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Abstract: Tropical cyclones (TC) are dangerous weather events and accurate monitoring and
forecasting can provide significant early warning to reduce loss of life and property. However, the
study of tropical cyclone intensity remains challenging, both in terms of theory and forecasting.
ERADJ reanalysis is benchmark data set for tropical cyclone studies, yet the maximum wind speed
error is very large (68 kts) and still 19 kts after simple linear correction even in the better sampled
North Atlantic. Here, we develop an adaptive learning approach to correct the intensity in the ERA5
reanalysis, by optimising the inputs to overcome the problems because of the poor data quality and
updating the features to improve the generalisability of the deep learning-based model. Specifically,
we use TC knowledge to increase the representativeness of the inputs so that the general features
can be learned with deep neural networks in the sample space, and then use domain adaptation to
update the general features from the known domain with historical storms to the specific features
for the unknown domain of new storms. This approach can reduce the error to only 6 kts which is
within the uncertainty of the best track data in IBTrACS in the North Atlantic. The method may have
wide applicability, such as extending it to the correction of intensity estimation from satellite imagery
and intensity prediction from dynamical models.

Keywords: tropical cyclones; ERAS reanalysis; deep learning; generalisability; domain adaptation

1. Introduction

Tropical cyclones (TC) cause enormous damage around the world every year, especially in
coastal areas [1-3]. Many scientists are contributing to find the regularity of tropical cyclone genesis,
development and disappearance from the past to the present [4,5]. This regularity is also the
cornerstone of forecasting techniques, for providing more accurate early warnings to protect people
and property. Over the last century, observational technology, dynamical theory and forecasting have
made great progress, but there are still many key problems to be solved. One example is the problem
of tropical cyclone intensity. Especially the theory of intensity change is incomplete, intensity data are
scarce, and intensity prediction is difficult [6,7].

Definitions of tropical cyclone intensity vary from agency to agency. Generally, it is defined as
the maximum wind speed near the centre of the storm or the minimum pressure at the centre [8].
Agencies collect as many historical records as possible and then reanalyze them to provide a standard
reference for researchers to use in the future. However, in-situ observations of tropical cyclones are very
difficult to collect, so most of the data comes from satellite observations, with very little from aircraft
reconnaissance [9-11]. The reanalysis of tropical cyclones is integrated into a well-known dataset
known as the best track dataset. IBTrACS (The international best track archive for climate stewardship)
is the typical one that collects global best track dataset and give the uncertainty estimation for intensity
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in maximum wind speed [12]. From 2004 to now, the uncertainty of intensity in the North Atlantic is 7
kts (knots), while in other basins it is 10 kts [13].

The best track data sets also provide a reference for the development of tropical cyclone monitoring
and forecasting techniques. The Dvorak technique provides quantitative estimates of intensity in
satellite imagery [14], so it is still widely used by operational agencies and the techniques have been
updated several times [15,16]. For intensity prediction, the representative methods are the statistical
model [12,17-19] and the dynamic forecasting model [20]. The former provides a fast and accurate
forecast, while the latter is suitable for providing a more stable and long lead-time forecast. In most
cases, they need to be combined to produce a more accurate forecast, such as statistical-dynamic model.
With the advent of the artificial intelligence era in recent years, there are many new studies trying
to explore different intelligent techniques to optimise or replace existing monitoring or forecasting
techniques [21]. For example, they are using the convolutional neural network in image recognition to
update the Dvorak technique [22-26], or non-linear deep neural networks to replace the traditional
statistical model for intensity forecasting [27-30].

There may are two reasons why artificial intelligence methods can be widely used in tropical
cyclone research. The first is that these kinds of data-driven methods are out of the existing physical
theory, so they are expected to provide a new insight to find unknown knowledge. The second one is
the strong representative ability of deep neural networks are shown as a powerful tool to fit a specific
pattern hidden in the data, which is better than traditional methods such as linear regression to a large
extent. However, these types of methods are highly dependent on the quality of the data. This means
that it may be impossible to learn the correct knowledge or representation if the intelligent model
is trained on poor-quality data. But in reality, it is also very difficult to evaluate the quality of data,
especially tropical cyclones are a kind of suddenly changing weather phenomenon without complete
and real observations.

Another problem is the model generalisability, deep neural network is verified with the strong
representative ability, but the understanding ability is still questionable. It is because of the basic
assumption of machine learning, the training dataset used to train the model and the testing dataset
used to verify the model generalisability should be collected from the same data distribution, although
they are individual [31,32]. This means that the sample size of the training dataset should be large
enough, and the hidden information in the samples should be fully representative of the entire data
space. So, the testing dataset can be a measure to test if the model is capable of understanding or
strong generalisation. So far, the model trained on ImageNet dataset [33,34] may be close to the above
assumptions. But in practical applications, such as tropical cyclones, the basic assumptions is far
from achieving, because the learning task is largely limited by the sample size and value data without
much noise. The emergence of transfer learning [35] provides a great opportunity to help solve the
above problems [36]. There are studies in tropical cyclone research using transfer learning to improve
intensity prediction [37].

