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Abstract: Underwater image processing faces significant challenges due to the absorption and
scattering of light as it travels through water. This makes it difficult for existing methods to extract
points of interest in underwater image. A self-supervised learning network based on the self-attention
mechanism is proposed for underwater visualization system in this paper. The goal is to improve the
effectiveness and stability of feature extraction from underwater images. By introducing self-attention
mechanisms in SuperPoint’s encoder, the sensitivity of the original network architecture to degraded
features of blurred underwater images is enhanced. The improved network was retrained using a
dataset of blurred underwater images and tested using both artificially blurred underwater images
and real captured underwater images. The experimental results show that the improved model has
an advantage in the distribution uniformity, quantity, and quality of the extracted points of interest
compared to other methods. As the blurriness of the image increases, the algorithm’s ability to extract
features from blurred images decreases less.

Keywords: keypoint extraction network; self-attention mechanism; blurred image processing;
underwater visualization system

1. Introduction

The field of underwater image processing has encountered significant challenges and attracted
many researchers in recent decades. Images captured in underwater scenarios are altered in every
aspect due to the changes in radiant energy when traveling through water rather than air. Light
propagating underwater is scattered by tiny particles in suspension (quartz sand, clay minerals,
plankton, etc.) and absorbed by water, resulting in blurred imaging and reduced color contrast [1]. The
energy absorption varies with wavelengths and types of water, generating perceived color distortions
at different distances [2]. Accurate feature extraction from underwater images is crucial for various
tasks in underwater visual applications, including the detection of subsea pipelines and underwater
target recognition. However, unique characteristics of underwater images, such as light attenuation,
color distortion, and object blurring, bring difficalties for feature extraction. Consequently, researchers
have conducted comprehensive studies to address the problem regarding underwater images.

The conventional approach for image feature extraction involves detecting handcrafted
feature points. [3] proposed the Scale-invariant feature transform (SIFT) for extracting distinctive
scale-invariant features from images. The key step is the creation of the Difference of Guassian (DOG),
followed by the completion of the feature point detection, orientation estimation and generation of a
descriptor. This approach demonstrates robustness to variations in lighting and local shape, thereby
enhancing the reliability of feature extraction. Speeded Up Robust Features (SURF) [19] approximates
or even outperforms SIFT in terms of repeatability, uniqueness, and robustness, while also being much
faster to compute and compare. The KAZE [20] and AKAZE [21] are designed to detect feature points
by constructing a nonlinear scale space and detecting them within this space. These approach help to
preserve more image details. The Oriented FAST and Rotated BRIEF (ORB) was proposed by [4]. The
ORB consists of FAST and BRIEF. The FAST algorithm detects pixels with rapid changes in grayscale
image pixel values by comparing pixel values with only four equidistant pixels. Subsequently, the
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BRIEF algorithm generates a binary descriptor vector based on these feature points. This binary
descriptor vector can be computed and stored quickly, improving real-time performance for image
feature extraction.

With the development of deep learning, the advantages of neural network learning methods
driven by big data for extracting image features are gradually being manifested. [5] proposed a
combined approach called KeyNet. This method first detects manual features and then feeds these
features into the neural network. However, it is important to note that the algorithm’s performance
is limited to clear images. [6] proposed ResFeats, a vector representation for features extracted from
underwater images. ResFeats are extracted from underwater images using a ResNet network that
has been pre-trained on ImageNet. [7] introduced LIFT, a CNN framework designed for end-to-end
learning of invariant feature transformations. The LIFT framework consists of three components: a
feature detector, a direction estimator, and a descriptor generator. These components work together to
mitigate the effects of changes in light using deep learning techniques. [8] proposed a CNN-based
UIE-Net network, which is an end-to-end learning framework designed to enhance underwater
images. The network can learn powerful feature representations simultaneously through a unified
training approach. A pixel destruction strategy is employed within the learning framework to
improve convergence speed and accuracy. [9] presented a novel feature extraction model to enhance
underwater image classification. The model combines the strengths of unsupervised autoencoders
and incorporates a hybrid design to accurately process large-scale underwater images. [10] proposed a
cross-modal knowledge distillation framework for underwater image processing. They pre-trained the
SuperPoint [13] network on aerial images and performed transfer learning using underwater datasets.
DeLF [23] is an attention-based feature extraction network. This method first trains the feature map
and then detects key points on top of the feature map. The detectors are based on high-level semantic
features. D2-Net proposed by [24] uses dense feature extraction and description. By postponing the
detection to a later stage, the obtained keypoints are more stable than traditional counterparts based on
early detection. [27] proposes the use of a binary descriptor normalization layer in the network, which
enables the generation of binary descriptors with a fixed number of binary descriptors. It improves the
network operation speed, descriptor matching speed. And IF-Net [22] aims to generate a robust and
generalized descriptor under critical light change conditions.

