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Abstract: This Article demonstrates how an eigendecomposition problem is inputted into a quantum circuit,
how gates are applied in the quantum circuit, and how the output measurements are the correct eigenvalues.
This process is known as quantum phase estimation (QPE). A quantum harmonic oscillator example, a
foundational quantum physical chemistry problem, is demonstrated within the context of QPE. A particle in a
box example, another quantum physical chemistry problem, may be solved by QPE with a caveat. These
examples are of the limiting cases of diagonal matrices. Future advances in taking matrix inverses for solving
linear sets of equations or finding ground state energies in the Schrodinger equation will use the principles
implemented in this Article.
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Introduction

The nascent quantum computing field has a number of theoretical algorithms proposed in recent
decades, some with a supreme advantage over conventional computers at their specific tasks.[1-4]
The Shor algorithm[3] that can factor large numbers rapidly, breaking current RSA encryption. RSA
encryption relies on current computers, even the world’s most powerful, taking far too long, on the
timescale of years, to break. However, there exist two extremely powerful applications of quantum
computing to physical chemistry, the first of which would entirely transform the field. This
application is exactly solving for the ground state energy of the Schrodinger equation for quantum
systems.[5,6] The second is solving linear sets of equations which arise in chemical kinetics.[7] Rapid
solutions to large linear systems of equations would advance chemical kinetics modeling.[7-10]

Quantum computers have been shown, in principle, to achieve accurate solutions to the
Schrodinger equation for molecules in far less time than needed for equivalent calculations from
current and planned exascale computing. In additional to hardware development of quantum
computers, programming implementations are necessary to achieve the promise of rapid and nearly
perfect quantum mechanical computations with quantum computers. Once achieved, though, such a
technology will utterly change the face of the computational chemistry field, because the equilibrium
concentrations and rate of any chemical reaction could be reliably known prior to experiment.[1]

The quantum computer solves the Schrodinger eigendecomposition problem.[11,12] If only the
ground state energy (eigenvalue of the Schrodinger equation), and not the wavefunctions
(eigenvectors) can be precisely obtained at various ionic positions, a variational quantum algorithm
could be employed.[13,14] The movement of the ions would be conducted with a classical algorithm,
for example conjugate gradient, and the ground state energy would be obtained with a quantum
computer.[15,16] This separation is allowed by the Born-Oppenheimer approximation.

An example experimental validation of a quantum computing solution to the Schrédinger
equation is the overall reaction energy of the water-gas shift reaction (WGS). The overall reaction
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energy has been experimentally measured,[17] and a prediction from a quantum computer could be
immediately checked. WGS is the leading industrial reaction for producing hydrogen.[18,19] Once
validated for accuracy, the goal of solving the Schrodinger equation will be to predict the exact
reaction mechanism for any catalyst, at the molecular scale. That way, computational screening of
catalysts would be far more tractable and rapid. For example, the exact mechanism of WGS is still
not known for certain on the least complex single crystal precious metal catalysts. The molecular
catalytic reaction mechanism underpins any improvements in catalyst design. Quantum computing
would provide the speedup and accuracy to change this situation in the computational catalysis field.

The current leading computational catalysis method for finding molecular reaction mechanisms
is density functional theory (DFT). DFT places all the uncertain part of the Schrodinger equation into
a function of the electron density function of space.[20,21] A function of a function is known as a
functional. The electron density field is changed over iterations until it is self-consistent, meaning the
Schrodinger equation is satisfied, for that particular functional of electron density.[22,23]

The quantum computation of the Schrodinger equation is fundamentally different from its
computation with DFT. In a quantum computer, the quantum phase estimation (QPE) circuit[24]
extracts the energy levels which are the eigenvalues of the Schrodinger equation for a molecule, solid-
state material or any many-body set consisting of nuclei and electrons. The challenge lies in
expressing the Hamiltonian operator (left-hand side of Schrédinger equation) containing the kinetic
energy and potential energy operators, in the acceptable format of QPE. The acceptable format is an
exponential of a Hermitian matrix representing the Hamiltonian operator.[25] Current approaches
include split-operator techniques[12] and Taylor series approximations[11,26].