In addition, the ERAS reanalysis (ECMWF Reanalysis v5) provides an optimised estimate of the
current atmospheric state, which provides a detailed description for tropical cyclones [38]. It may
not be the most accurate representation of tropical cyclone intensity compared to satellite imagery or
in-situ observations, but it contains additional environmental information that may be an effective
supplement for tropical cyclone monitoring and forecasting [39—41]. And the data format is similar
to the output of dynamical models, so it can be the replaced dataset to develop new methods for the
latter applications. There are some studies to explore the capability of tropical cyclone representations
in ERAS5 reanalysis [42-44].

Therefore, we aim to correct the intensity in the ERA5 reanalysis using the value in IBTrACS
as a reference. There are some related works to correct the intensity in operational forecasting [45—-
47]. Differently, we develop an adaptive learning approach based on deep neural networks and
transfer learning methods to solve the problems of data quality and weak model generalisation. The
experiments in the North Atlantic verify the effectiveness of our approach. It can be easily extended to
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other learning tasks using new data. Furthermore, it is not restricted to the same computation platform,
deep learning framework or python version, which can be easily extensible by other users.

The paper is organised as follows: the introduction gives a brief description of the background,
related works and our work. The Methodology presents the learning tasks, the concept of our approach,
and the basic knowledge and experimental setup for implementing this approach. The Results section
shows the preliminary data evaluation and analysis of the experimental dataset, and how to optimise
the results from the baseline using our approach. We also express the our attempts, unsolved problems
and future plan in the section of Discussion. Finally, we summarize the whole work, progress and
potential in the Conclusion section.

2. Methodology

2.1. Our approach

Our learning tasks can be defined as follows:
Y ~ F(X), 1

which means that our goal is to find the optimal F with strong generalisability. X is the inputs, Y is
the outputs, and F(-) is the mapping from inputs to outputs. Considering that the correspondence
between X and Y in data space may not be clear, the difficulty of learning F increases.

Therefore, we develop an adaptive approach to learn it well, which can be divided into three
steps, gradually or individually. The first is to learn the mapping F from X to Y directly. If this works,
the goal is achieved. The second is to update the inputs in X' and then learn the mapping F from X to
Y. Here we define F = fj o fo. And fj is the feature extractor from inputs X' to feature x, and f; is
the mapping from feature x to outputs Y. If it doesn’t work, we go to the next step to update the f,
to fé or update the general feature x to X as the specific features until the goal is achieved. So now
F=fio le orF=f °f11, oflzl. In this step, flllis the feature mapping from y to  and flzl is the
new mapping from the updated feature X toY. Actually, each path from X or X’ to Y shown in the
Figure 1 below is available and can be chosen in different learning tasks if it works. However, here we
only present three ways that were used in our experiments, and they can be formulated as follows:

X5, )
xEy o x Ly By, 3)
X’g)(f—zﬂf or X’gxgx’fglf. 4)
F
X Y
f2 |
f ,
: X—‘_ /2

flll :f’12
, X
X

Figure 1. This is the flowchart of our adaptive approach.
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2.2. Brief introduction

2.2.1. Data

In this paper, Y is the intensity label from the best track dataset - IBTrACS. It provides the storm
centre, time and other attributes we need and is widely used as a reference to research various tropical
cyclone techniques. The data from the US agencies is usually of the highest quality. The Table 1 shown
in below present the basic information of the tropical cyclone records collected from IBTrACS technical
report.

Table 1. This is the data description of IBTrACS.

Maximum Sustained Wind Speed (kts)
Variable name (units) Storm Center (degrees lat/lon)
Other variables

Interpolated to 3 hourly
(most data reported at 6 hourly)

70°Nto70°Sand 180 ° W to 180 ° E
1841 - present (Not all storms captured)

Temporal resolution

Coverage

X is the inputs, and it is the ERA5 reanalysis. ERA5 provides the global atmospheric state with a
latency of about 5 days and is avaliable from 1940 to present. The spatial resolution is 0.25 and the
temporal resolution is one hour. In addition, they are homogeneous and consistent gridded dataset
with a large number of atmospheric, ocean-wave and land-surface quantities. The Table 2 shown in
below present the basic information of the ERA5 data from the official website.

Table 2. This is the data description of ERAS reanalysis.

Data type Gridded

Horizontal coverage Global
Horizontal resolution 0.25° x 0.25°

Vertical coverage 1000 hPa to 1 hPa
Vertical resolution 37 pressure levels

Temporal coverage 1940 to present
Temporal resolution Hourly

2.2.2. Deep neural networks

Considering the strong representativeness, we use deep neural networks to learn F. It starts from
MLP (Multilayer Perceptron) with nonlinear activation function, which can be effectively used to fit
the nonlinear mapping or function. It is assumed that given enough data, the network can be used to
estimate any function. After that, CNN (Convolutional Neural Network) seems to be used in image
classification by extracting the spatial features of the image, and it achieves great success now. It can
also reduce the parameters of networks by sharing parameters in the receptive field. However, the
deeper the network, the more obvious the problems of gradient disappear. ResNet [48] is designed
to use short-cut way to solve the problem of gradient disappear, while it can maintain the strong
representative ability. It has been widely used in computer vision and it is also the basic stone in
many industrial applications. The core module of ResNet is the residual block. Here, We only use the
simplest version that is ResNet-18. Given the inputs, after the feature extraction of resiudal blocks with
convolutional layers, there is an average pooling layer to reduce the dimensionality of features to 512,
and then the features are converted to output layer to finish our task.
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2.2.3. Transfer learning

