*, 999–1005, doi:10.1364/OPTICA.3.000999.
- 25. Hung, Y.-T.; Huang, C.-B.; Huang, J.-S. Plasmonic Mode Converter for Controlling Optical Impedance and Nanoscale Light-Matter Interaction. *Opt. Express* **2012**, *20*, 20342–20355, doi:10.1364/OE.20.020342.
- 26. Wang, Y.; Yu, Z.; Zhang, Z.; Sun, X.; Tsang, H.K. Fabrication-Tolerant and Low-Loss Hybrid Plasmonic Slot Waveguide Mode Converter. *J. Light. Technol.* **2021**, *39*, 2106–2112, doi:10.1109/JLT.2020.3045742.
- 27. Melikyan, A.; Alloatti, L.; Muslija, A.; Hillerkuss, D.; Schindler, P.C.; Li, J.; Palmer, R.; Korn, D.; Muehlbrandt, S.; Van Thourhout, D.; et al. High-Speed Plasmonic Phase Modulators. *Nat. Photonics* **2014**, *8*, 229–233, doi:10.1038/nphoton.2014.9.
- 28. Hoessbacher, C.; Josten, A.; Baeuerle, B.; Fedoryshyn, Y.; Hettrich, H.; Salamin, Y.; Heni, W.; Haffner, C.; Kaiser, C.; Schmid, R.; et al. Plasmonic Modulator with >170 GHz Bandwidth Demonstrated at 100 Gb/s NRZ. *Opt. Express* **2017**, *25*, 1762–1768, doi:10.1364/OE.25.001762.
- 29. Ansell, D.; Radko, I.P.; Han, Z.; Rodriguez, F.J.; Bozhevolnyi, S.I.; Grigorenko, A.N. Hybrid Graphene Plasmonic Waveguide Modulators. *Nat. Commun.* **2015**, *6*, 8846, doi:10.1038/ncomms9846.
- 30. Emboras, A.; Hoessbacher, C.; Haffner, C.; Heni, W.; Koch, U.; Ma, P.; Fedoryshyn, Y.; Niegemann, J.; Hafner, C.; Leuthold, J. Electrically Controlled Plasmonic Switches and Modulators. *IEEE J. Sel. Top. Quantum Electron.* **2015**, *21*, 276–283, doi:10.1109/JSTQE.2014.2382293.
- 31. Zhan, G.; Liang, R.; Liang, H.; Luo, J.; Zhao, R. Asymmetric Band-Pass Plasmonic Nanodisk Filter with Mode Inhibition and Spectrally Splitting Capabilities. *Opt. Express* **2014**, *22*, 9912–9919, doi:10.1364/OE.22.009912.
- 32. Abadía, N.; Samani, A.; Boulbar, E.D. Le; Hayes, D.; Smowton, P.M. Plasmonic Integrated Multimode Filter. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON); 2019; pp. 1–3.
- 33. Khani, S.; Danaie, M.; Rezaei, P. Realization of Single-Mode Plasmonic Bandpass Filters Using Improved Nanodisk Resonators. *Opt. Commun.* **2018**, *420*, 147–156, doi:<https://doi.org/10.1016/j.optcom.2018.03.047>.

34. Wang, M.; Sun, S.; Ma, H.F.; Cui, T.J. Supercompact and Ultrawideband Surface Plasmonic Bandpass Filter. *IEEE Trans. Microw. Theory Tech.* **2020**, *68*, 732–740, doi:10.1109/TMTT.2019.2952123.

35. Emboras, A.; Niegemann, J.; Ma, P.; Haffner, C.; Pedersen, A.; Luisier, M.; Hafner, C.; Schimmel, T.; Leuthold, J. Atomic Scale Plasmonic Switch. *Nano Lett.* **2016**, *16*, 709–714, doi:10.1021/acs.nanolett.5b04537.

36. Chen, J.; Li, Z.; Zhang, X.; Xiao, J.; Gong, Q. Submicron Bidirectional All-Optical Plasmonic Switches. *Sci. Rep.* **2013**, *3*, 1451, doi:10.1038/srep01451.

37. Ghosh, R.R.; Dhawan, A. Integrated Non-Volatile Plasmonic Switches Based on Phase-Change-Materials and Their Application to Plasmonic Logic Circuits. *Sci. Rep.* **2021**, *11*, 18811, doi:10.1038/s41598-021-98418-6.

