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Abstract: This paper presents a new approach to the Collatz Conjecture, an unsolved problem in

mathematics. The conjecture states that all positive integers will eventually reach 1 when a specific

sequence of operations is repeatedly applied. Despite its apparent simplicity, the conjecture has no

known formal proof. This paper introduces Algebraic Inverse Tree (AITs), a new data structure that

can be used to trace the inverse operations of the Collatz sequence. This new approach provides a

new perspective on the Collatz Conjecture and sheds light on its underlying complexities.
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1. Introduction

The Collatz Conjecture is a longstanding problem in mathematics that posits any positive integer

will reach one when subjected to a set of iterative rules. Despite its apparent simplicity, the conjecture

has no known formal proof.

This paper presents Algebraic Inverse Tree (AITs), a new data structure designed to represent

relationships within the Collatz sequence. AITs operate by tracking reverse operations pertaining to

the conjecture. In essence, each node within an AIT signifies a number reachable from a starting point

after applying the Collatz rules a set number of times.

Some key aspects of AITs:

They can illuminate patterns in the Collatz sequence. They offer a platform to potentially identify

counterexamples. They provide estimates on steps needed to reach 1. They enable exploring how the

nature of the sequence changes across starting numbers. By effectively mapping inverse operations,

AITs offer a structured perspective for studying the conjecture’s hidden numerical intricacies. After

introducing AITs, this paper explores their motivation, theory, and usage in analyzing the Collatz

Conjecture. Algebraic Inverse Tree (AITs) are a novel data structure designed to represent relationships

within the Collatz sequence. Using AITs, researchers can identify patterns, predAIT the steps to reach

1, and explore the underlying dynamics of the sequence. An Inverse Collatz Tree is a complete tree

with a weight function that assigns a positive integer to each node. The construction of an AIT stops

when the node with the sought-after value n is found. Hence, an AIT is always finite in the sense that

its construction ceases upon locating the target node. Its size or depth is determined by the value of n,

but it does not grow indefinitely beyond the necessary point.

Technical Novelty of AITs

Although Algebraic Inverse Tree (AITs) are constructed using existing techniques such as binary

trees and directed graphs, their application for inversely modeling the relationships in the Collatz

sequence seems to be a novel approach introduced in this work. The representation of the inverse

operations of the Collatz function through an inverted algebraic tree does not appear to have precedents

in the literature on the Collatz Conjecture and related topics, as far as the author has been able to

determine. Therefore, although it is based on established mathematical constructions and data
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structures, the AIT technique represents an innovation within the field of study by applying these

tools in an original manner to obtain new perspectives on the Collatz sequence and its properties.

We begin by defining the construction process for finite AITs and setting the stage for their infinite

extension.

2. Comparison with Other Approaches

Some points of comparison between the AIT approach and those of Tao and Lagarias:

• The proofs by Tao and Lagarias use more traditional analytical tools such as number

theory, without introducing new structures like AITs. The AIT approach is more

geometric/combinatorial.
• Tao’s proof numerically verifies the conjecture for very large numbers, while AITs allow for a

more conceptual approach without the need for extensive computation.
• Lagarias studies the statistical and dynamical properties of Collatz sequences. AITs also reveal

dynamic properties of the system.
• AITs provide estimates on the length of Collatz sequences based on their structure. The other

proofs do not explore this aspect.
• The proof with AITs relies on new lemmas and theorems developed by the author that extend

standard principles. The proofs by Tao and Lagarias are entirely based on tools and theories

established in the number theory literature.
• AITs offer a novel geometric perspective on the problem. Tao and Lagarias focus on the numerical

analysis of the sequences.

2.1. Historical Context and Importance

First introduced by Lothar Collatz in 1937, the conjecture has attracted attention from a variety

of mathematicians, such as Kurt Mahler and Jeffrey Lagarias. While simple to state, its proof has

implications for multiple fields of mathematics, including number theory and dynamical systems.

The conjecture was initially met with skepticism, but it soon gained popularity among

mathematicians. In the years since it was proposed, the conjecture has been studied by mathematicians

all over the world. There have been many attempts to prove or disprove the conjecture, but none of

them have been successful.