Because of the problems mentioned in the introduction, transfer learning is a good way to improve
the generalisability of the model. The simplest method is fine-tune, which can be used to help the
trained model adapt to new samples. Although it is able to retrain the model to improve the accuracy
in a fast way; it still does not solve the problems of different data distribution between the training
and testing dataset. Therefore, domain adaptation (DA) is also used in this paper. It is designed to
help a model trained in the soured domain adapt to an unknown target domain, which is similar to
our problems. The core idea of domain adaptation is to find the similarity of two domains and try
to reduce the distance between two datasets defined by the general distance function. And MMD
(Maximum Mean Discrepancy) is one of the most popular metrics in transfer learning, especially in
domain adaptation. Furthermore, one of the key problems is to define a new loss function that adds
the distance between the source and target domains.

2.3. Experimental setting

2.3.1. Dataset

In order to carry out experiments, we first need to prepare the dataset. The samples we select
from follow the rule as follows:

* Data are post reanalyzed by agencies, and it means that 'TRACK_TYPE’ is flagged as ‘'main’;

¢ Only tropical cyclones (NATURE’ is marked as 'TS’) analyzed and Saffir-Simpson Hurricane
Scale (SSHS, US agencies) is larger than 0;

® Records from 2004 to 2022 and only in North Atlantic, and they are provided by US agencies.

Therefore, the description of the samples can be found in the Table 3. After that, we download the
corresponding ERAS data with each sample using the Python API to adjust the variables, levels, region
size, etc. In particular, we follow our previous work in 2019 [49] to select the following variables. They
are described as follows:

Table 3. This is the samples collected from North Altantic in IBTrACS.

TC Numbers Samples

Category 1 (64 < W < 83) 32 2061
Category 2 (83 < W < 96) 13 774
Category 3 (96 < W < 113) 20 626
Category 4 (113 < W < 137) 29 562
Category 5 (W > 137) 14 122
Total 108 4145

® Variables: u (u-component of wind), v (v-component of wind), ¢ (temperature), r (relative

humidity), h (geopotential) at pressure levels and sst (sea surface temperature) at surface;
* Pressure levels: 1000 hPa/925 hPa/900 hPa/800 hPa/700 hPa/600 hPa/500 hPa/
400 hPa/300 hPa/200 hPa/100 hPa.

The experimental dataset consists wind that is calculated by u and v. Then we need to split the
dataset to train the model, select the model and evaluate the model. And they are training dataset,
validation dataset and testing dataset separately. There are several splitting methods in machine
learning, such as hold-out with stratified sampling, cross-validation and bootstrapping [32]. These
splitting methods are based on a basic assumption, which is to ensure that the training and testing
dataset are drawn from the same distribution. However, the testing dataset can only be used to test
whether the model is learning the knowledge from the sample space. For our research problem of
intensity correction, we need to apply the trained model in the real scene. Therefore, we split the
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dataset according to the consecutive years. We try to use the new storms to test the generalisability
of the model trained on the historical storms. Therefore, we adopt three splitting methods. The first
one is to use the leave-out in machine learning, we use 80% for training, 10% for validation and 10%
for testing. The second one is to use the 2021-2022 samples as testing dataset, and the rest is split into
training and validation dataset. The third one is to divide the data strictly according to the years. So
we use the samples from 2004-2018 to train, 2019-2020 to validate and 2021-2022 to test the model.

2.3.2. Objective function

The objective function of the whole training process we use here is the mean square error, and the
formula is defined as follows:

1Y 2
Loss = — ) (vi — :)*. ®)
N i=1
N is the size of the samples, y; is the label of the 7 th label, and §; is the i th output value of the
networks.

2.3.3. Evaluation metrics

The metrics we choose here are bias and root mean square error (RMSE). The former is used to
evaluate the accuracy of the model, and the latter is used to evaluate the variability of the model. They
are formulated as:

. 1 R
Bias = & Y (vi =90, (©)

@)

Also N is the size of the samples, y; is the label of the i th label, and §; is the i th output value of
the networks.

We perform all comparative experiments using the same computational environment. The module
we use in this paper is Python 3.8, Keras 2.8.0, Tensorflow 2.8.0, Scikit-learn 1.3.0, Numpy 1.24.4, Pandas
2.0.3, MetPy 1.5.1 and so on. We also use the TESLA-V100 GPU to improve the computational efficiency.
We set all random seeds in the experiments to 42 to reduce the noise of randomness.

3. Results
3.1. Data analysis

3.1.1. Overall information

To evaluate the hidden correlation in the original dataset, we analyse them using statistical
methods. Unlike experimental dataset such as ImageNet in image classification, the relationship
between inputs and outputs is certain and obvious. Our dataset contain the samples recorded in
IBTrACS, only some samples are filtered according to our specific task in tropical cyclones, not for
machine learning. Therefore, the correspondence between inputs and outputs still needs to be explored.