In summary, the current research primarily focuses on processing aerial and clear underwater
images, while feature extraction for blurred underwater images remains a challenge. Therefore, this
paper proposes a method based on the self-attention [25] mechanism to enhance the robustness of
feature extraction from blurred underwater images. This is achieved by introducing self-attention
mechanisms between convolutional layers and performing transfer learning on blurry underwater
images using the SuperPoint-based network. Subsequently, feature extraction comparison experiments
are conducted using a simulated blurred underwater image dataset and the Real-world Underwater
Image Enhancement (RUIE) [11] dataset to validate the effectiveness and stability of the network
proposed in this paper.

The novelties/innovations of this study are as follows:

1) A fuzzy algorithm is used to blur the NTNU image dataset to simulate real underwater images
with different levels of blurring.

2) Improved network structure by introducing two self-attention mechanisms in
SuperPoint’s encoder.

3)  SuperPoint was originally used for aerial images, and we use an underwater image dataset
to retrain the improved network with the ability to extract feature points in underwater
blurred images.

The study is organized as follows: Section 2 discusses the challenges and importance
of feature extraction from underwater images; Section 3 outlines the process of creating a
dataset of blurred underwater images; Section 4 introduces the structure and training process
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of the network; Section 5 designs a comparative experiment using two datasets and analyzes the
experimental results; finally, a summary of the entire study is provided.

2. Problem Description

The features of an image play a crucial role in enabling computers to accurately comprehend
and interpret the image. In the context of underwater visual tasks, the feature points extracted from
underwater images provide essential information for subsequent tasks. However, the underwater
environment poses various challenges due to light absorption and scattering of suspended particles.
These factors result in low contrast, fogging effects, and color distortion, primarily in shades of blue or
green. Seriously degraded underwater images lack sufficient information for effective target detection
and recognition, making it more challenging to identify targets in underwater environments.

With the development of high-tech underwater optical equipment, the quality of underwater
images has improved to a certain extent. However, there are still issues such as color degradation,
low contrast, and blurred details. Additionally, the cost of implementing these technologies is also a
factor to consider. Underwater image degradation poses a significant obstacle to feature extraction,
making it a critical issue for underwater visual applications. Traditional computer vision techniques
often encounter challenges when processing underwater images, particularly in extracting unique
feature points that can effectively generalize in complex scenes.

As shown in Figure 1, subgraph (a) shows underwater blurry images. This is due to the influence
of water on the propagation of shooting time, resulting in blurry effects in the image. And the
absorption of blue and green light by water is relatively small, resulting in a blue-green color in the
final image. subgraph (b) shows the effectiveness of existing feature point extraction methods on
such images. Due to the low image quality, high-quality feature points cannot be extracted. The
concentrated distribution and small number of feature points pose great challenges to subsequent
tasks. A network based on self-attention mechanism is proposed in this paper, which enhances the
network’s sensitivity to degraded features in underwater images to tackle this issue.

(a) Underwater fuzzy imaging (b) Uneven and small number of feature points

Figure 1. Problems in processing underwater images.

