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Abstract: This Article demonstrates how an eigendecomposition problem is inputted into a quantum circuit, 

how gates are applied in the quantum circuit, and how the output measurements are the correct eigenvalues. 

This process is known as quantum phase estimation (QPE). A quantum harmonic oscillator example, a 

foundational quantum physical chemistry problem, is demonstrated within the context of QPE. A particle in a 

box example, another quantum physical chemistry problem, may be solved by QPE with a caveat. These 

examples are of the limiting cases of diagonal matrices. Future advances in taking matrix inverses for solving 

linear sets of equations or finding ground state energies in the Schrödinger equation will use the principles 

implemented in this Article. 

Keywords: quantum computing; quantum algorithms; quantum phase estimation; quantum 

computer simulator; quantum phase estimation; education 

 

Introduction 

The nascent quantum computing field has a number of theoretical algorithms proposed in recent 

decades, some with a supreme advantage over conventional computers at their specific tasks.[1–4] 

The Shor algorithm[3] that can factor large numbers rapidly, breaking current RSA encryption. RSA 

encryption relies on current computers, even the world’s most powerful, taking far too long, on the 

timescale of years, to break. However, there exist two extremely powerful applications of quantum 

computing to physical chemistry, the first of which would entirely transform the field. This 

application is exactly solving for the ground state energy of the Schrödinger equation for quantum 

systems.[5,6] The second is solving linear sets of equations which arise in chemical kinetics.[7] Rapid 

solutions to large linear systems of equations would advance chemical kinetics modeling.[7–10] 

Quantum computers have been shown, in principle, to achieve accurate solutions to the 

Schrödinger equation for molecules in far less time than needed for equivalent calculations from 

current and planned exascale computing. In additional to hardware development of quantum 

computers, programming implementations are necessary to achieve the promise of rapid and nearly 

perfect quantum mechanical computations with quantum computers. Once achieved, though, such a 

technology will utterly change the face of the computational chemistry field, because the equilibrium 

concentrations and rate of any chemical reaction could be reliably known prior to experiment.[1] 

The quantum computer solves the Schrödinger eigendecomposition problem.[11,12] If only the 

ground state energy (eigenvalue of the Schrödinger equation), and not the wavefunctions 

(eigenvectors) can be precisely obtained at various ionic positions, a variational quantum algorithm 

could be employed.[13,14] The movement of the ions would be conducted with a classical algorithm, 

for example conjugate gradient, and the ground state energy would be obtained with a quantum 

computer.[15,16] This separation is allowed by the Born-Oppenheimer approximation. 

An example experimental validation of a quantum computing solution to the Schrödinger 

equation is the overall reaction energy of the water-gas shift reaction (WGS). The overall reaction 
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energy has been experimentally measured,[17] and a prediction from a quantum computer could be 

immediately checked. WGS is the leading industrial reaction for producing hydrogen.[18,19] Once 

validated for accuracy, the goal of solving the Schrödinger equation will be to predict the exact 

reaction mechanism for any catalyst, at the molecular scale. That way, computational screening of 

catalysts would be far more tractable and rapid. For example, the exact mechanism of WGS is still 

not known for certain on the least complex single crystal precious metal catalysts. The molecular 

catalytic reaction mechanism underpins any improvements in catalyst design. Quantum computing 

would provide the speedup and accuracy to change this situation in the computational catalysis field.  

The current leading computational catalysis method for finding molecular reaction mechanisms 

is density functional theory (DFT). DFT places all the uncertain part of the Schrödinger equation into 

a function of the electron density function of space.[20,21] A function of a function is known as a 

functional. The electron density field is changed over iterations until it is self-consistent, meaning the 

Schrödinger equation is satisfied, for that particular functional of electron density.[22,23]  

The quantum computation of the Schrödinger equation is fundamentally different from its 

computation with DFT. In a quantum computer, the quantum phase estimation (QPE) circuit[24] 

extracts the energy levels which are the eigenvalues of the Schrödinger equation for a molecule, solid-

state material or any many-body set consisting of nuclei and electrons. The challenge lies in 

expressing the Hamiltonian operator (left-hand side of Schrödinger equation) containing the kinetic 

energy and potential energy operators, in the acceptable format of QPE. The acceptable format is an 

exponential of a Hermitian matrix representing the Hamiltonian operator.[25] Current approaches 

include split-operator techniques[12] and Taylor series approximations[11,26]. 

