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Abstract: In this paper, we make research on fractal characteristics of the superposition of fractal
surfaces in the view of fractal dimension. We give the upper bound of the lower and upper Box
dimension of the graph of the sum of two bivariate continuous functions and calculate the exact
values of them under some particular conditions. Further, it has been proved that the superposition
of two continuous surfaces cannot keep the fractal dimensions invariable unless both of them are
two-dimensional. A concrete example of numerical experiment has been provided to verify our
theoretical results. This study can be applied to the fractal analysis of metal fracture surfaces or
computer image surfaces.
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1. Introduction

Fractal surface, as a class of fractal sets in the three-dimensional Euclidean space, is an important
research object in fractal geometry [1]. At present, fractal surface has been extensively applied in a
variety of academic fields such as metal materials [2], geology [3], computer graphics [4] and so on.
One of the most concerned problems is to investigate how to measure the geometric complexity of
a fractal surface, like the texture roughness of a metal fracture surface or a computer image surface.
Fractal dimension [5] is a common measure of the geometric complexity of a surface, which can be
used to describe its fractal characteristics well. It is well known that the topological dimension of a
surface is two. Nevertheless, its fractal dimension increases with larger amounts of complexity or
roughness, which is usually greater than its topological dimension. For instance, the fractal dimension
of the relief on the earth has been found to be 2.3 in general [6]. Beyond that, many scholars have used
iterative function systems (IFS) to construct fractal surfaces that are attractors of certain IFS in fact.
More details about fractal surfaces and relevant studies of their fractal dimensions can be found in
[7-10].

In recent years, exploring the fractal dimension of the graph of fractal curves has drawn the
attention of numerous researchers. There are some commonly used definitions of the fractal dimension,
such as the Box dimension, the Packing dimension, the Hausdorff dimension and the Assouad
dimension, which are denoted as dimpg, dimp, dimpy and dim,4 throughout this paper, respectively.
Of the diverse fractal dimensions, the Box dimension mainly considered in the present paper shows
its advantage of relatively easy calculation. Up to now, a lot of meaningful work have been done,
including fractal interpolation functions [11-14], a-Holder continuous functions [15,16], self-similar
curves like the Von Koch curve [17,18], and some specific fractal functions like the Weierstrass function
[19-23] and the Besicovitch function [24-26]. For more details of latest work, we refer the interested
readers to [27-32].

Another essential issue involved recently is to estimate the fractal dimension of the superposition
of two fractal curves, namely, the sum of two continuous functions of one variable. This problem can
be traced back to the research made first by Falconer [33] who showed that the Box dimension of the
sum of two continuous functions equals to the greater of the Box dimensions of them. On this basic,
a group of academic workers have pushed this study forward and obtained a series of preliminary
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conclusions, whose related progress can be found in [34-39]. So in this paper, we shall focus on the
fractal dimension of the superposition of two fractal surfaces and investigate whether it has the same
result with that of fractal curves. Based on three-dimensional Cartesian coordinate system, a fractal
surface can be looked upon as a bivariate continuous function, whose fractal dimension and fractional
calculus has been established in [40]. This work will contribute to enriching the theory with regards to
the fractal dimension of fractal surfaces and can be applied to the research on fractal characteristics
analysis of the superposition of two metal fracture surfaces or two computer image surfaces.

The outline of the remainder of this paper is organized as follows: In upcoming Section 2, we cover
required notations, concepts and results on fractal dimensions of the graph of bivariate continuous
functions for subsequent sections. Then in Section 3, we present our main results obtained in this
paper. Firstly, we give the upper bound of the lower and upper Box dimension of the graph of the sum
of two bivariate continuous functions. Secondly, we calculate the exact value of the lower and upper
Box dimension of the graph of the sum of two bivariate continuous functions under certain particular
circumstances. Thirdly, we explore some concrete situations when the two bivariate continuous
functions have the Box dimension or not and also consider the case when one of these two functions is
Lipschitz. Later in Section 4, we provide a specific example and do numerical experiments to verify
the theoretical results in Section 3. Finally in Section 5, we sum up our conclusions and discuss the
further research in the future.

