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Abstract: The type III receptor tyrosine kinase FLT3 is a pivotal kinase for hematopoietic progenitor 
cell regulation, with significant implications in acute myeloid leukemia (AML) through mutations 
like internal tandem duplication (ITD). This study delves into the structural intricacies of FLT3, the 
roles of activation loop mutants, and their interaction with tyrosine kinase inhibitors. Coupled with 
this, the research leverages molecular contrastive learning and protein language modeling to 
examine interactions between small molecule inhibitors and FLT3 activation loop mutants. Utilizing 
the ConPLex platform, over 5.7 million unique FLT3 activation loop mutants-small molecule pairs 
were analyzed. The binding free energies of three inhibitors were assessed, and cellular apoptotic 
responses were evaluated under drug treatments. Notably, the introduction of the Xepto50 scoring 
system provides a nuanced metric for drug efficacy. The findings underscore the modulation of 
molecular interactions and cellular responses by Y842 mutations in FLT3-KD, highlighting the need 
for tailored therapeutic approaches in FLT3-ITD-related malignancies. 

Keywords: drug sensitivity scores; molecular modeling; molecular docking; four-parameter logistic 
curve 

 

Introduction 

FLT3, also known as Fms-like tyrosine kinase 3, is a receptor tyrosine kinase that plays a pivotal 
role in the hematopoietic system. It is predominantly expressed in hematopoietic progenitor cells, 
acting as a key regulator of their survival, proliferation, and differentiation. This significance of FLT3 
has been extensively documented and is reviewed in several studies, one of which is referenced as 
[1]. In the context of acute myeloid leukemia (AML), FLT3 takes on an even more pronounced role. 
AML, a malignancy of the myeloid lineage of blood cells, exhibits a variety of genetic anomalies. 
Notably, about 30% of AML patients carry an activating mutation in the FLT3 gene. This mutation 
significantly boosts the cell's survival and proliferation capabilities, often leading to aggressive 
disease progression. The most frequently observed of these mutations is the internal tandem 
duplication (ITD). This intriguing mutation involves an in-frame duplication of a sequence within 
the FLT3 gene. This duplication can vary in length, from just a few amino acids to more than a 
hundred. The result of this mutation is a structural alteration where the juxtamembrane region 
becomes separated from the kinase domain. Consequently, this change activates the kinase activity, 
driving the oncogenic properties of the cell. Clinical observations have revealed a grim picture: the 
presence of an ITD mutation in FLT3 often correlates with poor survival rates and a challenging 
overall prognosis for AML patients. Diving deeper into the structure of FLT3, within its kinase 
domain, there lies a conserved tyrosine residue located in what's referred to as the activation loop. 
This loop is a hallmark of kinase enzymes and is frequently involved in modulating their activity. A 
wealth of research, including the study referenced as [2], highlights the importance of activation loops 
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across various kinases. However, when it comes to type III receptor tyrosine kinases, a group to 
which FLT3 belongs, this loop doesn't play the conventional regulatory role. Our previous research 
efforts have unveiled that this particular tyrosine residue in FLT3, while not crucial for its kinase 
activity, is indispensable for the transformative capabilities of the FLT3-ITD mutation [3]. Further 
complicating the clinical landscape, mutations in codon 842, specifically Y842H and Y842C, have 
emerged as culprits in mediating resistance to tyrosine kinase inhibitors, a common therapeutic 
strategy for AML [4]. Among these, the Y842C mutation deserves special mention. It has not only 
been identified as a mechanism of drug resistance but has also been flagged as an activating mutation 
in AML patients, as detailed in the study referenced as [5]. 

