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Abstract: Underwater image processing faces significant challenges due to the absorption and

scattering of light as it travels through water. This makes it difficult for existing methods to extract

points of interest in underwater image. A self-supervised learning network based on the self-attention

mechanism is proposed for underwater visualization system in this paper. The goal is to improve the

effectiveness and stability of feature extraction from underwater images. By introducing self-attention

mechanisms in SuperPoint’s encoder, the sensitivity of the original network architecture to degraded

features of blurred underwater images is enhanced. The improved network was retrained using a

dataset of blurred underwater images and tested using both artificially blurred underwater images

and real captured underwater images. The experimental results show that the improved model has

an advantage in the distribution uniformity, quantity, and quality of the extracted points of interest

compared to other methods. As the blurriness of the image increases, the algorithm’s ability to extract

features from blurred images decreases less.

Keywords: keypoint extraction network; self-attention mechanism; blurred image processing;

underwater visualization system

1. Introduction

The field of underwater image processing has encountered significant challenges and attracted

many researchers in recent decades. Images captured in underwater scenarios are altered in every

aspect due to the changes in radiant energy when traveling through water rather than air. Light

propagating underwater is scattered by tiny particles in suspension (quartz sand, clay minerals,

plankton, etc.) and absorbed by water, resulting in blurred imaging and reduced color contrast [1]. The

energy absorption varies with wavelengths and types of water, generating perceived color distortions

at different distances [2]. Accurate feature extraction from underwater images is crucial for various

tasks in underwater visual applications, including the detection of subsea pipelines and underwater

target recognition. However, unique characteristics of underwater images, such as light attenuation,

color distortion, and object blurring, bring difficalties for feature extraction. Consequently, researchers

have conducted comprehensive studies to address the problem regarding underwater images.

The conventional approach for image feature extraction involves detecting handcrafted

feature points. [3] proposed the Scale-invariant feature transform (SIFT) for extracting distinctive

scale-invariant features from images. The key step is the creation of the Difference of Guassian (DOG),

followed by the completion of the feature point detection, orientation estimation and generation of a

descriptor. This approach demonstrates robustness to variations in lighting and local shape, thereby

enhancing the reliability of feature extraction. Speeded Up Robust Features (SURF) [19] approximates

or even outperforms SIFT in terms of repeatability, uniqueness, and robustness, while also being much

faster to compute and compare. The KAZE [20] and AKAZE [21] are designed to detect feature points

by constructing a nonlinear scale space and detecting them within this space. These approach help to

preserve more image details. The Oriented FAST and Rotated BRIEF (ORB) was proposed by [4]. The

ORB consists of FAST and BRIEF. The FAST algorithm detects pixels with rapid changes in grayscale

image pixel values by comparing pixel values with only four equidistant pixels. Subsequently, the
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BRIEF algorithm generates a binary descriptor vector based on these feature points. This binary

descriptor vector can be computed and stored quickly, improving real-time performance for image

feature extraction.

With the development of deep learning, the advantages of neural network learning methods

driven by big data for extracting image features are gradually being manifested. [5] proposed a

combined approach called KeyNet. This method first detects manual features and then feeds these

features into the neural network. However, it is important to note that the algorithm’s performance

is limited to clear images. [6] proposed ResFeats, a vector representation for features extracted from

underwater images. ResFeats are extracted from underwater images using a ResNet network that

has been pre-trained on ImageNet. [7] introduced LIFT, a CNN framework designed for end-to-end

learning of invariant feature transformations. The LIFT framework consists of three components: a

feature detector, a direction estimator, and a descriptor generator. These components work together to

mitigate the effects of changes in light using deep learning techniques. [8] proposed a CNN-based

UIE-Net network, which is an end-to-end learning framework designed to enhance underwater

images. The network can learn powerful feature representations simultaneously through a unified

training approach. A pixel destruction strategy is employed within the learning framework to

improve convergence speed and accuracy. [9] presented a novel feature extraction model to enhance

underwater image classification. The model combines the strengths of unsupervised autoencoders

and incorporates a hybrid design to accurately process large-scale underwater images. [10] proposed a

cross-modal knowledge distillation framework for underwater image processing. They pre-trained the

SuperPoint [13] network on aerial images and performed transfer learning using underwater datasets.