2. Preliminaries

In the present paper, all the subjects we discuss are entirely real. Given a non-empty subset
D C R? and a bivariate function f : D — R, the oscillation of f over the rectangular region R is
written as

OSC(f,R)= sup  |[f(xy)— f(u0) 1)
(xy),(u,0)eRND

and the graph of f(x) on D is defined as

Gr={((xy), f(x,y)): (x,y) €D} CD xR

We denote ¢ as the function which is always equal to 0 on D. Let ||-||, be the usual Euclidean norm in
R". Forany 11, T, -+ , Ty € Zand § > 0, we call [T\_; [1;d, (T; + 1)] a 6-coordinate cube in R".

Below we shall briefly introduce the definition of the Box dimension. For more details about other
kinds of fractal dimensions, we consult the interested readers to [1,5,33,37,41], for example.

Definition 1 ([33]). Let X # @ be a bounded subset of R" and let Ns(X) be the smallest number of 5-coordinate
cubes that intersect X. Then the lower and upper Box dimension of X are defined as, respectively,

. . log N3(X)
dimp(X) = im —2———=
7B< ) m _10g5

and loa A+ (X
dimp(X) = lim log Ns(X)
6—0 —logé

If the above two are equal, we define the Box dimension of X as the common value, that is,

: . log Ns(X
dimp(X) = %13(1] %10’;(5).

Remark 1. The notation N(X) in Definition 1 can also be replaced by one of the following:

(1) The smallest number of sets of diameter at most  that cover X;
(2) The smallest number of cubes of side & that cover X;
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(3) The largest number of disjoint balls of radius 6 with centres in X;
(4) The smallest number of closed balls of radius 6 that cover X.

Now we provide some fundamental results, which will be used in subsequent research. The
forthcoming two lemmas can be essential approaches to estimating the Box dimension of the graph of
a bivariate continuous function.

Lemma 1 ([33]). Let f: X C R"™ — R".

(1) If f is a Lipschitz map, that is,
1£ () =fW)ll2 = Clix —yll

forVx,y € X and certain 0 < C < 4o0. Then
dim (f(X)) < dim(X).
(2) If f is a bi-Lipschitz map, that is,
Crllx=ylly < If(x) = fW)l2 < Callx =yl
forVx,y € X and certain 0 < C; < Cy < H-00. Then

dim (f(X)) = dim(X).

Here dim denotes any one of dimp, dimpg and dimp.

Lemma 2 ([33]). Let f : [a,b] x [c,d] — R be continuous and 0 < o< min {b—a,d —c,1}. Suppose that
m and n, respectively, are the least integer greater than or equal to *5% and d . Then the range of N5(Gy) can
be estimated as

n—1m-—1 _ _
,Z(;) Z(;) max{1,OSC(f,Ri,j) } < N3(Gy) < Z Z {2+os<: fRij)-6 }
j=0 i= j=0 i=0

where R;j = [a+i6,a+ (i+1)6] x [c+ jo,c+ (j+1)d].

Proof. Since f(x) is continuous on [a, b] x [c,d], the estimation of N5(Gy) can be transformed into the
oscillation of f(x) on the above subregions. We note that the number of cubes of side length § in the
part above the rectangular region R, ; that intersect Gy is no less than

max {LOSC(f' Rir]') ' 571}

and no more than
2+0SC(f,Rij) - oL

Summing over all the subregions just leads to the present lemma. [J

The next proposition reveals several basic properties relating to the fractal dimensions of the
graph of a bivariate continuous function.

Proposition 1. Let f : [a,b] x [c,d] — R be continuous. Given a constant r € R, the following three
statements hold.

(1) It holds
2 < dimp(Gy) < dimp(Gy) <3
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(2) For a constant bivariate function f(x,y) = r on [a,b] X [c,d], we have

(3) If r # 0, then
dimg(G,.f) = dimp(Gy) and dimp(G,.f) = dimp(Gy).

Proof. The following arguments for (1)—(3) are all based on Definition 1, Lemma 1 and 2.

(1) Assume that max(y)c(a,p)x[cd) | (x,y)| = M > 0. On one hand, it follows from Lemma 2 that

g’ii{uosc]fnl]) N
=25
Smn(2+2M§_)

2 ((b —a)5 1+ 1) ((d o)l 1) (1 + Mrl)
<2(b—a+1)(d—c+1)(M+1)53.

IN

Thus by Definition 1,

710g/\/‘§( )
dlmB(Gf) _;LOTg(S
< im log [2(b—a+1)(d—c+1)(M+1)573]
50 —logé
_hmlog  Tm log[2(b—a+1)(d—c+1)(M+1)]
6—0 logd 60 —logé

=3.