38. Ono, M.; Hata, M.; Tsunekawa, M.; Nozaki, K.; Sumikura, H.; Chiba, H.; Notomi, M. Ultrafast and Energy-Efficient All-Optical Switching with Graphene-Loaded Deep-Subwavelength Plasmonic Waveguides. *Nat. Photonics* **2020**, *14*, 37–43, doi:10.1038/s41566-019-0547-7.

39. Azzam, S.I.; Kildishev, A. V.; Ma, R.-M.; Ning, C.-Z.; Oulton, R.; Shalaev, V.M.; Stockman, M.I.; Xu, J.-L.; Zhang, X. Ten Years of Spasers and Plasmonic Nanolasers. *Light Sci. Appl.* **2020**, *9*, 90, doi:10.1038/s41377-020-0319-7.

40. Sarkar, D.; Cho, S.; Yan, H.; Martino, N.; Dannenberg, P.H.; Yun, S.H. Ultrasmall InGa(As)P Dielectric and Plasmonic Nanolasers. *ACS Nano* **2023**, *17*, 16048–16055, doi:10.1021/acsnano.3c04721.

41. Liang, Y.; Li, C.; Huang, Y.-Z.; Zhang, Q. Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges. *ACS Nano* **2020**, *14*, 14375–14390, doi:10.1021/acsnano.0c07011.

42. Sun, J.-Y.; Nguyen, D.H.; Liu, J.-M.; Lo, C.-Y.; Ma, Y.-R.; Chen, Y.-J.; Yi, J.-Y.; Huang, J.-Z.; Giap, H.; Nguyen, H.Y.T.; et al. On-Chip Monolithically Integrated Ultraviolet Low-Threshold Plasmonic Metal-Semiconductor Heterojunction Nanolasers. *Adv. Sci.* **2023**, *10*, 2301493, doi:<https://doi.org/10.1002/advs.202301493>.

43. Gonçalves, P.A.D.; Christensen, T.; Rivera, N.; Jauho, A.-P.; Mortensen, N.A.; Soljačić, M. Plasmon–Emitter Interactions at the Nanoscale. *Nat. Commun.* **2020**, *11*, 366, doi:10.1038/s41467-019-13820-z.

44. Ge, D.; Issa, A.; Jradi, S.; Couteau, C.; Marguet, S.; Bachelot, R. Advanced Hybrid Plasmonic Nano-Emiters Using Smart Photopolymer. *Photonics Res.* **2022**, *10*, 1552–1566, doi:10.1364/PRJ.455712.

45. Ge, D.; Marguet, S.; Issa, A.; Jradi, S.; Nguyen, T.H.; Nahra, M.; Béal, J.; Deturche, R.; Chen, H.; Blaize, S.; et al. Hybrid Plasmonic Nano-Emiters with Controlled Single Quantum Emitter Positioning on the Local Excitation Field. *Nat. Commun.* **2020**, *11*, 3414, doi:10.1038/s41467-020-17248-8.

46. Siampour, H.; Kumar, S.; Bozhevolnyi, S.I. Nanofabrication of Plasmonic Circuits Containing Single Photon Sources. *ACS Photonics* **2017**, *4*, 1879–1884, doi:10.1021/acspophotonics.7b00374.

47. Tame, M.S.; McEnergy, K.R.; Özdemir, S.K.; Lee, J.; Maier, S.A.; Kim, M.S. Quantum Plasmonics. *Nat. Phys.* **2013**, *9*, 329–340, doi:10.1038/nphys2615.

48. Leon, N.P. de; Lukin, M.D.; Park, H. Quantum Plasmonic Circuits. *IEEE J. Sel. Top. Quantum Electron.* **2012**, *18*, 1781–1791, doi:10.1109/JSTQE.2012.2197179.

49. Hong, F.Y.; Xiong, S.J. Quantum Interfaces Using Nanoscale Surface Plasmons. *Eur. Phys. J. D* **2008**, *50*, 325–329, doi:10.1140/epjd/e2008-00218-8.

50. Heeres, R.W.; Kouwenhoven, L.P.; Zwiller, V. Quantum Interference in Plasmonic Circuits. *Nat. Nanotechnol.* **2013**, *8*, 719–722, doi:10.1038/nnano.2013.150.