Density functional theory

The time-independent Schrodinger equation which governs elementary particles (electrons and
nuclei in the context of physical chemistry) is,

H|Y) = E|¥) (1)

H is the Hamiltonian operator. An operator takes one function and returns another function. Unlike
matrix algebra, in which a multiplication is taken across a matrix row, down a vector, and summed,
an operator, denoted by a hat, a , takes the wave function W, and changesit. ¥ is the wavefunction
of all the electrons. ¥ takes in position and returns wave amplitude. E is the energy, and it is a
scalar number.

In broad terms, the Hamiltonian operator consists of a kinetic energy operator and a potential
energy operator. The kinetic energy operator performs a second-order partial derivative on the
wavefunction with respect to space (the V operator). The potential energy operator term of the
Hamiltonian operator multiplies the potential energy function dependent upon vector variables for
each elementary particle by the wavefunction. The potential energies are the coulombic potential
energy of each elementary particle due to each of the other elementary particles. The difficulty in
computation is that the positions of the elementary particles are variables and not constants. The
result is analytical solutions become too large to solve.

Density functional theory (DFT) gets around analytical solutions with a numerical approach. To
begin with, an amplitude is initiated at each point in space. This is a (wave)function because it takes
in a location and returns an amplitude.[21] A functional takes the field and changes it.[23] Since it is
a function of a function, it is called a functional. DFT derives its name from functionals of the electron
density field. (The electron density is the square of the wavefunction amplitude).

Hohenberg,[21] Kohn and Sham[20,23] separate out the Hamiltonian as,

E=Jv@ndr+1/ ”(l’f_—"r(,rl')drdr' +G[n] )

The first term in equation 2 is the static potential energy of each electron in an interacting
inhomogeneous electron gas. The potential energy is static because it is due to unmoving nuclei (the
Born-Oppenheimer approximation allows this separation). v(r) is the potential function of r, the
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vector indicating position of an electron. n(r) is the density of the electron gas at position r. The
second term in equation 2 is the potential energy due to one position in the electron density field due
to another position in the electron density field.

G[n] is functional (function of a function of position) of the electron density. G[n] is split into
two terms,

G[n] = Ts[n] + Exc[n] (3)

Ts[n] is the kinetic energy functional. E,.[n] is the exchange-correlation functional. First, the kinetic
energy functional, besides multiplication by constants, takes the second derivative (the momentum
operator). There are numerical methods for taking the second derivative at all points in a field.
Second, the exchange-correlation functional accounts for two electronic energies that arise. The
exchange energy is the stabilization due to electrons being able to exchange among equal energy (also
known as degenerate) orbitals. For example, the three p orbitals are at the same energy level, and
electrons may exchange between those three. The correlation energy correction is phenomena of how
the electrons of a system interact with each other. Further explanation of electron correlation energy
is outside of the scope of this article. With all the Hamiltonian operation on the electron density field
in place, the field can be changed during numerical iterations to find a self-consistent field. The self-
consistent field satisfies the Schrodinger equation for the guessed functional form of electron density
for the exchange-correlation energy.

Quantum computing will not work with a guess of the functional form of electron density for
the exchange-correlation energy, but rather return to accounting each electron and nucleus with their
entangled wavefunctions. Within quantum phase estimation (QPE), the analytical form of the
wavefunction will likely remain unknown and unmeasurable. However, the ground state energy, or
the phase of the Hamiltonian operator, is the most crucial information.

Quantum phase estimation

QPE is the quantum computing algorithm which solves eigendecomposition problems and
underpins many of the prominent quantum algorithms.[27-29] QPE extracts the eigenvalues and
eigenvectors of a unitary matrix, U. Matrices are in bold font. A unitary matrix times its complex
conjugate transpose, by definition, is equal to the identity matrix. For example,

U =U0'U=1 “4)

Here, U" is the complex conjugate transpose of U. I is the identity matrix. By contrast, a
Hermitian matrix is equal to its complex conjugate transpose, and the asterisks could be removed
from equation 4. A Hermitian matrix is therefore necessarily also unitary. The eigenvalues of a
unitary matrix have a norm, or length, of one. The non-complex equivalent of a unitary matrix is an
orthonormal matrix. Fortunately, quantum computing gates are square, and the complex conjugate
transpose is the inverse, which does not hold true for non-square matrices.

