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Abstract: In this paper, we make research on fractal characteristics of the superposition of fractal

surfaces in the view of fractal dimension. We give the upper bound of the lower and upper Box

dimension of the graph of the sum of two bivariate continuous functions and calculate the exact

values of them under some particular conditions. Further, it has been proved that the superposition

of two continuous surfaces cannot keep the fractal dimensions invariable unless both of them are

two-dimensional. A concrete example of numerical experiment has been provided to verify our

theoretical results. This study can be applied to the fractal analysis of metal fracture surfaces or

computer image surfaces.

Keywords: bivariate continuous functions; fractal dimension; the Box dimension; superposition of
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1. Introduction

Fractal surface, as a class of fractal sets in the three-dimensional Euclidean space, is an important

research object in fractal geometry [1]. At present, fractal surface has been extensively applied in a

variety of academic fields such as metal materials [2], geology [3], computer graphics [4] and so on.

One of the most concerned problems is to investigate how to measure the geometric complexity of

a fractal surface, like the texture roughness of a metal fracture surface or a computer image surface.

Fractal dimension [5] is a common measure of the geometric complexity of a surface, which can be

used to describe its fractal characteristics well. It is well known that the topological dimension of a

surface is two. Nevertheless, its fractal dimension increases with larger amounts of complexity or

roughness, which is usually greater than its topological dimension. For instance, the fractal dimension

of the relief on the earth has been found to be 2.3 in general [6]. Beyond that, many scholars have used

iterative function systems (IFS) to construct fractal surfaces that are attractors of certain IFS in fact.

More details about fractal surfaces and relevant studies of their fractal dimensions can be found in

[7–10].

In recent years, exploring the fractal dimension of the graph of fractal curves has drawn the

attention of numerous researchers. There are some commonly used definitions of the fractal dimension,

such as the Box dimension, the Packing dimension, the Hausdorff dimension and the Assouad

dimension, which are denoted as dimB, dimP, dimH and dimA throughout this paper, respectively.

Of the diverse fractal dimensions, the Box dimension mainly considered in the present paper shows

its advantage of relatively easy calculation. Up to now, a lot of meaningful work have been done,

including fractal interpolation functions [11–14], α-Hölder continuous functions [15,16], self-similar

curves like the Von Koch curve [17,18], and some specific fractal functions like the Weierstrass function

[19–23] and the Besicovitch function [24–26]. For more details of latest work, we refer the interested

readers to [27–32].

Another essential issue involved recently is to estimate the fractal dimension of the superposition

of two fractal curves, namely, the sum of two continuous functions of one variable. This problem can

be traced back to the research made first by Falconer [33] who showed that the Box dimension of the

sum of two continuous functions equals to the greater of the Box dimensions of them. On this basic,

a group of academic workers have pushed this study forward and obtained a series of preliminary
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conclusions, whose related progress can be found in [34–39]. So in this paper, we shall focus on the

fractal dimension of the superposition of two fractal surfaces and investigate whether it has the same

result with that of fractal curves. Based on three-dimensional Cartesian coordinate system, a fractal

surface can be looked upon as a bivariate continuous function, whose fractal dimension and fractional

calculus has been established in [40]. This work will contribute to enriching the theory with regards to

the fractal dimension of fractal surfaces and can be applied to the research on fractal characteristics

analysis of the superposition of two metal fracture surfaces or two computer image surfaces.

The outline of the remainder of this paper is organized as follows: In upcoming Section 2, we cover

required notations, concepts and results on fractal dimensions of the graph of bivariate continuous

functions for subsequent sections. Then in Section 3, we present our main results obtained in this

paper. Firstly, we give the upper bound of the lower and upper Box dimension of the graph of the sum

of two bivariate continuous functions. Secondly, we calculate the exact value of the lower and upper

Box dimension of the graph of the sum of two bivariate continuous functions under certain particular

circumstances. Thirdly, we explore some concrete situations when the two bivariate continuous

functions have the Box dimension or not and also consider the case when one of these two functions is

Lipschitz. Later in Section 4, we provide a specific example and do numerical experiments to verify

the theoretical results in Section 3. Finally in Section 5, we sum up our conclusions and discuss the

further research in the future.

2. Preliminaries

In the present paper, all the subjects we discuss are entirely real. Given a non-empty subset

D ⊂ R2 and a bivariate function f : D → R, the oscillation of f over the rectangular region R is

written as

OSC( f ,R) = sup
(x,y),(u,v)∈R∩D

| f (x, y)− f (u, v)| (1)

and the graph of f (x) on D is defined as

G f = {((x, y), f (x, y)) : (x, y) ∈ D} ⊆ D ×R.

We denote ϑ as the function which is always equal to 0 on D. Let ‖·‖2 be the usual Euclidean norm in

Rn. For any τ1, τ2, · · · , τn ∈ Z and δ > 0, we call ∏
n
i=1[τiδ, (τi + 1)δ] a δ-coordinate cube in Rn.