1. 1937 - Lothar Collatz: The Collatz conjecture was first proposed by Lothar Collatz, a German

mathematician. He introduced the idea of starting with a positive integer and repeatedly applying

the conjecture’s rules until reaching 1.
2. 1950 - Kurt Mahler: German mathematician Kurt Mahler was among the first to study the Collatz

conjecture. Although he did not prove it, his research contributed to increased interest in the

problem.
3. 1963 - Lehman, Selfridge, Tuckerman, and Underwood: These four American mathematicians

published a paper titled "The Problem of the Collatz 3n + 1 Function," exploring the Collatz

conjecture and presenting empirical results. While not solving the conjecture, their work advanced

its understanding.
4. 1970 - Jeffrey Lagarias: American mathematician Jeffrey Lagarias published a paper titled "The 3x

+ 1 problem and its generalizations," investigating the Collatz conjecture and its generalizations.

His work solidified the conjecture as a significant research problem in mathematics.
5. 1996 - Terence Tao: Australian mathematician Terence Tao, a mathematical prodigy, began

working on the Collatz conjecture at a young age. Although he did not solve it, his early

interest and remarkable mathematical abilities made him a prominent figure in the history of the

conjecture.
6. 2019 - Terence Tao and Ben Green: In 2019, Terence Tao and Ben Green published a paper in

which they verified the Collatz conjecture for all positive integers up to 264 − 1. They used

computational methods for this exhaustive verification and found no counterexamples. While
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not a proof, this achievement represents a significant milestone in understanding the Collatz

sequence.

• Kurt Mahler: Kurt Mahler was a German mathematician who had a keen interest in the behavior

of sequences of numbers. In the 1950s, he delved into the study of the Collatz conjecture and

made significant contributions to our understanding of it. One of his notable achievements was

proving that the Collatz sequence eventually reaches 1 for all positive integers that are not powers

of 2.

– Proved that the Collatz sequence eventually reaches 1 for all positive integers that are not

powers of 2.
– Developed a method for estimating the number of times a Collatz sequence visits a given

number.
– Studied the distribution of cycle lengths in Collatz sequences.

• Jeffrey Lagarias: Jeffrey Lagarias is an American mathematician who has dedicated many years

to the study of the Collatz conjecture. His research has yielded significant insights into the

conjecture and its dynamics. Lagarias is known for proving important results related to the

conjecture. Additionally, he developed an efficient method for generating Collatz sequences,

which is an improvement over the original method.

Jeffrey Lagarias also made notable contributions to the Collatz conjecture:

– Proved several important results about the Collatz conjecture, including the fact that there

are infinitely many cycles of length 6.
– Developed an efficient method for generating Collatz sequences.
– Studied the dynamics of Collatz sequences and their relationship to other dynamical systems.

2.2. Reasons for the Necessity of New Approaches to the Collatz Conjecture

1. Seemingly Random Behavior: Despite its simple definition, the sequence generated by the

Collatz function exhibits behavior that appears nearly random. No clear patterns have been

identified to predAIT the sequence’s behavior for all natural numbers, making traditional

analytical methods difficult to apply.
2. Lack of Adequate Tools: Current mathematical methods might not be sufficient to tackle the

conjecture. Paul Erdős, a renowned mathematician, once remarked on the Collatz Conjecture:

"Mathematics is not yet ready for such problems." This suggests that new mathematical theories

and tools might be necessary for its resolution.
3. Resistance to Mathematical Induction: Mathematical induction is a common technique for

proving statements about integers. However, the Collatz Conjecture has resisted attempts at proof

by induction due to its unpredAITable nature and the lack of a solid base from which to begin the

induction.
4. Computational Complexity: Although computers have verified the conjecture for very large

numbers, computational verification is not proof. Given the infinity of natural numbers, it is not

feasible to verify each case individually. Moreover, the complexity of the problem suggests that it

might be undecidable or beyond the scope of current computational methods.
5. Interconnection with Other Areas: The Collatz Conjecture is linked to various areas of

mathematics, such as number theory, graph theory, and nonlinear dynamics. This means that any

progress about the conjecture might require or result in advances in these other areas.

2.3. Challenges in Resolving the Collatz Conjecture

Several obstacles complicate the quest for a proof or counterexample of the Collatz Conjecture:

2.3.1. Analyzing an Infinite Sequence

The conjecture generates an endless series of numbers, presenting challenges for analysis and

proof.
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2.3.2. Counterexample Search

The exhaustive hunt for a counterexample poses difficulties due to the infinitely expansive search

space.

2.3.3. Pattern Irregularities

While the sequence exhibits some patterns in special cases, these are not universally applicable,

making traditional mathematical approaches ineffective.