On the other hand, it is observed that

N(Gf)z > 1

= (b-aa ' +1) (=)ot +1)
> (b—a)(d—c)s 2

So by Definition 1, we can get

logN5 (Gf)
dimz (G = 1 — Q<
B( f) s—0 —logd

o 108 [0 = 0)(d )57

50 —logo
2 _
_ li7mlog(5 +Llog[(b a)(d—c)]
s—0 logd 550 —logsd
=2

Obviously, we can assert from Definition 1 that dimp(Gf) < dimp(Gy), which leads to the
conclusion of (1).
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(2) Note that OSC(f, R;;) = 0 when f(x,y) = r on [a,b] x [c,d]. Consequently,

N(;(Gf) < 2mn + ”il mil OSC(f, Ri,j) e
j=0 i=0
<2((b-a) ' +1) ((d—c)o ' +1)

<2(b—a+1)(d—c+1)52
At this time, we obtain

- —log N;3(Gy)
dim(Gy) = lim =005

—log[2(b—a+1)(d—c+1)5 2]

< T
_zlslg(l) —logé

2 _ —
:mlogé +mlog[2(b a+1)(d—c+1)]
6—0 logé 50 —logé
=2.

Combining (1) of Proposition 1,
2 < dimg(Gy) < dimp(Gy) < 2.

That is,
dimg(Gy) = dimp(Gy) = dimp(Gy) = 2,
finishing the proof of (2).
(3) Let us define a mapping I' : Gy — G, by

T((xy) f(xy) = ((xy), (r-Hxy), (vy) € lab] x[cd]

for Vr € R\ {0}. By using the simple properties of norm, one can show that

IT((x,y), f(x,y)) = T ((u,0), f(u,0))]],
<VI+2((xy), f(xy) = ((w0), f(u,0))]],
and

IT((x, ), f(x,y)) = T((w,0), f(1,0))

7]

2 g 1) fxy)) = (o), fw o)),

for V(x,y), (u,v) € [a,b] X [c,d]. With Lemma 1, we can claim that I' is a bi-Lipschitz mapping
and then the result of (3) holds.
O

Remark 2. In Proposition 1, if the Box dimension of Gy exists on [a,b] x [c,d], then
2 < dlmB(Gf) <3

and for Vr € R\ {0},
dimB (Grf) = dimB (Gf)
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In particular, if r = 0, we have
dimp(Gy) = dimp(Gs) = dimp(Gy) = 2

by (2) of Proposition 1. Thus for any continuous function f : [a,b] x [c,d] — R, 0- f must be a two-dimensional
continuous function on [a,b] x [c,d|.

Up to now, some particular bivariate continuous functions with non-integer fractal dimensions
have been constructed. For instance, Yu [42] had given the following facts.

Example 1 ([42]). For0 < a <land A > 2, let

W(x,y) = i/\_"‘j sin(Mx),  (x,y) € [a,b] x [c,d].
j=1

Then
dimB(Gw) =3—a.

Example 2 ([42]). For1 <s <2, let

S—
Aj

Ms

B(x,y) = 2cos(/\]'x), (x,y) € [a,b] X [c,d]

1

j

where Af\—tl > A > 1forVj e N IfAj‘—tl oo, then dimy(Gg) and dimp(Gg) could be any numbers
satisfying

2 < dimg(Gp) < dimp(Gp) < 3
3. Main Results

In this section, we present our main results for the fractal dimensions the graph of the sum of two
bivariate continuous functions. For two bivariate continuous functions f, ¢ : [4,b] X [¢,d] — R, our
motivation is to explore the values of dimg(Gy, ) and dimp (G f+g)- According to Definition 1, we can
notice that the estimation of N5(Gy ) is key to calculate them. Hence, we begin by investigating how
to attain the range of N3(Gf.,). The upcoming result about the oscillation is basic.