The eigenvectors of a unitary matrix are orthogonal to each other. The significant outcome of
this property is that the eigenvalues preserve the overall lengths of the eigenvectors. This property
harks back to the probabilities of all the computational bases of qubits, i.e. possible bitstrings
measured, summing to one. This property of unitary matrices is known as length preservation. The
vector of qubits maintains unit length.

The eigendecomposition equation for U which is executed by QPE is,

U|¥) = e*™0|p) (5)

In equation 2, the eigenvector is W). The ket notation may be perceived as a vertical vector, the matrix
mechanics equivalent. A matrix multiplication is denoted by | in bra-ket notation. The imaginary
number is denoted i, where i = V—1. Equation 5 is set up specifically with the special case of the
eigenvalues being of the form e?™?. For any matrix containing any eigenvalues and eigenvectors,
further preparation is necessary to arrive at the form of equation 5. These preparations vary by the
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type of matrix,[30] are outside the scope of this Article. Nonetheless, § may be thought of as
containing the eigenvalues of a matrix which has been transformed to U. § may be also be
considered converted to radians (unitless) by the multiplicative constant 2w in equation 5.

The eigenvalues in equation 5 will always lie on the complex unit circle as visualized in Figure
la. On the complex plane, e is always length 1. The length of a complex number is VRe? + Im?,
where Re is the real part and Im is the imaginary part. For example, e?™® always contains only

real parts when 6 is a multiple of g (pointing to the left perfectly horizontal). The eigenvalues of

equation 5 are unit vectors on the complex plane.

T
Im Imi2
i A
1 an 4 in
cos(8) + isin(8) 4 N v = i -
@Ti\, Ccos (Z) + isin (Z)
T a i
1 Re NI Re
3
5_, 7m
% 4
3
2

Figure 1. (a) Complex number plane and Euler’s identity. (b) One eighth, %, rotation about the

complex unit circle corresponds to es.

A unitary matrix has advantages in calculation. The dot products of the column vectors of U
are zero (inner product) except when dotted with itself, in which case it is 1. This property may be
demonstrated with the following unitary matrix and its complex conjugate,

I

= (62)
—eif 1 ol0 1
2 2
1 _ elf \/1
" 2 2
ur = (6b)
1 Lo \F
2 2
For demonstration purposes, U may be written as two orthonormal vectors:
U=[th U] (7)
Then, the property of unitary matrices is checked:
U u u - u
U*U = [ul- 1 1. 2] 8)
27U Uz U

The dot product equaling 1 establishes unit length of the vector. This check is analogous to the norm,
in which the algebra is the same. Taking u;:

2
1 o 1
U uy = luyll = < E) + <—ele\/;>

2

_ \/% + (+e(i—i)e %) =1 9)
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In equation (6), when the norm (length) of a complex number is taken, the complex conjugate
(opposite sign imaginary part) is multiplied with the original complex number.

A unitary matrix with known eigenvalues and eigenvectors may be created. For example, 6 =
%,z. The eigenvalues are placed in the diagonals of the A matrix.

3mi

3 Loar1 o 1le™ o liqt —17 _1fem ez |1 -1
b =UAU ‘5[—1 1”0 6%15[1 11‘5[ o [1 1] (102)
—e ez
i S i int
D= Tl T (10b)
—e+ez2  e"tez
The eigenvalues and eigenvectors of matrix D are then,
3 3mi
Al =e™ AZ =ez (lla)
_171 _171
Y P am

In QPE, the eigenvalues of U are “kicked back” in a Fourier basis, which are extracted by an inverse
quantum Fourier transform.[31] The eigenvalues, e2m are kicked back in this way. A quantum

Fourier transform (QFT), those eigenvalues are converted back to 8’s.