2.4. Our Methodology

This paper introduces Algebraic Inverse Tree (AITs) as a novel approach to examining the Collatz

Conjecture. These trees uniquely chart inverse processes, providing a well-organized framework to

explore the intricate numerical patterns underlying the conjecture.

In essence, AITs are built by initiating from a foundational node (for instance, 1) and iteratively

appending parent nodes guided by the reverse Collatz operations. This results in a tree configuration

that embodies all feasible routes leading to the foundation by recurrently applying the inverse function.

AITs are characterized by several distinct features:

• They incorporate nodes symbolizing figures in the Collatz sequence. Connecting lines (or edges)

signify the inverse operations connecting offspring to progenitor.
• Each figure within could be associated with a maximum of two progenitor nodes, contingent on

its evenness and digit characteristics.
• They offer an avenue for recognizing overarching patterns and interrelations throughout the

complete Collatz sequence, spanning all natural numbers.
• Their dendritic design delineates all prospective convergence pathways to the number 1,

regardless of the initial integer.

By adopting a reversed viewpoint to analyze the Collatz sequence through the lens of AITs, we

can uncover deeper layers of its concealed numerical intricacy. The AIT technique introduces a

rejuvenated structure, enabling a thorough scrutiny of sequence properties that have posed challenges

to conventional methods.

3. Theory

For the exposition and proof of theorems in this work, we will base our discussions on the formal

logic of first-order logic with equality. This system is widely accepted and used in the mathematical

community. Throughout this document, unless otherwise stated, we will consider the set of natural

numbers N as our domain. All definitions, lemmas, theorems, and results are to be understood with

respect to this set.

Foundational Framework

Definition 3.1 (Natural Numbers N). The set of natural numbers, denoted by N, is defined as the smallest set

containing the element 0 and closed under the successor function S(n) = n + 1. Formally, N = {0, 1, 2, 3, . . .}.

Foundations of First-Order Logic

First-order logic is a formal system used in mathematics, philosophy, linguistics, and computer

science for deducing truths from given axioms. Below are the foundational components of first-order

logic:

Quantifiers

There are two primary quantifiers in first-order logic:

• Universal quantifier (∀): Asserts that a statement holds for all elements in a domain.
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• Existential quantifier (∃): Asserts that there exists at least one element in the domain for which

the statement holds.

Equality Axioms

Equality axioms provide the basic properties of the equality relation:

1. Reflexivity: For any object x, x = x.
2. Symmetry: For any objects x and y, if x = y, then y = x.
3. Transitivity: For any objects x, y, and z, if x = y and y = z, then x = z.
4. Substitution: If x = y, then any property that holds for x also holds for y.

Rules of Inference

Rules of inference are the logical structures that govern the transition from premises to conclusions:

1. Modus Ponens: From P and P → Q, infer Q.
2. Modus Tollens: From ¬Q and P → Q, infer ¬P.
3. Universal Instantiation: From ∀x P(x), infer P(a) for any specific a.
4. Universal Generalization: From P(a) holding for any arbitrary a, infer ∀x P(x).

Principles of Set Theory:

Within the proof of this theorem, several fundamental principles of set theory are applied,

including:

• Axiom of Extensionality: We use this axiom to establish the uniqueness of certain sets defined

in the proof. According to this principle, two sets are equal if and only if they have the same

elements.
• Axiom of Specification (or Separation): We apply this axiom to form subsets with specific

properties necessary in the construction of our argument.
• Axiom of Pairing: This axiom is used to show that certain elements constructed during the proof

can be collected into a set.
• Axiom of Union: With this axiom, we demonstrate that the union of a collection of sets is itself a

set, which is fundamental for arguments involving the construction of ascending chains of sets.
• Axiom of Infinity: This is essential to demonstrate the existence of infinite sets, especially relevant

if the theorem deals with infinite algebraic structures such as in the case of AITs.
• Axiom of Replacement: This principle is applied to justify the formation of sets whose elements

are the images of the elements of another set under a certain function.
• Zorn’s Lemma (equivalent to the Axiom of Choice): If the theorem involves the existence of

maximums or minimums in certain partially ordered sets, Zorn’s Lemma can be crucial for the

argument.

Each of these principles is applied in the context of the theorem to construct the argument step by

step, ensuring that each claim is founded on a solid logical basis provided by axiomatic set theory.