Below we shall briefly introduce the definition of the Box dimension. For more details about other

kinds of fractal dimensions, we consult the interested readers to [1,5,33,37,41], for example.

Definition 1 ([33]). Let X 6= ∅ be a bounded subset of Rn and let Nδ(X) be the smallest number of δ-coordinate

cubes that intersect X. Then the lower and upper Box dimension of X are defined as, respectively,

dimB(X) = lim
δ→0

logNδ(X)

− log δ

and

dimB(X) = lim
δ→0

logNδ(X)

− log δ
.

If the above two are equal, we define the Box dimension of X as the common value, that is,

dimB(X) = lim
δ→0

logNδ(X)

− log δ
.

Remark 1. The notation Nδ(X) in Definition 1 can also be replaced by one of the following:

(1) The smallest number of sets of diameter at most δ that cover X;
(2) The smallest number of cubes of side δ that cover X;
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(3) The largest number of disjoint balls of radius δ with centres in X;
(4) The smallest number of closed balls of radius δ that cover X.

Now we provide some fundamental results, which will be used in subsequent research. The

forthcoming two lemmas can be essential approaches to estimating the Box dimension of the graph of

a bivariate continuous function.

Lemma 1 ([33]). Let f : X ⊆ Rm → Rn.

(1) If f is a Lipschitz map, that is,

‖ f (x)− f (y)‖2 ≤ C ‖x − y‖2

for ∀x, y ∈ X and certain 0 < C < +∞. Then

dim ( f (X)) ≤ dim(X).

(2) If f is a bi-Lipschitz map, that is,

C1 ‖x − y‖2 ≤ ‖ f (x)− f (y)‖2 ≤ C2 ‖x − y‖2

for ∀x, y ∈ X and certain 0 < C1 ≤ C2 < +∞. Then

dim ( f (X)) = dim(X).

Here dim denotes any one of dimB, dimB and dimB.

Lemma 2 ([33]). Let f : [a, b]× [c, d] → R be continuous and 0 < δ < min {b − a, d − c, 1}. Suppose that

m and n, respectively, are the least integer greater than or equal to b−a
δ and d−c

δ . Then the range of Nδ(G f ) can

be estimated as

n−1

∑
j=0

m−1

∑
i=0

max
{

1, OSC( f ,Ri,j) · δ−1
}

≤ Nδ(G f ) ≤
n−1

∑
j=0

m−1

∑
i=0

{

2 + OSC( f ,Ri,j) · δ−1
}

where Ri,j = [a + iδ, a + (i + 1)δ]× [c + jδ, c + (j + 1)δ].

Proof. Since f (x) is continuous on [a, b]× [c, d], the estimation of Nδ(G f ) can be transformed into the

oscillation of f (x) on the above subregions. We note that the number of cubes of side length δ in the

part above the rectangular region Ri,j that intersect G f is no less than

max
{

1, OSC( f ,Ri,j) · δ−1
}

and no more than

2 + OSC( f ,Ri,j) · δ−1.

Summing over all the subregions just leads to the present lemma.

The next proposition reveals several basic properties relating to the fractal dimensions of the

graph of a bivariate continuous function.

Proposition 1. Let f : [a, b] × [c, d] → R be continuous. Given a constant r ∈ R, the following three

statements hold.

(1) It holds

2 ≤ dimB(G f ) ≤ dimB(G f ) ≤ 3.
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(2) For a constant bivariate function f (x, y) ≡ r on [a, b]× [c, d], we have

dimB(G f ) = dimB(G f ) = dimB(G f ) = 2.

(3) If r 6= 0, then

dimB(Gr· f ) = dimB(G f ) and dimB(Gr· f ) = dimB(G f ).

Proof. The following arguments for (1)–(3) are all based on Definition 1, Lemma 1 and 2.

(1) Assume that max(x,y)∈[a,b]×[c,d] | f (x, y)| = M > 0. On one hand, it follows from Lemma 2 that

Nδ(G f ) ≤
n−1

∑
j=0

m−1

∑
i=0

{

2 + OSC( f ,Ri,j) · δ−1
}

≤ mn
(

2 + 2Mδ−1
)

≤ 2
(

(b − a)δ−1 + 1
) (

(d − c)δ−1 + 1
) (

1 +Mδ−1
)

≤ 2(b − a + 1)(d − c + 1)(M+ 1)δ−3.

Thus by Definition 1,

dimB(G f ) = lim
δ→0

logNδ(G f )

− log δ

≤ lim
δ→0

log
[

2(b − a + 1)(d − c + 1)(M+ 1)δ−3
]

− log δ

= lim
δ→0

log δ3

log δ
+ lim

δ→0

log [2(b − a + 1)(d − c + 1)(M+ 1)]

− log δ

= 3.

On the other hand, it is observed that

Nδ(G f ) ≥
n−1

∑
j=0

m−1

∑
i=0

1

= mn

=
(

(b − a)δ−1 + 1
) (

(d − c)δ−1 + 1
)

≥ (b − a)(d − c)δ−2.