3. Blurred Underwater Image Dataset

The underwater environment presents various unknown conditions, making it challenging to
visualize images formed under different levels of water turbidity. Precisely controlling the level of
turbidity in water is also difficult. The NTNU dataset [12] is an underwater image dataset created
in an underwater 3D scene model. It includes 3D models such as artificial objects and submarine
dunes to enhance environmental complexity. In a synthetic underwater 3D simulation environment,
all parameters are controllable, and the geometry data can be accurately represented. A blurred
underwater image dataset was created by applying various degrees of blurring operations to the NTNU
dataset. Fuzzy processes are based on the Lambert-Beer law as a grounded theory, which applies
to all electromagnetic radiation and all light-absorbing substances, including gases, solids, liquids,
molecules, atoms, and ions. The generalized light attenuation model is described as in Equation (1).


https://doi.org/10.20944/preprints202310.0974.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2023 doi:10.20944/preprints202310.0974.v1

4 0f 20

The model is transferred to an underwater environment as shown in Equation (2). The blurring pipeline
is shown in Table 1, with Equations (3)-(7) expressing the specific calculation method of the process.
E(r) = Ege™ 1)
Where E is the light intensity,  is the distance, and c is the medium attenuation coefficient.

E(r) = Ege™ et )

Where g is the absorption coefficient, b is the scattering coefficient, and the sum of 4 and b is
equivalent to the total medium attenuation coefficient c.

am = exp(—ac *dp) ®3)

S = Oy e (1 S¥8my L Sc¥ 8 @
Ss * gs Ss * Js

r=sm(: 1) *ay ®)

ks =2%[3xb,] +1 (6)

. filter(Opn(:,:, i) * 1, 1)

e = filter(r, h) )

where a,, represents the color attenuation coefficient matrix, 4. is the color attenuation constant,
dy, is the depth image, s, is the scattering coefficient image matrix, Oy, is the original image, g, and gs
represent the gradient magnitude and the standard deviation of the gradient of the original image,
respectively. s. and s; denote the set scattering coefficient constant and the standard deviation of the
scattering coefficient image, r is the reflectance k; is the filter size, and & is the Gaussian filter with ks as
the size. Where the subscript m denotes the image matrix, which is a three-dimensional matrix. The
third dimension denotes the color channel. By setting the two parameters a. and s, it is possible to
obtain underwater images with different blurred levels.

Table 1. Fuzzification process.

set parameters

: calculate the color decay coefficient image

: calculate the scattering coefficient image:

calculate the raw gradient and standard deviation
calculate and normalize the scattering image

add Gaussian white noise

: calculate reflectance

: perform Gaussian filtering

: crop the image

WOND U A WN -

This method utilizes depth information to transform a clear simulation image into underwater
images with varying degrees of blur, as depicted in Figure 2. The dataset of generated blurred images
will be used in the feature extraction comparison experiments of this paper.
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Figure 2. Different degrees of blur effect.

4. Proposed Method

Underwater images are subject to alterations to the light and characteristics of the medium
resulting in blurry, hazy and tinted images [26]. Traditional methods are not suitable for extracting
features from them. To address this problem, this paper proposes a self-supervised network based on
the self-attention mechanism. This network is an end-to-end learning framework, which means it takes
an input image and produces output feature points and descriptors. Transfer learning is performed on
the EUVP dataset to learn the ability to extract features from blurred underwater images. The pipeline
of the whole system is shown in Figure 3.
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Improved SP+SG

Train improved SuperPoint
Train base detector(MagicPoint) Blurred Homographic
images Adaptation
Train Detecting feature | | Transfer learning Generate Match with
MagicPoint points in clear images| for improved SP [[] keypoints and SuperGlue
descriptor

Figure 3. Pipeline of the whole system

4.1. Architecture

The network proposed in this paper is based on the SuperPoint network [13] as the infrastructure,
which includes a shared encoder, a feature detector, and a descriptor generator. The overall structure is
shown in Figure 4. VGG-style shared encoders are used to reduce the dimensionality of the input image
and computational complexity. In the network proposed in this paper, a self-attention mechanism
is introduced in the second and fourth layers of the shared encoder. The self-attention mechanism
helps reduce reliance on external information and instead focuses more on the internal relevance of
features within the image. By utilizing the correlations among local information, the self-attention
mechanism effectively captures global feature information, enabling the learning of deeper abstract
features in blurred underwater images. Additionally, the input and output sizes of the self-attention
mechanism are the same, which facilitates subsequent computations. The network’s shared encoder
architecture, depicted in Figure 5, illustrates the integration of the VGG backbone and the introduced
self-attention mechanism. Furthermore, Figure 6 shows a flowchart that outlines the steps involved in
the self-attention mechanism, with < representing a learnable parameter. The specific expression is

shown in Equations (8)—(10).