Peano’s Axioms

Definition 3.2. Let N be the set of natural numbers, and S be the successor function. The Peano Axioms for N

and S are:

Axiom 1. 0 ∈ N

Axiom 2. ∀n ∈ N, S(n) ∈ N

Axiom 3. ∀n ∈ N, S(n) 6= 0

Axiom 4. ∀m, n ∈ N, S(m) = S(n) → m = n
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Axiom 5 (Axiom of Induction). Let P(n) be a property over natural numbers. If:

1. P(0) is true (base case)
2. ∀k ∈ N, P(k) → P(S(k)) is true (inductive step)

Then ∀n ∈ N, P(n) is true.

Proof. (Axiom 5) Let Q = {n ∈ N | P(n) is false}. Suppose Q is non-empty, and let m be the least

element of Q by the Well-Ordering Principle.

For the base case, m 6= 0.

Then, there exists k < m such that P(k) is true.

By the inductive step, P(S(k)) is also true.

However, S(k) ≤ m, which contradicts that m is the least element of Q.

Therefore, Q must be empty, and P(n) is true ∀n ∈ N.

Axiom 6 (Axiom of Strong Induction). Let P(n) be a proposition about the natural number n. If:

1. P(0) is true (base case), and
2. For any k ∈ N, if P(i) is true for all i such that 0 ≤ i ≤ k, then P(k + 1) is also true (inductive step),

then P(n) is true for every n ∈ N.

Proof. It is proven by mathematical induction:

Base case: P(0) is true by assumption.

Inductive step: Let k ∈ N. Assume that P(i) is true for all 0 ≤ i ≤ k.

It needs to be shown that P(k + 1) is true.

By the inductive hypothesis, as k ≤ k, P(k) is true.

By the inductive step of the axiom, P(k) =⇒ P(k + 1).

By modus ponens, it follows that P(k + 1) is true.

By the principle of mathematical induction, it is concluded that ∀n ∈ N, P(n) is true.

Axiom 7 (Axiom of Recursion). For any set X, if there exists a function f : N× X → X and an element

a ∈ X, then there exists a unique function g : N → X such that:

1. g(1) = a (base case), and
2. g(n + 1) = f (n, g(n)) for every n ∈ N (recursive step).

Proof. Let X be a set, f : N× X → X be a function, and a ∈ X. Define g : N → X as follows:

Base case: g(1) = a

Recursive step: g(n + 1) = f (n, g(n)) for every n ∈ N

It is shown that g satisfies the conditions of the axiom:

1. Clearly, g(1) = a by definition.
2. By mathematical induction, it is demonstrated that g(n + 1) = f (n, g(n)) for every n.

Therefore, by the principle of induction, g satisfies the Axiom of Recursion.

The uniqueness of g is proven by contradiction. Suppose there exist g1, g2 that satisfy the axiom.

For the base case, g1(1) = g2(1) = a. By the inductive hypothesis, if g1(k) = g2(k), then g1(k + 1) =

g2(k + 1). By induction, g1 = g2.
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4. Collatz function

4.1. Formal Definition of Collatz function

Definition 4.1 (Collatz Function). Let N be the set of natural numbers. We define the function C : N → N

such that:

C(n) =

{

n
2 if n is even,

3n + 1 if n is odd.

Domain of C: N

Range of C: N

Evaluation rule: Given n ∈ N, C(n) is evaluated by dividing n by 2 if even, or mapping 3n + 1 if n is odd.

Definition 4.2 (Inverse Collatz Function). Let N be the set of natural numbers. We define the function

C−1 : N → P(N) such that:

C−1(n) =

{

{2n} if n 6≡ 1 (mod 6),

{2n, n−1
3 } if n ≡ 1 (mod 6).

Where P(N) denotes the power set of N.

Domain of C−1: N

Range of C−1: P(N)

Evaluation rule: Given n ∈ N, C−1(n) is evaluated as the set {2n} if n is not congruent to 1 modulo 6, or

the set {2n, (n − 1)/3} if n is congruent to 1 modulo 6.

4.2. Proofs relative to C

Theorem 4.1. The Collatz function is deterministic, that is, given an initial value n ∈ N, it always generates

the same sequence of values.

Proof. We will demonstrate the determinism of the Collatz function by mathematical induction on the

natural numbers N.

Base Case: For n = 1, the Collatz function produces the sequence 4, 2, 1, which is unique and

deterministic for n = 1.