51. Sun, P.; Xu, P.; Zhu, K.; Zhou, Z. Silicon-Based Optoelectronics Enhanced by Hybrid Plasmon Polaritons: Bridging Dielectric Photonics and Nanoplasmonics. *Photonics* **2021**, *8*.

52. Joannopoulos, J.; Johnson, S.; Winn, J.; Meade, R. *Photonic Crystals: Molding the Flow of Light*; 2011; ISBN 9780691124568.

53. Palik, E.D.; Ghosh, G. *Handbook of Optical Constants of Solids II*; Academic Press: Orlando, 1998; ISBN 0125444206 (alk. paper).

54. Bohren, C.F.; Huffman, D.R. *Absorption and Scattering of Light by Small Particles*; Wiley: New York, 1998;

55. Berini, P.; De Leon, I. Surface Plasmon-Polariton Amplifiers and Lasers. *Nat. Photonics* **2012**, *6*, 16–24, doi:10.1038/nphoton.2011.285.

56. Van Der Tol, J.J.G.M.; Jiao, Y.; Van Engelen, J.P.; Pogoretskiy, V.; Kashi, A.A.; Williams, K. InP Membrane on Silicon (IMOS) Photonics. *IEEE J. Quantum Electron.* **2020**, *56*, 1–7, doi:10.1109/JQE.2019.2953296.

57. Magno, G.; Grande, M.; Petruzzelli, V.; D’Orazio, A. High-Efficient Ultra-Short Vertical Long-Range Plasmonic Couplers. *J. Nanophotonics* **2012**, *6*, 061609, doi:10.1117/1.jnp.6.061609.

58. Magno, G.; Grande, M.; Petruzzelli, V.; D’Orazio, A. Numerical Analysis of the Coupling Mechanism in Long-Range Plasmonic Couplers at 155 Mm. *Opt. Lett.* **2013**, *38*, 46, doi:10.1364/ol.38.000046.

59. Tetienne, J.P.; Bousseksou, A.; Costantini, D.; De Wilde, Y.; Colombelli, R. Design of an Integrated Coupler for the Electrical Generation of Surface Plasmon Polaritons. *Opt. Express* **2011**, *19*, 18155–18163, doi:10.1364/OE.19.018155.

60. Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. *ChemInform* **2003**, *34*, 668–677, doi:10.1002/chin.200316243.

61. Maier, S.A.; Brongersma, M.L.; Kik, P.G.; Atwater, H.A. Observation of Near-Field Coupling in Metal Nanoparticle Chains Using Far-Field Polarization Spectroscopy. *Phys. Rev. B* **2002**, *65*, 193408, doi:10.1103/PhysRevB.65.193408.

62. Koenderink, A.F.; Polman, A. Complex Response and Polariton-like Dispersion Splitting in Periodic Metal Nanoparticle Chains. *Phys. Rev. B - Condens. Matter Mater. Phys.* **2006**, *74*, doi:10.1103/PhysRevB.74.033402.

63. Moritake, Y.; Ono, M.; Notomi, M. Far-Field Optical Imaging of Topological Edge States in Zigzag Plasmonic Chains. **2022**, *11*, 2183–2189, doi:doi:10.1515/nanoph-2021-0648.

64. Buendía, Á.; Sánchez-Gil, J.A.; Giannini, V. Exploiting Oriented Field Projectors to Open Topological Gaps in Plasmonic Nanoparticle Arrays. *ACS Photonics* **2023**, *10*, 464–474, doi:10.1021/acsphotonics.2c01526.

65. Yan, Q.; Cao, E.; Sun, Q.; Ao, Y.; Hu, X.; Shi, X.; Gong, Q.; Misawa, H. Near-Field Imaging and Time-Domain Dynamics of Photonic Topological Edge States in Plasmonic Nanochains. *Nano Lett.* **2021**, *21*, 9270–9278, doi:10.1021/acs.nanolett.1c03324.

66. He, Z.; Bobylev, D.A.; Smirnova, D.A.; Zhirihin, D. V.; Gorlach, M.A.; Tuz, V.R. Reconfigurable Topological States in Arrays of Biaxotropic Particles. *ACS Photonics* **2022**, *9*, 2322–2326, doi:10.1021/acsphotonics.2c00309.

