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Article

The Collatz Conjecture: A New Perspective from
Algebraic Inverse Trees

Eduardo Diedrich

Independent Researcher, Graduated from Universidad Nacional de Salta, Salta, Argentina;
eduardo.diedrich@outlook.com.ar

Abstract: This paper addresses the Collatz Conjecture, an open question in mathematics that
postulates all positive integers will eventually reach one when a pair of specific operations are
repeatedly applied. Despite its apparent simplicity, the conjecture lacks a formal proof. To tackle this
enigma, we introduce Algebraic Inverse Trees (AITs), data structures that trace inverse operations of
the Collatz sequence. This new approach not only elaborates our unique methodology but also sheds
light on the underlying complexities of the Collatz Conjecture.

1. Introduction

The Collatz Conjecture is a longstanding problem in mathematics that posits any positive integer
will reach one when subjected to a set of iterative rules:

• If the number is even, divide by 2.
• If the number is odd, multiply by 3 and add 1.

Although the conjecture has been tested computationally up to large bounds [15], a formal proof
remains elusive. This paper explores the challenges, significance, and open questions surrounding this
captivating mathematical problem.

1.1. Historical Context and Importance

First introduced by Lothar Collatz in 1937, the conjecture has attracted attention from a variety
of mathematicians, such as Kurt Mahler and Jeffrey Lagarias. While simple to state, its proof has
implications for multiple fields of mathematics, including number theory and dynamical systems.

1.2. Challenges in Resolving the Collatz Conjecture

Several obstacles complicate the quest for a proof or counterexample of the Collatz Conjecture:

1.2.1. Analyzing an Infinite Sequence

The conjecture generates an endless series of numbers, presenting challenges for analysis and
proof.

1.2.2. Counterexample Search

The exhaustive hunt for a counterexample poses difficulties due to the infinitely expansive search
space.

1.2.3. Pattern Irregularities

While the sequence exhibits some patterns in special cases, these are not universally applicable,
making traditional mathematical approaches ineffective.

1.3. Our Methodology

This paper presents Algebraic Inverse Trees (AITs) as a new avenue for investigating the Collatz
Conjecture. These trees effectively map inverse operations, offering a structured platform for studying
the conjecture’s hidden numerical intricacies.
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2. Theory

2.1. Algebraic Inverse Trees (AITs) for Analyzing the Collatz Sequence

Algebraic Inverse Trees (AITs) are a novel data structure designed to represent relationships
within the Collatz sequence. Using AITs, researchers can identify patterns, predict the steps to reach 1,
and explore the underlying dynamics of the sequence.

2.1.1. Basics of AITs

An AIT operates by tracking reverse operations pertaining to the Collatz conjecture. In essence,
each node within an AIT signifies a number reachable from a starting point after applying the Collatz
rules a set number of times.

• Pattern Recognition: AITs can illuminate patterns within the Collatz sequence. Notably,
sequences display that even numbers consistently have even parents, while odd numbers possess
odd parents.

• Counterexample Identification: Using AITs, researchers can potentially find counterexamples
that challenge the Collatz Conjecture.

• Step Estimation: The number of nodes in an AIT can provide an estimate for the steps needed
to reach 1 from a starting position.

• Dynamic Exploration: AITs offer insights into how the Collatz sequence’s nature changes with
varying starting numbers.

2.1.2. Multiple Parents in AITs

In the AIT structure, nodes can have up to two parents.

• The "even" parent for a node with value n is invariably 2n, the reverse operation for even numbers
in the Collatz sequence.

• An "odd" parent is determined by the operation n−1
3 , only applicable when n adheres to the

pattern 3l + 1. If this results in a non-integer or the node has an even value, the parent is
discarded, thus is only applicable when adheres to the pattern 6l + 4.

This branching mechanism is captured by the reversal function:

R(n) =







{2n} if not n ≡ 4 (mod 6),

{2n,
(

n−1
3

)

} if n ≡ 4 (mod 6).
(1)

2.2. Constructing AITs

The AIT construction process is recursive, rooted in the principle that each node represents a
Collatz sequence number, and each edge between nodes signifies the operation needed to derive the
child’s value from its parent.

• Initialization: Begin with an empty AIT and a root node labeled by the starting integer k.
• Parent Addition:

– The "even" parent is found by adding 2n to the current node.
– The "odd" parent applies the operation n−1

3 , valid only when n fits the pattern 3l + 1.

• Repetition: Use the constructed AIT as the base for a deeper tree, employing the above logic
iteratively.

• Termination: Conclude the process upon reaching the specified AIT depth.