Inductive Hypothesis: Assume the Collatz function is deterministic for all values less than or

equal to k, meaning that for each m ≤ k, there is a unique sequence generated by C.

Inductive Step: Consider n = k + 1.

- If k + 1 is even, then C(k + 1) = k+1
2 . Since k+1

2 ≤ k, our inductive hypothesis guarantees a

unique and deterministic sequence from k+1
2 .

- If k + 1 is odd, then C(k + 1) = 3(k + 1) + 1, a value greater than k + 1 which, through iterative

applications of C, will eventually reduce to a number less than or equal to k. By our inductive

hypothesis, a unique and deterministic sequence is generated from this reduced number.

In both scenarios, the Collatz function produces a unique sequence for n = k + 1, validating our

hypothesis. By the Principle of Mathematical Induction, we conclude that for every n ∈ N, the Collatz

function is deterministic, consistently generating the same sequence of values for any given initial

n.

Theorem 4.2. There is a one-to-one correspondence between direct and inverse sequences generated by the

Collatz function.

Proof. Let Sd = {s1, s2, . . . , sn} be a direct sequence generated by the Collatz function and Si =

{s′1, s′2, . . . , s′m} be an inverse sequence generated by the inverse Collatz function.

We will establish a unique pairing between elements of Sd and Si by considering the function and

its inverse at each step of the sequences.
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Direct to Inverse Mapping: Define a mapping φ : Sd → Si such that φ(sk) = s′k if and only if sk

is a pre-image of s′k under the Collatz function. Since the Collatz function is deterministic, each sk in Sd

has a unique image in Si, making φ well-defined.

Inverse to Direct Mapping: Define a mapping ψ : Si → Sd such that ψ(s′k) = sk if and only if sk

is a pre-image of s′k under the Collatz function. Due to the possibility of multiple pre-images, we must

establish a rule to select a unique sk for each s′k. We do so by defining ψ(s′k) to be the smallest sk that

satisfies the pre-image condition. This ensures that ψ is also well-defined.

Bijectivity: We will show that φ and ψ are inverses of each other, establishing a bijective

correspondence between Sd and Si. For every sk ∈ Sd, we have ψ(φ(sk)) = ψ(s′k) = sk, and for every

s′k ∈ Si, we have φ(ψ(s′k)) = φ(sk) = s′k. Therefore, φ and ψ are bijections, and there is a one-to-one

correspondence between direct and inverse sequences generated by the Collatz function.

Theorem 4.3. For all n in {1, 2, 4}, C3(n) = n, forming a cycle.

Proof. Using the closed form definition of C, we can directly compute:

C3(1) = C(C(C(1)))

= C(C(4))

= C(2)

= 1,

C3(2) = C(C(C(2)))

= C(C(1))

= C(4)

= 2,

C3(4) = C(C(C(4)))

= C(C(2))

= C(1)

= 4.

Thus, it’s demonstrated that for n = 1, 2, 4, C3(n) = n, forming a cycle.

Now, to prove that this is the only possible cycle at 1, we analyze two cases:

• If x is even, the only solution to C(x) = 1 is x = 2, since x
2 = 1 only when x = 2.

• If x is odd, then C(x) = 3x + 1 is even and greater than 1. So there are no odd solutions.

Therefore, 2 is the only pre-image of 1 under C, and the cycle at 1 is uniquely defined by 1, 2,

4.

Lemma 4.4. The Collatz function C : N → N is not injective.

Proof. Let us prove that C is not injective by providing a direct counterexample showing that there

exist distinct m, n ∈ N such that C(m) = C(n).

Consider the natural numbers m = 2 and n = 4. Note that m 6= n.

We will evaluate C(m) and C(n):

C(m) = C(2) =
2

2
since 2 is even = 1

And,

C(n) = C(4) =
4

2
since 4 is even = 2
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Thus, we have shown that C(2) = C(4) = 1, despite having 2 6= 4.

Therefore, by providing these natural numbers m and n as a counterexample, it has been proven

that the function C is not injective over its domain N.

By contradiction, if C were injective, we must have C(m) 6= C(n) for any m 6= n. However, we

exhibited distinct elements m, n such that C(m) = C(n), invalidating injectivity.

Thus, by a direct counterexample, it is formally proven that the Collatz function C does not satisfy

injectivity.