Q =K =V = conov(x) (8)

Attention(Q,K,V) = softmax(Q—KT)V )
ven

Out = Attention(Q,K, V) + v * x (10)

where x represents the input image; conv is a 1x1 convolution; and dj is the dimension of K. We
compute the dot products of the query with all keys, to prevent the results from being too large, divide
each by \/d; , and apply a softmax function to obtain the weights on the values. The final output is
obtained by adding the attention output to the original value times 4.

Feature Point Decoder

Encoder

—)

Input
Conv

Figure 4. Feature extraction network architecture.
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- Convolution
|:| MaxPool
|:| Self-Attention

Figure 5. Feature extraction network shared encoder.

conv feature ] " transpose attention
1o ma
map Ix1conv
softmax
] dropout
i self-attention
Ix1conv map
Ix1conv

Y

Figure 6. Self-attention mechanism flow chart.
4.2. Loss Functions

The loss function of the network is the same as SuperPoint [13]. It is the sum of two intermediate
losses: one for the feature point decoder loss L, and one for the descriptor decoder loss L. The final
loss is balanced using the parameter A, as shown in Equation (11).

L(X,X,D,D,Y,Y,S) =

! ! ! (11)
Ly(X,Y) + Ly(X,Y) + ALy(D, D', S)

The loss function L, for the feature point decoder is a fully convolutional cross-entropy loss. In
this equation, X and D represent the feature maps and description subgraphs of the original image,
while Y represents the ground truth of the original image. Additionally, X/, D’, and Y’ represent the
information of the homographic warped image, with the same meaning as mentioned earlier. The
specific expression of the feature point decoder loss function is shown in Equation (12).

1 He, We
LX) = g b G i) (12)

w=1
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Where H. and W, denote the height and width of the feature map of feature points, xy,,, and v,
are the values of X, Y at (h, w). The specific expression of [ p is shown in Equation (13). Furthermore, k
is the number of channels.

exp(Xpauy)
L, (xps ) = — log( —p——>— 13
P( hw y) Og(zgil exp(thk) ( )
1, if||H — P || < 8
s — {0 leJl‘Sle Phow — Pira | 1

Equation (14) is used to determine whether the center position of an image is similar to the
corresponding image after a homographic adaptation. The result is 1 for positive correspondence and
otherwise for negative correspondence. Where Py, represents the position of the center pixel of the
corresponding input image, and Hpy,,, represents a homographic adaptation of py,.

The loss function of the descriptor decoder is defined as shown in Equation (15).

L (D D',S) =
H.,W, H.,W,
15)
dh 'dh’ /7 Shwh! /) (
HCWC ;121 21 w wh'w
w=1 ¢'=1
Li(d,d;s) =My xs*max(0,m, —d'd
ad d5s) =Aq (O,my —d"d) 6

+ (1 —5) * max(0,d*d’ —m,)

Where dj,;, and dj,,, denote the values of D and D’ at (h, w) and (I, w'), respectively. The shared
encoder has an 8-fold downsampling operation, so each point in the output descriptor feature map
corresponds to an 8 x 8 cell in the input image. The weight term Ad is introduced to balance the case
where there are more negative correspondences than positive correspondences. The thresholds for
positive and negative correspondences are represented by m, and m;, respectively.

4.3. Training Networks

The network proposed in this paper is trained on the EUVP [15] underwater image dataset using
transfer learning. At the same time, the same transfer learning was applied to the original SuperPoint
network. In the later experiments, we call the original network after transfer learning as transferred
SuperPoint. The EUVP dataset consists of pairs of underwater images, including both blurred and
high-quality images. The dataset encompasses various visibility conditions and locations, providing a
diverse range of natural scene variations. In this paper, a subset of the underwater scene image dataset
is used. It consists of 2,185 pairs for training and 130 pairs for validation, totaling 4,500 images.