One of the definitions of intensity is the maximum 10m wind speed over the surface near the
storm centre, so we can calculate it using ERA5 reanalysis. We call the intensity in the reanalysis
ERA5_Vmax, and the intensity in the best track dataset IBTrACS_Vmax. The total bias of the whole
dataset of 4145 samples is -43.08 kts and the RMSE is 47.41 kts. The scatter plot in the Figure 2 describes
the correlation between ERA5_Vmax and IBTrACS_Vmax. We can see that there is no obvious linear
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correlation between these two variables as the R? value of the linear fit with 95% confidence is 0.16. It
is noticeable that there are obvious one-to-many and many-to-one relationships between ERA_Vmax
and IBTrACS_Vmax. For example, the Vmax in IBTrACS is 100 kts, but the possible values in ERA
range from about 22 kts to 70 kts.

We also plot the cumulative curve of the RMSE as shown in Figure 3 and we find that the minimum
error is close to 20 kts and the maximum error is approximately to 90 kts. The error distribution is
comparatively balanced in different range, and the RMSE of nearly 80% samples is less than 55 kts.

N = 4145; Bias = -43.08 kt; RMSE = 47.41 kt

160 + ‘. e y=0.8x + 52.04; R?=0.16
scts = =
me e oo weme oo
b om s’ fo manle
140 - coe csdtenldomdbe o
oy [}
2 .
©
120 A
E
>I
O
ﬂ: 100 +
=
@
80 4
60 -

20 30 40 50 60 70 80 90
ERA5 Vmax (kt)

Figure 2. This is a scatter plot between ERA5_Vmax and IBTrACS_Vmax in the entire dataset.

1.0

0.8

Density

0.4 -

0.2
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20 30 40 50 60 70 80 90
RMSE (kt)

Figure 3. This is the cumulative curve of RMSE in the entire dataset.
3.1.2. Error analysis

To analyse the factors related to the error distribution, we divide the RMSE of all samples into
different groups. Here we only consider the different years and categories. From Figure 4 (a) we can
see the variation from 2004 to 2022, but there is no obvious trend with the years, whatever for the bias
or the RMSE. During these years, the average RMSE is the minimum in 2006 with about 30 kts, while it
increases to the maximum in 2007 with about 70 kts. The RMSE of the remaining years fluctuates with
an average value of about 40 kts. From Figure 4 (b) we can observe an obvious increasing trend in
the errors as the category grows. The average RMSE of the Category 1 samples is about 30 kts, but 90
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kts for the Category 5 samples. This means that the average Vmax of different categories in the ERA
reanalysis makes a small difference.

Vmax

B Bias
RMSE

60 1

40 1

20 41

Errors (kt)

(a) The Bias and RMSE in different years.

Vmax Vmax

RMSE

Errors (kt)
Errors (kt)
3

IS
s}

20

N Bias

1 2 3 4 5 1 2 3 4 5
Category Category

(b) The Bias and RMSE in different categories.

Figure 4. This is a figure to show the error distribution with different factors. (a) The Bias and RMSE in
different years. (b) The Bias and RMSE in different categories.

3.1.3. Storms correspondence

Apart from the overall errors in the whole dataset, we all try to check the correspondence between
the storms contained in ERA5 and IBTrACS. We use the LMI (Life Maximum Intensity) to represent the
storm characteristics. We plot the scatter plot in Figure to describe the relationship between the LMI of
storms in IBTrACS (IBIrACS_LMI) and storms in ERA5 (ERA5_LMI). It shows an increasing trend as
the number of categories increases. Here, the category indicates the type of storm, not the samples. For
example, the Category 3 storms show that the LMI of this type of storm is in the range of Category 3
with an SSHS (Saffir-Simpson Hurricane Scale) of (96 < W < 113). And there are 20 Category 3 storms
in this dataset.

We also rank the storms by LMI in ERA and IBTrACS and calculate the overlap rate in different
categories. We can see that the rate of the top 10% is 0.5 only in Category 3 storms, and the rest is 0. As
for other categories, such as Category 1 and Category 5, they all show a weak correlation. The overlap
rate of the top 50% is only 0.57 for Category 5 storms.
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Figure 5. This is a figure to show the correspondence of Life Maximum Intensity (LMI) of different
category storms.

Table 4. This is a the overlap rate of different category storms in ERA5 and IBTrACS.

10% 20% 30% 40% 50%

Categoryl 0.00 033 060 0.77 075
Category2 0.00 0.00 025 040 050
Category3 050 050 033 050 0.70
Category4 0.00 0.17 011 025 043
Category5 0.00 033 050 033 057

3.2. Our adaptive approach

3.2.1. Baseline

After a preliminary evaluation of the hidden correlation between the intensity value in ERA5
and IBTrACS. We start to use our approach to correct the intensity in ERAS to be close to the intensity
in IBTrACS. To verify the effectiveness of the methods used, we need to split the testing dataset
to evaluate them. We present three methods in the methodology and compare the distributions of
the outputs (labels) in Figure 6. If we apply the first method, we can see that the distribution of
training, validation and test is very similar. And in the second method, the distribution of training and
validation is similar but different from the test data set. As for the third method, the validation and
test are all different from the training dataset.