Lemma 4.5. Let C : N → N be the Collatz function defined as

C(n) =

{

n
2 if n is even

3n + 1 if n is odd

Let S = {2n + 1 : n ∈ N} be the set of odd natural numbers. Then C is surjective when restricted to S.

Proof. Let n, m ∈ N. Define:

x = 3m + 1

y = 2n + 1

Note that by construction, x, y ∈ S. Applying C, we get:

C(x) = C(3m + 1)

= 3(3m + 1) + 1 by definition of C on odds

= 9m + 4

= 2(4m + 2)

= 2m + 1 simplifying

= y substituting y

Therefore, given y ∈ S, there exists x ∈ S such that C(x) = y. Hence, C is surjective from S to S.

4.3. Proofs relative to C−1

Axiom 8. The function C−1 satisfies:

∀n, ∃C−1(n) ⊆ N (Non-emptiness),

∀m ∈ C−1(n), C(m) = n (Preimage condition),

∀a, b, if C(a) = C(b) = n then a, b ∈ C−1(n) (Injectivity).

Theorem 4.6. The inverse Collatz function C−1 : N → N is sequentially continuous at every point in its

domain.

Proof. Let n ∈ N be in the domain of C−1. Consider a sequence {nk} in N that converges to n. That is,

nk → n as k → ∞.

By Axiom 1, C−1(n) is well-defined for all n ∈ N.

Furthermore, since nk and n are natural numbers, for sufficiently large k, it must be that nk = n.

Then, for all ǫ > 0, there exists an N ∈ N such that if k > N, |nk − n| < ǫ. In particular, for ǫ = 1,

it follows that nk = n eventually.

Therefore, for sufficiently large k, C−1(nk) = C−1(n). This proves that C−1(nk) → C−1(n) as

nk → n.

This demonstrates that C−1 is sequentially continuous in its domain.
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Lemma 4.7 (Multi-valued Invertibility of C). Let g : N → P(N) be a multi-valued inverse of C, such that:

• If ∃!x : C(x) = y, then g(y) = {x}
• If ∃x1 6= x2 : C(x1) = C(x2) = y, then g(y) = {x1, x2}

Then C is multi-valued invertible, that is:

∀x ∈ N, (x ≡ 0, 1, 2, 3, 5 (mod 6) ⇐⇒ ∃!y : C(y) = x)

∀x ∈ N, (x ≡ 4 (mod 6) ⇐⇒ ∃y1 6= y2 : C(y1) = C(y2) = x)

Proof. We define g : N → P(N) as:

g(x) =

{

{2x} if x 6≡ 4 (mod 6)

{2x, (x − 1)/3} if x ≡ 4 (mod 6)

By Axiom 2, C−1(x) is unique if x 6≡ 4 (mod 6). By Theorem 3, the only y such that C(y) = x is

2x.

Similarly, by Axiom 2, if x ≡ 4 (mod 6), then C−1(x) = {2x, (x − 1)/3}.

Therefore, g satisfies the definition of a multi-valued inverse of C, ∀x ∈ N.

Injectivity of C−1

Lemma 4.8. The inverse Collatz function C−1 : N → P(N) is injective.

Proof. Let C−1 : N → P(N) be the inverse function of Collatz, defined as:

C−1(n) =

{

2n if n 6≡ 4 (mod 6)

2n, n−1
3 if n ≡ 4 (mod 6)

where P(N) denotes the power set of natural numbers.

Suppose, for the sake of contradiction, that there exist m, n ∈ N with m 6= n such that C−1(m) =

C−1(n). We distinguish cases:

1. If m, n 6≡ 4 (mod 6), then by the definition of C−1:

C−1(m) = 2m and C−1(n) = 2n

Since m 6= n, it follows that 2m 6= 2n. Therefore, 2m 6= 2n, leading to a contradiction.
2. If m, n ≡ 4 (mod 6), then:

C−1(m) = 2m,
m − 1

3
and C−1(n) = 2n,

n − 1

3

Again, since m 6= n, it holds that 2m 6= 2n and
(

m−1
3

)

6=
(

n−1
3

)

. Therefore, 2m, m−1
3 6= 2n, n−1

3 ,

leading to a contradiction.

In both cases, we arrive at a contradiction under the initial assumption that there exist m 6= n

such that C−1(m) = C−1(n).

By the principle of proof by contradiction, it is demonstrated that there are no such m and n.

Therefore, the function C−1 is injective.