Density functional theory 

The time-independent Schrödinger equation which governs elementary particles (electrons and 

nuclei in the context of physical chemistry) is, 𝐻̂|Ψ⟩ = 𝐸|Ψ⟩        (1) 𝐻̂ is the Hamiltonian operator. An operator takes one function and returns another function. Unlike 

matrix algebra, in which a multiplication is taken across a matrix row, down a vector, and summed, 

an operator, denoted by a hat, ̂ , takes the wave function Ψ, and changes it. Ψ is the wavefunction 

of all the electrons. Ψ takes in position and returns wave amplitude. 𝐸 is the energy, and it is a 

scalar number.  

In broad terms, the Hamiltonian operator consists of a kinetic energy operator and a potential 

energy operator. The kinetic energy operator performs a second-order partial derivative on the 

wavefunction with respect to space (the ∇ operator). The potential energy operator term of the 

Hamiltonian operator multiplies the potential energy function dependent upon vector variables for 

each elementary particle by the wavefunction. The potential energies are the coulombic potential 

energy of each elementary particle due to each of the other elementary particles. The difficulty in 

computation is that the positions of the elementary particles are variables and not constants. The 

result is analytical solutions become too large to solve.  

Density functional theory (DFT) gets around analytical solutions with a numerical approach. To 

begin with, an amplitude is initiated at each point in space. This is a (wave)function because it takes 

in a location and returns an amplitude.[21] A functional takes the field and changes it.[23] Since it is 

a function of a function, it is called a functional. DFT derives its name from functionals of the electron 

density field. (The electron density is the square of the wavefunction amplitude).  

Hohenberg,[21] Kohn and Sham[20,23] separate out the Hamiltonian as, 𝐸 = ∫ 𝑣(𝒓)𝑛(𝒓)𝑑𝒓 + 12 ∫ ∫ 𝑛(𝒓)𝑛(𝒓′)|𝒓−𝒓′| 𝑑𝒓𝑑𝒓′ + 𝐺[𝑛]    (2) 

The first term in equation 2 is the static potential energy of each electron in an interacting 

inhomogeneous electron gas. The potential energy is static because it is due to unmoving nuclei (the 

Born-Oppenheimer approximation allows this separation). 𝑣(𝒓) is the potential function of 𝒓, the 
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vector indicating position of an electron. 𝑛(𝒓) is the density of the electron gas at position 𝒓. The 

second term in equation 2 is the potential energy due to one position in the electron density field due 

to another position in the electron density field.  𝐺[𝑛] is functional (function of a function of position) of the electron density. 𝐺[𝑛] is split into 

two terms, 𝐺[𝑛] ≡ 𝑇𝑠[𝑛] + 𝐸𝑥𝑐[𝑛]       (3) 𝑇𝑠[𝑛] is the kinetic energy functional. 𝐸𝑥𝑐[𝑛] is the exchange-correlation functional. First, the kinetic 

energy functional, besides multiplication by constants, takes the second derivative (the momentum 

operator). There are numerical methods for taking the second derivative at all points in a field. 

Second, the exchange-correlation functional accounts for two electronic energies that arise. The 

exchange energy is the stabilization due to electrons being able to exchange among equal energy (also 

known as degenerate) orbitals. For example, the three 𝑝 orbitals are at the same energy level, and 

electrons may exchange between those three. The correlation energy correction is phenomena of how 

the electrons of a system interact with each other. Further explanation of electron correlation energy 

is outside of the scope of this article. With all the Hamiltonian operation on the electron density field 

in place, the field can be changed during numerical iterations to find a self-consistent field. The self-

consistent field satisfies the Schrödinger equation for the guessed functional form of electron density 

for the exchange-correlation energy. 

Quantum computing will not work with a guess of the functional form of electron density for 

the exchange-correlation energy, but rather return to accounting each electron and nucleus with their 

entangled wavefunctions. Within quantum phase estimation (QPE), the analytical form of the 

wavefunction will likely remain unknown and unmeasurable. However, the ground state energy, or 

the phase of the Hamiltonian operator, is the most crucial information. 

Quantum phase estimation 

QPE is the quantum computing algorithm which solves eigendecomposition problems and 

underpins many of the prominent quantum algorithms.[27–29] QPE extracts the eigenvalues and 

eigenvectors of a unitary matrix, 𝑼. Matrices are in bold font. A unitary matrix times its complex 

conjugate transpose, by definition, is equal to the identity matrix. For example, 𝑼𝑼∗ = 𝑼∗𝑼 = 𝑰       (4) 

Here, 𝑼∗  is the complex conjugate transpose of 𝑼 . 𝑰 is the identity matrix. By contrast, a 

Hermitian matrix is equal to its complex conjugate transpose, and the asterisks could be removed 

from equation 4. A Hermitian matrix is therefore necessarily also unitary. The eigenvalues of a 

unitary matrix have a norm, or length, of one. The non-complex equivalent of a unitary matrix is an 

orthonormal matrix. Fortunately, quantum computing gates are square, and the complex conjugate 

transpose is the inverse, which does not hold true for non-square matrices. 