The network is trained using self-supervised learning, and the training process is as follows. (1)
The MagicPoint [14] network, which consists of a shared encoder and a feature point decoder, is the
base network of SuperPoint and is trained on synthetic image datasets. The synthetic dataset contains
simple geometric figures, such as straight lines, Y-shaped lines, triangles, and other easily identifiable
features. Some example images from this dataset are shown in Figure 7. (2) The MagicPoint network is
used to extract feature points from high-quality images of the EUVP dataset, and the resulting feature
points are considered as the ground truth. This annotation process involves subjecting the input image
to N iterations of homographic adaptation. The feature points on the warped image are detected
for each homographic warp. After applying the inverse homographic adaptation, the feature points
from all N homographic adaptations are pooled back onto the original image to ensure an adequate
number of feature points are extracted. In this paper, N is set to 50. The result of the MagicPoint in
extracting feature points from the training dataset is shown in Figure 8. (3) The network is trained on
the annotated dataset obtained in the second step. The network learns to generate feature points and
descriptors based on the input images and the ground truth provided by the MagicPoint network.
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During training, the initial learning rate is set to 0.001, and the dropout rate in the self-attention
mechanism is 0.4. The loss function values of the training over ten epochs are depicted in Figure 9.
It can be observed that the loss function value of the improved network model converges to
approximately two after ten training iterations, indicating a good fit for the trained network.

Figure 7. Example of a synthetic dataset image

Figure 8. MagicPoint extracts the ground truth of the training data set.
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Figure 9. The loss function curve of the feature extraction network.

5. Experiments

To assess the performance of the network proposed in this paper in extracting features from
blurred underwater images, comparative experiments were conducted with ORB, SIFT, the original
SuperPoint, and the transferred SuperPoint. Two underwater image datasets containing blurred
images were selected for experimental testing. The first dataset was created by blurring the NTNU
dataset. Three representative groups of images were selected, and the degree of blurring for each group
was divided into five levels, ranging from 1 to 5, to indicate increasing levels of blurring intensity. The
second dataset used for testing was the RUIE dataset. Objective evaluations were based on several
metrics, including the number of extracted features and matches, as well as inference efficiency.

5.1. Comparison Experiment of Blurred NTNU Dataset

In the underwater environment, where the conditions are relatively mild, optical images have
higher clarity, and the objects in the images are more distinct. Therefore, an image with a blur level of
1 was chosen for the comparison experiments. This level of blurring represents a clear underwater
image, allowing for a more focused evaluation of the feature extraction performance of the different
methods.

In Figure 10, the results of feature extraction using various algorithms are shown for three images
with a blur level of 1. All three images are tested in the subsequent experiments, and their respective
blur levels are indicated separately. The network proposed in this paper shows a more uniform
distribution of feature points extracted from the three underwater images. It can extract more feature
points from images with a single scene. On the other hand, the original SuperPoint network extracts a
large number of feature points in the background of image A that are not easily interpretable from a
human perception perspective. The feature points extracted by the transferred SuperPoint also exhibit
better uniformity, but their quantity is lower compared to those extracted by the network proposed in
this paper. The feature points extracted by the ORB and SIFT algorithms lack uniformity, which can
negatively impact tasks such as visual SLAM.
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(a) ORB (b) SIFT (c) original SP (d) transferred SP (e) Our

Figure 10. The result of feature point extraction by various algorithms on image B with different
degrees of blurring.

To assess the effectiveness of the extracted feature points, they were matched with the
corresponding feature points in adjacent frame images. The handcrafted feature points were matched
using FLANN [18], while the feature points extracted by SuperPoint and the algorithms proposed
in this paper were matched using SuperGlue [16]. Figure 11 shows the matching results of various
algorithms on the underwater images with blur level 1 and their adjacent frames. The number of
feature points extracted by each algorithm and the number of matches are tabulated in Table 2.