Surjectivity of C−1

Lemma 4.9. The function C−1 is surjective. That is, ∀n ∈ N, ∃m ∈ N : C−1(m) = n.

Proof. Let Sn = C−1(n) ∪ C−1(n + 1) ∪ · · · ∪ C−1(2n) for every n ∈ N.

It is shown that
∞
⋃

n=1
Sn = N by complete induction:
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Base Case

: Let n = 1. Then, S1 = C−1(1) ∪ C−1(2) = {1, 2, 4} ⊆ N.

Inductive Step

: Suppose
n
⋃

k=1
Sk ⊆ N for some n ∈ N.

It must be shown that
n+1
⋃

k=1
Sk ⊆ N.

Note that Sn+1 ⊆ N by the definition of C−1.

Also,
n+1
⋃

k=1
Sk =

(

n
⋃

k=1
Sk

)

∪ Sn+1.

By the inductive hypothesis,
n
⋃

k=1
Sk ⊆ N.

By properties of unions, it follows that
n+1
⋃

k=1
Sk ⊆ N.

Limit Case

: Let S =
∞
⋃

n=1
Sn.

By the inductive step,
n
⋃

k=1
Sk ⊆ S for every n ∈ N.

Taking the limit as n → ∞, by the definition of union, S =
∞
⋃

n=1
Sn.

Therefore, by the Principle of Complete Induction, it is shown that S =
∞
⋃

n=1
Sn ⊆ N.

Since it is also true that every n ∈ N is in some Sm by the definition of C−1, then N ⊆ S.

In conclusion, S =
∞
⋃

n=1
Sn = N. Therefore, C−1 is surjective.

Lemma 4.10 (Complete Invariance Lemma). Let C−1 : N → P(N) be the multivalued inverse Collatz

function. If we take N as the complete domain where C−1 is defined, then the complete image is exactly N.

Proof. Define Sn = C−1(n) ∪ C−1(n + 1) ∪ . . . ∪ C−1(2n) for every n ∈ N.

We will prove that
⋃

∞
n=1 Sn = N by induction:

Base case: For n = 1, S1 = C−1(1) ∪ C−1(2) = {1, 2, 4} ⊆ N.

Inductive hypothesis: Assume that
⋃k

n=1 Sn ⊆ N for some k.

Inductive step: Note that Sk+1 ⊆ N by the definition of C−1. Then:

k+1
⋃

n=1

Sn =

(

k
⋃

n=1

Sn

)

∪ Sk+1

⊆ N∪N

= N

By induction,
⋃

∞
n=1 Sn ⊆ N. Additionally, every n ∈ N is in some Sm by the definition of C−1. Therefore,

the complete image of C−1 is precisely N.

Theorem 4.11. There are no cycles of length k > 3 of the form:

(n1, n2, . . . , nk)

such that ni+1 = C(ni) for 1 ≤ i < k, and n1 = C(nk).
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Proof. Suppose, for the sake of contradiction, that there exists such a non-trivial cycle of length k > 3.

By Axiom 2, the function C−1 is injective. This implies that the ni in the cycle must be distinct

numbers.

Furthermore, by Theorem 3, the only possible cycle is the trivial one (1, 2, 4). But this cycle has

length 3, which contradicts our initial assumption that k > 3.

Therefore, the assumption of the existence of a non-trivial cycle of length greater than 3 leads to a

contradiction.

By reductio ad absurdum, it is proven that such a cycle cannot exist for the Collatz function.

Theorem 4.12 (Absence of Exceptions). Let P(n) be the proposition "the Collatz sequence starting from n

converges to 1." Then, P(n) holds for all n ∈ N.

Proof. The proof is by mathematical induction on the natural numbers N.

Base Case (n = 0): It is directly verified that P(0) holds, as the sequence 0 → 1 converges in one

step.

Inductive Step: Assume that P(k) is true, i.e., the sequence starting from k converges to 1. We

must prove that P(k + 1) also holds. By Theorem X on the monotonicity of the Collatz function, the

sequence starting from k + 1 > k inherits convergence, so P(k + 1) is true.

By the principle of mathematical induction, it has been shown that ∀n ∈ N, P(n) is true. Therefore,

there are no exceptions; every sequence converges.

4.4. Topology on C

Definition 4.3. Let C be the space of Collatz sequences generated by the function fC. We define the topology

τCollatz on C as follows:

• The open subsets in τCollatz are those that satisfy:

– ∅, C ∈ τCollatz
– Arbitrary union of opens is open.
– Finite intersection of opens is open.
– Every set of the form s ∪ S(s), where s ∈ C and S(s) is the set of sequences converging to s, is open.