In fact, there are only two testing datasets. One is randomly split and the other is split by
consecutive years. The bias and RMSE from point to point in the Table 5 show the errors in the ERA5
reanalysis. If we calculate the Vmax using the 10m wind speed in the surface layer, we can see that the
RMSE is 69.82 kts in the testing dataset (10%) and 67.98 kts in the testing dataset (2021-2022) before
correction. After linear correction, the RMSE is reduced to 20.86 kts and 19.01 kts respectively. The
bias of these two datasets are all close to 1 kts, confirming the accuracy of the linear model. And there
are few differences between the results of the two testing datasets. We also use the wind speed at
the 850 hPa pressure level as the inputs and get similar results. The linear method corrects the bias
and RMSE significantly. The wind speed at 850 hPa is collected from the ERAS5 pressure level and not
from the surface layer, so it may contain less noise. We also compare the wind structure in these two
levels shown in the figure, we can see that the pattern of 850 hPa is more obvious than the surface. We
therefore choose the 850 hPa as the base level for constructing the inputs.
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Figure 6. This is a figure showing the data distribution of the labels in the training dataset (marked as
train), validation dataset (val) and testing dataset (test) from three splitting methods. (a) shows the
first method, which uses 80% for training, 10% for validation and 10% for testing. And the average
value of train and val are around 88 kts with the variance of 21 kts, but a difference value with test
about 2 kts. (b) demonstrates the second methods, that is using the 2021-2022 samples for testing, and
the rest is split into training and validation dataset. The mean and variance are similar to the first. (c)
demonstrates the third method, using the 2004-2018 samples for training, 2019-2020 for validation and
2021-2022 for testing the model. Here, the average value of val and test are close, slightly different with
the training dataset.

Table 5. This is a table to show the errors (Bias and RMSE) of testing dataset in original dataset and the
results after linear correction.

Testing dataset (10%) Testing dataset (2021-2022)

Data Method B (kts) RMSE (kts) Bias (kts)  RMSE (kts)
Surf Point to Point  -66.65 69.82 65.16 67.98

urtace 1 inear model -1.48 20.86 1.08 19.01
850 hPa Point to Point -52.48 56.7 -49.72 53.6

Linear model -1.51 21.04 0.53 19.74
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Figure 7. This is a figure showing the difference between the surface wind pattern and 850 hPa. The
colour bars are set to the same range and the unit is kts.

The above methods show the potential of linear correction. But it remains a large RMSE when
used for applications. So we consider using non-linear methods to further correct it. Deep neural
networks are our first choice, which we introduce in the previous parts, and ResNet-18 is used as our
basic network architecture. We split the dataset into the three ways mentioned above and then use the
wind speed at these two levels to train, validate and test the network. We use bilinear interpolation to
change the inputs shape to (None, 224, 224, 1) to match the original inputs shape of ResNet-18. We also
change the unit of the output layer to 1 for our regression task. We set the loss function to mean square
error (MSE) and select the Adam (Adaptive moment estimation) algorithm as the optimal algorithm.
For the Hype parameters, we set the batch size to 32, the epochs to 50, and the learning rate to 0.0001.

The results are very similar between the surface and 850 hPa, which also validates our operation
of using 850 hPa as a replacement for the base level. We focus here on the bias and RMSE of 850
hPa as an input. They show significantly different results when splitting the testing dataset in Table
6. The test RMSE is 9.8 kts when taken from the same data distribution with the training dataset
using the randomly split methods. But it shows that the RMSE is all above 16 kts even using different
validation split methods when the testing dataset is from the following years. The scatter plot in Figure
8 (a) shows an almost linear correlation between IBTrACS_Vmax and ResNet_Vmax in the testing
dataset, so it is possible to use linear correction to remove the residuals. However, there is no obvious
correlation in the testing dataset (2021-2022). We can find an improvement using the non-linear model
that is ResNet-18 than the linear model in intensity correction, but it is still far from the allowed error
of intensity in operational application.

Table 6. This is a table to show the errors (Bias and RMSE) of ResNet-18 in testing dataset using three

data splitting methods.
Testing dataset (10%) Testing dataset (2021-2022)
Data validation (10%) validation (10%) validation (2019-2020)
Bias (kts) RMSE (kts) Bias (kts) RMSE (kts) Bias (kts) RMSE (kts)
Surface 0.70 11.03 -0.64 16.06 -1.99 16.67

850 hPa -0.04 9.8 1.60 16.99 -2.28 16.41
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Figure 8. This is a figure to show the correlation between the prediction of ResNet-18 and the labels of
IBTrACS in testing dataset using three data splitting methods.

In conclusion, we set the 850 hPa as the baseline level as the inputs, and ResNet-18 is the baseline
model in our experiments. And the bias of -2.28 kts and RMSE of 16.41 kts testing dataset (2021-2022)
is the baseline of network model in this paper. Therefore, we still use our approach to optimise the
results.