Theorem 1. Let f, g : [a,b] X [c,d] — R be continuous. Then the range of OSC(f + g, R; ;) can be estimated

as
ZE OSC(f, Rij) — ZZ 0SC(g, R 2023 OSC(f +g Rij)
]: i=0 ]: i=0 1=
n—1m-—1 —1m—-1
ZZ OSC(f, Ri ) +Z(:)Z(;)OSCg,Rl])
: : ] 1

where m, n, Ri,j have been defined in Lemma 2.
Proof. From Equation (1), we can obtain

OSC(—f,Rij) = OSC(f, Ri) 2)
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and
OSC(f +gRij)=  sup  [(f+g)(xy)— (f+g)(u0)

(xy),(u,0)ER; j
< sup  {lf(xy) — fwo)|+|g(xy) —g(u,v)|}

(xy) (wo)eR;; 3)
< sup |f(xy)—fwo)l+ sup  |g(x,y) —g(u,0)

(xy) (u,0)ER; j (xy) (uv)ER;j

< OSC(f, Ri,j) + OSC(g, Rl,])

Summing over all the rectangular regions in Equation (3) just leads to the right end of the required
inequality. Then combining Equations (2) and (3), we estimate

OSC(f, Ri,j) = OSC(f +9—g ’Ri/]‘) < OSC(f + g, Ri,]‘) + OSC(g, Ri,]‘)
and
OSC(g, 'Ri,]') = OSC(f+g —f, Ri,j) < OSC(f+g,RZ-,]-) -I-OSC(f, Ri,j)-

Thus
OSC(f + g, Rw’) > |OSC(f, Ri,j) — OSC(g, Rl,]>| . 4)

Summing over all the rectangular regions in Equation (4) and using absolute value inequality, one can
get the left end of our required inequality as well. [

In the light of Theorem 1 and Lemma 2, N5(Gy, ) seems to have a certain relationship with
N;(Gy) and N;(Gg). The next important theorem establishes a connection among the above three.

Theorem 2. Let f, g : [a,b] x [c,d] — R be continuous. Then the range of N5(Gy¢) can be estimated as
‘NJ(Gf) — N3(Gg)| = p672 < N5(Gyig) < Ns(Gy) +N5(Gg) +p5 2
where 0 < 8§ < min{b—a,d—c,1}andp=2(b—a+1)(d—c+1)6?2

Proof. It follows from Theorem 1 and Lemma 2 that

—1m—

N5(Gpig) < 2mn+67" Z Zosc(f+g, Ri;)
j=0 i=0

<2((b-a)+1) ((@d-c)s' + 1)
+o71 Z ZOSCfRZJ e Z Zosc S Rij)

j=0 i= j=0 i=0
<2(b—a+1)(d—c+1)62 +N5(Gf)+N6(Gg)

and
_111 1m—1
Né(Gf+g)Z5 ZZOSCf—f—g, 1])
j=0 i=0
—1m— —1m—1
> 2mn + (5—122 C(f, Ri)) (SlzZOSCg, ij)| —2mn
j=0 i=0 j=0 i=0

> |N5(Gp) — N3(Gg)| ~2(6 —a+1)(d —c+1)52

This concludes the proof of Theorem 2. [
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With the help of Theorem 2, we shall prove the following several conclusions. Theorem 3 and 4
give the upper bound of dimg (G f+g) and dimp (G o), respectively.

Theorem 3. Let f, g : [a,b] x [c,d] — R be continuous. Then

dimp(Gyg) < max {ﬁg(cf),mlg(cg)} .

Proof. Assume that dimp(Gy) = s; and dimp(Gy) = s;. Given Ve > 0, by Definition 1 there must
exist a certain number &y € (0, min {b — a,d — ¢,1}) such that

Ny(Gp) <6797,

Ns(Gg) < o67%27°¢
for V6 € (0,0p]. Then by Theorem 2, we get

No(Greg) < N5(Gp) + NifGy) +057
<oy gy pg 2
< (5max{sl,sz}fsl _i_(smax{sl,sz}fsz _‘_p&maX{S],Sz}*Z*HS) 57max{sl,82}*£

< (P + 2)57max{sl,sz}fe
for Vé € (0, dp]. From Definition 1, we can conclude that

— —— log N5(Griy)
dimp(Gyg) = lim T Tlogs

o log [(P + 2)(57 max{sl,sz}fs}
< lim
6—0 —logd

. _ max{sy,5p }+¢
— log(p+2) \ Tim log é 152
6—0 —logé 6—0 logé

= max {s1,52} + €.
Since the above formula is true for Ve > 0, we have
dimp(Gy ) < max{s;,sp} = max {ﬁg(Gf),ﬁB(Gg)},
which completes the proof of Theorem 3. [
Theorem 4. Let f, g : [a,b] X [c,d] — R be continuous. Then
dimg Gy ¢) < max {dimp(Gy), dimp(Gy) }.

Proof. Assume that
EB(GJ:) =ay and dimg(Gy) = an.