DeLF [23] is an attention-based feature extraction network. This method first trains the feature map

and then detects key points on top of the feature map. The detectors are based on high-level semantic

features. D2-Net proposed by [24] uses dense feature extraction and description. By postponing the

detection to a later stage, the obtained keypoints are more stable than traditional counterparts based on

early detection. [27] proposes the use of a binary descriptor normalization layer in the network, which

enables the generation of binary descriptors with a fixed number of binary descriptors. It improves the

network operation speed, descriptor matching speed. And IF-Net [22] aims to generate a robust and

generalized descriptor under critical light change conditions.

In summary, the current research primarily focuses on processing aerial and clear underwater

images, while feature extraction for blurred underwater images remains a challenge. Therefore, this

paper proposes a method based on the self-attention [25] mechanism to enhance the robustness of

feature extraction from blurred underwater images. This is achieved by introducing self-attention

mechanisms between convolutional layers and performing transfer learning on blurry underwater

images using the SuperPoint-based network. Subsequently, feature extraction comparison experiments

are conducted using a simulated blurred underwater image dataset and the Real-world Underwater

Image Enhancement (RUIE) [11] dataset to validate the effectiveness and stability of the network

proposed in this paper.

The novelties/innovations of this study are as follows:

1) A fuzzy algorithm is used to blur the NTNU image dataset to simulate real underwater images

with different levels of blurring.
2) Improved network structure by introducing two self-attention mechanisms in

SuperPoint’s encoder.
3) SuperPoint was originally used for aerial images, and we use an underwater image dataset

to retrain the improved network with the ability to extract feature points in underwater

blurred images.

The study is organized as follows: Section 2 discusses the challenges and importance

of feature extraction from underwater images; Section 3 outlines the process of creating a

dataset of blurred underwater images; Section 4 introduces the structure and training process

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2023                   doi:10.20944/preprints202310.0974.v1

https://doi.org/10.20944/preprints202310.0974.v1


3 of 20

of the network; Section 5 designs a comparative experiment using two datasets and analyzes the

experimental results; finally, a summary of the entire study is provided.

2. Problem Description

The features of an image play a crucial role in enabling computers to accurately comprehend

and interpret the image. In the context of underwater visual tasks, the feature points extracted from

underwater images provide essential information for subsequent tasks. However, the underwater

environment poses various challenges due to light absorption and scattering of suspended particles.

These factors result in low contrast, fogging effects, and color distortion, primarily in shades of blue or

green. Seriously degraded underwater images lack sufficient information for effective target detection

and recognition, making it more challenging to identify targets in underwater environments.

With the development of high-tech underwater optical equipment, the quality of underwater

images has improved to a certain extent. However, there are still issues such as color degradation,

low contrast, and blurred details. Additionally, the cost of implementing these technologies is also a

factor to consider. Underwater image degradation poses a significant obstacle to feature extraction,

making it a critical issue for underwater visual applications. Traditional computer vision techniques

often encounter challenges when processing underwater images, particularly in extracting unique

feature points that can effectively generalize in complex scenes.

As shown in Figure 1, subgraph (a) shows underwater blurry images. This is due to the influence

of water on the propagation of shooting time, resulting in blurry effects in the image. And the

absorption of blue and green light by water is relatively small, resulting in a blue-green color in the

final image. subgraph (b) shows the effectiveness of existing feature point extraction methods on

such images. Due to the low image quality, high-quality feature points cannot be extracted. The

concentrated distribution and small number of feature points pose great challenges to subsequent

tasks. A network based on self-attention mechanism is proposed in this paper, which enhances the

network’s sensitivity to degraded features in underwater images to tackle this issue.

(a) Underwater fuzzy imaging (b) Uneven and small number of feature points

Figure 1. Problems in processing underwater images.