3.2.2. TC knowledge for optimising the inputs

As machine learning approaches rely strongly on data quality, we find that there is no obvious
correspondence of a single surface layer using statistical methods. To further validate this conclusion,
we update the inputs in three ways as shown in the Figure 9. The first is to use the original data
without bilinear interpolation to preserve the true information hidden in the data. The second is to
crop the region into 10° x 10° and then use bilinear interpolation to resize it. The reason for using
the crop operation is to make the structure of the wind near the storm centre clearer. And the third
operation is to rotate the inputs according to the direction of the storm speed to unify and standardise
the wind pattern, and then crop and resize it. From Table 7, we can check the effectiveness of resizing
the inputs compared to the result of the original inputs. Another finding is that crop makes a little
improvement, but rotate operation is not useful. Therefore, in the next experiments we will only use
the crop operation.
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Table 7. This is a table to show the results of comparative experiments using different data processing
methods.

Data augmentation Inputs shape Bias (kts) RMSE (kts)

Original (81,81,1) 0.88 17.46
Crop + Resize (224,224, 1) -1.54 15.21
Rotate + Crop + Resize (224,224, 1) -1.56 16.08

The above experiments may provide new evidence that the single-level correspondence is
ambiguous, and that the one-to-many and many-to-one problems remain to be solved. So we add
additional information to the inputs, trying to ensure that the inputs contain enough information that
can be learned by the neural networks. We do this in two ways, to increase the spatial information
of the wind and then to increase the variable information. Here we use the base level of 850 hPa and
add the middle level which is 500 hPa and the top level which is 200 hPa. We add the equivalent
potential temperature 0 that contributes to the TC evolution calculated by MetPy using pressure (p),
temperature (t) and relative humidity (r). We find the effectiveness of this operation in Table 8, and the
RMSE is reduced to 14.90 kts when we use the variable of wind and 6 in three levels.

Table 8. This is a table to show the results of comparative experiments using different data processing

methods.
. ResNet-18
Variables Layers Inputs shape Bias (kts) RMSE (kts)
850 hPa, 200 hPa (224, 224, 2) -0.66 16.19
Wind 850 hPa, 500 hPa (224,224, 2) -1.11 16.60
850 hPa, 500 hPa, 200 hPa (224, 224, 3) -1.36 15.47
850 hPa (224,224, 2) 0.54 18.00
850 hPa, 200 hPa (224,224, 4) -0.52 16.45
Wind, 6 850 hPa, 500 hPa (224, 224, 4) 2.32 17.03
850 hPa, 500 hPa, 200 hPa (224, 224, 6) 0.82 14.90

3.2.3. Adaptive feature learning for improving generalisability

Although the results are now better than the baseline after updating the inputs, the generalisation
of the model does not seem to improve much. So in this section we start to change the way we find
solutions. We split the model from inputs to outputs into two parts and update them separately. In
particular, we focus on considering whether the inputs-feature and feature-output mapping is effective
or not. We first mention three ways of splitting the dataset. And then we find that the results of the
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testing dataset from the randomly split are satisfactory, but the results of the testing dataset from the
subsequent newly coming years in the Table 6 are not satisfactory. We can conclude from the former
finding that the ResNet network is able to represent the inputs with effective general feature in the
whole data space. However, in the sub-data space of the testing dataset from the subsequent newly
coming years, the general feature extractor of ResNet-18 in the training dataset from the previous years
is not sufficiently effective for the changing data distribution. As for the reasons, one of them may
be that the mapping from feature to outputs is not accurate enough, and another reason may be that
the general feature from the training dataset needed to be adapted as the specific feature in the new
sub-data space in the testing dataset.

We perform the following experiments to validate the above assumptions. The first operation is
to enlarge the training dataset using data augmentation to reduce the overfitting and then improve
the generalisation of the feature. It also helps to reduce the impact of sample size and validate the
small size can also be used to train a network model. Specifically, we use the random rotation to
increase it, since we have a finding in Table 7 verify that there is no obvious impact on the results when
rotate the inputs. We use the same experimental setup as in the previous experiments, including the
computational environment, network architecture and hype parameters, and so on. We just increase
the epochs to 100 and save the best model in the training process. And we found that there is not much
difference between different sample sizes. To balance the computation and generalisation, we use the
model trained on the third experiment shown in the Table 9 for the next experiments.

Table 9. This is a table to show the results of comparative experiments using different fold to enlarge
the training dataset.

Fold Sample size (Training dataset) Bias (kts) RMSE (kts)

0 3258 0.82 14.90
1 6516 -2.43 15.47
2 9774 -1.07 14.76
3 13032 -0.77 15.16
4 16290 -0.26 15.14

We fix the general feature extractor from the model trained in the last experiments. Now we
need to reorganise the dataset. We can get the feature from the training dataset (2004-2018) named
Xtrain, the validation dataset (2019-2020) named x,;, and the testing dataset (2021-2022) named X tes:-
In the first set of experiments, the feature or feature-output mapping is updated using the original
data information in the previous training dataset. The dataset used to retrain a model is D1 shown
in the Table 10, and the method we use here are classical ML (Machine Learning) algorithms and
MLP (Multi-Layer Perception). The top-3 algorithms in our validation is LR (Logistic regression), SVR
(Support Vector Machine) and GBR (Gradient boosting regression). The choices of MLP are a single
layer with one unit, or three layers with units of 1024, 512, 1, or five layers with units of 1024, 4096,
1024, 512, 1. The second group of experiments is used to update the feature or mapping using the data
information in the previous validation dataset, to check the effectiveness of local information that may
be similar to the testing dataset. The dataset is D2 and the methods are the same as the first group. The
third group of experiments is to update the features and mapping using all available data information,
including the previous training and validation dataset. The dataset used in this experiment is D3, and
we add the domain adaptation (DA) except for the above methods. We set the loss weight of MMD
(Maximum Mean Discrepancy) to 1, 100 and 1000 separate. In all experiments, the inputs in Dy,,;,, are
Xtrain, and the outputs are yyy,,. It is the same with the inputs and outputs in Dy, (Xpa1, Xpar) and Diest
(Xtest, Xtest)-
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Table 10. This is a table to describe three splitting methods to update the datset using the features from
trained model in previous dataset.