From the definition of dimp (G ), there exists a positive subsequence {4, };° ; such that limy_,, ;, = 0
and meanwhile
log A, (Gy)

li = .
ko —logdy, 2
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So given Ve > 0, there exists a ¥; € N* such that
Ns, (Gg) <06, ®)
when k > x;. Then by the definition of dimp (G ), there exists a x; € N* such that
N, (Gp) < 5,0 ®)

when k > «p. Combining Theorem 2, Equations (5) and (6), we can obtain

Ni, (Grig) < N, (Gp) + N, (Gg) + 00,
S R

< (éf\r;ax{al,az}fuq +5;\r]1(ax{uc1,u¢2}fa2 _i_p&iax{ocl,zxz}fbre) 5kaax{1x1,zxz}fs

—max{aq,ap}—¢

<(p+ 2)‘5Ak

when k > max {x1, x; }. Thus by Definition 1, we have
log N5(Gy 1)
dimp (G = lim ——~ /78
73( f+g) o0 _ 10g 5

_log [ (p+2)8, )]
< lim
k—o0 —logdy,

max{ay,uo}+e

log &
_ i 080 +2) 080,
k—oo —logdy  k—oo logé),

=max {ay,ar} + €.
In the light of the arbitrariness of ¢, we immediately get our required result. O

Under certain particular circumstances, the previous two formulae could take an equal sign,
shown in the undermentioned two theorems.

Theorem 5. Let f,g : [a,b] X [c,d] — R be continuous. If
dimg(Gy) # dimp(Gy),

then
dimp(Gy ) = max {ﬁg@f),mg(c;g)} .

Proof. Let H = f 4 g. Without loss of generality, we can assume that
dlimB(Gf) > mB(Gg). (7)

Suppose that
dimp(Gpy) # max {ﬁg@),mt;(cg)} — dimg(Gy).

From Theorem 3, it follows that
dimp(Gp) < dimp(Gy). (8)
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Then combining Equations (7) and (8), we have
dimp(Gp—g) = dimp(Gy)

> max {mB(GH),mB(Gg)}

= max {EB(GH)rﬁB(G—g)} ,
which is a contradiction to Theorem 3. Therefore, we can conclude that

dimp Gy ) = dimp(Gyy) = max {dimp(Gy), dimp(Gy) }
This means the conclusion of Theorem 5 holds. [
Theorem 6. Let f, g : [a,b] X [c,d] — R be continuous. If
max { dimp(Gy), dimp(Gg) } > min { dimp(Gy), dimg(Gg) }

then
dimy (Gy+¢) = max { dimy (Gy), dimy (Gg) | .

Proof. Without loss of generality, we suppose that
m = dimp(Gg) > dimp(Gy) = 72.
At this time, we know that
max {@B(Gf),@g(cg)} =1 > 1o = min {ﬁg(cf),mg(cg)} .
From Theorem 4, it follows that
dimp(Gyryg) < max {EB(Gf)/@B(Gg)} =1n. ©)

Next, we prove that dimp(Gs,¢) > 71 as below. By the definition of dimp(Gg) and dimp(G ),
given Ve € (O, @) , there exists a d1 € (0, min{b —a,d — ¢, 1}) such that

Ns(Gp) <8778 < 57T < N3(Gy)
f g

for V6 € (0,61]. Note that 1 —#p —2¢ > 0 and 173 —2 —¢ > 0, thus there exists a 6, €
(0,min{b —a,d —c,1}) such that

and M2 < 1

Sh—m—2 <
< 30

Q=

for V6 € (0, d3]. Then by Theorem 2, we estimate

Ns(Grig) = ‘Né(Gf) —Né(Gg)‘ —ps?
> 5Nt 5TE  p52

> (1 —gn—m—2e _ p5771*2*€) s mte

W=/~

> 5—1714-8
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for V6 € (0, min {41, 6, }]. Consequently, one can get

log N5(G log Lg—m+e
@B(Gf+g):@w>lim%37

=1 —¢
so0  —logs s —logs N

by Definition 1. Since ¢ in the above formula is arbitrary, we have dimg(Gf ) > #1. Combining
Equation (9), we just obtain the required result. [

Now we shall deal with some concrete examples on the fractal dimensions of the graph of the
sum of two bivariate continuous functions. To this end, we first need to state the definition of function
spaces as follows.

Definition 2. Spaces of bivariate continuous functions.