The eigenvectors of a unitary matrix are orthogonal to each other. The significant outcome of 

this property is that the eigenvalues preserve the overall lengths of the eigenvectors. This property 

harks back to the probabilities of all the computational bases of qubits, i.e. possible bitstrings 

measured, summing to one. This property of unitary matrices is known as length preservation. The 

vector of qubits maintains unit length.  

The eigendecomposition equation for 𝑼 which is executed by QPE is, 𝑼|Ψ⟩ = 𝑒2𝜋𝑖𝜃|Ψ⟩       (5) 

In equation 2, the eigenvector is Ψ⟩. The ket notation may be perceived as a vertical vector, the matrix 

mechanics equivalent. A matrix multiplication is denoted by | in bra-ket notation. The imaginary 

number is denoted 𝑖, where 𝑖 = √−1. Equation 5 is set up specifically with the special case of the 

eigenvalues being of the form 𝑒2𝜋𝑖𝜃. For any matrix containing any eigenvalues and eigenvectors, 

further preparation is necessary to arrive at the form of equation 5. These preparations vary by the 
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type of matrix,[30] are outside the scope of this Article. Nonetheless, 𝜃  may be thought of as 

containing the eigenvalues of a matrix which has been transformed to 𝑼 . 𝜃  may be also be 

considered converted to radians (unitless) by the multiplicative constant 2𝜋 in equation 5.  

The eigenvalues in equation 5 will always lie on the complex unit circle as visualized in Figure 

1a. On the complex plane, 𝑒𝑖𝜃 is always length 1. The length of a complex number is √𝑅𝑒2 + 𝐼𝑚2, 

where 𝑅𝑒 is the real part and 𝐼𝑚 is the imaginary part. For example, 𝑒2𝜋𝑖𝜃  always contains only 

real parts when 𝜃 is a multiple of 
𝜋2 (pointing to the left perfectly horizontal). The eigenvalues of 

equation 5 are unit vectors on the complex plane.  

 

Figure 1. (a) Complex number plane and Euler’s identity. (b) One eighth, 
18 , rotation about the 

complex unit circle corresponds to 𝑒 𝑖𝜋4 . 

A unitary matrix has advantages in calculation. The dot products of the column vectors of 𝑼 

are zero (inner product) except when dotted with itself, in which case it is 1. This property may be 

demonstrated with the following unitary matrix and its complex conjugate, 

𝑼 = [  
 √12 √12−𝑒𝑖𝜃√12 𝑒𝑖𝜃√12]  

 
       (6a) 

𝑼∗ = [  
 √12 −𝑒𝑖𝜃√12√12 𝑒𝑖𝜃√12 ]  

 
        (6b) 

For demonstration purposes, 𝑼 may be written as two orthonormal vectors: 𝑼 = [𝑢1 𝑢2]         (7) 

Then, the property of unitary matrices is checked: 𝑼∗𝑼 = [𝑢1 ∙ 𝑢1 𝑢1 ∙ 𝑢2𝑢2 ∙ 𝑢1 𝑢2 ∙ 𝑢2]       (8) 

The dot product equaling 1 establishes unit length of the vector. This check is analogous to the norm, 

in which the algebra is the same. Taking 𝑢1: 

𝑢1 ∙ 𝑢1 = ‖𝑢1‖ = √(√12)2 + (−𝑒𝑖𝜃√12)2 = √12 + (+𝑒(𝑖−𝑖)𝜃 12) = 1   (9) 
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In equation (6), when the norm (length) of a complex number is taken, the complex conjugate 

(opposite sign imaginary part) is multiplied with the original complex number. 

A unitary matrix with known eigenvalues and eigenvectors may be created. For example, 𝜃 =12 , 34. The eigenvalues are placed in the diagonals of the 𝚲 matrix. 