Training dataset (Dy;;,,) Validation dataset (D,,;) Testing dataset(Dest)
D1 (Xtrains Yerain) (Xvals Yoal) (Xtest, Ytest)
D2 90% of (xXya1, Yoar) 10% of (xXya1, Yoat) (Xtest, Ytest)
D3 90% of (Xtrains Ytrain) + Xoats Yoar)  10% of (Xgrains Yirain) + (Xoals Yoar) (Xtests Ytest)

As we mentioned in the methodology, there may be some differences in the data distribution
between the training and testing dataset. Therefore, we refer to the idea of domain adaptation, and we
can consider Dy, as the source domain and Dy as the target domain. And the architecture design is
the source of DaNN (Domain Adaptive Neural Network) [50] and DDC (Deep Domain Confusion)
[51]. Our loss here is calculated from two parts. One is the MSE between the prediction and label in
the testing dataset, and the other is the MMD distance between the feature of the training and test data.
The process is shown in Figure 10 and the total loss can be expressed as

Lossps = Lossq (xtruin/ ytrain) + aLossy (xtminr xtest)- 8)

In this formula, Loss; demostrates MSE and Loss, demostrates the square of MMD. In details, the
square of MMD can be expressed as follows:

2

ny np
MMDZ(X;min'X;est) = ZQD(X;ruini) - Z QD(X;estj) (9)

i=1 j=1

H

¢(+) is the mapping to transfer the original data into the RKHS space (Reproducing Kernel Hilbert
Space), and nj, np are the sample sizes of the training and testing dataset separately. So that the
features can be compared in high dimension. And here we use the multiple-kernel MMD (MK-MMD).
In addition, one of the key issues is to find the appropriate weight a to balance the two parts of the
loss. We try to make the feature of the test close the feature of the train and update the mapping from
feature to outputs. And the aim is to make the general features from the training dataset fit in the
testing dataset, so that they can be used to improve generalisability.

The results show that there is not much improvement in the RMSE using D1 and D2, whether
the feature and feature-output mapping are updated or just the feature-output mapping. But there is
an obvious progress when using D3. Actually, when using MLP with one unit, it only updates the
feature-output mapping. But when we use three layers including 1024, 512 and 1 units, the feature has
been updated to the new one, but the shape is still (None, 512), and the same with new feature-outputs
mapping. The results show that three layers is between than one layer and five layers, and it reduce
the RMSE to 11.55 kts. So we can try to add the information of test data to optimise the new feature to
consider if there is further improvement. We use the network shown in Figure, and adjust the loss
weight of MMD in different quantities. And we find that the results are not much different in the range
of [1, 100], and it reduces the RMSE to 5.99 kts. But the RMSE increases when we increase the weight to
1000. Therefore, we analyse the prediction of the second experiment with domain fitting methods. The
error distribution in the Figure 11 shows that the error was centred in the range [-20, 20] and others
are outside this range. As for the distribution of the predictions, it still shows a Gaussian distribution,
which does not fit the distribution of the outputs. The reason for this is that we use MSE as the main
loss function, it does not change even if we add the mmd loss.
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Figure 10. This is a figure to show the process of retrain the model using the domain adaptation. In the
box, fcl and fc2 are the full connected layers of neural networks.

Table 11. This is a table to show the results of comparative experiments using different methods and
different dataset for updating feature and feature-output mapping.

Data Methods Setting Bias (kts) RMSE (kts)
LR -1.15 14.83
ML SVR -1.53 14.76
D1 GBR -1.30 14.92
1(1) -1.09 14.89
MLP 3(1024/512/1) 1.24 15.12
5(1024/4096/1024/512/1) -0.39 15.18
LR 9.51 52.31
ML SVR -0.06 15.71
D2 GBR 2.24 15.88
1(1) 1.63 15.26
MLP 3(1024/512/1) -1.09 14.89
5(1024/4096/1024/512/1) 0.69 14.76
LR -0.52 14.82
ML SVR -1.46 14.73
GBR -0.63 14.72
1(1) 1.23 11.74
D3 MLP 3(1024/512/1) 0.27 11.55
5(1024/4096/1024/512/1) 0.61 11.51
1 -2.45 5.99
DA 100 -2.43 5.99

1000 -2.35 10.39
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Figure 11. This is a figure to show the error and prediction distribution of domain adaptation methods
with the mmd weight as 100.