3. Blurred Underwater Image Dataset

The underwater environment presents various unknown conditions, making it challenging to

visualize images formed under different levels of water turbidity. Precisely controlling the level of

turbidity in water is also difficult. The NTNU dataset [12] is an underwater image dataset created

in an underwater 3D scene model. It includes 3D models such as artificial objects and submarine

dunes to enhance environmental complexity. In a synthetic underwater 3D simulation environment,

all parameters are controllable, and the geometry data can be accurately represented. A blurred

underwater image dataset was created by applying various degrees of blurring operations to the NTNU

dataset. Fuzzy processes are based on the Lambert-Beer law as a grounded theory, which applies

to all electromagnetic radiation and all light-absorbing substances, including gases, solids, liquids,

molecules, atoms, and ions. The generalized light attenuation model is described as in Equation (1).
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The model is transferred to an underwater environment as shown in Equation (2). The blurring pipeline

is shown in Table 1, with Equations (3)–(7) expressing the specific calculation method of the process.

E(r) = E0e−cr (1)

Where E is the light intensity, r is the distance, and c is the medium attenuation coefficient.

E(r) = E0e−are−br (2)

Where a is the absorption coefficient, b is the scattering coefficient, and the sum of a and b is

equivalent to the total medium attenuation coefficient c.

am = exp(−ac ∗ dm) (3)

sm = Om ∗ (1 − sc ∗ gm

ss ∗ gs
) + n ∗ sc ∗ gm

ss ∗ gs
(4)

r = sm(:, :, i) ∗ am (5)

ks = 2 ∗ [3 ∗ ba] + 1 (6)

img =
f ilter(Om(:, :, i) ∗ r, h)

f ilter(r, h)
(7)

where am represents the color attenuation coefficient matrix, ac is the color attenuation constant,

dm is the depth image, sm is the scattering coefficient image matrix, Om is the original image, gm and gs

represent the gradient magnitude and the standard deviation of the gradient of the original image,

respectively. sc and ss denote the set scattering coefficient constant and the standard deviation of the

scattering coefficient image, r is the reflectance,ks is the filter size, and h is the Gaussian filter with ks as

the size. Where the subscript m denotes the image matrix, which is a three-dimensional matrix. The

third dimension denotes the color channel. By setting the two parameters ac and sc, it is possible to

obtain underwater images with different blurred levels.

Table 1. Fuzzification process.

set parameters

1: calculate the color decay coefficient image
2: calculate the scattering coefficient image:
3: calculate the raw gradient and standard deviation
4: calculate and normalize the scattering image
5: add Gaussian white noise
6: calculate reflectance
7: perform Gaussian filtering
8: crop the image

This method utilizes depth information to transform a clear simulation image into underwater

images with varying degrees of blur, as depicted in Figure 2. The dataset of generated blurred images

will be used in the feature extraction comparison experiments of this paper.
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Figure 2. Different degrees of blur effect.

4. Proposed Method

Underwater images are subject to alterations to the light and characteristics of the medium

resulting in blurry, hazy and tinted images [26]. Traditional methods are not suitable for extracting

features from them. To address this problem, this paper proposes a self-supervised network based on

the self-attention mechanism. This network is an end-to-end learning framework, which means it takes

an input image and produces output feature points and descriptors. Transfer learning is performed on

the EUVP dataset to learn the ability to extract features from blurred underwater images. The pipeline

of the whole system is shown in Figure 3.
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Test image

Improved SP+SG

Figure 3. Pipeline of the whole system

4.1. Architecture

The network proposed in this paper is based on the SuperPoint network [13] as the infrastructure,

which includes a shared encoder, a feature detector, and a descriptor generator. The overall structure is

shown in Figure 4. VGG-style shared encoders are used to reduce the dimensionality of the input image

and computational complexity. In the network proposed in this paper, a self-attention mechanism

is introduced in the second and fourth layers of the shared encoder. The self-attention mechanism

helps reduce reliance on external information and instead focuses more on the internal relevance of

features within the image. By utilizing the correlations among local information, the self-attention

mechanism effectively captures global feature information, enabling the learning of deeper abstract

features in blurred underwater images. Additionally, the input and output sizes of the self-attention

mechanism are the same, which facilitates subsequent computations. The network’s shared encoder

architecture, depicted in Figure 5, illustrates the integration of the VGG backbone and the introduced

self-attention mechanism. Furthermore, Figure 6 shows a flowchart that outlines the steps involved in

the self-attention mechanism, with γ representing a learnable parameter. The specific expression is

shown in Equations (8)–(10).