𝑫 = 𝑼𝚲𝑼∗ = 1√2 [ 1 1−1 1] [𝑒𝜋𝑖 00 𝑒3𝜋𝑖2 ] 1√2 [1 −11 1 ] = 12 [ 𝑒𝜋𝑖 𝑒3𝜋𝑖2−𝑒𝜋𝑖 𝑒3𝜋𝑖2 ] [1 −11 1 ] (10a) 

𝑫 = 12 [ 𝑒𝜋𝑖 + 𝑒3𝜋𝑖2 −𝑒𝜋𝑖 + 𝑒3𝜋𝑖2−𝑒𝜋𝑖 + 𝑒3𝜋𝑖2 𝑒𝜋𝑖 + 𝑒3𝜋𝑖2 ]     (10b) 

The eigenvalues and eigenvectors of matrix 𝑫 are then, 𝜆1 = 𝑒𝜋𝑖 𝜆2 = 𝑒3𝜋𝑖2        (11a) Ψ1 = 1√2 [ 1−1] Ψ2 = 1√2 [11]      (11b) 

In QPE, the eigenvalues of 𝑼 are “kicked back” in a Fourier basis, which are extracted by an inverse 
quantum Fourier transform.[31] The eigenvalues, 𝑒2𝜋𝑖𝜃 , are kicked back in this way. A quantum 

Fourier transform (QFT), those eigenvalues are converted back to 𝜃’s. 

A scalar example of 𝑒𝑖𝜋4  is considered (1x1 matrix). This is a rotation of 
18 around the complex 

unit circle, as seen in Figure 1b. Therefore, the value of 𝜃 is, 𝜃 = 18         (12) 

When applied as a gate in a quantum circuit in QPE, the 𝑼 matrix is made into a controlled-𝑼 

matrix. The control is created by adding the identity matrix, 𝑰, to the upper left block, and the 𝑼 

matrix to the lower-right block. The upper-right and lower-right blocks of this 𝑪𝑼 matrix are zeroes. 

The “controlled” term means that a qubit controls whether or not the gate is applied to another qubit. 
In QPE, the control qubits are the qubits onto which the phase, or eigenvalue, is kicked back. In the 

simplifying case of a scalar, the 𝑪𝑼 matrix is dimension 2x2, with a one in the upper left, and the 

scalar in the lower-right.  

This 𝑪𝑼 matrix is for the 𝜃 in equation 12 is, 𝑪𝑼 = [1 00 𝑒𝑖𝜋4 ]        (13) 

To begin QPE, Hadamard gates, 𝑯, are applied to each of the qubits. 𝑯 = 1√2 [1 11 −1]       (14) 

The Hadamard gate happens the same as the 2-dimensional discrete Fourier transform gate.[32] Each 

qubit of the compute register will receive the 𝑪𝑼 matrix 2𝑞 number of times, where 𝑞 is the qubit 

number. The zeroeth qubit will receive the 𝑪𝑼  matrix once, the first qubit will receive the 𝑪𝑼 

matrix twice, and the third qubit will receive the 𝑪𝑼 matrix four times. These gates and their number 

of repetitions are shown in Figure 2. 
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Figure 2. Reading out the eigenvalues at intervals of 𝜃 = 18 from the matrix 𝑼, the lower right block 

of the controlled 𝑪𝑼. On the zeroeth qubit, 𝑞0, the 𝑪𝑼 matrix is applied once (20 = 1). On the first 

qubit, 𝑪𝑼 is applied twice, and for the second qubit it is applied four times. 𝑄𝐹𝑇† is the inverse 

QFT. The measurements corresponding to 𝜃 are listed in Table 1. 

Table 1. 

measurement 000 001 010 011 100 101 110 111 𝜃 0 
1
8

 
1
4

 
3
8

 
1
2

 
5
8

 
3
4

 
7
8

 

Next, an inverse QFT, 𝑄𝐹𝑇†, block of gates converts the eigenvalue, in the format of 𝑒2𝜋𝑖𝜃 to 

the format from which 𝜃 may be measured as a computational basis (bitstring). The (forward) QFT 

block applies the discrete Fourier transform matrix. Here is a 2-dimensional QFT matrix, 𝑾 = 1√𝑁 [1 11 𝜔]  𝜔 = 𝑒−2𝜋𝑖𝑁  𝑁 = 2     (15a) 𝑾 = 1√2 [1 11 −1]  𝜔 = 𝑒−𝜋𝑖 = −1     (15b) 

The result of 𝜋 radians on the complex unit circle equaling -1 may be observed from Figure 1. Figure 

3a displays 𝜋 rotation with the 
18 allowed steps due to the maximum precision of 3 qubits. Figure 4 

displays the measurement when the precise 𝜋  rotation is taken. Figure 4 displays how the 

probability is distributed among possible measurements when a rotation is not on the increments 

allowed by the precision due to the number of qubits. 𝑾 is the QFT matrix. 𝜔 is the Nth root of 

unity, and−12 = 1. 𝑁 is the dimension.  