(1) Let S be the space of all bivariate continuous functions whose Box dimension exists and is equal to d on
[a,b] x [c,d] as 2 < d < 3. Namely, S is the space of d-dimensional bivariate continuous functions on
[a,b] x [c,d].

(2) Let 8512 as the space of all bivariate continuous functions whose Box dimension does not exist on [a, b] x
[c,d]. Here dy,d; are the lower and upper Box dimension of the function on [a,b] x [c,d] as2 < dy <
dy < 3, respectively.

Below we start by the case when the two bivariate continuous functions have the different Box
dimension.

Proposition 2. Let f(x,y) € S and g(x,y) € S®. If dy # dy, then
fxy) +g(x,y) € Smthbl,
Proof. Without loss of generality, suppose that d; > d,. At this time, we observe that
dimg(Gg) = dimp(Gg) < dimg(Gy) = dimp(Gy).
Then it follows from Theorem 5 and 6 that
dimy (Gy 1¢) = max {dimy (Gy), dimy (Gg) } = max {d1, d2}

and
dimy (Gy ) = max { dimy (Gp), dimy (Gg) | = max {d1,d2} .
That is,
dimp(Gyyg) = max{dy, da},
completing the proof of Proposition 2. [

The upcoming two corollaries discuss a few situations when at least one of two bivariate
continuous functions does not have the Box dimension on [a,b] X [c,d]. These results can easily
be obtained from Theorem 5 and 6 with their proofs omitted.

Corollary 1. Let f(x,y) € Sglz and g(x,y) € S%

(1) Ifdy <dy <d,

floy)+g(xy) € 8%
(2) Ifd < dy < dy,

Fxy) +8(xy) € S,
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Corollary 2. Let f(x,y) € S;llz, g(x,y) € 85;*.
(1) Ifd1 <d2<d3<d4,
d
fxy) +8(xy) € Sy
(2) Ifd3<d4<d1<d2,
d
flxy)+8(xy) € Sy

If the two bivariate continuous functions have the same Box dimension d, the result will become
more complicate. Here we discuss two situations according to whether d equals to two or not. If d # 2,
we can arrive at the following two conclusions.

Proposition 3. Let f(x,y),g(x,y) € S% for 2 < d < 3. If the Box dimension of G g exists, then

floy)+g(xy) e P S
|

te[2,d
Proof. Firstly, let
fley) = —g(xy) + W(xy)
where W(x,y) is the function given in Example 1 and dimp(Gyy) = 3 — a could be any number
belonging to (2, d) by choosing suitable «. Then from Proposition 1 and 2, it follows that
dimB (Gf) = dimB (G7g+W)
= max {dimp(Gg), dimp(Gyy) }
=max{d,3 —a}
=d.
Secondly, let
floy) = —8(xy) + H(xy)
where H(x) € S2. At this time,

dimp(Gy) = max {dimp(Gy), dimp(Gp) } = max {d,2} = d.
Thirdly, let f(x,y) = g(x,y). Then we know from Proposition 1 that
dimp(Gsyg) = dimp(Gyf) = dimp(Gy) = d.
According to the above discussion, we just finish the proof of the present proposition. [

Proposition 4. Let f(x,y),g(x,y) € S? for 2 < d < 3. If the Box dimension of G g does not exist, then

foy)+gxy) e B S

t],tze[z,d)
1<t
Proof. Let
floy) = —g(xy) + B(x,y)
where B(x,v) is the function given in Example 2 and dimy(Gg), dimp(Gp) could be any numbers
satisfying
2 < dimg(Gp) < dimp(Gp) < d < 3. (10)
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From Theorem 5 and 6, we can get
dimy (Gy) = dimp(G_g1.5) = max { dimp(Gy), dimp(Gg) } = d

and
dimp(Gy) = dimp(G_g1p) = dimp(Gg) =4,

which implies that
dirnB (G f) =d.

Then by Equation (10), we just obtain our required result. [J

If d = 2, the next result manifests that the sum of two two-dimensional bivariate continuous
functions can keep the fractal dimension closed.

Theorem 7. Let f(x,y),g(x,y) € S Then f(x,y) + g(x,y) € S%.
Proof. From Theorem 3, it follows that
dimp(Gyg) < max {mB(Gf)rﬁB(Gg)} =2
Combining (1) of Proposition 1, we obtain
2 < dimp(Gyyy) < dimp(Gyyg) < 2.