So by Definition 1, we can get

dimB(G f ) = lim
δ→0

logNδ(G f )

− log δ

≥ lim
δ→0

log
[

(b − a)(d − c)δ−2
]

− log δ

= lim
δ→0

log δ2

log δ
+ lim

δ→0

log [(b − a)(d − c)]

− log δ

= 2.

Obviously, we can assert from Definition 1 that dimB(G f ) ≤ dimB(G f ), which leads to the

conclusion of (1).
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(2) Note that OSC( f ,Ri,j) = 0 when f (x, y) ≡ r on [a, b]× [c, d]. Consequently,

Nδ(G f ) ≤ 2mn +
n−1

∑
j=0

m−1

∑
i=0

OSC( f ,Ri,j) · δ−1

≤ 2
(

(b − a)δ−1 + 1
) (

(d − c)δ−1 + 1
)

≤ 2(b − a + 1)(d − c + 1)δ−2.

At this time, we obtain

dimB(G f ) = lim
δ→0

logNδ(G f )

− log δ

≤ lim
δ→0

log
[

2(b − a + 1)(d − c + 1)δ−2
]

− log δ

= lim
δ→0

log δ2

log δ
+ lim

δ→0

log [2(b − a + 1)(d − c + 1)]

− log δ

= 2.

Combining (1) of Proposition 1,

2 ≤ dimB(G f ) ≤ dimB(G f ) ≤ 2.

That is,

dimB(G f ) = dimB(G f ) = dimB(G f ) = 2,

finishing the proof of (2).

(3) Let us define a mapping Γ : G f → Gr· f by

Γ((x, y), f (x, y)) = ((x, y), (r · f )(x, y)) , (x, y) ∈ [a, b]× [c, d]

for ∀r ∈ R \ {0}. By using the simple properties of norm, one can show that

‖Γ((x, y), f (x, y))− Γ((u, v), f (u, v))‖2

≤
√

1 + r2 ‖((x, y), f (x, y))− ((u, v), f (u, v))‖2

and
‖Γ((x, y), f (x, y))− Γ((u, v), f (u, v))‖2

≥ |r|√
r2 + 1

‖((x, y), f (x, y))− ((u, v), f (u, v))‖2

for ∀(x, y), (u, v) ∈ [a, b]× [c, d]. With Lemma 1, we can claim that Γ is a bi-Lipschitz mapping

and then the result of (3) holds.

Remark 2. In Proposition 1, if the Box dimension of G f exists on [a, b]× [c, d], then

2 ≤ dimB(G f ) ≤ 3

and for ∀r ∈ R \ {0},

dimB(Gr· f ) = dimB(G f ).
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In particular, if r = 0, we have

dimB(Gϑ) = dimB(Gϑ) = dimB(Gϑ) = 2

by (2) of Proposition 1. Thus for any continuous function f : [a, b]× [c, d] → R, 0 · f must be a two-dimensional

continuous function on [a, b]× [c, d].

Up to now, some particular bivariate continuous functions with non-integer fractal dimensions

have been constructed. For instance, Yu [42] had given the following facts.

Example 1 ([42]). For 0 < α < 1 and λ ≥ 2, let

W(x, y) =
∞

∑
j=1

λ−αj sin(λjx), (x, y) ∈ [a, b]× [c, d].

Then

dimB(GW ) = 3 − α.

Example 2 ([42]). For 1 < s < 2, let

B(x, y) =
∞

∑
j=1

λs−2
j cos(λjx), (x, y) ∈ [a, b]× [c, d]

where
λj+1

λj
≥ λ > 1 for ∀j ∈ N∗. If

λj+1

λj
ր ∞, then dimB(GB) and dimB(GB) could be any numbers

satisfying

2 ≤ dimB(GB) < dimB(GB) < 3.

3. Main Results

In this section, we present our main results for the fractal dimensions the graph of the sum of two

bivariate continuous functions. For two bivariate continuous functions f , g : [a, b]× [c, d] → R, our

motivation is to explore the values of dimB(G f+g) and dimB(G f+g). According to Definition 1, we can

notice that the estimation of Nδ(G f+g) is key to calculate them. Hence, we begin by investigating how

to attain the range of Nδ(G f+g). The upcoming result about the oscillation is basic.

Theorem 1. Let f , g : [a, b]× [c, d] → R be continuous. Then the range of OSC( f + g,Ri,j) can be estimated

as
∣

∣

∣

∣

∣

n−1

∑
j=0

m−1

∑
i=0

OSC( f ,Ri,j)−
n−1

∑
j=0

m−1

∑
i=0

OSC(g,Ri,j)

∣

∣

∣

∣

∣

≤
n−1

∑
j=0

m−1

∑
i=0

OSC( f + g,Ri,j)

≤
n−1

∑
j=0

m−1

∑
i=0

OSC( f ,Ri,j) +
n−1

∑
j=0

m−1

∑
i=0

OSC(g,Ri,j)

where m, n,Ri,j have been defined in Lemma 2.