 

Figure 3. Precision of rotations around the complex unit circle for 3 qubits. 
123 = 18. (a) 𝜋 rotation will 

result in a precise probability during measurement (Figure 4). (b) A rotation not on the allowed 

increments will distribute probability among possible measurements (Figure 5). 
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Figure 4. The harmonic oscillator eigenvalue(s) are measured in the quantum circuit. Due to the 

precise setup, the probability of reading the eigenvalue(s) correctly are 100%. Checking with Table 1 

of the main text, the bitstring 100, corresponds to 
12, the lowest energy harmonic oscillator. The 

infinitely higher energies of the harmonic oscillator each add 2𝜋, one full revolution to the complex 

unit circle. Therefore, the measured bitstring will always be the same for any of those infinite number 

of energy levels for the harmonic oscillator. 

The 𝑸𝑭𝑻 gate for 3 qubits (example here) has dimension 8x8.[32] 

𝑸𝑭𝑻 =
[  
   
  1 1 1 1 1 1 1 11 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔71 𝜔2 𝜔4 𝜔6 𝜔8 𝜔10 𝜔12 𝜔141 𝜔3 𝜔6 𝜔9 𝜔12 𝜔15 𝜔18 𝜔211 𝜔4 𝜔8 𝜔12 𝜔16 𝜔20 𝜔24 𝜔281 𝜔5 𝜔10 𝜔15 𝜔20 𝜔25 𝜔30 𝜔351 𝜔6 𝜔12 𝜔18 𝜔24 𝜔30 𝜔36 𝜔421 𝜔7 𝜔14 𝜔21 𝜔28 𝜔35 𝜔42 𝜔49]  

   
   𝜔 = 𝑒− 2𝜋𝑖𝑁=8 = √22 − √2𝑖2   (16a) 

𝑸𝑭𝑻 =
[  
   
  1 1 1 1 1 1 1 11 𝜔 −𝑖 −𝑖𝜔 −1 −𝜔 𝑖 𝑖𝜔1 −𝑖 −1 𝑖 1 −𝑖 −1 𝑖1 −𝑖𝜔 𝑖 𝜔 −1 𝑖𝜔 −𝑖 −𝜔 1 −1 1 −1 1 −1 1 −11 −𝜔 −𝑖 𝑖𝜔 −1 𝜔 𝑖 −𝑖𝜔1 𝑖 −1 −𝑖 1 𝑖 −1 −𝑖1 𝑖𝜔 𝑖 −𝜔 −1 −𝑖𝜔 −𝑖 𝜔 ]  

   
  
     (16b) 

This gate is not directly applied to the three qubits. There are a number of gates applied in 

sequence.[7]  

Finally, the measurements output computational bases or bitstrings. Each qubit, when 

measured, collapses to a 0 or 1. Since, 0 ≤ 𝜃 < 1        (17) 

the intervals of 𝜃 which result in exact computational bases are,  𝜃 = 123 = 18        (18) 
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The values of 𝜃 and their corresponding computational basis are listed in Table 1. A count in binary 

numbers is spread over the interval of equation 17. When an eigenvalue is not precisely a multiple of 

the value in equation 18, the probability is spread among computational bases (Figure 5). Statistical 

sampling of the quantum circuit is accomplished via multiple shots of the circuit. The precision is 

doubled with each extra qubit, as shown in equation 18, although the gate depth also increases, which 

is a hardware consideration. 

 

Figure 5. A non-precise step in the complex unit circle is 
𝜋3. The exact steps are 

12𝑡 2𝜋, where 𝑡 is the 

total number of qubits. Therefore, probability is spread over multiples of 
18. 

This example has disregarded matrices with eigenvalues not on the complex unit circle, i.e. 

eigenvalues which are not of the format 𝑒2𝜋𝑖𝜃. In fact, the 𝑼 matrix is constructed from an original 

matrix which is necessarily Hermitian.[32,33] There is a block matrix form which can make any 

matrix Hermitian which doubles the matrix dimensions. 𝑨̃ is an original Hermitian matrix. 𝑼 is, 𝑼 = 𝑒𝑖𝐴̃2𝜋        (19) 

The eigenvalues are then in the complex unit circle format, 𝑒2𝜋𝑖𝜃 , where 𝜃  was the original 

eigenvalue before exponentials were taken. There is an expense in taking the matrix exponential. 

There is a form of the Euler identity which can be applied to exponentials,[34] but there will be 

computational cost in terms of taking sines and cosines. There is also an infinite series expansion of 

the matrix exponential, which may be truncated.[30] Obtaining the matrix exponential is left out of 

the scope of this Article.  