Thus
dimB (Gf-‘rg) = 2,

namely, f(x,y) + g(x,y) € S2. O

In particular, if one of the two bivariate continuous functions is Lipschitz, we have the following
assertion.

Theorem 8. Let f, g : [a,b] X [c,d] — R be continuous. If g is Lipschitz on [a,b] X [c,d], then
dim(Gy, ) = dim(Gy)

where dim denotes any one of dimp, dimp, dim 4, dimp, dimpg and dimgp.

Proof. Let us defineamap Y : Gy — Gy by

Y((xy), f(xy) = (y), fxy) +8(xy),  (xy) € [a,b] x [cd].

Since g is Lipschitz on [a,b] x [c,d], let

L= sup s(xy) —g(u | _ .

o) (wt)elap)xed 1Y) = ()]
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For V(x,y), (u,t) € [a,b] x [c,d], on one hand,

Y (), £ (o)) =Y (1), £, 1) 3
=11(Cew), f(xy) +8(xy) = ((u, 1), f(u, ) +g(u, 1)]3
=1Gey) = ()3 + 1(F () = Fu, 1) + (8(x,y) — g, 1))
<[ y) = ()3 +21f () = Fw, )P +2]g(x,y) —g(u, 1)
<[ (xy) = ()3 +21f (x,y) = Fu, )P + 207 || (x,y) = (u,1)I3

= (1+22) [I(x,) — (w, 1) 3 +21f (x,y) = Fu 1)
< (3+202) [ ((x), £ () = (), f(u, )]
On the other hand,
(e y), £, ) = ((ut), f(u,1))]13
=l(x,y) — (w )3+ |f(x,y) — fu,t)?
= (e y) = (w3 +(f(xy) — fu, 1)+ (8(x,y) — g(u, 1)) — ((x,y) — g(u, 1))]?
< Gxy) = (w3 +2[(f(oy) = fu,8) + (8(x,y) — g(u, 1) +2Ig(x,y) — g(u, 1)|?
< Goy) = (w3 +2[(f(oy) = fu8) + (800 y) — g(u, 1)) P + 212 | (x,y) — (u,£) 3

= (1+282) lI(x,y) = D13 +21(F(xy) = fw 1) + ((xy) - g, 1)
< (3+42L2) [ Y((x,y), f(x,y) = Y((u, 1), £ (1, )]}

Then by the above two inequalities, we can obtain

Cull((y), fxy)) = (), f(u, )]l <IY (0 y), f(xy) = Y((w8), f (1))l
<G [((xy) f(xy) = ((wt), f(u, )]

212
bi-Lipschitz map. With Lemma 1, we just get our required result. [

1
where C; = and C; = V3 + 2L satisfying 0 < C; < Cp < +oo. This means that Y is a
V3+

4. Examples

In this section, we give a concrete example to verify the result acquired in Section 3.

Example 3. For 0 < a < 1, let

WH(x,y) = iz—“f sin(2/x), (x,y) € [0,1] x [0,1]
j=1

and

Ms

B*(x,y) = Y (2)" 1" cos ((2j)2jx), (x,y) € [0,1]  [0,1].

1

J
By [42], we have

dlmB(Gw*) =3—u, @B(GB*) = % and HB(GB*) = %
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Ifo<a< 19—0, it follows from Corollary 1 that
dimg (Gyy+ 1 p+) = dimp(Gyy«) =3 — a.

Now we show several graphs and numerical results for Example 3. Figure 1 indicates the graph
of W* when a = 0.5. Figure 2 denotes the graph of B*. Figure 3 represents the graph of W* + B*. Let
«be0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, respectively. Table 1 presents the corresponding numerical results
for the Box dimension of the graph of by using computing methods stated in [43]. In addition, Figure 4
supports our theoretical results gained in Section 3 where the minor deviation may be rendered by the
approximation of the computer process.

Figure 1. The graph of W*.

Figure 2. The graph of B*.
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Figure 3. The graph of B* + W*.