The extracellular domain of type III Receptor Tyrosine Kinases (RTKs) is architecturally 
composed of five immunoglobulin-like (Ig-like) domains. Among these, the Ig-like motifs 2 and 3 are 
specifically involved in ligand binding, providing specificity to the ligand-receptor interaction. In 
contrast, domains 4 and 5 have the crucial function of mediating receptor dimerization, a 
fundamental step for the signaling capabilities of these receptors. Anchoring these receptors firmly 
to the cell membrane is a hydrophobic transmembrane domain. This domain acts as a gateway 
between the extracellular environment and the cell's interior. Adjacent to the transmembrane domain 
lies the intricate intracellular region. This region starts with the juxtamembrane region and 
subsequently houses the bipartite kinase domain, ultimately ending with the carboxyterminal tail. 
For type III RTKs, the juxtamembrane region is not just a mere structural component. It performs a 
crucial autoinhibitory function. By strategically binding to the activation loop of the kinase domain, 
it effectively locks the kinase in an inactive state, ensuring that signaling is tightly regulated [6]. When 
FLT3 is in this inactive state, it remains unphosphorylated. The activation loop adopts a distinct 
conformation, often referred to as the 'DFG-out' conformation due to its conserved aspartic acid-
phenylalanine-glycine (DFG) sequence. This loop, approximately 27 residues in length, interacts with 
the alanine-proline-glutamic acid (APE) sequence, a detail that has been elaborated upon in various 
reviews, including [7]. In a scenario where FLT3 remains unbound to its ligand and thus inactive, the 
juxtamembrane region interacts with the kinase domain. This interaction maintains the kinase 
domain in its inhibited state. Interestingly, this DFG-out conformation has been exploited 
therapeutically. Tyrosine kinase inhibitors that bind to this conformation are termed type II 
inhibitors. Imatinib, a prototypical tyrosine kinase inhibitor (TKI), is a classic example of this 
category. Conversely, there are Type I TKIs that differ in their mechanism. Instead of the DFG-out 
conformation, they interact with the kinase domain when it is in the "DFG-in" configuration, 
signifying an active state of the kinase. Within the scope of the TKIs discussed here, midostaurin is 
categorized as a type I inhibitor. In contrast, both sorafenib and quizartinib fall under the type II 
inhibitors, emphasizing their distinct binding and inhibitory profiles. 

Material and Methods 

Preparation of native and mutant FLT3 structures: The native structure of the FLT3 protein, 
with a resolution of 3.20 Å, was obtained from the Protein Data Bank (PDB). The PDB ID for the 
dimeric FLT3 structure is 4XUF [8]. For our computational analysis, we utilized only one subunit, 
specifically Subunit A. The crystallographic structure displayed two missing loops: one between 
residues Lys649 and Asp651, and the other between Glu708 and Val782. These missing loops were 
reconstructed using the Modeler plugin within the Chimera software. The co-crystal ligand, 
quizartinib, was excised from the binding site. Point mutations were then introduced into the native 
FLT3 protein structure at position Y842 to produce the Y-to-C and Y-to-F mutant proteins. These 
mutant structures were generated using the Dunbrack rotamer library [9], and among them, 
structures with the lowest energy and highest probability scores were chosen for subsequent 
computational analyses. The molecular structures of quizartinib (PubChem CID: 24889392), sorafenib 
(PubChem CID: 216239), and midostaurin (PubChem CID: 9829523) were sourced from the PubChem 
database [10]. 

Molecular Docking: The native and mutant FLT3 protein structures were first prepared by 
removing water molecules. Subsequently, the structures were converted to the Pdbqt format using 
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AutoDock in preparation for docking. Docking analysis was executed using AutoDock Version 4.2 
[11]⁠ in conjunction with ADT Tools 1.5.6. Intermediate steps, including energy minimization for 
protein and ligand structures in the Pdbqt format and grid box generation, were handled using the 
graphical user interface of AutoDock Tools. AutoDock added polar hydrogens, Kollman atomic 
charges, solvation parameters, and fragmental volumes to the protein. The prepared structures were 
saved in Pdbqt format. For grid map file generation, AutoGrid was employed, utilizing a grid box 
with dimensions set to 60 × 60 × 60 points in x, y, and z, and a grid spacing of 0.375 Å. The grid box 
center was adjusted based on the position of the co-crystal ligand. AutoDock's iterative local search 
global optimizer was used to generate protein-ligand poses. Complexes with the lowest binding free 
energy (greater negative ΔG values) were selected as the starting structures for molecular dynamics 
(MD) simulations. In total, nine complexes, namely native-quizartinib, Y842C-quizartinib, Y842F-
quizartinib, native-sorafenib, Y842C-sorafenib, Y842F-midostaurin, native-midostaurin, Y842C-
midostaurin, and Y842F-midostaurin, were chosen as initial structures for MD simulations. 