Particle in a box 

Returning to the Schödinger equation (equation 1), the Hamiltonian operator[35] for a single 

particle is expanded to yield,[36] − ℏ22𝜇 ∇2𝜓(𝑥) − 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)       (20) ℏ is the reduced Planck’s constant. Instead of mass 𝑚, a reduced mass is used to combine the mass 

of the nucleus and electron into one constant. Reduced mass, 𝜇, is defined as 𝜇 = 𝑚𝑀𝑚+𝑀 . 𝑀 refers to 

the mass of the nucleus, and 𝑚 is the mass of the electron. 𝜓(𝑟) is the wavefunction of a single 

particle. In the particle in a box example, only the Cartesian 𝑥 dimension is retained.  

The problem is visualized as a single subatomic particle sandwiched between two parallel 

infinite barriers of infinitely high potential, where the subatomic particle cannot be. The constant 

potential is also set to zero, which causes only the kinetic energy to remain in the Hamiltonian 

operator. 
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𝑉(𝑟) = 𝑉0(𝑟) = 0        (21) 

Equation 20 is then: − ℏ22𝑚 𝜕2𝜕𝑥2 𝜓(𝑥) = 𝐸𝜓(𝑥)       (22) 

The analytical solution requires conceiving of a function for 𝜓(𝑥) such that the left-hand side 

of equation 22 yields the original 𝜓(𝑥) times some constant, which will be the value of 𝐸 . The 

solution for 𝜓(𝑥), which is not immediately derived but can be shown to be correct (known as an 

ansatz), is, 𝜓(𝑥) = 𝐴𝑠𝑖𝑛(𝑘𝑥) + 𝐵𝑐𝑜𝑠(𝑘𝑥)      (23) 𝐴, 𝐵 and 𝑘 are constants to be obtained shortly. Necessary boundary conditions for solving the 

particle in a box problem are that the amplitude of the wavefunction must be equal to zero at the 

walls. Assume the walls to be at 0 and 𝐿. {𝑥 = 0;  𝜓(𝑥) = 0𝑥 = 𝐿;  𝜓(𝑥) = 0        (24) 

Since the interpretation of the wavefunction is that its square provides the probability of the particle 

being in the position 𝑥. Therefore, according to equation 24, the particle has zero probability of being 

at the walls. 

First, 𝑘 is solved for. The position of 𝑥 = 0 is selected to eliminate a term.  𝜓(0) = 𝐴𝑠𝑖𝑛(0) + 𝐵𝑐𝑜𝑠(0) = 0     (25) 

In equation 25, sin(0) = 0, but cos(0) = 1. Therefore, 𝐵 = 0 by necessity of satisfying the equation 

at the boundary condition of 𝑥 = 0. The wavefunction is reduced to, 𝜓(𝑥) = 𝐴𝑠𝑖𝑛(𝑘𝑥)       (26) 

Derivatives of the wavefunction are obtained for further determination of the constants. 𝑑𝜓(𝑥)𝑑𝑥 = 𝑘𝐴𝑐𝑜𝑠(𝑘𝑥)       (27a) 

𝑑2𝜓(𝑥)𝑑𝑥2 = −𝑘2𝐴𝑠𝑖𝑛(𝑘𝑥)      (27b) 

In the right-hand side of equation 27b, the original 𝜓(𝑥) = 𝐴𝑠𝑖𝑛(𝑘𝑥)  reappeared. Multiple 

derivatives of the sine and cosine functions repeat in a known cycle. Therefore, 𝑑2𝜓(𝑥)𝑑𝑥2 = −𝑘2𝜓(𝑥)       (28) 

The second derivative of 𝜓(𝑥) with respect to 𝑥, 
𝑑2𝜓(𝑥)𝑑𝑥2 , is substituted into the Schrödinger equation 

for the particle in a box problem (equation 22). − ℏ22𝑚 (−𝑘2)𝜓(𝑥) = 𝐸𝜓(𝑥)       (29a) 

ℏ22𝑚 (𝑘2) = 𝐸         (29b) 𝑘 = √2𝑚𝐸ℏ2         (29c) 

As a side note, ℏ = ℎ2𝜋. Plugging 𝑘 into the wavefunction leaves only 𝐴 unknown, 𝜓(𝑥) = 𝐴𝑠𝑖𝑛 (√2𝑚𝐸ℏ2 𝑥)       (30) 
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The other boundary condition provides a route. 𝜓(𝐿) = 0 = 𝐴𝑠𝑖𝑛 (√2𝑚𝐸ℏ2 𝐿)       (31) 

Equation 31 is only zero (disregarding the unproductive 𝐴 = 0 case), when the sine is some integer 

times 𝜋. √2𝑚𝐸ℏ2 𝐿 = 𝑛𝜋;  𝑛 = 1,2,3… ,∞     (32a) √2𝑚𝐸ℏ2 = 𝑛𝜋𝐿          (33b) 