Table 1. Connection between « and dimg (Gyy+ g+ ).

o dimB (GW*+B*)

0.1 2.8736

0.2 2.7801

0.3 2.6792

04 2.5853

0.5 2.4779

0.6 2.3825

0.7 2.2814

0.8 2.1840
29 T T T T T T

*
*  The Box dimension
L 3-a 4
2.8 ¥
27 r * q
26 » b
25 3 b
24 r » B
23 ® b
22r *
29 L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

[0}
Figure 4. Comparison between numerical results and theoretical results.
5. Conclusions

In this last section, we sum up conclusions obtained in this paper.
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5.1. Conclusions and Remarks

Throughout the present paper, we mainly make research on the fractal dimensions of the graph of
the superposition of two continuous surfaces f and g on [a,b] x [c, d] with certain lower and upper
Box dimensions. Our main conclusions can be summarized as the following several aspects:

(1) ﬁg(Gf_,_g) S max ﬁB(Gf),dimB(Gg) .

(2) dimp(Gyy) < max qdimp(Gy), dimg(Gy) ¢
(3) When
dimp(Gy) # dimp(Gy),

we prove that
dimp(Gyg) = max {RB(Gf),ﬁB(Gg)} .

(4) When
max {@B(Gf),@B(Gg)} > min {RB(Gf),ciTmB(Gg)},

we prove that
dimp (Gyg) = max { dimy (Gy), dimp(Gy) | -

(5) It has been proved that the superposition of two continuous surfaces cannot keep the fractal
dimensions invariable unless both of them are two-dimensional.

(6) It has been proved that the fractal dimensions of the graph of the sum of a bivariate continuous
function and a bivariate Lipschitz function equals to the fractal dimensions of the graph of the
former. That is, a bivariate Lipschitz function can be absorbed by any other bivariate continuous
function in the sense of fractal dimensions.

Moreover, it is worth mentioning that the previous results can be extended to any closed regain
D C R2. In other words, all the results attained in the present paper still hold for two continuous
surfaces f and g defined on D.

5.2. Applications in other fields

In recent years, estimation of the fractal dimensions of the superposition of continuous surfaces
has been widely applied in various fields such as metal materials and computer graphics.

In metal materials, the fracture surface topography with regards to the fatigue of metals can be
studied by fractal characteristics, which can been found in [44,45]. Furthermore, fractal dimension is
closely relevant to the parameters of areal surface of metals, which has been shown in [2]. As is known
to all, there exist a good deal of approaches to calculating fractal dimensions and the results under
different resolutions and methods will be slightly distinguishing. This work principally investigates
how to calculate fractal dimensions by counting boxes and how to estimate fractal dimensions of the
superposition of two fractal surfaces, which can just be applied into the research on fracture surface
topography regarding to the fatigue of metals.

Besides, in computer graphics, texture roughness is an important visual feature of computer
images, which is of great significance to image analysis, recognition and interpretation. A lot of
research work has been done on texture analysis and many methods for measuring and describing
texture roughness have been proposed (see [46—49], for example). Fractal dimension is one of the
mostly used tools to describe the texture roughness of image surfaces, namely, the complexity of image
gray surfaces, which can be a representation of image stability. The higher the fractal dimension, the
more complex the surface, and then the coarser the image. The results in this paper can also contribute
to calculating the fractal dimensions of the surface of the superposition of two computer images.
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5.3. Further Research

In this paper, there still exist some points worthy of improvement and further consideration in
the future. Here we present them and put forward several open questions in the following;:

(1) This work only deals with the cases when the two bivariate continuous functions have the
different upper Box dimension and the lower Box dimension of one function is larger than the
upper Box dimension of the other one. People could further explore the other situations later.

Question 1. Suppose that f(x,y) € Sjlz, g(x,y) € Sg;‘. What is dimp(Gy.q) when
dp = dy and what is dimp(Gy o) when dy > d3?

(2) In the present paper, we only focus on the Box dimension of the graph of the sum of two bivariate

continuous functions. So other kinds of fractal dimensions, such as the Packing dimension, the
Hausdorff dimension and the Assouad dimension could be further considered for this problem.

Question 2. Let f(x,y),g(x,y) : [a,b] x [c,d] — R be continuous. What can dimp(Gy ),
dimp (Gyg) and dima(Gyy ) be, respectively?
(3) This study is only about bivariate continuous functions, which could be generalized to continuous
functions of n variables in the future.

Question 3. Let f(x),g(x) : T q[ai,bi] — R be continuous. What can the fractal
dimensions of G ¢ be?

(4) Apart from addition, people could further investigate the fractal dimensions of the graph of
bivariate continuous functions under other operations.

Question 4. Let f(x,y),g(x,y) : [a,b] X [c,d] — R be continuous. What can the fractal
dimensions of Gy. be?
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