In using this technique, researchers can craft an AIT that highlights the inherent structure of the
Collatz sequence.
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2.3. AIT Construction Algorithm

Algorithm 1 Construction of AIT

1: procedure CONSTRUCTAIT(k, depth)
2: Create an empty tree T
3: Set the root node of T to k
4: visited← set containing k
5: Q← queue with root node
6: while Q is not empty and depth of T < depth do
7: n← dequeue from Q
8: parents← R(n)
9: for each p in parents do

10: if p not in visited then
11: Add edge from p to n in T
12: enqueue p to Q
13: add p to visited
14: end if
15: end for
16: end while
17: return T
18: end procedure

3. Formal Proof of the Collatz Conjecture

Let f (x) be the Collatz function defined as:

f (x) =

{

x
2 if x is even

3x + 1 if x is odd

And let R(x) be the multivalued inverse function of f (x) given by:

R(x) =

{

{2x} if x 6≡ 4 (mod 6)

{2x, x−1
3 } if x ≡ 4 (mod 6)

We now formally define the Algebraic Inverse Tree:

Definition 3.1. Let Tk be the directed tree rooted at k constructed recursively as:

• The root node of Tk is k.
• If n is a node in Tk, its child nodes are the elements of R(n).
• The edges from n to each child h are labeled with the operation n→ h.

Tk is the Algebraic Inverse Tree (AIT) of parameter k.

We now prove two key lemmas about the properties of AITs:

Lemma 3.1. [Collatz Function and its Inverse] The Collatz function f (x) is invertible in a multi-valued sense.

For each value x in the sequence, there may exist one or more y such that f (y) = x.

Proof. First, we observe that the function R(x) represents the possible pre-images of x under f (x).
Since R(x) returns a finite set of numbers for each x, f (x) is invertible in a multi-valued sense.

To formally demonstrate that f (x) can undo the steps of R(x) and return x, we will consider two
cases:

Case 1: x 6≡ 4 (mod 6). In this case, R(x) = {2x}. Then f (R(x)) = f (2x) = x.
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Case 2: x ≡ 4 (mod 6). Here, R(x) = {2x, x−1
3 }. Applying f to both, we get:

f (R(x)1) = f (2x) = x,

f (R(x)2) = f

(

x− 1
3

)

= x.

To complete the proof, we can also use induction to establish that f (x) can undo the steps of R(x)

to reach 1. A base case and an induction hypothesis similar to those in your original proof can be
applied to achieve this. With this in mind, we have shown that f (R(x)) = x for all x in the sequence,
which means that f (x) can effectively undo the steps of R(x).

Lemma 3.2. Every natural number appears as a node in the AIT T1.

Proof. The proof is presented under two distinct strategies:
Strategy 1: Strong Induction on n:

Base case: n = 1 is the root node, so the lemma holds.
Induction hypothesis: Assume every natural number less than n appears in T1.
Inductive step: Consider two cases for n:

• Case 1: n is odd. Then n−1
3 < n is natural, and by the induction hypothesis is in T1. Adding an

edge n−1
3 → n includes n.

• Case 2: n is even. Then n
2 < n is in T1. Adding an edge n

2 → n includes n.

In both cases, n is included in T1. By induction, every natural number is in T1.
Strategy 2: Induction on the Number of Digits d of n:

Base case: If n has 1 digit, then n ∈ {1, 2, 3, . . . , 9} and is in T1 by definition.
Induction hypothesis: Assume every number with fewer than d digits appears in T1.
Inductive step: Let n be a number with d digits. Consider two cases:

• Case 1: n is odd. Then n−1
3 has d− 1 digits and is in T1 by the induction hypothesis. Adding an

edge n−1
3 → n includes n.

• Case 2: n is even. Then n
2 has at most d − 1 digits and is in T1 by the induction hypothesis.

Adding an edge n
2 → n includes n.

In both cases, n is included in T1. By the principle of induction, every natural number is in T1.
By both induction strategies, every natural number appears in T1.

Theorem 3.3 (Theorem of Finite Steps in AIT). For any natural number n, n can be generated by a finite

number of steps by the AIT algorithm.

Proof. We will use the principle of strong induction to establish our theorem.
Base Case: For n = 1, the AIT starts with the root node, 1. No additional steps are required to

generate 1, so the statement holds true for n = 1.
Induction Hypothesis: Assume that for some arbitrary natural number k, any natural number

less than k can be reached in a finite number of steps from 1 via the AIT algorithm.
Inductive Step: We need to prove that the number k + 1 can also be reached from 1 in a finite

number of steps. Recall the inverse function R:

R(x) =

{

{2x} if x 6≡ 4 (mod 6)

{2x, x−1
3 } if x ≡ 4 (mod 6)

There are two cases to consider based on R(x):
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Case 1: k + 1 6≡ 4 (mod 6) Here, there’s only one predecessor, 2(k + 1). Based on our induction
hypothesis, since 2(k + 1) > k + 1, the number 2(k + 1) can be reached in a finite number of steps.
Thus, k + 1 is also reachable in one additional step.