MD simulations: The topologies for both ligand and protein structures were generated using 
the PRODRG server [12] and the editconf script from the GROMACS software, respectively. The 
protein topologies were derived using the GROMOS96 43a1 force-field [13]. Subsequently, ligand 
topologies were combined with protein topologies to create a protein-ligand complex. This complex 
was situated inside a cubic box populated with the simple point charge (SPC) water model. To 
neutralize the system, counter ions (Na+ and Cl-) were introduced. The neutralized system then 
underwent 50,000 steps of energy minimization using the steepest descent algorithm. Position 
restraints for the ligand and temperature coupling groups were established at this juncture. The 
energy-minimized systems proceeded to a two-phase equilibration, each spanning 1000 ps. The initial 
phase operated within an isothermal-isochoric ensemble, ensuring a constant number of particles, 
volume, and temperature. This step aimed to stabilize the system's temperature. In the subsequent 
phase, the system's pressure and density were equalized under the isothermal-isobaric ensemble, 
maintaining a constant number of particles, pressure, and temperature. The temperature and 
pressure during these ensembles were regulated by the velocity rescaling thermostat [14] and the 
Parrinello-Rahman barostat [15]⁠, respectively. Following equilibration, all position restraints were 
released, and the systems were subjected to 1000 ns MD simulations. These MD trajectories facilitated 
the calculation of thermodynamic binding free energies through the Molecular Mechanics-Poisson 
Boltzmann Surface Area (MM-PBSA) method. 

MM-PBSA calculations: We selected the last 50 ns of the most stable trajectories from MD 
simulations to compute the binding free energies of protein-ligand systems using the g_mmpbsa tool 
[16]. This tool synergizes binding energy calculations with high-throughput MD simulations, 
accounting for conformational changes that occur during protein-ligand binding. While the method 
doesn't compute the entropic terms, it's ideal for comparing the relative binding energies of molecules 
that interact within the same binding pocket. 

The binding free energy for protein-ligand, protein-protein, protein-DNA complexes, or any 
biomolecular assemblage can be theoretically expressed by the equation: 

ΔGbinding = Gcomplex – (Gprotein + Gligand) (1) 
Each component in equation (1) can further be defined by: 

Gx = (EMM) – TS + (Gsolvation) (2) 
In this equation, 'x' can represent Gcomplex, Gprotein, or Gligand. EMM stands for the average molecular 

mechanics potential energy in a vacuum. The term TS symbolizes the entropic contribution to free 
energy in a vacuum, with 'T' and 'S' denoting temperature and entropy, respectively. Lastly, Gsolvation 
refers to the free energy of solvation. 

Drug sensitivity assays – The Ba/F3 cell line was procured from Deutsche Sammlung von 
Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany). The cells were cultured in 
RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Thermo 
Fisher Scientific, Waltham, MA, USA), 100 U/mL penicillin, 100µg/mL streptomycin (Corning, 
Corning, NY, USA), and 10 ng/mL murine IL3 (Thermo Fisher). All inhibitors were sourced from 
MedChemExpress, Monmouth Junction, NJ, USA. Ba/F3 cells, after being stably transfected with 
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FLT3-ITD and activation loop tyrosine mutants, were maintained in the same medium as the parental 
Ba/F3 cells. For the drug sensitivity assays, 10,000 cells were seeded in IL3-free medium and exposed 
to ten distinct drug concentrations, ranging from 5 picomolar to 10 micromolar, for 72 hours. Cell 
viability was then assessed post the 72-hour period using CellTiter-Glo (Promega, Madison, WI, 
USA). 

