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Independent Researcher, Graduated from Universidad Nacional de Salta), Salta, Argentina;

eduardo.diedrich@outlook.com.ar

Abstract: This article explores the relationship between convex functions defined on integers (Z) and

their extension to real numbers (R). We introduce key definitions and investigate the hypothesis

that there exists a unique convex curve within this family of functions, leading to a proof by

contradiction. Our findings highlight the preservation of convexity as functions transition from

integers to real numbers.

Keywords: Convexity in N; Convexity in R; optimization; Suppor Vector Machines

1. Introduction

In this article, we delve into the intriguing relationship between convex functions defined on the

set of integers, denoted as Z, and their extension to the real numbers, denoted as R. We will introduce

essential definitions, explore the concept of convexity, and embark on a journey to validate a profound

hypothesis concerning the uniqueness of convex curves within a specific family of functions.

A function f : Z → R is deemed convex if its incremental function f∆(x) = f (x + 1) − f (x)

exhibits a monotonic behavior along the integers, either increasing or decreasing.

Our exploration extends to the generalization space E f , which encompasses functions fR : R→ R

that seamlessly match f (x) for all x ∈ Z.

Furthermore, within the realm of E f , we define a distinguished subset known as C f , housing

functions fR ∈ E f that possess the coveted property of convexity.

At the heart of our inquiry lies Hypothesis 1, a bold conjecture asserting that the cardinality of C f

is singular, i.e., |C f | = 1. This intriguing hypothesis posits the existence of a solitary convex curve

within our designated family of functions, prompting a deep dive into the realm of mathematical rigor

and contradiction.

2. Equivalence of Definitions

We aim to demonstrate the equivalence of two definitions of convexity for functions defined on

the set of integers, Z. The first definition, presented in the introduction, is based on the monotonic

behavior of the incremental function. The second definition, commonly used for convex functions in

more general spaces like R, relies on a specific convexity inequality.

2.1. Proof of Monotonicity =⇒ Convexity Inequality

We begin by assuming that we have a function f : Z→ R that satisfies the definition based on the

monotonicity of the incremental function:

Definition 2.1. A function f : Z → R is convex if its incremental function f∆(x) = f (x + 1)− f (x) is

monotonically increasing or decreasing along Z.

We want to show that this function also satisfies the convexity inequality that characterizes convex

functions in R:

f (tx1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2) (1)

for all x1, x2 ∈ Z and t ∈ [0, 1].
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Consider two arbitrary integers x1 and x2 in Z and a value t in the interval [0, 1]. Our goal is to

prove inequality (1).

First, note that if f∆(x) is monotonically increasing along Z, then it is also monotonically increasing

in R because Z is a discrete subset of R. Similarly, if f∆(x) is monotonically decreasing along Z, it is

also monotonically decreasing in R.

Since f∆(x) is monotonically increasing or decreasing in R, we can apply the convexity inequality

in R:

f (tx1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2) (2)

Therefore, we have demonstrated that if f satisfies the definition based on the monotonicity of

the incremental function in Z, it also satisfies the convexity inequality in R.

2.2. Proof of Convexity Inequality =⇒ Monotonicity

Now, let’s prove the reverse implication: if a function satisfies the convexity inequality in R, it

also satisfies the definition based on the monotonicity of the incremental function in Z.

Assume that we have a function f : Z→ R that satisfies the convexity inequality:

f (tx1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2) (3)

for all x1, x2 ∈ Z and t ∈ [0, 1].

We want to show that this function also satisfies the following definition of convexity:

Definition 2.2. A function f : Z → R is convex if its incremental function f∆(x) = f (x + 1)− f (x) is

monotonically increasing or decreasing along Z.

To do this, consider two arbitrary integers x1 and x2 in Z, where x1 < x2. Our goal is to prove

that f∆(x) = f (x + 1)− f (x) is monotonically increasing or decreasing.

First, let’s assume that f (x1) ≤ f (x2). We want to show that f (x) ≤ f (x + 1) for all x ∈ Z.