In equation 32a, 𝑛 is not zero, because the equation would not be balanced in that case. The left-

hand side of equation 33b fits into equation 30, yielding, 𝜓(𝑥) = 𝐴𝑠𝑖𝑛 (𝑛𝜋𝐿 𝑥)        (34) 

The probability of the particle being anywhere along the 𝑥  dimension must total one. In 

mathematical terms, the integral of the probability must equal one. This is known as normalizing the 

wavefunction. Normalization is expressed, ∫ 𝜓2(𝑥)𝐿0 𝑑𝑥 = 1       (35a) 𝐴2 ∫ sin2 (𝑛𝜋𝐿 )𝐿0 𝑑𝑥 = 1      (35b) 

The solution to the integral is lengthy. However, it has been previously solved[37] and the solution 

is,  𝐴2 (𝐿2) = 1;  𝐴 = √2𝐿      (36) 

The wavefunction now has no unknown constants: 𝜓(𝑥) = √2𝐿 sin (𝑛𝜋𝐿 𝑥)       (37) 

Equation 37 may now be substituted in equation 22, − ℏ22𝑚 𝜕2𝜕𝑥2 [√2𝐿 sin (𝑛𝜋𝐿 𝑥)] = 𝐸√2𝐿 sin (𝑛𝜋𝐿 𝑥)    (38a) 

  
ℏ22𝑚 √2𝐿 𝑛2𝜋2𝐿2 sin (𝑛𝜋𝐿 𝑥) = 𝐸√2𝐿 sin (𝑛𝜋𝐿 𝑥)     (38b) 

ℏ22𝑚 𝑛2𝜋2𝐿2 = 𝐸         (38c) 𝐸 = ℏ2𝑛2𝜋22𝑚𝐿2         (38d) 

Since the eigenvalue problem is solved, the constant when 𝑛 = 1 may be placed in the lower right 

of a 2x2 controlled unitary matrix. The controlled unitary matrix, 𝑪𝑼, would then be,  𝑪𝑼 = [1 00 𝑒2𝜋𝑖𝐸]       (39a) 𝑪𝑼 = [1 00 𝑒2𝜋𝑖ℏ2𝜋22𝑚𝐿2]        (39b) 

When 𝑛 = 2, the quantity in the lower right-corner is exactly 4 times the current value. Since 𝐸 

increases by integer multipliers, and since there is a 2𝜋 factor before 𝐸, representing exactly one 

revolution around the complex unit circle, the eigenvalue measured by QPE will always be precisely 

the same for all energy levels. I.e., for any correct energy level, QPE will measure out the correct 

eigenvalue, or phase. However, there is some information loss, because the allowed energies scale by 
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𝑛2. Any integer multiplier will return the correct-appearing result due to the 2𝜋 factor conducting 

precisely one revolution. Therefore, any 𝑛 would be indistinguishable from the correct 𝑛2 in this 

QPE arrangement. The quantum harmonic oscillator, exhibited below 

Harmonic oscillator 

The harmonic oscillator has a symmetric potential energy which allows for an analytical solution 

to its energy levels (eigenvalues) and wavefunctions (eigenvectors). The Schrödinger equation with 

the Hamiltonian operator expanded for the harmonic oscillator example is, − ℏ22𝑚 𝑑2𝜓(𝑥)𝑑𝑥2 + 12 𝑚𝜔2𝑥2𝜓(𝑥) = 𝐸𝜓(𝑥)     (40) 

The wavefunction, 𝜓(𝑥), is not derived here, but the correct guess is, 𝜓(𝑥) = 𝐶𝑒𝑥𝑝 (− 𝛼𝑥22 )       (41) 𝐶 and 𝛼 are constants. Equation 41 is in the form of a gaussian function, and the tails of a gaussian 

function diminish to zero. This fact signifies that the wavefunction may be normalized, as essential 

criteria. Not fully shown here, the constant 𝐶 cancels in the Schrödinger equation, via an exponent 

by becoming 𝑒0. There remain 𝑥2𝜓(𝑥) polynomial terms and 𝜓(𝑥) terms in the analytical solution. 