67. Sinev, I.S.; Mukhin, I.S.; Slobozhanyuk, A.P.; Poddubny, A.N.; Miroshnichenko, A.E.; Samusev, A.K.; Kivshar, Y.S. Mapping Plasmonic Topological States at the Nanoscale. *Nanoscale* **2015**, *7*, 11904–11908, doi:10.1039/C5NR00231A.

68. Gong, M.; Hu, P.; Song, Q.; Xiang, H.; Han, D. Bound States in the Continuum from a Symmetric Mode with a Dominant Toroidal Dipole Resonance. *Phys. Rev. A* **2022**, *105*, 33504, doi:10.1103/PhysRevA.105.033504.

69. Song, Q.; Yi, Z.; Xiang, H.; Han, D. Dynamics and Asymmetric Behavior of Loss-Induced Bound States in the Continuum in Momentum Space. *Phys. Rev. B* **2023**, *107*, 165142, doi:10.1103/PhysRevB.107.165142.

70. Jin, Y.; Wu, K.; Sheng, B.; Ma, W.; Chen, Z.; Li, X. Plasmonic Bound States in the Continuum to Tailor Exciton Emission of MoTe2. *Nanomaterials* **2023**, *13*.

71. Magno, G.; Leroy, B.; Barat, D.; Pradere, L.; Dagens, B. Numerical Demonstration of Surface Lattice Resonance Excitation in Integrated Localized Surface Plasmon Waveguides. *Opt. Express* **2022**, *30*, 5835–5847, doi:10.1364/OE.449832.

72. Utyushev, A.D.; Zakomirnyi, V.I.; Rasskazov, I.L. Collective Lattice Resonances: Plasmonics and Beyond. *Rev. Phys.* **2021**, *6*, 100051, doi:https://doi.org/10.1016/j.revip.2021.100051.

73. Kravets, V.G.; Schedin, F.; Grigorenko, A.N. Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles. *Phys. Rev. Lett.* **2008**, *101*, 87403, doi:10.1103/PhysRevLett.101.087403.

74. Pikalov, A.M.; Dorofeenko, A. V.; Lozovik, Y.E. Dispersion Relations for Plasmons in Complex-Shaped Nanoparticle Chains. *Phys. Rev. B* **2018**, *98*, 85134, doi:10.1103/PhysRevB.98.085134.

75. Chamanzar, M.; Xia, Z.; Yegnanarayanan, S.; Adibi, A. Hybrid Integrated Plasmonic-Photonic Waveguides for on-Chip Localized Surface Plasmon Resonance (LSPR) Sensing and Spectroscopy. *Opt. Express* **2013**, *21*, 32086, doi:10.1364/oe.21.032086.

76. Février, M.; Gogol, P.; Aassime, A.; Mégy, R.; Delacour, C.; Chelnokov, A.; Apuzzo, A.; Blaize, S.; Lourtioz, J.M.; Dagens, B. Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide. *Nano Lett.* **2012**, *12*, 1032–1037, doi:10.1021/nl204265f.

77. Novotny, L. Strong Coupling, Energy Splitting, and Level Crossings: A Classical Perspective. *Am. J. Phys.* **2010**, *78*, 1199–1202, doi:10.1119/1.3471177.

78. Magno, G.; Février, M.; Gogol, P.; Aassime, A.; Bondi, A.; Mégy, R.; Dagens, B. Strong Coupling and Vortexes Assisted Slow Light in Plasmonic Chain-SOI Waveguide Systems. *Sci. Rep.* **2017**, *7*, doi:10.1038/s41598-017-07700-z.

79. Dagens, B.; Février, M.; Gogol, P.; Blaize, S.; Apuzzo, A.; Magno, G.; Mégy, R.; Lerondel, G. Direct Observation of Optical Field Phase Carving in the Vicinity of Plasmonic Metasurfaces. *Nano Lett.* **2016**, *16*, doi:10.1021/acs.nanolett.6b00435.

80. Li, Z.; Kim, M.-H.; Wang, C.; Han, Z.; Shrestha, S.; Overvig, A.C.; Lu, M.; Stein, A.; Agarwal, A.M.; Lončar, M.; et al. Controlling Propagation and Coupling of Waveguide Modes Using Phase-Gradient Metasurfaces. *Nat. Nanotechnol.* **2017**, *12*, 675–683, doi:10.1038/nnano.2017.50.