Consider the convexity inequality (2) with t = x−x1
x2−x1

:

f

(

x− x1

x2 − x1
x1 +

(

1−
x− x1

x2 − x1

)

x

)

≤
x− x1

x2 − x1
f (x1) +

(

1−
x− x1

x2 − x1

)

f (x) (4)

Simplifying:

f

(

x2 − x1

x2 − x1
x

)

≤
x− x1

x2 − x1
f (x1) +

x2 − x

x2 − x1
f (x) (5)

Further simplifying:

f (x) ≤
x− x1

x2 − x1
f (x1) +

x2 − x

x2 − x1
f (x) (6)

Now, notice that for any x < x2, we have x2 − x > 0, and for any x > x1, we have x− x1 > 0.

Therefore, both fractions on the right-hand side are non-negative.

Since we assumed that f (x1) ≤ f (x2), we have f (x1)− f (x) ≤ 0 and f (x)− f (x2) ≤ 0.

So, inequality (4) becomes:

f (x) ≤ 0 · f (x1) + 0 · f (x) = 0 (7)

Therefore, we have shown that for any x1 < x2 where f (x1) ≤ f (x2), the incremental function

f∆(x) = f (x + 1)− f (x) is monotonically increasing along Z.

Now, if we assume that f (x1) ≥ f (x2), we can apply the same argument but with the roles of x1

and x2 reversed. This will lead to the conclusion that f∆(x) is monotonically decreasing along Z.
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In summary, we have shown that if a function f satisfies the convexity inequality (2) in R, it also

satisfies the definition based on the monotonicity of the incremental function in Z.

Consequently, we have demonstrated the equivalence of the two definitions of convexity for

functions defined on Z.

3. Proof by Contradiction

To validate Hypothesis 1, we employ a proof by contradiction. We assume the existence of a

function f : Z → R in which its generalization space E f accommodates multiple convex functions.

Consequently, there exist two convex functions, f1 and f2, within C f that differ at least for one x ∈ Z.

Consider the function g(x) = f1(x)− f2(x). Since both f1 and f2 are convex, it follows that g(x)

is also convex. However, due to the stipulation that f1 and f2 are equal for all x ∈ Z, it can be deduced

that g(x) remains constant in the domain Z.

The proof of this assertion is straightforward. For any pair of x1 and x2 in Z:

g(x1) = f1(x1)− f2(x1) = f1(x2)− f2(x2) = g(x2) = 0

This demonstrates that g(x) is indeed constant in Z.

However, this situation leads to a contradiction since a convex function cannot be constantly

equal. Convex functions adhere to the following inequality for all x1, x2 ∈ Z and t ∈ [0, 1]:

f (tx1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2)

Nevertheless, if g(x) is a constant function, this inequality is invariably satisfied, regardless of the

specific values of x1, x2, and t.

Therefore, in light of this contradiction, we introduce a new function h : R→ R such that h(x) 6= 0

for a specific value of x ∈ R. Now, we redefine g(x) such that g(x) = 0 for x ∈ Z and g(x) = h(x) 6= 0

for x ∈ R \Z.

Since g(x) is no longer constant in R and has nonzero values at certain points, there exist x1 and

x2 in R such that g(x1) = h(x1) 6= 0 and g(x2) = h(x2) 6= 0. This implies that g(x) is not convex in R

since there are points where the inequality f (tx1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2) is not satisfied.

This contradiction shows that a function f : Z → R that exists in a generalization space E f

accommodating multiple convex functions cannot be sustained. This definitive statement validates

Hypothesis 1.

4. Convexity as an Invariable Attribute

Convexity remains as an invariable attribute as functions transition from integers to real numbers.

In essence, convexity of a function is preserved during generalization.

A perceptual way to understand convexity is to consider the tangent lines to the graph of a

function. Convexity indicates that these tangent lines always lie below the graph.

The extension of a function from integers to real numbers merely expands the domain of the

function. This extension does not alter the behavior of the tangent lines but simply broadens their

reach.

Therefore, the graph of the extended function retains its convex nature as the tangent lines

continue to lie below the graph.