Q = K = V = conv(x) (8)

Attention(Q, K, V) = so f tmax(
QKT

√
dk

)V (9)

Out = Attention(Q, K, V) + γ ∗ x (10)

where x represents the input image; conv is a 1x1 convolution; and dk is the dimension of K. We

compute the dot products of the query with all keys, to prevent the results from being too large, divide

each by
√

dk , and apply a softmax function to obtain the weights on the values. The final output is

obtained by adding the attention output to the original value times γ.
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Figure 4. Feature extraction network architecture.
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Figure 5. Feature extraction network shared encoder.
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self-attention
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Figure 6. Self-attention mechanism flow chart.

4.2. Loss Functions

The loss function of the network is the same as SuperPoint [13]. It is the sum of two intermediate

losses: one for the feature point decoder loss Lp and one for the descriptor decoder loss Ld. The final

loss is balanced using the parameter λ, as shown in Equation (11).

L(X, X
′
, D, D

′
, Y, Y

′
, S) =

Lp(X, Y) + Lp(X
′
, Y

′
) + λLd(D, D

′
, S)

(11)

The loss function Lp for the feature point decoder is a fully convolutional cross-entropy loss. In

this equation, X and D represent the feature maps and description subgraphs of the original image,

while Y represents the ground truth of the original image. Additionally, X′, D′, and Y′ represent the

information of the homographic warped image, with the same meaning as mentioned earlier. The

specific expression of the feature point decoder loss function is shown in Equation (12).

Lp(X, Y) =
1

HcWc

Hc ,Wc

∑
h=1
w=1

lp(xhw; yhw) (12)
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Where Hc and Wc denote the height and width of the feature map of feature points, xhw and yhw

are the values of X, Y at (h, w). The specific expression of lp is shown in Equation (13). Furthermore, k

is the number of channels.

lp(xhw; y) = − log(
exp(xhwy)

∑
65
k=1 exp(xhwk)

) (13)

shwh′w′ =

{

1, i f ||Hphw − ph′w′ || < 8

0, else
(14)

Equation (14) is used to determine whether the center position of an image is similar to the

corresponding image after a homographic adaptation. The result is 1 for positive correspondence and

otherwise for negative correspondence. Where Phw represents the position of the center pixel of the

corresponding input image, and Hphw represents a homographic adaptation of phw.

The loss function of the descriptor decoder is defined as shown in Equation (15).

Ld(D, D′, S) =

1

(HcWc)2

Hc ,Wc

∑
h=1
w=1

Hc ,Wc

∑
h′=1
w′=1

ld(dhw, d′h′w′ ; shwh′w′) (15)

ld(d, d′; s) =λd ∗ s ∗ max(0, mp − dTd′)

+ (1 − s) ∗ max(0, dTd′ − mn)
(16)

Where dhw and dhw denote the values of D and D′ at (h, w) and (h′, w′), respectively. The shared

encoder has an 8-fold downsampling operation, so each point in the output descriptor feature map

corresponds to an 8 × 8 cell in the input image. The weight term λd is introduced to balance the case

where there are more negative correspondences than positive correspondences. The thresholds for

positive and negative correspondences are represented by mp and mn, respectively.

4.3. Training Networks

The network proposed in this paper is trained on the EUVP [15] underwater image dataset using

transfer learning. At the same time, the same transfer learning was applied to the original SuperPoint

network. In the later experiments, we call the original network after transfer learning as transferred

SuperPoint. The EUVP dataset consists of pairs of underwater images, including both blurred and

high-quality images. The dataset encompasses various visibility conditions and locations, providing a

diverse range of natural scene variations. In this paper, a subset of the underwater scene image dataset

is used. It consists of 2,185 pairs for training and 130 pairs for validation, totaling 4,500 images.