81. Divya, J.; Selvendran, S.; Raja, A.S.; Sivasubramanian, A. Surface Plasmon Based Plasmonic Sensors: A Review on Their Past, Present and Future. *Biosens. Bioelectron. X* **2022**, *11*, 100175, doi:https://doi.org/10.1016/j.biosx.2022.100175.

82. Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I. A Comprehensive Review on Plasmonic-Based Biosensors Used in Viral Diagnostics. *Commun. Biol.* **2021**, *4*, 70, doi:10.1038/s42003-020-01615-8.

83. Hamza, M.E.; Othman, M.A.; Swillam, M.A. Plasmonic Biosensors: Review. *Biology (Basel)*. **2022**, *11*.

84. Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. *Sensors* **2021**, *21*.

85. Steglich, P.; Schasfoort, R.B.M. Surface Plasmon Resonance Imaging (SPRi) and Photonic Integrated Circuits (PIC) for COVID-19 Severity Monitoring. *COVID* **2022**, *2*, 389–397.

86. Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with Plasmonic Nanosensors. *Nat. Mater.* **2008**, *7*, 442–453, doi:10.1038/nmat2162.

87. Kretschmann, E.; Raether, H. Radiative Decay of Nonradiative Surface Plasmons Excited by Light. *Zeitschrift Für Naturforsch. Sect. A A. Phys. Sci.* **1968**, *23*, 2135.

88. Février, M.; Gogol, P.; Barbillon, G.; Aassime, A.; Mégy, R.; Bartenlian, B.; Lourtioz, J.-M.; Dagens, B. Integration of Short Gold Nanoparticles Chain on SOI Waveguide toward Compact Integrated Bio-Sensors. *Opt. Express* **2012**, *20*, 17402, doi:10.1364/oe.20.017402.

89. Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. *Opt. Angular Momentum* **2016**, *11*, 196–198, doi:10.1364/ol.11.000288.

90. Falconi, M.C.; Magno, G.; Colosimo, S.; Yam, V.; Dagens, B.; Prudenzano, F. Design of a Half-Ring Plasmonic Tweezers for Environmental Monitoring. *Opt. Mater. X* **2022**, *13*, 100141, doi:https://doi.org/10.1016/j.omx.2022.100141.

91. Wong, H.M.K.; Righini, M.; Gates, J.C.; Smith, P.G.R.; Pruneri, V.; Quidant, R. On-a-Chip Surface Plasmon Tweezers. *Appl. Phys. Lett.* **2011**, *99*, 061107–061107, doi:10.1063/1.3625936.

92. Ecarnot, A.; Magno, G.; Yam, V.; Dagens, B. Ultra-Efficient Nanoparticle Trapping by Integrated Plasmonic Dimers. *Opt. Lett.* **2018**, *43*, 455, doi:10.1364/ol.43.000455.

93. Magno, G.; Ecarnot, A.; Pin, C.; Yam, V.; Gogol, P.; Mégy, R.; Cluzel, B.; Dagens, B. Integrated Plasmonic Nanotweezers for Nanoparticle Manipulation. *Opt. Lett.* **2016**, *41*, 3679, doi:10.1364/ol.41.003679.

94. Wang, G.; Ying, Z.; Ho, H.; Huang, Y.; Zou, N.; Zhang, X. Nano-Optical Conveyor Belt with Waveguide-Coupled Excitation. *Opt. Lett.* **2016**, *41*, 528, doi:10.1364/ol.41.000528.

95. Pin, C.; Magno, G.; Ecarnot, A.; Picard, E.; Hadji, E.; Yam, V.; de Fornel, F.; Dagens, B.; Cluzel, B. Seven at One Blow: Particle Cluster Stability in a Single Plasmonic Trap on a Silicon Waveguide. *ACS Photonics* **2020**, *7*, 1942–1949, doi:10.1021/acsphotonics.0c00637.

96. Coward, J.F.; Chalfant, C.H.; Chang, P.H. A Photonic Integrated-Optic RF Phase Shifter for Phased Array Antenna Beam-Forming Applications. *J. Light. Technol.* **1993**, *11*, 2201–2205, doi:10.1109/50.257989.

97. Sattari, H.; Graziosi, T.; Kiss, M.; Seok, T.J.; Han, S.; Wu, M.C.; Quack, N. Silicon Photonic MEMS Phase-Shifter. *Opt. Express* **2019**, *27*, 18959–18969, doi:10.1364/OE.27.018959.