Table 2. Number of feature points and matching pairs on level 1 blurred images for each type of

algorithm.
Method . Image A . . Image B . . Image C .
Points Matching Points Matching Points Matching
ORB+FLANN 83 59 48 16 218 120
SIFT+FLANN 28 24 32 18 234 189
original SP+SuperGlue 56 44 69 46 201 105
transferred SP+SuperGlue 33 29 100 73 160 124

Our+SuperGlue 65 61 157 100 240 179
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(a) ORB (b) SIFT (c) original SP (d) transferred SP (e) Our

Figure 11. The result of feature point extraction by various algorithms on image C with different
degrees of blurring.

In order to account for the complex and diverse underwater environment, images B and C with
blur levels 2 to 5 were used as examples. These images were simulated under various turbidity
conditions in water, and comparative experiments of feature extraction were conducted using ORB,
SIFT, SuperPoint, and the network proposed in this study. The aim was to evaluate the performance of
these algorithms in extracting features from underwater images with varying levels of blur.

Figures 12 and 13 show the results of various algorithms in extracting feature points on image B
and image C, respectively, with different levels of blur. Image B, with its blurred textures and simple
scene, becomes increasingly challenging for traditional methods as the level of blur intensifies. On
the other hand, image C exhibits more textured features on the objects, enabling various methods
to extract a large number of feature points. However, the feature points extracted by ORB and SIFT
lack uniformity. In contrast, both SuperPoint and the algorithm proposed in this paper detect feature
points more uniformly. Furthermore, the network proposed in this paper extracts a significantly
greater number of effective feature points compared to both the original network and the transferred
SuperPoint. Figure 14 shows the change in the number of feature points extracted by the different
algorithms as the blur level gradually increases. Notably, the network proposed in this paper exhibits
the slowest decrease in the number of feature points and is capable of extracting feature points that
meet specific requirements, even in images with a blur level of 5.
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Figure 12. Number of feature points extracted by different algorithms on different images with different
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Figure 13. The result of feature extraction on different images by various algorithms.
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(a) ORB+FLANN

(e) Our+SuperGlue

Figure 14. The matching result of feature points extracted by each type of algorithm.
5.2. Comparison Experiment of REIU Dataset

To assess the performance of the proposed network on real-world underwater images, a
comparative experiment was conducted using the RUIE dataset. This dataset comprises real
underwater images captured near Roe Deer Island in the Yellow Sea, with scene depths ranging
from 0.5 m to 8 m. The water depth, influenced by periodic tides, varies between 5 m and 9 m. These
environmental conditions lead to underwater images with diverse color tones and varying levels of
quality. This experiment utilized two subsets of the RUIE dataset: the Underwater Image Quality Set
(UIQS) and the Underwater Color Cast Set (UCCS). The Underwater Color Image Quality Evaluation
(UCIQE) metric [17] is a linear combination of chromaticity, saturation, and contrast in underwater
images. The UIQS subset is divided into five subsets (A, B, C, D, E) based on the descending order of
UCIQE values. Examples of different image quality levels from subsets A to E are shown in Figure Al.
In the subset from A to E, the image quality progressively decreases. The UCCS is divided into subsets
based on the average value of the blue channel in the CIELAB color space. The subsets include blue,
green, and blue-green hues. Examples of images from these subsets are shown in Figure A2.

The performance of the network proposed in this paper is compared with other algorithms for
feature extraction on two subsets: UIQS and UCCS. In Figure 15, the extraction results of different
algorithms from the UIQS dataset are shown. The first row of images represents subset A, and the
second row represents subset B, and so on, with the last row representing subset E. The SIFT and ORB
algorithms can extract a few feature points in subsets A and B. However, these feature points tend to
be concentrated in local areas of the images, and their distribution is not uniform. As the blur level
increases, the SIFT and ORB algorithms fail to extract enough feature points. The original SuperPoint
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network can only extract a limited number of feature points from blurred images. The transferred
SuperPoint is able to extract uniformly distributed feature points on all images, but not as many as the
proposed network. However, the proposed network extracted a significantly higher number of stable
feature points from all blurred images. It is also less susceptible to image blurring and can directly
extract feature points from images without the need for pre-processing. This comparison demonstrates
the superior performance of the proposed network in accurately and robustly extracting feature points
from blurred images.