LT
A scalar example of e+ is considered (1x1 matrix). This is a rotation of % around the complex

unit circle, as seen in Figure 1b. Therefore, the value of 8 is,
1
0= 3 (12)

When applied as a gate in a quantum circuit in QPE, the U matrix is made into a controlled-U
matrix. The control is created by adding the identity matrix, I, to the upper left block, and the U
matrix to the lower-right block. The upper-right and lower-right blocks of this CU matrix are zeroes.
The “controlled” term means that a qubit controls whether or not the gate is applied to another qubit.
In QPE, the control qubits are the qubits onto which the phase, or eigenvalue, is kicked back. In the
simplifying case of a scalar, the CU matrix is dimension 2x2, with a one in the upper left, and the
scalar in the lower-right.
This CU matrix is for the 6 in equation 12 is,

1 0
CU = [ g] (13)
0 es
To begin QPE, Hadamard gates, H, are applied to each of the qubits.
_1m 1
H=% [1 —1] (14

The Hadamard gate happens the same as the 2-dimensional discrete Fourier transform gate.[32] Each
qubit of the compute register will receive the CU matrix 29 number of times, where q is the qubit
number. The zeroeth qubit will receive the CU matrix once, the first qubit will receive the CU
matrix twice, and the third qubit will receive the CU matrix four times. These gates and their number
of repetitions are shown in Figure 2.
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Figure 2. Reading out the eigenvalues at intervals of 8 = % from the matrix U, the lower right block
of the controlled CU. On the zeroeth qubit, q,, the CU matrix is applied once (2° = 1). On the first
qubit, CU is applied twice, and for the second qubit it is applied four times. QFT' is the inverse
QFT. The measurements corresponding to 6 are listed in Table 1.
Table 1.
measurement 000 001 010 011 100 101 110 111
1 1 3 1 5 3 7
0 0 - - - - - - -
8 4 8 2 8 4 8
Next, an inverse QFT, QFT*, block of gates converts the eigenvalue, in the format of e¢*™ to

the format from which 8 may be measured as a computational basis (bitstring). The (forward) QFT
block applies the discrete Fourier transform matrix. Here is a 2-dimensional QFT matrix,

_ 1 1 1 _ _2mi _
W—\/_—N[l w]a)—e_NN—Z (15a)
W—\/_—z[l _1]w_e =-1 (15b)

The result of m radians on the complex unit circle equaling -1 may be observed from Figure 1. Figure
3a displays m rotation with the g allowed steps due to the maximum precision of 3 qubits. Figure 4

displays the measurement when the precise m rotation is taken. Figure 4 displays how the
probability is distributed among possible measurements when a rotation is not on the increments
allowed by the precision due to the number of qubits. W is the QFT matrix. w is the Nth root of
unity, and—1? = 1. N is the dimension.

(a) (b)

Figure 3. Precision of rotations around the complex unit circle for 3 qubits. % = %. (a) m rotation will
result in a precise probability during measurement (Figure 4). (b) A rotation not on the allowed

increments will distribute probability among possible measurements (Figure 5).
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Figure 4. The harmonic oscillator eigenvalue(s) are measured in the quantum circuit. Due to the
precise setup, the probability of reading the eigenvalue(s) correctly are 100%. Checking with Table 1
of the main text, the bitstring 100, corresponds to %, the lowest energy harmonic oscillator. The
infinitely higher energies of the harmonic oscillator each add 2, one full revolution to the complex
unit circle. Therefore, the measured bitstring will always be the same for any of those infinite number
of energy levels for the harmonic oscillator.
The QFT gate for 3 qubits (example here) has dimension 8x8.[32]
1 1 1 1 1 1 1 1 1
1 o' 0w 0 0wt 0w 0w W
1 (1)2 (1)4 (1)6 (1)8 (1.)10 (1)12 (1)14
1 0w w 0w o? o?® ® w?! _2m 2 2
QFT = 4 8 12 16 20 24 28| W =€ N=8 =———= (16a)
1 w w w w w w w 2 2
1 (1)5 (1.)10 (1)15 (1)20 (1)25 (1)30 (1)35
1 (4)6 (4)12 (1)18 (1)24 (1)30 (L)36 (1)42
L1 (1)7 (1.)14 le (1)28 (1)35 (1)42 (1)49
1 1 1 1 1 1 1 1 1
1 w - —iw -1 —-w i iw
1 —-i -1 i 1 —i -1 i
1 —iw 1 w -1 iw - —-w
FT = 16b
Q 1 -1 1 -1 1 -1 1 -1 (16b)
1 —ow —-i iw -1 w i —iw
1 i -1 =i 1 i -1 =i
= B 17)) i —-w -1 —iw —i w -