Proof. From Equation (1), we can obtain

OSC(− f ,Ri,j) = OSC( f ,Ri,j) (2)
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and
OSC( f + g,Ri,j) = sup

(x,y),(u,v)∈Ri,j

|( f + g)(x, y)− ( f + g)(u, v)|

≤ sup
(x,y),(u,v)∈Ri,j

{| f (x, y)− f (u, v)|+ |g(x, y)− g(u, v)|}

≤ sup
(x,y),(u,v)∈Ri,j

| f (x, y)− f (u, v)|+ sup
(x,y),(u,v)∈Ri,j

|g(x, y)− g(u, v)|

≤ OSC( f ,Ri,j) + OSC(g,Ri,j).

(3)

Summing over all the rectangular regions in Equation (3) just leads to the right end of the required

inequality. Then combining Equations (2) and (3), we estimate

OSC( f ,Ri,j) = OSC( f + g − g,Ri,j) ≤ OSC( f + g,Ri,j) + OSC(g,Ri,j)

and

OSC(g,Ri,j) = OSC( f + g − f ,Ri,j) ≤ OSC( f + g,Ri,j) + OSC( f ,Ri,j).

Thus

OSC( f + g,Ri,j) ≥
∣

∣OSC( f ,Ri,j)− OSC(g,Ri,j)
∣

∣ . (4)

Summing over all the rectangular regions in Equation (4) and using absolute value inequality, one can

get the left end of our required inequality as well.

In the light of Theorem 1 and Lemma 2, Nδ(G f+g) seems to have a certain relationship with

Nδ(G f ) and Nδ(Gg). The next important theorem establishes a connection among the above three.

Theorem 2. Let f , g : [a, b]× [c, d] → R be continuous. Then the range of Nδ(G f+g) can be estimated as

∣

∣

∣
Nδ(G f )−Nδ(Gg)

∣

∣

∣
− ρδ−2 ≤ Nδ(G f+g) ≤ Nδ(G f ) +Nδ(Gg) + ρδ−2

where 0 < δ < min {b − a, d − c, 1} and ρ = 2(b − a + 1)(d − c + 1)δ−2.

Proof. It follows from Theorem 1 and Lemma 2 that

Nδ(G f+g) ≤ 2mn + δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC( f + g,Ri,j)

≤ 2
(

(b − a)δ−1 + 1
) (

(d − c)δ−1 + 1
)

+ δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC( f ,Ri,j) + δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC(g,Ri,j)

≤ 2(b − a + 1)(d − c + 1)δ−2 +Nδ(G f ) +Nδ(Gg)

and

Nδ(G f+g) ≥ δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC( f + g,Ri,j)

≥ 2mn +

∣

∣

∣

∣

∣

δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC( f ,Ri,j)− δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC(g,Ri,j)

∣

∣

∣

∣

∣

− 2mn

≥
∣

∣

∣
Nδ(G f )−Nδ(Gg)

∣

∣

∣
− 2(b − a + 1)(d − c + 1)δ−2.

This concludes the proof of Theorem 2.
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With the help of Theorem 2, we shall prove the following several conclusions. Theorem 3 and 4

give the upper bound of dimB(G f+g) and dimB(G f+g), respectively.

Theorem 3. Let f , g : [a, b]× [c, d] → R be continuous. Then

dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}

.

Proof. Assume that dimB(G f ) = s1 and dimB(Gg) = s2. Given ∀ε > 0, by Definition 1 there must

exist a certain number δ0 ∈ (0, min {b − a, d − c, 1}) such that

Nδ(G f ) ≤ δ−s1−ε,

Nδ(Gg) ≤ δ−s2−ε

for ∀δ ∈ (0, δ0]. Then by Theorem 2, we get

Nδ(G f+g) ≤ Nδ(G f ) +Nδ(Gg) + ρδ−2

≤ δ−s1−ε + δ−s2−ε + ρδ−2

≤
(

δmax{s1,s2}−s1 + δmax{s1,s2}−s2 + ρδmax{s1,s2}−2+ε
)

δ−max{s1,s2}−ε

≤ (ρ + 2)δ−max{s1,s2}−ε

for ∀δ ∈ (0, δ0]. From Definition 1, we can conclude that

dimB(G f+g) = lim
δ→0

logNδ(G f+g)

− log δ

≤ lim
δ→0

log
[

(ρ + 2)δ−max{s1,s2}−ε
]

− log δ

= lim
δ→0

log(ρ + 2)

− log δ
+ lim

δ→0

log δmax{s1,s2}+ε

log δ

= max {s1, s2}+ ε.

Since the above formula is true for ∀ε > 0, we have

dimB(G f+g) ≤ max {s1, s2} = max
{

dimB(G f ), dimB(Gg)
}

,

which completes the proof of Theorem 3.