The network is trained using self-supervised learning, and the training process is as follows. (1)

The MagicPoint [14] network, which consists of a shared encoder and a feature point decoder, is the

base network of SuperPoint and is trained on synthetic image datasets. The synthetic dataset contains

simple geometric figures, such as straight lines, Y-shaped lines, triangles, and other easily identifiable

features. Some example images from this dataset are shown in Figure 7. (2) The MagicPoint network is

used to extract feature points from high-quality images of the EUVP dataset, and the resulting feature

points are considered as the ground truth. This annotation process involves subjecting the input image

to N iterations of homographic adaptation. The feature points on the warped image are detected

for each homographic warp. After applying the inverse homographic adaptation, the feature points

from all N homographic adaptations are pooled back onto the original image to ensure an adequate

number of feature points are extracted. In this paper, N is set to 50. The result of the MagicPoint in

extracting feature points from the training dataset is shown in Figure 8. (3) The network is trained on

the annotated dataset obtained in the second step. The network learns to generate feature points and

descriptors based on the input images and the ground truth provided by the MagicPoint network.
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During training, the initial learning rate is set to 0.001, and the dropout rate in the self-attention

mechanism is 0.4. The loss function values of the training over ten epochs are depicted in Figure 9.

It can be observed that the loss function value of the improved network model converges to

approximately two after ten training iterations, indicating a good fit for the trained network.

Figure 7. Example of a synthetic dataset image

Figure 8. MagicPoint extracts the ground truth of the training data set.
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Figure 9. The loss function curve of the feature extraction network.

5. Experiments

To assess the performance of the network proposed in this paper in extracting features from

blurred underwater images, comparative experiments were conducted with ORB, SIFT, the original

SuperPoint, and the transferred SuperPoint. Two underwater image datasets containing blurred

images were selected for experimental testing. The first dataset was created by blurring the NTNU

dataset. Three representative groups of images were selected, and the degree of blurring for each group

was divided into five levels, ranging from 1 to 5, to indicate increasing levels of blurring intensity. The

second dataset used for testing was the RUIE dataset. Objective evaluations were based on several

metrics, including the number of extracted features and matches, as well as inference efficiency.

5.1. Comparison Experiment of Blurred NTNU Dataset

In the underwater environment, where the conditions are relatively mild, optical images have

higher clarity, and the objects in the images are more distinct. Therefore, an image with a blur level of

1 was chosen for the comparison experiments. This level of blurring represents a clear underwater

image, allowing for a more focused evaluation of the feature extraction performance of the different

methods.

In Figure 10, the results of feature extraction using various algorithms are shown for three images

with a blur level of 1. All three images are tested in the subsequent experiments, and their respective

blur levels are indicated separately. The network proposed in this paper shows a more uniform

distribution of feature points extracted from the three underwater images. It can extract more feature

points from images with a single scene. On the other hand, the original SuperPoint network extracts a

large number of feature points in the background of image A that are not easily interpretable from a

human perception perspective. The feature points extracted by the transferred SuperPoint also exhibit

better uniformity, but their quantity is lower compared to those extracted by the network proposed in

this paper. The feature points extracted by the ORB and SIFT algorithms lack uniformity, which can

negatively impact tasks such as visual SLAM.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2023                   doi:10.20944/preprints202310.0974.v1

https://doi.org/10.20944/preprints202310.0974.v1


11 of 20

(a) ORB (b) SIFT (c) original SP (d) transferred SP (e) Our

Figure 10. The result of feature point extraction by various algorithms on image B with different

degrees of blurring.

To assess the effectiveness of the extracted feature points, they were matched with the

corresponding feature points in adjacent frame images. The handcrafted feature points were matched

using FLANN [18], while the feature points extracted by SuperPoint and the algorithms proposed

in this paper were matched using SuperGlue [16]. Figure 11 shows the matching results of various

algorithms on the underwater images with blur level 1 and their adjacent frames. The number of

feature points extracted by each algorithm and the number of matches are tabulated in Table 2.

Table 2. Number of feature points and matching pairs on level 1 blurred images for each type of

algorithm.

Method
Image A Image B Image C

Points Matching Points Matching Points Matching

ORB+FLANN 83 59 48 16 218 120
SIFT+FLANN 28 24 32 18 234 189

original SP+SuperGlue 56 44 69 46 201 105
transferred SP+SuperGlue 33 29 100 73 160 124

Our+SuperGlue 65 61 157 100 240 179
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(a) ORB (b) SIFT (c) original SP (d) transferred SP (e) Our

Figure 11. The result of feature point extraction by various algorithms on image C with different

degrees of blurring.