This gate is not directly applied to the three qubits. There are a number of gates applied in

sequence.[7]
Finally, the measurements output computational bases or bitstrings. Each qubit, when
measured, collapsestoa 0 or 1. Since,

0<6<1 (17)
the intervals of 8 which result in exact computational bases are,

0=—=-: (18)
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The values of 6 and their corresponding computational basis are listed in Table 1. A count in binary
numbers is spread over the interval of equation 17. When an eigenvalue is not precisely a multiple of
the value in equation 18, the probability is spread among computational bases (Figure 5). Statistical
sampling of the quantum circuit is accomplished via multiple shots of the circuit. The precision is
doubled with each extra qubit, as shown in equation 18, although the gate depth also increases, which
is a hardware consideration.

/3

0.7 1
0.6 1
0.5 1
oy
S 04 1
2
0.3 1
=
0.2 4
0.1 1
00 -
Q — g : =] Pt =] -
8 S o o =] = - =
bitstrings

Figure 5. A non-precise step in the complex unit circle is g The exact steps are %271, where t is the

. e . 1
total number of qubits. Therefore, probability is spread over multiples of —.

This example has disregarded matrices with eigenvalues not on the complex unit circle, i.e.
eigenvalues which are not of the format 2™ In fact, the U matrix is constructed from an original
matrix which is necessarily Hermitian.[32,33] There is a block matrix form which can make any
matrix Hermitian which doubles the matrix dimensions. 4 is an original Hermitian matrix. U is,

U = eiA2m (19)

The eigenvalues are then in the complex unit circle format, e?™®, where 6 was the original

eigenvalue before exponentials were taken. There is an expense in taking the matrix exponential.
There is a form of the Euler identity which can be applied to exponentials,[34] but there will be
computational cost in terms of taking sines and cosines. There is also an infinite series expansion of
the matrix exponential, which may be truncated.[30] Obtaining the matrix exponential is left out of
the scope of this Article.

Particle in a box

Returning to the Schodinger equation (equation 1), the Hamiltonian operator[35] for a single
particle is expanded to yield,[36]

- L0 - VP = Bp@) 20)

h is the reduced Planck’s constant. Instead of mass m, a reduced mass is used to combine the mass
of the nucleus and electron into one constant. Reduced mass, y, is defined as u = % .M refers to
the mass of the nucleus, and m is the mass of the electron. (r) is the wavefunction of a single
particle. In the particle in a box example, only the Cartesian x dimension is retained.

The problem is visualized as a single subatomic particle sandwiched between two parallel
infinite barriers of infinitely high potential, where the subatomic particle cannot be. The constant
potential is also set to zero, which causes only the kinetic energy to remain in the Hamiltonian
operator.
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V(r) =Vo(r) =0 21)

Equation 20 is then:

~ 22 p() = Bp) (22)

2m 0x?

The analytical solution requires conceiving of a function for ¥ (x) such that the left-hand side
of equation 22 yields the original ¥(x) times some constant, which will be the value of E. The
solution for ¥ (x), which is not immediately derived but can be shown to be correct (known as an
ansatz), is,

Y(x) = Asin(kx) + Bcos(kx) (23)

A,B and k are constants to be obtained shortly. Necessary boundary conditions for solving the

particle in a box problem are that the amplitude of the wavefunction must be equal to zero at the

walls. Assume the walls tobe at 0 and L.
x=0;¢Y(x)=0
{x =L;yp(x)=0

Since the interpretation of the wavefunction is that its square provides the probability of the particle

(24)

being in the position x. Therefore, according to equation 24, the particle has zero probability of being
at the walls.
First, k is solved for. The position of x = 0 is selected to eliminate a term.