Theorem 4. Let f , g : [a, b]× [c, d] → R be continuous. Then

dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}

.

Proof. Assume that

dimB(G f ) = α1 and dimB(Gg) = α2.

From the definition of dimB(Gg), there exists a positive subsequence {δλk
}∞

k=1 such that limk→∞ δλk
= 0

and meanwhile

lim
k→∞

logNδλk
(Gg)

− log δλk

= α2.
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So given ∀ε > 0, there exists a κ1 ∈ N∗ such that

Nδλk
(Gg) ≤ δ

−α2−ε
λk

(5)

when k ≥ κ1. Then by the definition of dimB(G f ), there exists a κ2 ∈ N∗ such that

Nδλk
(G f ) ≤ δ

−α1−ε
λk

(6)

when k ≥ κ2. Combining Theorem 2, Equations (5) and (6), we can obtain

Nδλk
(G f+g) ≤ Nδλk

(G f ) +Nδλk
(Gg) + ρδ−2

λk

≤ δ
−α1−ε
λk

+ δ
−α2−ε
λk

+ ρδ−2
λk

≤
(

δ
max{α1,α2}−α1
λk

+ δ
max{α1,α2}−α2
λk

+ ρδ
max{α1,α2}−2+ε
λk

)

δ
−max{α1,α2}−ε
λk

≤ (ρ + 2)δ
−max{α1,α2}−ε
λk

when k ≥ max {κ1, κ2}. Thus by Definition 1, we have

dimB(G f+g) = lim
δ→0

logNδ(G f+g)

− log δ

≤ lim
k→∞

log
[

(ρ + 2)δ
−max{α1,α2}−ε
λk

]

− log δλk

= lim
k→∞

log(ρ + 2)

− log δλk

+ lim
k→∞

log δ
max{α1,α2}+ε
λk

log δλk

= max {α1, α2}+ ε.

In the light of the arbitrariness of ε, we immediately get our required result.

Under certain particular circumstances, the previous two formulae could take an equal sign,

shown in the undermentioned two theorems.

Theorem 5. Let f , g : [a, b]× [c, d] → R be continuous. If

dimB(G f ) 6= dimB(Gg),

then

dimB(G f+g) = max
{

dimB(G f ), dimB(Gg)
}

.

Proof. Let H = f + g. Without loss of generality, we can assume that

dimB(G f ) > dimB(Gg). (7)

Suppose that

dimB(GH) 6= max
{

dimB(G f ), dimB(Gg)
}

= dimB(G f ).

From Theorem 3, it follows that

dimB(GH) < dimB(G f ). (8)
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Then combining Equations (7) and (8), we have

dimB(GH−g) = dimB(G f )

> max
{

dimB(GH), dimB(Gg)
}

= max
{

dimB(GH), dimB(G−g)
}

,

which is a contradiction to Theorem 3. Therefore, we can conclude that

dimB(G f+g) = dimB(GH) = max
{

dimB(G f ), dimB(Gg)
}

.

This means the conclusion of Theorem 5 holds.

Theorem 6. Let f , g : [a, b]× [c, d] → R be continuous. If

max
{

dimB(G f ), dimB(Gg)
}

> min
{

dimB(G f ), dimB(Gg)
}

,

then

dimB(G f+g) = max
{

dimB(G f ), dimB(Gg)
}

.

Proof. Without loss of generality, we suppose that

η1 = dimB(Gg) > dimB(G f ) = η2.

At this time, we know that

max
{

dimB(G f ), dimB(Gg)
}

= η1 > η2 = min
{

dimB(G f ), dimB(Gg)
}

.

From Theorem 4, it follows that

dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}

= η1. (9)

Next, we prove that dimB(G f+g) ≥ η1 as below. By the definition of dimB(Gg) and dimB(G f ),

given ∀ε ∈
(

0,
η1−η2

2

)

, there exists a δ1 ∈ (0, min {b − a, d − c, 1}) such that

Nδ(G f ) ≤ δ−η2−ε
< δ−η1+ε ≤ Nδ(Gg)

for ∀δ ∈ (0, δ1]. Note that η1 − η2 − 2ε > 0 and η1 − 2 − ε > 0, thus there exists a δ2 ∈
(0, min {b − a, d − c, 1}) such that

δη1−η2−2ε ≤ 1

3
and δη1−2−ε ≤ 1

3ρ

for ∀δ ∈ (0, δ2]. Then by Theorem 2, we estimate

Nδ(G f+g) ≥
∣

∣

∣
Nδ(G f )−Nδ(Gg)

∣

∣

∣
− ρδ−2

≥ δ−η1+ε − δ−η2−ε − ρδ−2

≥
(

1 − δη1−η2−2ε − ρδη1−2−ε
)

δ−η1+ε

≥ 1

3
δ−η1+ε
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for ∀δ ∈ (0, min {δ1, δ2}]. Consequently, one can get

dimB(G f+g) = lim
δ→0

logNδ(G f+g)

− log δ
≥ lim

δ→0

log 1
3 δ−η1+ε

− log δ
= η1 − ε

by Definition 1. Since ε in the above formula is arbitrary, we have dimB(G f+g) ≥ η1. Combining

Equation (9), we just obtain the required result.