(a) ORB (b) SIFT (c) original SP (d) transferred SP (e) Our

Figure 15. Feature extraction results of various algorithms on underwater images with different degrees
of blurring.

Figure 16 shows the results of feature extraction by various algorithms from underwater images
in different tones. The first row represents the green images, the second row represents the blue-green
images, and the third row represents the blue images. The results indicate that the proposed network
can extract a larger number of high-quality feature points from all images, regardless of their tones.
In contrast, the ORB and SIFT algorithms extract fewer feature points from the blue-green and green
images and exhibit the drawback of uneven distribution of feature points on the blue image. The
original SuperPoint and the transferred SuperPoint can extract fewer feature points from images with
all three tones. This comparison highlights the superior performance of the network proposed in
this paper. It is capable of extracting a larger number of high-quality feature points across different
tones in underwater images, providing a more comprehensive and accurate representation of the
image features.
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(a) ORB (b) SIFT (c) original SP (d) transferred SP (e) Our

Figure 16. Feature extraction results of various algorithms on underwater images with different hues.

Table 3 provides statistical information on various algorithms regarding the number of features
extracted and inference efficiency on different types of images. The ORB demonstrates higher efficiency
in feature extraction. SIFT extracts more feature points, but only on clear images. However, both ORB
and SIFT exhibit diminishing performance as the blur level increases and are sensitive to changes in
image hue. The original network and transferred network extract a small number of feature points
across all images. In contrast, the improved network shows a slower decline in its ability to extract
feature points as the degree of image blurring increases. Furthermore, it exhibits robust characteristics
regarding interference resistance and insensitivity to changes in hue. Notably, the proposed network is
capable of extracting 195 feature points even from highly blurred images. Furthermore, the inference
frame rate remains steady at approximately 28 frames per second when processing images that contain
300 feature points. The criterion for calculating FPS is by calculating the time used by the program to
process each image, which was run on a GPU of model 3090Ti.

Table 3. The number of feature points extracted by different algorithms on different images and the
inference time.

Image ORB SIFT Original SP  Transferred SP Our

Points FPS Points FPS Points FPS Points FPS  Points FPS
A 452 245 719 426 143 37 282 40.1 38 255
B 116 574 93 56 95 395 224 38.5 343 277
C 0 844 5 57.8 55 38.7 210 38.5 308 286
D 0 \ 5 51.1 40 39.4 160 38.2 241 287
E 0 \ 0 \ 38 39.4 125 42.5 195 289
green 72 624 62 48 84 376 233 42.4 323 259

blue-green 20 743 31 50.3 93 382 225 413 308 28
blue 297 320 269 579 92 373 240 40.9 323 266

The experimental results support the conclusion that the network proposed in this paper performs
better in processing low-quality underwater images. It can address challenges such as low image
contrast, fogging blur, and color deviation commonly encountered in underwater environments. The
network’s robustness is demonstrated by its ability to extract stable and effective feature points, thus
overcoming the limitations of traditional methods and the original SuperPoint structure.

6. Conclusions

A feature extraction network is introduced to address common challenges in underwater images,
including color distortion and object blurring. The proposed method incorporates two self-attention
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mechanisms within the shared encoder module of the network. The goal is to improve the accuracy
of feature extraction, especially for blurred underwater images. The underwater image dataset
is used to improve the performance of feature extraction in the network by employing transfer
learning. Experimental results demonstrate significant advantages of the proposed algorithm over
traditional methods and the SuperPoint network in terms of both the quantity and quality of
extracted feature points. The proposed network demonstrates adaptability to different levels of image
degradation, making it suitable for effectively handling various degrees of degradation in underwater
images. It provides an effective solution for extracting features from blurred underwater images. Its
advancements hold promising implications for enhancing performance and expanding applications in
underwater visual tasks, particularly in the field of visual SLAM in underwater environments.
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Appendix A

(b) B

(9 C

(d) D

(e) E

Figure Al. Example diagram of Underwater Image Quality Set.
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(a) green

(b) blue-green

(c) blue
Figure A2. Example diagram of Underwater Color Cast Set.
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