Y(0) = Asin(0) + Bcos(0) =0 (25)

In equation 25, sin(0) = 0, but cos(0) = 1. Therefore, B = 0 by necessity of satisfying the equation
at the boundary condition of x = 0. The wavefunction is reduced to,

Y(x) = Asin(kx) (26)
Derivatives of the wavefunction are obtained for further determination of the constants.
dw(x) = kAcos(kx) (27a)
Y& _ 240
— = k*Asin(kx) (27b)

In the right-hand side of equation 27b, the original (x) = Asin(kx) reappeared. Multiple
derivatives of the sine and cosine functions repeat in a known cycle. Therefore,
Y _ g2
P = —ky(x) (28)

2
The second derivative of ¥ (x) withrespectto x, = dll;(ZX)’ is substituted into the Schrodinger equation

for the particle in a box problem (equation 22).

~ 2 (k) = Ep) (292)

(k) =E (29b)

2mE

k= Y;

(29¢)

As aside note, 1 = % Plugging k into the wavefunction leaves only A unknown,

Y(x) = Asin (J??x) (30)
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The other boundary condition provides a route.
W) =0= Asin< Zh"‘f L) (31)

Equation 31 is only zero (disregarding the unproductive A = 0 case), when the sine is some integer
times m.

2mE
h2

/2;';5 = "L—” (33b)

In equation 32a, n is not zero, because the equation would not be balanced in that case. The left-
hand side of equation 33b fits into equation 30, yielding,

Y(x) = Asin (nL—n x) (34)

The probability of the particle being anywhere along the x dimension must total one. In
mathematical terms, the integral of the probability must equal one. This is known as normalizing the
wavefunction. Normalization is expressed,

L=nm;n=123..,0 (32a)

[0 de =1 (352)

42 [y sin? (%) dx = 1 (35b)

The solution to the integral is lengthy. However, it has been previously solved[37] and the solution

A2 (g) =1, A= \E (36)

The wavefunction now has no unknown constants:

Y(x) = \E sin (nL—” x) (37)

Equation 37 may now be substituted in equation 22,

—iaa—;[\/%sin (nL—nx)l = E\/%sin (nL—nx) (38a)

2 [t ) \Em(’l_ﬂx) (38b)

is,

2mA/L L2 L
2 2.2
e (38¢)
hZ 2.2
= an; (384d)

Since the eigenvalue problem is solved, the constant when n = 1 may be placed in the lower right
of a 2x2 controlled unitary matrix. The controlled unitary matrix, CU, would then be,

1 0

cuz[o J2miE (39a)

=" " 39b
= 252

0 eZTL'iZthT ( )

When n = 2, the quantity in the lower right-corner is exactly 4 times the current value. Since E
increases by integer multipliers, and since there is a 2 factor before E, representing exactly one
revolution around the complex unit circle, the eigenvalue measured by QPE will always be precisely
the same for all energy levels. Le., for any correct energy level, QPE will measure out the correct
eigenvalue, or phase. However, there is some information loss, because the allowed energies scale by

doi:10.20944/preprints202310.1030.v1
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n?. Any integer multiplier will return the correct-appearing result due to the 27 factor conducting
precisely one revolution. Therefore, any n would be indistinguishable from the correct n? in this
QPE arrangement. The quantum harmonic oscillator, exhibited below

Harmonic oscillator

The harmonic oscillator has a symmetric potential energy which allows for an analytical solution
to its energy levels (eigenvalues) and wavefunctions (eigenvectors). The Schrodinger equation with
the Hamiltonian operator expanded for the harmonic oscillator example is,

RC)
2m  dx?

+mw?x?p(x) = Ep(x) (40)

The wavefunction, (x), is not derived here, but the correct guess is,

Y(x) = Cexp (—asz) 41)

C and «a are constants. Equation 41 is in the form of a gaussian function, and the tails of a gaussian
function diminish to zero. This fact signifies that the wavefunction may be normalized, as essential
criteria. Not fully shown here, the constant C cancels in the Schrodinger equation, via an exponent
by becoming e°. There remain x?1(x) polynomial termsand ¥(x) terms in the analytical solution.
The x?1(x) coefficients are set equal to obtain a = m—:) The (x) coefficients being equal yields,

M=E (42a)

Ao (n + %) —E (42b)