Now we shall deal with some concrete examples on the fractal dimensions of the graph of the

sum of two bivariate continuous functions. To this end, we first need to state the definition of function

spaces as follows.

Definition 2. Spaces of bivariate continuous functions.

(1) Let Sd be the space of all bivariate continuous functions whose Box dimension exists and is equal to d on

[a, b]× [c, d] as 2 ≤ d ≤ 3. Namely, Sd is the space of d-dimensional bivariate continuous functions on

[a, b]× [c, d].
(2) Let Sd2

d1
as the space of all bivariate continuous functions whose Box dimension does not exist on [a, b]×

[c, d]. Here d1, d2 are the lower and upper Box dimension of the function on [a, b]× [c, d] as 2 ≤ d1 <

d2 ≤ 3, respectively.

Below we start by the case when the two bivariate continuous functions have the different Box

dimension.

Proposition 2. Let f (x, y) ∈ Sd1 and g(x, y) ∈ Sd2 . If d1 6= d2, then

f (x, y) + g(x, y) ∈ Smax{d1,d2}.

Proof. Without loss of generality, suppose that d1 > d2. At this time, we observe that

dimB(Gg) = dimB(Gg) < dimB(G f ) = dimB(G f ).

Then it follows from Theorem 5 and 6 that

dimB(G f+g) = max
{

dimB(G f ), dimB(Gg)
}

= max {d1, d2}

and

dimB(G f+g) = max
{

dimB(G f ), dimB(Gg)
}

= max {d1, d2} .

That is,

dimB(G f+g) = max {d1, d2} ,

completing the proof of Proposition 2.

The upcoming two corollaries discuss a few situations when at least one of two bivariate

continuous functions does not have the Box dimension on [a, b] × [c, d]. These results can easily

be obtained from Theorem 5 and 6 with their proofs omitted.

Corollary 1. Let f (x, y) ∈ Sd2
d1

and g(x, y) ∈ Sd.

(1) If d1 < d2 < d,

f (x, y) + g(x, y) ∈ Sd.

(2) If d < d1 < d2,

f (x, y) + g(x, y) ∈ Sd2
d1

.
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Corollary 2. Let f (x, y) ∈ Sd2
d1

, g(x, y) ∈ Sd4
d3

.

(1) If d1 < d2 < d3 < d4,

f (x, y) + g(x, y) ∈ Sd4
d3

.

(2) If d3 < d4 < d1 < d2,

f (x, y) + g(x, y) ∈ Sd2
d1

.

If the two bivariate continuous functions have the same Box dimension d, the result will become

more complicate. Here we discuss two situations according to whether d equals to two or not. If d 6= 2,

we can arrive at the following two conclusions.

Proposition 3. Let f (x, y), g(x, y) ∈ Sd for 2 < d ≤ 3. If the Box dimension of G f+g exists, then

f (x, y) + g(x, y) ∈
⊕

t∈[2,d]

S t.

Proof. Firstly, let

f (x, y) = −g(x, y) +W(x, y)

where W(x, y) is the function given in Example 1 and dimB(GW ) = 3 − α could be any number

belonging to (2, d) by choosing suitable α. Then from Proposition 1 and 2, it follows that

dimB(G f ) = dimB(G−g+W )

= max
{

dimB(Gg), dimB(GW )
}

= max {d, 3 − α}
= d.

Secondly, let

f (x, y) = −g(x, y) + H(x, y)

where H(x) ∈ S2. At this time,

dimB(G f ) = max
{

dimB(Gg), dimB(GH)
}

= max {d, 2} = d.

Thirdly, let f (x, y) = g(x, y). Then we know from Proposition 1 that

dimB(G f+g) = dimB(G2 f ) = dimB(G f ) = d.

According to the above discussion, we just finish the proof of the present proposition.

Proposition 4. Let f (x, y), g(x, y) ∈ Sd for 2 < d ≤ 3. If the Box dimension of G f+g does not exist, then

f (x, y) + g(x, y) ∈
⊕

t1,t2∈[2,d)
t1<t2

S t2
t1

.

Proof. Let

f (x, y) = −g(x, y) + B(x, y)

where B(x, y) is the function given in Example 2 and dimB(GB), dimB(GB) could be any numbers

satisfying

2 ≤ dimB(GB) < dimB(GB) < d ≤ 3. (10)
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From Theorem 5 and 6, we can get

dimB(G f ) = dimB(G−g+B) = max
{

dimB(Gg), dimB(GB)
}

= d

and

dimB(G f ) = dimB(G−g+B) = dimB(Gg) = d,

which implies that

dimB(G f ) = d.

Then by Equation (10), we just obtain our required result.

If d = 2, the next result manifests that the sum of two two-dimensional bivariate continuous

functions can keep the fractal dimension closed.