In order to account for the complex and diverse underwater environment, images B and C with

blur levels 2 to 5 were used as examples. These images were simulated under various turbidity

conditions in water, and comparative experiments of feature extraction were conducted using ORB,

SIFT, SuperPoint, and the network proposed in this study. The aim was to evaluate the performance of

these algorithms in extracting features from underwater images with varying levels of blur.

Figures 12 and 13 show the results of various algorithms in extracting feature points on image B

and image C, respectively, with different levels of blur. Image B, with its blurred textures and simple

scene, becomes increasingly challenging for traditional methods as the level of blur intensifies. On

the other hand, image C exhibits more textured features on the objects, enabling various methods

to extract a large number of feature points. However, the feature points extracted by ORB and SIFT

lack uniformity. In contrast, both SuperPoint and the algorithm proposed in this paper detect feature

points more uniformly. Furthermore, the network proposed in this paper extracts a significantly

greater number of effective feature points compared to both the original network and the transferred

SuperPoint. Figure 14 shows the change in the number of feature points extracted by the different

algorithms as the blur level gradually increases. Notably, the network proposed in this paper exhibits

the slowest decrease in the number of feature points and is capable of extracting feature points that

meet specific requirements, even in images with a blur level of 5.
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Figure 12. Number of feature points extracted by different algorithms on different images with different

blurred levels.

(a) ORB (b) SIFT (c) original SP (d) transferred SP (e) Our

Figure 13. The result of feature extraction on different images by various algorithms.
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(a) ORB+FLANN

(b) SIFT+FLANN

(c) original SP+SuperGlue

(d) transferred SP+SuperGlue

(e) Our+SuperGlue

Figure 14. The matching result of feature points extracted by each type of algorithm.

5.2. Comparison Experiment of REIU Dataset

To assess the performance of the proposed network on real-world underwater images, a

comparative experiment was conducted using the RUIE dataset. This dataset comprises real

underwater images captured near Roe Deer Island in the Yellow Sea, with scene depths ranging

from 0.5 m to 8 m. The water depth, influenced by periodic tides, varies between 5 m and 9 m. These

environmental conditions lead to underwater images with diverse color tones and varying levels of

quality. This experiment utilized two subsets of the RUIE dataset: the Underwater Image Quality Set

(UIQS) and the Underwater Color Cast Set (UCCS). The Underwater Color Image Quality Evaluation

(UCIQE) metric [17] is a linear combination of chromaticity, saturation, and contrast in underwater

images. The UIQS subset is divided into five subsets (A, B, C, D, E) based on the descending order of

UCIQE values. Examples of different image quality levels from subsets A to E are shown in Figure A1.

In the subset from A to E, the image quality progressively decreases. The UCCS is divided into subsets

based on the average value of the blue channel in the CIELAB color space. The subsets include blue,

green, and blue-green hues. Examples of images from these subsets are shown in Figure A2.

The performance of the network proposed in this paper is compared with other algorithms for

feature extraction on two subsets: UIQS and UCCS. In Figure 15, the extraction results of different

algorithms from the UIQS dataset are shown. The first row of images represents subset A, and the

second row represents subset B, and so on, with the last row representing subset E. The SIFT and ORB

algorithms can extract a few feature points in subsets A and B. However, these feature points tend to

be concentrated in local areas of the images, and their distribution is not uniform. As the blur level

increases, the SIFT and ORB algorithms fail to extract enough feature points. The original SuperPoint
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network can only extract a limited number of feature points from blurred images. The transferred

SuperPoint is able to extract uniformly distributed feature points on all images, but not as many as the

proposed network. However, the proposed network extracted a significantly higher number of stable

feature points from all blurred images. It is also less susceptible to image blurring and can directly

extract feature points from images without the need for pre-processing. This comparison demonstrates

the superior performance of the proposed network in accurately and robustly extracting feature points

from blurred images.

(a) ORB (b) SIFT (c) original SP (d) transferred SP (e) Our

Figure 15. Feature extraction results of various algorithms on underwater images with different degrees

of blurring.