4. Discussion

As we show in the previous introduction and experiments, the intensity errors in the reanalysis
dataset are large and need to be corrected. Traditional linear correction can reduce the errors to some
extent, but some problems remain in practical operation. This may be because there is no obvious linear
correlation between the intensity value calculated from reanalysis and the true value in the best track
dataset. So here we use non-linear methods to try to improve it. Since ResNet is a widely used network
with strong representativeness and solves the problem of gradient disappearance in deep neural
networks with residual block, we use it to train the base model and then set the baseline. However,
when we split the dataset in different ways, we find that there are many differences, especially in the
selection of the testing dataset. If we use the method in machine learning to randomly split the testing
dataset with a ratio like 10%, we can get a satisfactory result. But if we based on the requirement of
practical tropical cyclone correction to split the testing dataset with consecutive new coming years,
the result is not satisfactory. We consider that the former may follow the basic assumption that the
training and testing dataset are from the same data distribution, but the latter obey it. It also means
that the correspondence between inputs and outputs may change over time.

To solve this problem, our first option is to optimise the inputs. Since the outputs (labels) are fixed,
the inputs contain more value information, making it easier to learn the correspondence for networks.
Undoubtedly, the methods to update the inputs are based on existing tropical cyclone knowledge
and then combined with general data processing methods in machine learning. For example, we
crop the inputs to half their original size to make the central pattern clearer. We also rotate the
inputs with the direction of the storm to unify the wind patterns going forward in the same direction
and reduce external noise. But it seems that the crop operation is a bit useful here and the rotate
operation is not. So for the next experiments we can crop the inputs to optimise the results. We also
randomly rotate the inputs to increase the training dataset to reduce overfitting and improve the
generalisability of the features. In addition, we increase the spatial levels of the wind to include bottom,
middle and top information of tropical cyclones, and add the physical variable 6 related to tropical
cyclone development to the inputs. The results also show positive feedback, so we use the inputs with
more variables and levels as the optimised inputs for the next parts. However, although the overall
performance has been greatly improved compared to linear correction and the basic version of ResNet
with the simplest inputs of 850 hPa. It seems that the problem of different data distribution in the
training and testing dataset is still not solved, so the trained model may have weak generalisability.

Fortunately, transfer learning is designed to solve the problem of different data distribution, so it
provides a new insight to help solve our problem. So we start to update the feature extracted from the
trained model and the mapping of feature outputs using the idea of fine-tune and domain adaptation.
We try to update these two parts using the original training dataset, but it does not work for the testing
dataset. So then we update these two parts using the local information in the original validation dataset
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that is different from the training dataset, but it still does not work. Also, we update these two parts
using all available information in original training and validation dataset, we find an improvement
with the test result. Finally, we use the features of the original testing dataset to participate in the new
training process for updating the features and feature-output mapping. The results show a significant
decrease with the test errors, and now the RMSE of intensity is within the uncertainty of the North
Atlantic. This means that it can hopefully be used in practical applications and provide a relatively
accurate correction for intensity.

However, there are still many problems to be solved and assumptions to be validated for our
work. Firstly, we only use in the tropical cyclone data in the North Atlantic from 2004 to 2022, the
reason why we choose is it is of the highest quality to train the network model. However, if our
approach is applied to other basins or historical years, with the best track data is inhomogeneous and
noisy, there may appear new problems. Therefore, the approach still needs to be validated for other
datasets to make it general and practical. Secondly, we only use ResNet-18 as the feature extractor in
this paper, maybe there are better choices like ResNet-34, 101, other general network architectures like
Xception or custom networks and so on. And the basic loss function, we only use MSE, maybe there
are more appropriate objective functions for the specific tasks. All the parts of deep learning in this
paper is the basic setting, and it can be optimised in many ways. Here we aim to provide the baseline
version. Thirdly, the setting of the final domain adaptation methods still needs to be validated and
explored. Although the method helps us to achieve the goal, it still lacks some explanations to a large
extent. For example, does it really bring the features of the test and training dataset closer together?
Does the choice of MMD or MK-MMD have a major impact on the model? Are there more appropriate
distance metrics and loss weights to improve generalisability? And so on. This may be a new topic
that can be explored in depth in the future.

5. Conclusions

In this paper, we develop an adaptive learning approach because of the complexity of correcting
tropical cyclone intensity in reanalysis. Unlike earning tasks in computer vision or other applications,
the data correspondence and distribution is not constant. This means that it may be difficult to learn
the mapping from inputs to outputs using deep neural networks alone. Therefore, we consider adding
additional information to the inputs to improve the correspondence in the data space. In addition, the
data distribution of inputs and outputs may change over time, so we also try to use the basic idea
of fine-tuning and domain adaptation in transfer learning to optimise the training to improve the
generalisability of the model. The experiments confirm the effectiveness of our approach. In particular,
we reduce the RMSE to 5.99 kts within the intensity uncertainty of IBTrACS in the North Atlantic, while
the error in the original dataset is 67.98 kts. We also compare our approach with the linear correction
and ResNet-18, which show an RMSE of 19.01 kts and 16.41 kts, respectively. More importantly, our
approach is highly extensible to be used in other similar learning tasks, such as correcting the intensity
in other basins, historical years, or dynamic model outputs, and so on. It is also not restricted to the
same computational environment and version, so it is friendly and convenient for users who will use
it for practical applications in the future.
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