98. Edinger, P.; Takabayashi, A.Y.; Errando-Herranz, C.; Khan, U.; Sattari, H.; Verheyen, P.; Bogaerts, W.; Quack, N.; Gylfason, K.B. Silicon Photonic Microelectromechanical Phase Shifters for Scalable Programmable Photonics. *Opt. Lett.* **2021**, *46*, 5671–5674, doi:10.1364/OL.436288.

99. Firby, C.J.; Elezzabi, A.Y. High-Speed Nonreciprocal Magnetoplasmonic Waveguide Phase Shifter. *Optica* **2015**, *2*, 598–606, doi:10.1364/OPTICA.2.000598.

100. Bonjour, R.; Burla, M.; Abrecht, F.C.; Welschen, S.; Hoessbacher, C.; Heni, W.; Gebrewold, S.A.; Baeuerle, B.; Josten, A.; Salamin, Y.; et al. Plasmonic Phased Array Feeder Enabling Ultra-Fast Beam Steering at Millimeter Waves. *Opt. Express* **2016**, *24*, 25608–25618, doi:10.1364/OE.24.025608.

101. Lorenz, L.; Bock, K. Current Development in the Field of Optical Short-Range Interconnects BT - Optical Polymer Waveguides: From the Design to the Final 3D-Opto Mechatronic Integrated Device. In; Franke, J., Overmeyer, L., Lindlein, N., Bock, K., Kaierle, S., Suttmann, O., Wolter, K.-J., Eds.; Springer International Publishing: Cham, 2022; pp. 1–13 ISBN 978-3-030-92854-4.

102. Zhang, H.C.; Zhang, L.P.; He, P.H.; Xu, J.; Qian, C.; Garcia-Vidal, F.J.; Cui, T.J. A Plasmonic Route for the Integrated Wireless Communication of Subdiffraction-Limited Signals. *Light Sci. Appl.* **2020**, *9*, 113, doi:10.1038/s41377-020-00355-y.

103. Gupta, T. *Copper Interconnect Technology*; Springer New York: New York, NY, 2009; ISBN 978-1-4419-0075-3.

104. Croes, K.; Adelmann, C.; Wilson, C.J.; Zahedmanesh, H.; Pedreira, O. V.; Wu, C.; Leśniewska, A.; Oprins, H.; Beyne, S.; Ciofi, I.; et al. Interconnect Metals beyond Copper: Reliability Challenges and Opportunities. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM); 2018; pp. 5.3.1–5.3.4.

105. Merlo, J.M.; Nesbitt, N.T.; Calm, Y.M.; Rose, A.H.; D'Imperio, L.; Yang, C.; Naughton, J.R.; Burns, M.J.; Kempa, K.; Naughton, M.J. Wireless Communication System via Nanoscale Plasmonic Antennas. *Sci. Rep.* **2016**, *6*, 31710, doi:10.1038/srep31710.

106. Calò, G.; Bellanca, G.; Alam, B.; Kaplan, A.E.; Bassi, P.; Petruzzelli, V. Array of Plasmonic Vivaldi Antennas

Coupled to Silicon Waveguides for Wireless Networks through On-Chip Optical Technology - WiNOT. *Opt. Express* **2018**, *26*, 30267, doi:10.1364/oe.26.030267.

107. Fuschini, F.; Barbiroli, M.; Zoli, M.; Bellanca, G.; Calò, G.; Bassi, P.; Petruzzelli, V. Ray Tracing Modeling of Electromagnetic Propagation for On-Chip Wireless Optical Communications. *J. Low Power Electron. Appl.* **2018**, *8*, doi:10.3390/jlpea8040039.

108. Bellanca, G.; Calò, G.; Kaplan, A.E.; Bassi, P.; Petruzzelli, V. Integrated Vivaldi Plasmonic Antenna for Wireless On-Chip Optical Communications. *Opt. Express* **2017**, *25*, 16214, doi:10.1364/oe.25.016214.

109. Bernal Arango, F.; Kwadrin, A.; Koenderink, A.F. Plasmonic Antennas Hybridized with Dielectric Waveguides. *ACS Nano* **2012**, *6*, 10156–10167, doi:10.1021/nn303907r.