Apoptosis assay – Ba/F3 cells stably expressing FLT3-ITD or activation loop mutants were 
treated with various drug concentrations for 48 hours. Following treatment, the cells were processed, 
and apoptotic cells were quantified using the FITC-Annexin-V/7-AAD kit (BD Biosciences, Franklin 
Lakes, NJ, USA) as per the manufacturer’s instructions. 

ConPLex analysis: The kinase domain of FLT3 was identified using the NCBI's Conserved 
Domains Search. For our analysis, we retrieved the Simplified Molecular Input Line Entry System 
(SMILES) notations of selected small molecules from the ChEMBL Database. To simulate mutations, 
the Y842 residue in FLT3 was replaced with both Cysteine (C) and Phenylalanine (F). Using a custom 
Python script, these modified FLT3 sequences were combined with the small molecules' SMILES 
notations, resulting in more than 5.7 million protein-small molecule pairs. These pairs were then 
evaluated using the pre-trained ConPLex model to predict interaction scores, providing insight into 
potential binding affinities between the FLT3 variants and the small molecules. 

Xepto50: Xepto50 is designed to handle data ranging from a single experiment to multiple 
experiments, encompassing various cell lines and drugs, all within a single Excel file. The software 
intelligently detects the number of response columns. When there are two or more response columns, 
Xepto50 calculates using the mean response for subsequent analyses. If there are three or more 
response columns, the software not only plots the Standard Error of the Mean (SEM) but also 
provides functionality to compute and remove outliers. Xepto50 is versatile in its data input 
capabilities; it can accept response data in the form of viability or inhibition, whether presented as a 
ratio or a percentage. However, for consistency and ease of analysis, it internally converts all input 
responses to a format that represents inhibition in percentage terms. For curve fitting and analysis, 
Xepto50 applies a four-parameter logistic regression function. 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑚𝑖𝑛 +  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑚𝑎𝑥 − 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑚𝑖𝑛1 + 10ℎ𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒(𝑙𝑜𝑔10(𝐼𝐶50𝑀)− 𝑙𝑜𝑔10(𝑑𝑟𝑢𝑔 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑀))) 

Xepto50 offers an integrated solution for analyzing drug response experiments. Initially, the tool 
employs the curve_fit function from scipy.optimize to fit the data. To further refine this fit, the lmfit 
model is subsequently utilized. In terms of metrics, Xepto50 is equipped to calculate traditional IC50, 
interpolated IC50, and Area Under the Curve (AUC). Additionally, it determines Drug Sensitivity 
Scores, DSS1, DSS2, and DSS3. Of note is the unique "Xepto50 score" introduced by the software. This 
score is derived by determining the AUC between the interpolated IC50 and the sum of the 
interpolated IC50 and a constant value. The baseline response value used for this calculation is 50. 
The result is then normalized by dividing it by the total area spanning between the IC50 and the 
aforementioned sum of the interpolated IC50 and the constant value. 

Ensuring data quality and reliability is of utmost importance. To that end, Xepto50 offers a 
comprehensive suite of quality scores, including R² Score, Adjusted R² Score, Standard Error of the 
Estimate (Sy.x), Root Mean Squared Error (RMSE), Shapiro-Wilk Normality Test P-value, Explained 
Variance Score, Maximum Residual Error, Root Mean Absolute Error (RMAE), and Mean Absolute 
Percentage Error (MAPE), among others. For user accessibility, Xepto50 features a user-friendly 
Graphical User Interface (GUI). This ensures a seamless experience even for individuals who may 
not be versed in programming. The tool is also designed for easy setup within a conda environment. 
Installation is straightforward: pip install xepto50. Once installed, users can initiate the software by 
simply entering the command xepto50. 