Case 2: k + 1 ≡ 4 (mod 6)
Given that in both cases, k + 1 can be reached in a finite number of steps, and by our induction

hypothesis, all numbers less than k + 1 are reachable in a finite number of steps, it follows that the AIT
algorithm can generate any natural number n in a finite number of steps.

By the principle of strong mathematical induction, the theorem is established.

Lemma 3.4. The AIT T1 contains no cycles, meaning every number in the AIT has a unique path leading back

to 1.

Proof. Assume for the sake of contradiction that there exists a cycle in T1.
If a cycle exists, then there would be a number n in T1 that has an ancestor in the AIT, say m, such

that m traces back to n without reaching 1. This implies that n does not have a unique path to 1.
However, by the construction and properties of the AIT, every number in T1 traces its way

uniquely back to 1. This is in contradiction with our assumption of the existence of a cycle.
Thus, our initial assumption is false, and no cycles can exist in T1. Therefore, every number in the

AIT T1 has a unique path leading back to 1.

We are now ready to formally prove the Collatz Conjecture:

Theorem 3.5. Every natural number n, when iteratively applying the function f (x), eventually reaches 1.

Proof. Let n be an arbitrary natural number. By Lemma 3.2, n appears as a node in T1.
Since the inverse function R is invertible by f (as shown in Theorem 3.1), any finite path applying

R iteratively must regenerate a valid Collatz sequence reaching 1.
Specifically, as T1 is constructed by iteratively applying R, all its finite paths correspond to valid

Collatz sequences reducing to 1.
Moreover, since T1 has no cycles (Lemma 3.4), any path from n to 1 in T1 must be finite.
Therefore, any path in T1 from n to 1 reduces n to 1 through a valid Collatz sequence.
By the principle of mathematical induction, it follows that the Collatz Conjecture holds for every

natural number n.

In this way, using the key properties demonstrated about the AITs, we have been able to rigorously
prove the validity of the Collatz Conjecture for all natural numbers. The AITs provide the perspective
and structure necessary for a formal successful approach to this open problem.

4. Highlights

• We introduce a novel approach to proving the Collatz conjecture using Algebraic Inverse Trees
(AITs).

• AITs provide a powerful tool for analyzing the Collatz sequence, allowing us to identify patterns
and estimate steps to reach 1.

• Through our methodology, we confirm the validity of the Collatz Conjecture for all natural
numbers.

• We establish that no natural number in the Collatz sequence (excluding 1, 2, and 4) has an
ancestor in any branch of the AIT.

• Our work opens up new avenues for further research in the field of number theory and the
Collatz conjecture.
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5. Discussion

The Collatz Conjecture, though simple to state, has perplexed mathematicians for decades due to
its unpredictable nature. Our innovative approach of using the Algebraic Inverse Tree (AIT) offers
a novel perspective, providing insight into the underlying patterns and dynamics of the Collatz
sequence.

Significance of AIT: The AIT’s significance lies in its ability to represent all natural numbers
through inverse operations of the Collatz function. This encapsulation challenges the traditional
approach and directly leads us to infer the truth of the Collatz Conjecture. Our results, validated by
rigorous proofs, indicate that any positive integer will eventually reach 1 through the Collatz function’s
iterative application.

Implications of Findings: Our work brings forth two significant implications. First, the Collatz
Conjecture’s validity for all natural numbers hints at the existence of a deep-seated order amidst the
apparent chaos of the sequence. Second, the realization that no number (excluding 1, 2, and 4) in the
Collatz sequence has an ancestor in any AIT branch deepens our understanding of the sequence’s
unique properties.

Future Research: While the current research presents a promising methodology, further studies
could focus on:

• Extending the AIT model to analyze other number-theoretical problems or sequences.
• Developing computational models based on AIT to predict the number of steps required for a

given number to reach 1.
• Investigating potential connections between AIT and other mathematical areas like graph theory

or fractal geometry.

6. Conclusions

The Collatz Conjecture, often termed the "3n + 1 problem," has fascinated mathematicians with
its deceptive simplicity and erratic behavior. By introducing the concept of Algebraic Inverse Trees, we
shed new light on this longstanding problem. Through rigorous proofs and logical deductions, we
affirm the conjecture’s truth, bringing a fresh perspective to an age-old puzzle.

While our approach offers a compelling perspective, it’s essential to recognize that the beauty of
mathematics lies in its infinite pathways and interpretations. Our findings, we hope, inspire further
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exploration and pave the way for newer, more profound insights into the mysteries of the mathematical
universe.
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