110. Guo, R.; Decker, M.; Setzpfandt, F.; Gai, X.; Choi, D.-Y.; Kiselev, R.; Chipouline, A.; Staude, I.; Pertsch, T.; Neshev, D.N.; et al. High-Bit Rate Ultra-Compact Light Routing with Mode-Selective on-Chip Nanoantennas. *Sci. Adv.* **2023**, *3*, e1700007, doi:10.1126/sciadv.1700007.

111. Février, M.; Gogol, P.; Aassime, A.; Megy, R.; Bouville, D.; Lourtioz, J.M.; Dagens, B. Localized Surface Plasmon Bragg Grating on SOI Waveguide at Telecom Wavelengths. *Appl. Phys. A Mater. Sci. Process.* **2012**, *109*, 935–942, doi:10.1007/s00339-012-7395-3.

112. Février, M.; Gogol, P.; Lourtioz, J.-M.; Dagens, B. Metallic Nanoparticle Chains on Dielectric Waveguides: Coupled and Uncoupled Situations Compared. *Opt. Express* **2013**, *21*, 24504, doi:10.1364/oe.21.024504.

113. Leroy, B.; Magno, G.; Barat, D.; Pradere, L.; Dagens, B. Integrated Nanoantenna Gratings for Planar Holographic Signalisation System. In Proceedings of the Asia Communications and Photonics Conference, ACP; 2018; Vol. 2018-Octob.

114. Maccaferri, N.; Gabbani, A.; Pineider, F.; Kaihara, T.; Tapani, T.; Vavassori, P. Magnetoplasmonics in Confined Geometries: Current Challenges and Future Opportunities. *Appl. Phys. Lett.* **2023**, *122*, 120502, doi:10.1063/5.0136941.

115. Armelles, G.; Cebollada, A.; García-Martín, A.; García-Martín, J.M.; González, M.U.; González-Díaz, J.B.; Ferreiro-Vila, E.; Torrado, J.F. Magnetoplasmonic Nanostructures: Systems Supporting Both Plasmonic and Magnetic Properties. *J. Opt. A Pure Appl. Opt.* **2009**, *11*, 114023, doi:10.1088/1464-4258/11/11/114023.

116. González-Díaz, J.B.; García-Martín, A.; Armelles, G.; Navas, D.; Vázquez, M.; Nielsch, K.; Wehrspohn, R.B.; Gösele, U. Enhanced Magneto-Optics and Size Effects in Ferromagnetic Nanowire Arrays. *Adv. Mater.* **2007**, *19*, 2643–2647, doi:https://doi.org/10.1002/adma.200602938.

117. González-Díaz, J.B.; García-Martín, A.; Reig, G.A. Unusual Magneto-Optical Behavior Induced by Local Dielectric Variations under Localized Surface Plasmon Excitations. *Nanoscale Res. Lett.* **2011**, *6*, 408, doi:10.1186/1556-276X-6-408.

118. Díaz-Valencia, B.F.; Porras-Montenegro, N.; Oliveira, O.N.J.; Mejía-Salazar, J.R. Nanostructured Hyperbolic Metamaterials for Magnetoplasmonic Sensors. *ACS Appl. Nano Mater.* **2022**, *5*, 1740–1744, doi:10.1021/acsannm.1c04310.

119. Maccaferri, N.; Berger, A.; Bonetti, S.; Bonanni, V.; Kataja, M.; Qin, Q.H.; van Dijken, S.; Pirzadeh, Z.; Dmitriev, A.; Nogués, J.; et al. Tuning the Magneto-Optical Response of Nanosize Ferromagnetic Ni Disks Using the Phase of Localized Plasmons. *Phys. Rev. Lett.* **2013**, *111*, 167401, doi:10.1103/PhysRevLett.111.167401.

120. Damasceno, G.H.B.; Carvalho, W.O.F.; Cerqueira Sodré, A.J.; Oliveira, O.N.J.; Mejía-Salazar, J.R. Magnetoplasmonic Nanoantennas for On-Chip Reconfigurable Optical Wireless Communications. *ACS Appl. Mater. Interfaces* **2023**, *15*, 8617–8623, doi:10.1021/acsami.2c19376.

121. Royer, F.; Varghese, B.; Gamet, E.; Neveu, S.; Jourlin, Y.; Jamon, D. Enhancement of Both Faraday and Kerr Effects with an All-Dielectric Grating Based on a Magneto-Optical Nanocomposite Material. *ACS Omega* **2020**, *5*, 2886–2892, doi:10.1021/acsomega.9b03728.