The 𝑥2𝜓(𝑥) coefficients are set equal to obtain 𝛼 = 𝑚𝜔ℏ . The 𝜓(𝑥) coefficients being equal yields, ℏ𝜔2 = 𝐸        (42a) ℏ𝜔 (𝑛 + 12) = 𝐸       (42b) 

Equation 42b also satisfies the Schrödinger equation when multiplied by the integer 𝑛 = 0,2,3…∞, 

though the proof of this is not included in this Article. (The wavefunction also includes 𝑛 in these 

other higher-energy solutions.) ℏ is the reduced Planck’s constant, and 𝜔 is the angular velocity, 

also assumed constant. Both sides of the eigendecomposition equation may be divided by a scalar, ℏ𝜔 . When placed on the complex unit circle, a full revolution occurs after 1, because of the 

multiplicative 2𝜋  factor. Therefore, only the scalar 
12  is necessary. When the measured 

computational basis is 100, or 𝜃 = 12, the solution may be, 𝐸 = 12 + 𝑛;  𝑛 = 0,1,2, … , ∞      (43) 𝑛 is an integer. For example, 
32, 𝜋 on the complex unit circle, is place exactly at 

12, also 𝜋 on the 

complex unit circle. The matrix exponential is taken of 
12, and the control block is added. The 𝑪𝑼 

matrix is then very similar to the previous 𝑪𝑼 matrix of equations 13 and 39: 𝑪𝑼 = [1 00 𝑒𝑖𝜋]        (44) 

The result, after matching with Table 1, will be multiplied by the constant ℏ𝜔. Figure 4 shows the 

measurements from the code implementation of QPE. Subsequent to publication, all code will be 

made publicly available at https://bitbucket.org/ericawalk/ oscillator/src/master/. 

Hydrogen atom and larger 

The hydrogen atom does include potential energy that is nonzero and dependent upon position, 

specifically radial distance from the nucleus. I.e., it is more complex than the quantum harmonic 

oscillator example which experiences symmetric potential energy allowing for an analytical solution. 

For one electron in a hydrogen atom, the coulombic potential energy function is,[35] 𝑉(𝑟) = − 𝑍𝑒24𝜋𝜖0𝑟        (45) 
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𝑍 = 1 is the charge of the nucleus. 𝑒2 = 1 is the charge of the electron. 𝜖0 is the permittivity of a 

vacuum. Permittivity is a measure of how much an electric field can permeate a vacuum. 𝑟 is the 

same spatial coordinate, radius.  

The energy levels may be analytically solved in a lengthy procedure left out of the scope of this 

work. The final energy levels of the hydrogen atom are, 𝐸 = − 𝜇𝑍2𝑒4𝜋22𝜖02ℏ2𝑛2         (46) 

In the case of equation 46, the energy levels scale as 
1𝑛2, and therefore do not repeat at constant integer 

intervals. Therefore, for QPE, the various 𝐸’s for various 𝑛’s would have to be entered into the 
matrix diagonal. The dimension of the matrix inputted into QPE would increase with every new 

energy level, and many distinct eigenvalues would be measured. The ground-state energy, when 𝑛 = 1, could be placed in a 𝑪𝑼 matrix and be measured, although the same may be said for nearly 

any number which follows certain conditions. The advantage of a quantum computer would come 

in solving multi-electron potential energy rather than the hydrogen atom. 

The challenge exists in expressing the coulombic energies among multiple electrons in the 

potential energy function in a format for QPE. The positions of the electrons are not known and are 

left as variables in the multi-electron potential energy function. As put forward by Aspuru-Guzik, et 

al.,[12] every entangled qubit state can represent a point in space. Then, the electronic structure may 

be tracked over a very short time to obtain the ground state energy. Future work will be writing 

Hamiltonians as numerical matrices via a finite difference method over the space. With a fine enough 

mesh due to a large number of entangle qubit states, greater and greater accuracy will be achievable. 

It is very likely that the matrix exponential via truncated Taylor series approach for quantum 

computing as demonstrated by Berry, et al.[11,26] will be employed on numerical Hamiltonian 

matrices. Another related option is to apply full configuration interaction up to a limit of number of 

electrons (and nuclei).[38,39] A remarkable advantage of quantum computing which has not been 

available thus far via analytical analysis, is that the wavefunction need not be measured, only the 

ground state energy. 

Conclusions 

In order for quantum computers to effect breakthroughs in physical chemistry, the rudiments of 

algorithms and, equally important, extracting the result, must be rigorously developed and 

demonstrated. In addition to the quantum harmonic oscillator example, this Article has 

demonstrated how eigenvalues may be placed in the complex unit circle along with the subsequent 

steps in measuring out those eigenvalues. While run on a quantum circuit simulator, a quantum 

computer without noise is predicted to also exactly solve the quantum harmonic oscillator problem 

in the same way as the simulator employed in this Article. With further programming 

implementation of many-body quantum systems, the power of quantum computing will be fully 

harnessed for physical chemistry, and if the hope becomes true, surpass even the most accurate 

modern computational methods in the field. 
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