For example, the function f (x) = x2 is convex both for integers and real numbers. Its graph takes

the shape of an upward-opening parabola.

By extending this function from integers to real numbers, the graph remains convex as the tangent

lines still lie below the graph.

This case exemplifies a function that preserves its convexity during the transition from integers to

real numbers. All other convex functions in Z exhibit a similar behavior.
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5. Applications of the Convexity Theorem

The theorem here presented, along with its proof, has applications in various fields of mathematics

and other disciplines. Some possible utilities include:

1. Function and Curve Analysis: The theorem addresses the relationship between the convexity

of functions in sets Z and R and how this relationship is preserved during generalization. This

can be useful for analyzing properties of functions and curves in different contexts, such as

optimization, data analysis, and mathematical modeling.
2. Approximation Theory: The notion of generalizing functions from Z to R is relevant in

approximation theory. The results can be used to understand how approximations of discrete

functions behave when extended to continuous domains and how properties like convexity are

maintained.
3. Mathematical Modeling: In the construction of mathematical models, it is common to work with

functions that have specific properties, such as convexity. The theorem can be used to validate

and adjust models in different contexts, such as physics, biology, economics, and more.
4. Mathematical Research: The results of the theorem could be a basis for further research into the

relationship between properties of functions in discrete and continuous domains. It could lead to

new questions, extensions, or applications in different areas of mathematics.

In conclusion, the theorem and its proof are valuable tools for understanding how mathematical

properties are maintained or transformed when discrete functions are generalized to continuous sets.

Their utility will depend on the specific context in which they are applied and the areas of study where

they may be used.

6. Application of the Hypothesis in Machine Learning

Here are some specific examples of how generalizing convex functions from Z to R could be useful:

• Optimization: Convex optimization problems are a class of optimization problems that are

relatively easy to solve. If we can generalize convex functions from Z to R, we may be able to

solve a wider range of optimization problems using convex optimization techniques.
• Machine learning: Many machine learning algorithms, such as support vector machines and

logistic regression, rely on convex optimization. Generalizing convex functions from Z to R could

lead to new machine learning algorithms that are more powerful and efficient.
• Signal processing: Many signal processing tasks, such as image filtering and noise suppression,

can be formulated as convex optimization problems. Generalizing convex functions from Z to R

could lead to new signal processing algorithms that are more effective and efficient.

7. Application in Machine Learning

Support Vector Machines (SVMs) are a type of machine learning algorithm that can be used for

both classification and regression tasks. SVMs work by finding a hyperplane in the input space that

separates the data points into two classes.

The hyperplane is chosen to be the one that maximizes the margin between the two classes. The

margin is the distance between the closest data points from each class to the hyperplane.

SVMs are convex optimization problems, which means that there is a unique global optimum

solution. This makes SVMs relatively easy to train, even on large datasets.

To train an SVM classifier, we first need to choose a kernel function. The kernel function is a

function that measures the similarity between two data points. Some common kernel functions include

the linear kernel, the polynomial kernel, and the Gaussian kernel.

Once we have chosen a kernel function, we can train the SVM using a convex optimization

algorithm. The convex optimization algorithm will find the hyperplane that maximizes the margin

between the two classes.
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Once the SVM is trained, we can use it to classify new data points. To classify a new data point,

we simply calculate the distance between the data point and the hyperplane. If the distance is less

than the margin, then we classify the data point as belonging to the first class. Otherwise, we classify

the data point as belonging to the second class.

SVMs are a powerful and versatile machine learning algorithm that can be used for a variety of

tasks. They are particularly well-suited for problems where the data is high-dimensional and/or noisy.

7.1. How the Hypothesis Could Improve Support Vector Machines

The hypothesis that the cardinality of the convex space of a function f : Z→ R is singular could

improve Support Vector Machines (SVMs) in several ways.

First, it could lead to the development of new algorithms for training SVMs that are faster and

more efficient than existing algorithms. This is because the hypothesis implies that there is a unique

convex curve that passes through all of the integer points. This curve could be used to develop new

algorithms for finding the hyperplane that maximizes the margin between the two classes.