Results 

Identification of FLT3 interacting small molecules using molecular contrastive learning and 

protein language 
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Molecular contrastive learning is an emerging technique that has garnered significant attention 
due to its ability to leverage vast datasets of small molecules for probing molecular interactions. A 
novel integration of this methodology with protein language modeling was observed in a recent 
publication [17]. For our analysis, we harnessed an expansive dataset of more than 1.9 million small 
molecules sourced from the ChEMBL database. These were juxtaposed with the FLT3 kinase domain 
(FLT3-KD) and its mutants, Y842C and Y842F. Consequently, the analysis involved over 5.7 million 
unique FLT3-KD-small molecule pairs. Employing a pretrained model within the ConPLex platform, 
we discerned that 938 small molecules manifested interactions with the FLT3-KD, contingent on a 
ConPLex interaction score threshold of >0.8. Adopting an identical score threshold, we identified 
interactions of 930 small molecules with FLT3-KD-Y842C and 923 molecules with FLT3-KD-Y842F 
(Supplementary Table S1 and Figure 1A). Interestingly, while the interaction scores exhibited no 
significant statistical divergence between the wild-type FLT3-KD and its mutants, an observable 
trend emerged. The interaction scores consistently descended in the order of FLT3-KD > FLT3-KD-
Y842C > FLT3-KD-Y842F (Figure 1B). This trend insinuates that mutations within the activation loop 
could potentially modulate the interaction dynamics between inhibitors and the FLT3 kinase domain. 
Furthermore, the specific characteristics of these mutations may influence the nature of these 
interactions in distinct ways. Notably, established FLT3 inhibitors like quizartinib, ponatinib, and 
sorafenib all had interaction scores surpassing 0.8. However, midostaurin had a score of less than 0.6, 
as presented in Figure 1C. 

 
Figure 1. Interaction dynamics of FLT3 kinase domain and its mutants with small molecules. A) 
Distribution of interaction scores for over 5.7 million unique FLT3-KD-small molecule pairs sourced 
from the ChEMBL database. ConPLex platform with a threshold score of >0.8 was used to identify 
interactions between small molecules and FLT3 kinase domains. B) Trend analysis of interaction 
scores, revealing a descending order from FLT3-KD > FLT3-KD-Y842C > FLT3-KD-Y842F. C) Specific 
interaction scores for FLT3 inhibitors. 

Binding Free Energy Analysis of Native and Mutant FLT3 Structures with Drug Molecules Using 

the MM-PBSA Approach 

As we observed a trend in ConPLex interaction scores where mutants displayed slightly 
compromised interactions, we wanted to use structure-based approaches to measure the effect of 
point mutations. We have selected three inhibitors: quizartinib, sorafenib, and midostaurin, due to 
their wide use in FLT3 research. We utilized the MM-PBSA method to compute thermodynamic 
binding free energies for both native and mutant FLT3 structures interacting with various drug 
molecules. The native FLT3 protein structure was sourced from the PDB database [8]⁠. We introduced 
point mutations at position Y842 to create models of the Y842C and Y842F mutant structures. The 
kinase domain of the native experimental structure, in complex with the inhibitor quizartinib, was 
chosen as the binding site for our free energy calculations. We docked the molecules quizartinib, 
sorafenib, and midostaurin onto the specified binding pocket of the native and mutant FLT3 
structures. The docked complexes exhibiting the most stable conformations underwent MD 
simulations, followed by thermodynamic binding free energy calculations (Table 1). Over time, the 
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MM-PBSA method has gained traction and is now a recognized approach for predicting and 
comparing the binding free energies of various biomolecular structures [18–21]⁠. Binding free energy 
inversely relates to the affinity between proteins and ligands. Our analyses revealed that mutations 
in FLT3 structures influenced the binding free energies. Specifically, the binding free energy dropped 
for both mutant FLT3 proteins when interacting with sorafenib, compared to the native FLT3-
sorafenib complex. In contrast, with midostaurin, the binding free energy for mutant structures was 
higher than for the native protein complex. Intriguingly, quizartinib presented intermediate binding 
energy levels in both native and mutant structures. The van der Waals energy was the most 
significant contributor to overall binding free energy. However, with midostaurin, electrostatic 
energy had a more favorable contribution in both mutant structures compared to the van der Waals 
energy. The polar solvation energy component contributions were generally unfavorable for the total 
binding free energy across all protein-ligand complexes. 