Theorem 7. Let f (x, y), g(x, y) ∈ S2. Then f (x, y) + g(x, y) ∈ S2.

Proof. From Theorem 3, it follows that

dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}

= 2.

Combining (1) of Proposition 1, we obtain

2 ≤ dimB(G f+g) ≤ dimB(G f+g) ≤ 2.

Thus

dimB(G f+g) = 2,

namely, f (x, y) + g(x, y) ∈ S2.

In particular, if one of the two bivariate continuous functions is Lipschitz, we have the following

assertion.

Theorem 8. Let f , g : [a, b]× [c, d] → R be continuous. If g is Lipschitz on [a, b]× [c, d], then

dim(G f+g) = dim(G f )

where dim denotes any one of dimH , dimP, dimA, dimB, dimB and dimB.

Proof. Let us define a map Υ : G f → G f+g by

Υ((x, y), f (x, y)) = ((x, y), f (x, y) + g(x, y)) , (x, y) ∈ [a, b]× [c, d].

Since g is Lipschitz on [a, b]× [c, d], let

L = sup
(x,y),(u,t)∈[a,b]×[c,d]

|g(x, y)− g(u, t)|
‖(x, y)− (u, t)‖2

< +∞.
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For ∀(x, y), (u, t) ∈ [a, b]× [c, d], on one hand,

‖Υ((x, y), f (x, y))− Υ((u, t), f (u, t))‖2
2

= ‖((x, y), f (x, y) + g(x, y))− ((u, t), f (u, t) + g(u, t))‖2
2

= ‖(x, y)− (u, t)‖2
2 + |( f (x, y)− f (u, t)) + (g(x, y)− g(u, t))|2

≤‖(x, y)− (u, t)‖2
2 + 2| f (x, y)− f (u, t)|2 + 2|g(x, y)− g(u, t)|2

≤‖(x, y)− (u, t)‖2
2 + 2| f (x, y)− f (u, t)|2 + 2L2 ‖(x, y)− (u, t)‖2

2

=
(

1 + 2L2
)

‖(x, y)− (u, t)‖2
2 + 2| f (x, y)− f (u, t)|2

≤
(

3 + 2L2
)

‖((x, y), f (x, y))− ((u, t), f (u, t))‖2
2 .

On the other hand,

‖((x, y), f (x, y))− ((u, t), f (u, t))‖2
2

= ‖(x, y)− (u, t)‖2
2 + | f (x, y)− f (u, t)|2

= ‖(x, y)− (u, t)‖2
2 + |( f (x, y)− f (u, t)) + (g(x, y)− g(u, t))− (g(x, y)− g(u, t))|2

≤‖(x, y)− (u, t)‖2
2 + 2 |( f (x, y)− f (u, t)) + (g(x, y)− g(u, t))|2 + 2|g(x, y)− g(u, t)|2

≤‖(x, y)− (u, t)‖2
2 + 2 |( f (x, y)− f (u, t)) + (g(x, y)− g(u, t))|2 + 2L2 ‖(x, y)− (u, t)‖2

2

=
(

1 + 2L2
)

‖(x, y)− (u, t)‖2
2 + 2 |( f (x, y)− f (u, t)) + (g(x, y)− g(u, t))|2

≤
(

3 + 2L2
)

‖Υ((x, y), f (x, y))− Υ((u, t), f (u, t))‖2
2 .

Then by the above two inequalities, we can obtain

C1 ‖((x, y), f (x, y))− ((u, t), f (u, t))‖2 ≤‖Υ((x, y), f (x, y))− Υ((u, t), f (u, t))‖2

≤ C2 ‖((x, y), f (x, y))− ((u, t), f (u, t))‖2

where C1 =
1√

3 + 2L2
and C2 =

√
3 + 2L2 satisfying 0 < C1 < C2 < +∞. This means that Υ is a

bi-Lipschitz map. With Lemma 1, we just get our required result.

4. Examples

In this section, we give a concrete example to verify the result acquired in Section 3.

Example 3. For 0 < α < 1, let

W∗(x, y) =
∞

∑
j=1

2−αj sin(2jx), (x, y) ∈ [0, 1]× [0, 1]

and

B∗(x, y) =
∞

∑
j=1

(2j)−
9
10×2j

cos
(

(2j)2j
x
)

, (x, y) ∈ [0, 1]× [0, 1].

By [42], we have

dimB(GW∗) = 3 − α, dimB(GB∗) =
39

19
and dimB(GB∗) =

21

10
.
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If 0 < α <
9
10 , it follows from Corollary 1 that

dimB(GW∗+B∗) = dimB(GW∗) = 3 − α.

Now we show several graphs and numerical results for Example 3. Figure 1 indicates the graph

of W∗ when α = 0.5. Figure 2 denotes the graph of B∗. Figure 3 represents the graph of W∗ + B∗. Let

α be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, respectively. Table 1 presents the corresponding numerical results

for the Box dimension of the graph of by using computing methods stated in [43]. In addition, Figure 4

supports our theoretical results gained in Section 3 where the minor deviation may be rendered by the

approximation of the computer process.