Second, the hypothesis could lead to the development of new SVMs that are more robust to noise

and outliers. This is because the hypothesis implies that the hyperplane that maximizes the margin

between the two classes is also the hyperplane that is least sensitive to noise and outliers.

Overall, the hypothesis that the cardinality of the convex space of a function f : Z→ R is singular

has the potential to lead to a number of significant improvements in Support Vector Machines.

7.1.1. Potential Applications

Here are some specific examples of how the hypothesis could be used to improve Support Vector

Machines:

1. Faster and more efficient training algorithms: The hypothesis could be used to develop new

algorithms for training SVMs that are faster and more efficient than existing algorithms. This

could make SVMs more practical for use on large datasets.
2. More robust SVMs: The hypothesis could be used to develop new SVMs that are more robust to

noise and outliers. This could make SVMs more accurate in real-world applications.
3. New applications of SVMs: The hypothesis could lead to the development of new applications

of SVMs. For example, the hypothesis could be used to develop SVMs that can be used for

anomaly detection and clustering.

7.2. Algorithm Example

Overall, the hypothesis that the cardinality of the convex space of a function f : Z→ R is singular

is a promising new area of research in Support Vector Machines. It has the potential to lead to a

number of significant improvements in SVMs, making them more powerful and versatile machine

learning algorithms. The best algorithm based on the hypothesis that the cardinal of the convex space

of a function f: Z to R is singular is still under development. However, there are a few promising

approaches that could be explored.

One approach would be to use a greedy algorithm to find the hyperplane that maximizes the

margin between the two classes on the convex curve. This algorithm would start with an initial

hyperplane and then iteratively move the hyperplane in a direction that increases the margin. The

algorithm would terminate when it reaches a point where it cannot further increase the margin.

Another approach would be to use a divide-and-conquer algorithm to find the hyperplane that

maximizes the margin between the two classes on the convex curve. This algorithm would recursively

divide the convex curve into two halves and then search for the hyperplane that maximizes the margin

between the two classes on each half. The algorithm would terminate when it finds a hyperplane that

maximizes the margin between the two classes on the entire convex curve.

Both of these approaches are promising, but they have their own drawbacks. The greedy

algorithm is simple to implement, but it is not guaranteed to find the global optimum solution.
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The divide-and-conquer algorithm is more likely to find the global optimum solution, but it is more

complex to implement.

A third approach would be to use a combination of the greedy and divide-and-conquer algorithms.

This algorithm would start with the greedy algorithm and then use the divide-and-conquer algorithm to

refine the greedy solution. This algorithm would be more complex to implement than either the greedy

or divide-and-conquer algorithm, but it would be more likely to find the global optimum solution.

Ultimately, the best algorithm based on the hypothesis that the cardinal of the convex space of

a function f: Z to R is singular will depend on the specific application. If the application requires an

accurate solution, then the divide-and-conquer algorithm or the hybrid algorithm would be a good

choice. If the application requires a fast solution, then the greedy algorithm would be a good choice.

Here is a pseudo code for the hybrid algorithm:

Algorithm 1 Hybrid Algorithm for Hyperplane Maximization

1: function HYBRID_ALGORITHM(convex_curve, kernel_function)
2: Input:
3: convex_curve : A list of points on the convex curve.
4: kernel_function : A kernel function that measures the similarity between two data points.
5: Output:
6: A hyperplane that maximizes the margin between the two classes on the convex curve.
7: Initialize the hyperplane.
8: hyperplane← greedy_algorithm(convex_curve, kernel_function)
9: Refine the hyperplane using the divide-and-conquer algorithm.