Table 1. The thermodynamic binding free energy and its constituents calculated by the MM-PBSA 
approach. 

Native 
FLT3 
Protein 

FLT3 
Inhibitors 

van der Waal 
energy (kJ/mol) 

Electrostatic 
energy (kJ/mol) 

Polar solvation 
energy (kJ/mol) 

SASA 
energy 
(kJ/mol) 

Binding 
energy 
(kJ/mol) 

Native Quizartinib -190.70± 15.48 -110.75 ± 24.56 206.74 ± 34.49 -17.72± 
1.28 

-112.45± 
21.08 

Sorafenib - 42.12± 78.17 - 7.15± 14.10 28.66± 48.37 - 3.65± 
7.00 

- 24.27± 
60.15 

Midostaurin -326.70± 49.07 -199.75± 40.48 372.96± 58.41 -25.37± 
3.19 

-178.85± 
43.74 

Mutant I 
(Y842C) 

Quizartinib -258.69± 74.61 - 12.69± 29.22 186.68± 26.86 -19.79± 
3.54 

-104.49± 
79.30 

Sorafenib -140.86±107.91 - 13.04± 16.37 54.82± 53.67 -11.69± 
6.83 

-110.76± 
77.65 

Midostaurin -116.65± 66.32 -132.48±106.74 209.11±177.76 -12.02± 
6.89 

- 52.04± 
19.61 

Mutant II 
(Y842F) 

Quizartinib -179.77±134.54 - 53.30± 43.73 139.41±109.23 -14.19± 
9.53 

-107.85± 
96.60 

Sorafenib -329.85± 12.03 - 70.41± 9.66 162.84± 11.38 -23.24± 
0.87 

-260.67± 
12.46 

Midostaurin -120.79±113.89 -121.86±115.33 228.13±196.64 -10.12± 
9.78 

-24.643± 
57.03 

Differential apoptotic responses in FLT3-ITD expressing Ba/F3 cells harboring Y842 mutations  

We next aimed to compare the apoptosis responses among different Y842 mutants. To do this, 
we generated Ba/F3 cells that stably express FLT3-ITD, FLT3-ITD-Y842F, and FLT3-ITD-Y842C. These 
cells were cultured in the presence of murine Interleukin 3 (IL3), but we removed IL3 prior to adding 
drugs for the apoptosis assays. Cells were treated with either 1 nM or 5 nM of Quizartinib, Sorafenib, 
Midostaurin, or the equivalent volume of DMSO, which was used to prepare the drug solutions. Our 
observations revealed that while the expression of FLT3-ITD alone was sufficient to support the 
survival of Ba/F3 cells in the absence of IL3, cells expressing FLT3-ITD alongside Y842F or Y842C 
mutations had approximately 4 times more apoptotic cells (as shown in Figure 2A). Regardless of the 
Y842 mutations, the treatment with inhibitors enhanced the apoptosis response. Given that different 
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drug-mutant combinations showed varied binding energies (Figure 2B), we calculated the relative 
apoptosis by subtracting the number of apoptotic cells in the DMSO-treated samples from the total. 
A similar trend was observed in the samples treated with 50 nM Midostaurin, whereas an opposite 
trend was evident in the 5 nM Sorafenib-treated samples (Figure 2C). This finding underscore the 
role of the Y842 mutations in modulating apoptotic responses in Ba/F3 cells expressing FLT3-ITD. 
Specifically, cells harboring FLT3-ITD alongside Y842F or Y842C mutations demonstrated a 
heightened apoptotic response, approximately fourfold greater, in comparison to cells expressing 
only FLT3-ITD. This suggests that the presence of these mutations may render cells more susceptible 
to apoptosis in the absence of IL3. Interestingly, while drug treatment amplified apoptosis across the 
board, different drug-mutant combinations exhibited varied responses. The differential binding 
energies observed for each drug-mutant pair may offer insights into the mechanistic differences in 
drug efficacy and specificity. Importantly, while Midostaurin at 50 nM followed the general trend, 
Sorafenib at 5 nM behaved oppositely. This highlights the nuanced interplay between specific 
mutations and drug treatments, emphasizing the need for personalized therapeutic strategies in 
targeting FLT3-ITD associated malignancies. 