Figure 1. The graph of W∗.

Figure 2. The graph of B∗.
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Figure 3. The graph of B∗ +W∗.

Table 1. Connection between α and dimB(GW∗+B∗ ).

α dimB(GW∗+B∗ )

0.1 2.8736
0.2 2.7801
0.3 2.6792
0.4 2.5853
0.5 2.4779
0.6 2.3825
0.7 2.2814
0.8 2.1840

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

The Box dimension

3-

Figure 4. Comparison between numerical results and theoretical results.

5. Conclusions

In this last section, we sum up conclusions obtained in this paper.
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5.1. Conclusions and Remarks

Throughout the present paper, we mainly make research on the fractal dimensions of the graph of

the superposition of two continuous surfaces f and g on [a, b]× [c, d] with certain lower and upper

Box dimensions. Our main conclusions can be summarized as the following several aspects:

(1) dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}

.

(2) dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}

.

(3) When

dimB(G f ) 6= dimB(Gg),

we prove that

dimB(G f+g) = max
{

dimB(G f ), dimB(Gg)
}

.

(4) When

max
{

dimB(G f ), dimB(Gg)
}

> min
{

dimB(G f ), dimB(Gg)
}

,

we prove that

dimB(G f+g) = max
{

dimB(G f ), dimB(Gg)
}

.

(5) It has been proved that the superposition of two continuous surfaces cannot keep the fractal

dimensions invariable unless both of them are two-dimensional.
(6) It has been proved that the fractal dimensions of the graph of the sum of a bivariate continuous

function and a bivariate Lipschitz function equals to the fractal dimensions of the graph of the

former. That is, a bivariate Lipschitz function can be absorbed by any other bivariate continuous

function in the sense of fractal dimensions.

Moreover, it is worth mentioning that the previous results can be extended to any closed regain

D ⊂ R2. In other words, all the results attained in the present paper still hold for two continuous

surfaces f and g defined on D.

5.2. Applications in other fields

In recent years, estimation of the fractal dimensions of the superposition of continuous surfaces

has been widely applied in various fields such as metal materials and computer graphics.

In metal materials, the fracture surface topography with regards to the fatigue of metals can be

studied by fractal characteristics, which can been found in [44,45]. Furthermore, fractal dimension is

closely relevant to the parameters of areal surface of metals, which has been shown in [2]. As is known

to all, there exist a good deal of approaches to calculating fractal dimensions and the results under

different resolutions and methods will be slightly distinguishing. This work principally investigates

how to calculate fractal dimensions by counting boxes and how to estimate fractal dimensions of the

superposition of two fractal surfaces, which can just be applied into the research on fracture surface

topography regarding to the fatigue of metals.

Besides, in computer graphics, texture roughness is an important visual feature of computer

images, which is of great significance to image analysis, recognition and interpretation. A lot of

research work has been done on texture analysis and many methods for measuring and describing

texture roughness have been proposed (see [46–49], for example). Fractal dimension is one of the

mostly used tools to describe the texture roughness of image surfaces, namely, the complexity of image

gray surfaces, which can be a representation of image stability. The higher the fractal dimension, the

more complex the surface, and then the coarser the image. The results in this paper can also contribute

to calculating the fractal dimensions of the surface of the superposition of two computer images.
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5.3. Further Research

In this paper, there still exist some points worthy of improvement and further consideration in

the future. Here we present them and put forward several open questions in the following:

(1) This work only deals with the cases when the two bivariate continuous functions have the

different upper Box dimension and the lower Box dimension of one function is larger than the

upper Box dimension of the other one. People could further explore the other situations later.

Question 1. Suppose that f (x, y) ∈ Sd2
d1

, g(x, y) ∈ Sd4
d3

. What is dimB(G f+g) when

d2 = d4 and what is dimB(G f+g) when d2 ≥ d3?

(2) In the present paper, we only focus on the Box dimension of the graph of the sum of two bivariate

continuous functions. So other kinds of fractal dimensions, such as the Packing dimension, the

Hausdorff dimension and the Assouad dimension could be further considered for this problem.

Question 2. Let f (x, y), g(x, y) : [a, b]× [c, d] → R be continuous. What can dimP(G f+g),

dimH(G f+g) and dimA(G f+g) be, respectively?

(3) This study is only about bivariate continuous functions, which could be generalized to continuous

functions of n variables in the future.

Question 3. Let f (x), g(x) : ∏
n
i=1[ai, bi] → R be continuous. What can the fractal

dimensions of G f+g be?

(4) Apart from addition, people could further investigate the fractal dimensions of the graph of

bivariate continuous functions under other operations.

Question 4. Let f (x, y), g(x, y) : [a, b]× [c, d] → R be continuous. What can the fractal

dimensions of G f ·g be?
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