Figure 16 shows the results of feature extraction by various algorithms from underwater images

in different tones. The first row represents the green images, the second row represents the blue-green

images, and the third row represents the blue images. The results indicate that the proposed network

can extract a larger number of high-quality feature points from all images, regardless of their tones.

In contrast, the ORB and SIFT algorithms extract fewer feature points from the blue-green and green

images and exhibit the drawback of uneven distribution of feature points on the blue image. The

original SuperPoint and the transferred SuperPoint can extract fewer feature points from images with

all three tones. This comparison highlights the superior performance of the network proposed in

this paper. It is capable of extracting a larger number of high-quality feature points across different

tones in underwater images, providing a more comprehensive and accurate representation of the

image features.
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(a) ORB (b) SIFT (c) original SP (d) transferred SP (e) Our

Figure 16. Feature extraction results of various algorithms on underwater images with different hues.

Table 3 provides statistical information on various algorithms regarding the number of features

extracted and inference efficiency on different types of images. The ORB demonstrates higher efficiency

in feature extraction. SIFT extracts more feature points, but only on clear images. However, both ORB

and SIFT exhibit diminishing performance as the blur level increases and are sensitive to changes in

image hue. The original network and transferred network extract a small number of feature points

across all images. In contrast, the improved network shows a slower decline in its ability to extract

feature points as the degree of image blurring increases. Furthermore, it exhibits robust characteristics

regarding interference resistance and insensitivity to changes in hue. Notably, the proposed network is

capable of extracting 195 feature points even from highly blurred images. Furthermore, the inference

frame rate remains steady at approximately 28 frames per second when processing images that contain

300 feature points. The criterion for calculating FPS is by calculating the time used by the program to

process each image, which was run on a GPU of model 3090Ti.

Table 3. The number of feature points extracted by different algorithms on different images and the

inference time.

Image
ORB SIFT Original SP Transferred SP Our

Points FPS Points FPS Points FPS Points FPS Points FPS

A 452 245 719 42.6 143 37 282 40.1 386 25.5
B 116 574 93 56 95 39.5 224 38.5 343 27.7
C 0 844 5 57.8 55 38.7 210 38.5 308 28.6
D 0 \ 5 51.1 40 39.4 160 38.2 241 28.7
E 0 \ 0 \ 38 39.4 125 42.5 195 28.9

green 72 624 62 48 84 37.6 233 42.4 323 25.9
blue-green 20 743 31 50.3 93 38.2 225 41.3 308 28

blue 297 320 269 57.9 92 37.3 240 40.9 323 26.6

The experimental results support the conclusion that the network proposed in this paper performs

better in processing low-quality underwater images. It can address challenges such as low image

contrast, fogging blur, and color deviation commonly encountered in underwater environments. The

network’s robustness is demonstrated by its ability to extract stable and effective feature points, thus

overcoming the limitations of traditional methods and the original SuperPoint structure.

6. Conclusions

A feature extraction network is introduced to address common challenges in underwater images,

including color distortion and object blurring. The proposed method incorporates two self-attention
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mechanisms within the shared encoder module of the network. The goal is to improve the accuracy

of feature extraction, especially for blurred underwater images. The underwater image dataset

is used to improve the performance of feature extraction in the network by employing transfer

learning. Experimental results demonstrate significant advantages of the proposed algorithm over

traditional methods and the SuperPoint network in terms of both the quantity and quality of

extracted feature points. The proposed network demonstrates adaptability to different levels of image

degradation, making it suitable for effectively handling various degrees of degradation in underwater

images. It provides an effective solution for extracting features from blurred underwater images. Its

advancements hold promising implications for enhancing performance and expanding applications in

underwater visual tasks, particularly in the field of visual SLAM in underwater environments.
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Abbreviations

The following abbreviations are used in this manuscript:

SP SuperPoint
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Appendix A

(a) A

(b) B

(c) C

(d) D

(e) E

Figure A1. Example diagram of Underwater Image Quality Set.
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(a) green

(b) blue-green

(c) blue

Figure A2. Example diagram of Underwater Color Cast Set.
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