 

Figure 2. Differential apoptotic responses and binding energy analyses of FLT3-ITD Y842 mutants 

under drug treatments. (A) Measurement of apoptotic cells using the annexin V-7-AAD kit after 
treating cells with specific inhibitors for 48 hours prior to processing and analysis. (B) Binding energy, 
represented as negative values, is plotted against various drug-mutant pairs. (C) Calculation of 
relative apoptotic cells by subtracting the number of apoptotic cells observed in DMSO-treated 
controls from those treated with specific inhibitors. 

Evaluation of drug sensitivity metrics and the introduction of the Xepto50 scoring system for 

enhanced drug efficacy analysis 

As apoptotic responses demonstrated a partial correlation with in silico data, our subsequent 
objective was to assess cell viability to determine drug sensitivity indices. Initially, we quantified the 
interpolated IC50 and area under the curve (AUC) employing GraphPad Prism 9. Notably, there were 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2023                   doi:10.20944/preprints202310.0918.v1

https://doi.org/10.20944/preprints202310.0918.v1


 8 

 

no significant disparities in terms of IC50 (represented as -log10IC50, Figure 3A) or AUC (Figure 3B), 
with the exception that the Y842C mutant exhibited reduced responsiveness to sorafenib. To further 
assess various metrics, we introduced Xepto50, a robust tool capable of determining IC50, interpolated 
IC50, AUC, and drug sensitivity scores (DSS1, DSS2, and DSS3) in batch mode from an Excel file input. 
Xepto50, a Python-based application with a graphical user interface (GUI), exhibited interpolated IC50 
and AUC values consistent with those of GraphPad Prism 9 (Supplementary Figure 1B-C). 
Additionally, the trends observed in DSS1 (Figure 3C), DSS2 (Supplementary Figure 1D), and DSS3 
(Supplementary Figure 1E) paralleled those of IC50 and AUC metrics, implying that these drug 
sensitivity metrics might not fully encapsulate theoretical observations. The four-parameter logistic 
regression curve remains a prevalent model for gauging drug sensitivity. A lateral shift in this curve 
denotes reduced potency (Supplementary Figure 1E), whereas a diminished slope indicates 
compromised cooperativity (Supplementary Figure 1F). Conversely, a vertical shift of the maximum 
value alludes to heightened efficacy (Supplementary Figure 1G). Beyond these, multiple other curve 
manifestations can be discerned (Supplementary Figure 1H-J). Given that a drug's impact is an 
amalgamation of these factors, deriving conclusions from a singular parameter could obscure true 
drug efficacy. For instance, drugs with identical IC50 values might display stark differences in 
cooperativity and efficacy (Supplementary Figure 1G-H). However, a perusal of the logistic 
regression curve could elucidate these nuances. It is crucial to underline that a drug exhibiting low 
potency might be highly efficacious at elevated concentrations, a nuance potentially overlooked by 
prevailing scoring techniques. Thus, we advocate for an alternative metric—the Xepto50 score—that 
gauges the normalized area under the curve at the 50% interpolated value within a specified range. 
Distinctly, the Xepto50 score remains unaffected by the logistic regression curve's position but is 
acutely responsive to its shape, rendering it ideal for discerning drug efficacy. Importantly, our 
findings revealed that the Xepto50 score better mirrors apoptosis response and theoretical values 
(Figure 3D). 

 

Figure 3. Assessment of various drug sensitivity metrics. (A) IC50 values were determined using 
GraphPad Prism 9, derived from interpolated values at 50 and subsequently transformed to a 
negative log10 scale. (B) The area under the curve (AUC) was computed from the same dataset, with 
a baseline response set at 10. (C) Drug Sensitivity Score 1 (DSS1) was determined using the Xepto50 
software. (D) The Xepto50 score was derived from the normalized AUC at a specific interval on a 
logarithmic concentration axis. 