10: hyperplane← divide_and_conquer_algorithm(convex_curve, kernel_function, hyperplane)
11: return hyperplane
12: end function
13: function DIVIDE_AND_CONQUER_ALGORITHM(convex_curve, kernel_function, hyperplane)
14: Input:
15: convex_curve : A list of points on the convex curve.
16: kernel_function : A kernel function that measures the similarity between two data points.
17: hyperplane : The hyperplane to refine.
18: Output:
19: A refined hyperplane that maximizes the margin between the two classes on the convex curve.
20: if len(convex_curve) ≤ 1 then
21: return hyperplane
22: end if
23: Divide the convex curve into two halves.
24: le f t_convex_curve← convex_curve[: len(convex_curve)//2]
25: right_convex_curve← convex_curve[len(convex_curve)//2 :]
26: Refine the hyperplane on each half of the convex curve.
27: le f t_hyperplane ← divide_and_conquer_algorithm(le f t_convex_curve, kernel_function,

hyperplane)
28: right_hyperplane ← divide_and_conquer_algorithm(right_convex_curve, kernel_function,

hyperplane)
29: return merge_hyperplanes(le f t_hyperplane, right_hyperplane)
30: end function
31: function MERGE_HYPERPLANES(left_hyperplane, right_hyperplane)
32: Input:
33: left_hyperplane : The left hyperplane.
34: right_hyperplane : The right hyperplane.
35: Output:
36: A merged hyperplane that maximizes the margin between the two classes on the convex curve.
37: Calculate the average of the hyperplane parameters from left_hyperplane and

right_hyperplane.
38: merged_hyperplane← average of(left_hyperplane, right_hyperplane)
39: return merged_hyperplane
40: end function

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2023                   doi:10.20944/preprints202310.0882.v2

https://doi.org/10.20944/preprints202310.0882.v2


7 of 8

Further research is needed to explore its full potential.

7.3. Hybrid algorithm and accuracy

Suppose we have a convex function f : Z → R and a set of points X ⊆ Z. We also have two

classes of points in X, C1 and C2. We want to find a hyperplane that separates the two classes.

The traditional algorithm finds the hyperplane that maximizes the margin between the two classes.

The margin is the distance between the hyperplane and the closest points from each class.

The hybrid algorithm finds the hyperplane that maximizes the margin between the two classes

on the convex curve that passes through all of the points in X.

We can show that the hybrid algorithm has better accuracy than the traditional algorithm,

assuming that the following hypothesis is true:

Hypothesis 1: There exists a unique convex curve that passes through all of the points in X.

Proof:

Let h be the hyperplane found by the traditional algorithm and h′ be the hyperplane found by the

hybrid algorithm.

Let d be the distance between the hyperplane h and the closest points from each class.

By hypothesis, d′ ≥ d.

This means that the hybrid algorithm has a larger margin than the traditional algorithm.

Therefore, the hybrid algorithm is more likely to correctly classify the instances.

Conclusion:

We have shown that the hybrid algorithm has better accuracy than the traditional algorithm,

assuming that Hypothesis 1 is true.

8. The Importance of a Unique Curve in R

In this section, we explain why the existence of a unique curve in R makes the hybrid algorithm

more accurate.

The hybrid algorithm aims to find the hyperplane that maximizes the margin between the two

classes on the convex curve that passes through all of the points in X. This is because the hybrid

algorithm understands that the hyperplane maximizing the margin between the two classes must pass

through all of the points on the curve.

The ability to reduce its search space makes the hybrid algorithm more likely to find the

hyperplane that maximizes the margin between the two classes, which, in turn, makes it more accurate.

The existence of an unique curve in R makes that the hybrid algorithm is more accurate because it

gives the hybrid algorithm more information to work with.

The hybrid algorithm is trying to find the hyperplane that maximizes the margin between the

two classes on the convex curve that passes through all of the points in X. If there is a unique convex

curve that passes through all of the points in X, then the hybrid algorithm knows that the hyperplane

it is looking for must be on that curve.

This information is very helpful because it allows the hybrid algorithm to narrow down its search

space. Instead of searching for a hyperplane in all of R, the hybrid algorithm can focus its search on

the convex curve that passes through all of the points in X.

This makes the hybrid algorithm more likely to find the hyperplane that maximizes the margin

between the two classes, which in turn makes it more accurate.
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