Equation 42b also satisfies the Schrodinger equation when multiplied by the integer n = 0,2,3 ... 00,
though the proof of this is not included in this Article. (The wavefunction also includes n in these
other higher-energy solutions.) # is the reduced Planck’s constant, and w is the angular velocity,
also assumed constant. Both sides of the eigendecomposition equation may be divided by a scalar,
hw. When placed on the complex unit circle, a full revolution occurs after 1, because of the
multiplicative 2m factor. Therefore, only the scalar % is necessary. When the measured

computational basis is 100, or 6 = i, the solution may be,
1
E = 2 +n;, n=012,..,0 (43)

n is an integer. For example, %, m on the complex unit circle, is place exactly at %, also m on the
complex unit circle. The matrix exponential is taken of %, and the control block is added. The CU

matrix is then very similar to the previous CU matrix of equations 13 and 39:

0

t
cu_[0 in (44)

The result, after matching with Table 1, will be multiplied by the constant Aw. Figure 4 shows the
measurements from the code implementation of QPE. Subsequent to publication, all code will be
made publicly available at https://bitbucket.org/ericawalk/ oscillator/src/master/.

Hydrogen atom and larger

The hydrogen atom does include potential energy that is nonzero and dependent upon position,
specifically radial distance from the nucleus. Le., it is more complex than the quantum harmonic
oscillator example which experiences symmetric potential energy allowing for an analytical solution.
For one electron in a hydrogen atom, the coulombic potential energy function is,[35]

Ze?

4TEGT

V(r) =—

(45)
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Z =1 is the charge of the nucleus. e? =1 is the charge of the electron. ¢, is the permittivity of a
vacuum. Permittivity is a measure of how much an electric field can permeate a vacuum. r is the
same spatial coordinate, radius.

The energy levels may be analytically solved in a lengthy procedure left out of the scope of this
work. The final energy levels of the hydrogen atom are,
uz?e*m?

2€3h2n?

E=-— (46)

In the case of equation 46, the energy levels scale as %, and therefore do not repeat at constant integer

intervals. Therefore, for QPE, the various E’s for various n’s would have to be entered into the
matrix diagonal. The dimension of the matrix inputted into QPE would increase with every new
energy level, and many distinct eigenvalues would be measured. The ground-state energy, when
n = 1, could be placed in a CU matrix and be measured, although the same may be said for nearly
any number which follows certain conditions. The advantage of a quantum computer would come
in solving multi-electron potential energy rather than the hydrogen atom.

The challenge exists in expressing the coulombic energies among multiple electrons in the
potential energy function in a format for QPE. The positions of the electrons are not known and are
left as variables in the multi-electron potential energy function. As put forward by Aspuru-Guzik, et
al.,[12] every entangled qubit state can represent a point in space. Then, the electronic structure may
be tracked over a very short time to obtain the ground state energy. Future work will be writing
Hamiltonians as numerical matrices via a finite difference method over the space. With a fine enough
mesh due to a large number of entangle qubit states, greater and greater accuracy will be achievable.
It is very likely that the matrix exponential via truncated Taylor series approach for quantum
computing as demonstrated by Berry, et al.[11,26] will be employed on numerical Hamiltonian
matrices. Another related option is to apply full configuration interaction up to a limit of number of
electrons (and nuclei).[38,39] A remarkable advantage of quantum computing which has not been
available thus far via analytical analysis, is that the wavefunction need not be measured, only the
ground state energy.

Conclusions

In order for quantum computers to effect breakthroughs in physical chemistry, the rudiments of
algorithms and, equally important, extracting the result, must be rigorously developed and
demonstrated. In addition to the quantum harmonic oscillator example, this Article has
demonstrated how eigenvalues may be placed in the complex unit circle along with the subsequent
steps in measuring out those eigenvalues. While run on a quantum circuit simulator, a quantum
computer without noise is predicted to also exactly solve the quantum harmonic oscillator problem
in the same way as the simulator employed in this Article. With further programming
implementation of many-body quantum systems, the power of quantum computing will be fully
harnessed for physical chemistry, and if the hope becomes true, surpass even the most accurate
modern computational methods in the field.
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