Discussion 

The advancements in molecular modeling, combined with the rise of machine learning in drug 
discovery, are poised to bring transformative changes to pharmacology. Among these innovations, 
molecular contrastive learning stands out as a burgeoning technique, demonstrating its aptitude in 
deciphering vast molecular interactions with remarkable accuracy. In line with findings from prior 
studies [17], our research capitalizes on the extensive dataset of small molecules sourced from 
ChEMBL, shedding light on interactions within the FLT3 kinase domain. We observed a distinct 
trend in interaction scores, descending in the sequence of FLT3-KD > FLT3-KD-Y842C > FLT3-KD-
Y842F. This pattern indicates that mutations within the activation loop might be instrumental in 
altering inhibitor interactions with the FLT3 kinase domain. Additionally, the protein language 
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model discerned variations resulting from amino acid alterations in the protein sequences. Given the 
established knowledge that protein mutations can profoundly impact therapeutic outcomes [22–24], 
it is crucial to recognize and comprehend these nuanced genetic shifts when considering therapeutic 
strategies. 

Moreover, the application of the MM-PBSA method, a widely acknowledged technique, 
reaffirmed the impact of point mutations on binding free energies [25,26]. The variable free energy 
readings between native and mutant structures, in the presence of different inhibitors, might 
elucidate some mechanistic underpinnings of the observed efficacy differences. This could help 
inform inhibitor selections based on specific mutation profiles. Furthermore, our empirical findings 
in Ba/F3 cells highlighted the functional implications of the Y842 mutations. Their increased apoptotic 
responses, especially in the absence of IL3, suggest that these mutations might render the cells more 
vulnerable to therapeutic interventions. These data further advocate for the development of 
personalized therapeutic regimes. Drug-specific responses, especially the contrasting behavior of 
Midostaurin and Sorafenib, serve as an important reminder of the intricate and multifaceted 
interactions between drugs and their molecular targets. 

Apart from the established theoretical values, our exploration into comparing drug sensitivity 
both at apoptosis and viability levels unveiled some inconsistencies with theoretical predictions. 
Specifically, while Quizartinib and Midostaurin exhibited higher congruence with theoretical values, 
the cellular response to Sorafenib did not align with its predicted theoretical binding energy. This 
disparity may either highlight the limitations of our theoretical models or suggest that Sorafenib 
interacts at different sites within the kinase domain, especially given that we utilized the Quizartinib 
association site for docking. 

Moreover, our findings indicate that traditional drug sensitivity metrics might not consistently 
represent real-world outcomes. The assessment of drug sensitivity metrics, punctuated by the 
introduction of the Xepto50 scoring system, has addressed a longstanding challenge in drug 
discovery. Although widely used metrics like IC50 provide invaluable perspectives, they occasionally 
miss capturing the entire spectrum of drug efficacy. This gap becomes pronounced in situations 
where drugs have similar IC50 values but divergent mechanisms of action. Given the Xepto50 score's 
emphasis on curve shapes rather than mere positions, it promises a more comprehensive insight into 
drug mechanisms. By leveraging such advanced metrics, the drug development process could be 
refined, paving the way for therapies that are both potent and adaptive to diverse mechanisms of 
action. 

In conclusion, our findings underscore the potential of leveraging advanced molecular modeling 
techniques, reinforced with empirical validations, to enhance our understanding of drug-target 
interactions. The discerning insights obtained from such analyses, when combined with innovative 
metrics like Xepto50, can pave the way for more informed and effective therapeutic strategies. Future 
studies could further delve into the mechanistic intricacies of these interactions, potentially revealing 
novel therapeutic targets or strategies to combat FLT3-ITD-associated malignancies. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org, Figure S1: Drug Sensitivity Scores. (A) Four-parameter logistic regression 
curves plotted using GraphPad Prism 9. (B-E) Drug sensitivity metrics including interpolated IC50 (B), area 
under the curve (C), as well as drug sensitivity scores DSS2 (D) and DSS3 (E), were determined using the Xepto50 
application. (F-K) Sample plots were produced using Python scripts 
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