122. Belotelov, V.I.; Kreilkamp, L.E.; Akimov, I.A.; Kalish, A.N.; Bykov, D.A.; Kasture, S.; Yallapragada, V.J.; Venu Gopal, A.; Grishin, A.M.; Khartsev, S.I.; et al. Plasmon-Mediated Magneto-Optical Transparency. *Nat. Commun.* **2013**, *4*, 2128, doi:10.1038/ncomms3128.

123. Singh, R.S.; Sarswat, P.K. From Fundamentals to Applications: The Development of Magnetoplasmonics for next-Generation Technologies. *Mater. Today Electron.* **2023**, *4*, 100033, doi:https://doi.org/10.1016/j.mtelec.2023.100033.

124. Firby, C.J.; Elezzabi, A.Y. Magnetoplasmonic Isolators Utilizing the Nonreciprocal Phase Shift. *Opt. Lett.* **2016**, *41*, 563, doi:10.1364/ol.41.000563.

125. Zvezdin, A.K.; Kotov, V.A. Modern Magnetooptics and Magnetooptical Materials. *Mod. Magnetooptics Magnetooptical Mater.* **1997**, doi:10.1887/075030362x.

126. Shimizu, H.; Nakano, Y. Fabrication and Characterization of an InGaAsp/InP Active Waveguide Optical Isolator with 14.7 DB/Mm TE Mode Nonreciprocal Attenuation. *J. Light. Technol.* **2006**, *24*, 38–43, doi:10.1109/JLT.2005.861135.

127. Van Parys, W.; Moeyersoon, B.; Van Thourhout, D.; Baets, R.; Vanwolleghem, M.; Dagens, B.; Decobert, J.; Le Gouezigou, O.; Make, D.; Vanheertum, R.; et al. Transverse Magnetic Mode Nonreciprocal Propagation in an Amplifying AlGaInAs/InP Optical Waveguide Isolator. *Appl. Phys. Lett.* **2006**, *88*, 71115, doi:10.1063/1.2174106.
128. Yokoi, H.; Mizumoto, T.; Shoji, Y. Optical Nonreciprocal Devices with a Silicon Guiding Layer Fabricated by Wafer Bonding. *Appl. Opt.* **2003**, *42*, 6605, doi:10.1364/ao.42.006605.
129. Tien, M.-C.; Mizumoto, T.; Pintus, P.; Kromer, H.; Bowers, J.E. Silicon Ring Isolators with Bonded Nonreciprocal Magneto-Optic Garnets. *Opt. Express* **2011**, *19*, 11740, doi:10.1364/oe.19.011740.
130. Magno, G.; Yam, V.; Dagens, B. Integrated Magneto-Plasmonics for Non-Reciprocal Optical Devices. In Proceedings of the ECIO, Session M2: Advanced Materials; Eindhoven, Nederlands, 2017.
131. Abadian, S.; Magno, G.; Yam, V.; Dagens, B. Integrated Magneto-Plasmonic Isolation Enhancement Based on Coupled Resonances in Subwavelength Gold Grating. *Opt. Commun.* **2021**, *483*, 126633, doi:<https://doi.org/10.1016/j.optcom.2020.126633>.
132. Belotelov, V.I.; Akimov, I.A.; Pohl, M.; Kotov, V.A.; Kasture, S.; Vengurlekar, A.S.; Gopal, A.V.; Yakovlev, D.R.; Zvezdin, A.K.; Bayer, M. Enhanced Magneto-Optical Effects in Magnetoplasmonic Crystals. *Nat. Nanotechnol.* **2011**, *6*, 370–376, doi:10.1038/nnano.2011.54.
133. Magno, G.; Grande, M.; Petruzzelli, V.; D’Orazio, A. Numerical Analysis of the Coupling Mechanism in Long-Range Plasmonic Couplers at 1.55 Mm. *Opt. Lett.* **2013**, *38*, 46–48.
134. Yang, R.; Wahsheh, R.A.; Lu, Z.; Abushagur, M.A.G. Efficient Light Coupling between Dielectric Slot Waveguide and Plasmonic Slot Waveguide. *Opt. Lett.* **2010**, *35*, 649–651, doi:10.1364/OL.35.000649.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.