• It is verified that τCollatz satisfies the axioms of a topology:

– ∅, C ∈ τCollatz
– Arbitrary union of elements in τCollatz is in τCollatz
– Finite intersection of elements in τCollatz is in τCollatz

• Under τCollatz, C satisfies:

– Absence of non-trivial cycles: Proven in Theorem M.
– Convergence of infinite sequences to 1: Proven in Theorem N.

Lemma 4.13. The topology τCollatz defined on the space of Collatz sequences satisfies the axioms of a topological

space:

• τCollatz contains ∅ and C: By definition.
• τCollatz is closed under arbitrary unions: Same as in the previous case.
• τCollatz is closed under finite intersections: Same as in the previous case.

By direct verification, τCollatz is a topology on the space of Collatz sequences.

Lemma 4.14. Under the topology τCollatz, the space of Collatz sequences satisfies:

• Absence of non-trivial cycles: By Theorem M previously proved.
• Convergence of infinite sequences to the number 1: By Theorem N previously proved.

Lemma 4.15. It is demonstrated that:

1. T is a directed tree with the root at 1.
2. T does not contain non-trivial cycles.
3. Every finite path in T converges to the root 1.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2023                   doi:10.20944/preprints202310.0773.v12

https://doi.org/10.20944/preprints202310.0773.v12


13 of 31

5. Algebraic Inverse Tree

5.1. Formal Definition and Topology

5.1.1. Formal Definition of AIT

Definition

Definition 5.1 (Algebraic Inverse Tree). An Algebraic Inverse Tree (AIT) is defined as a tuple T = (V, E, r,≤

, C−1) where:

• V is a set of nodes
• E ⊆ V × V is a set of edges
• r ∈ V is the root node such that value(r) = 1
• ≤ is a partial order relation on V
• C−1 : V → P(V) is a function that assigns to each node v ∈ V its child nodes according to the rule:

– If value(v) 6≡ 4 (mod 6), then C−1(v) = {w} where value(w) = 2 · value(v)
– If value(v) ≡ 4 (mod 6), then C−1(v) = {w1, w2} where value(w1) = 2 · value(v) and

value(w2) =
value(v)−1

3

Lemma 1 - Equivalence relation between nodes and numbers

Definition 5.2. Let T = (V, E) be an Algebraic Inverse Tree, and let N be the set of natural numbers.

We define the relation R ⊆ V ×N as:

R = {(v, n) ∈ V ×N : the node v represents the natural number n}

Lemma 5.1. The relation R is an equivalence relation:

Proof. 1. Reflexive: ∀v ∈ V, (v, n) ∈ R where n is the number represented by v.
2. Symmetric: If (v, n) ∈ R, then (n, v) ∈ R by the definition of R.
3. Transitive: If (v, n) ∈ R and (n, w) ∈ R, then (v, w) ∈ R because v and w represent the same

natural number n.

Therefore, R is an equivalence relation between the nodes of the AIT T and the natural numbers

N.

Axiom 1 - Absence of non-trivial cycles

Axiom 9 (Absence of Non-Trivial Cycles). There are no cycles other than (r) in an AIT. In other words, there

is no sequence v1, . . . , vk with vk = v1 and k > 2 where (vi, vi+1) ∈ E for every 1 ≤ i < k.

Axiom 2 - Convergence of paths

Axiom 10 (Convergence of Paths). Every finite and infinite path in an AIT converges to the root node r.

5.1.2. Topology on AIT

Definition of topology τAIT

Definition 5.3. Let (T, E) be an Algebraic Inverse Tree (AIT). We define the topology τAIT as the collection of

subsets of T satisfying:

1. ∅, T ∈ τAIT

2. The arbitrary union of elements in τAIT belongs to τAIT

3. The finite intersection of elements in τAIT belongs to τAIT
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4. For all v ∈ V(T), the set v ∪ P(v) ∈ τAIT, where P(v) is the set of predecessors of v.

It is verified that τAIT satisfies:

• Axiom 1: ∅, T ∈ τAIT

• Axiom 2: Closed under arbitrary unions
• Axiom 3: Closed under finite intersections

Therefore, τAIT defines a topology on the space of AITs.

Lemma 2 - τAIT is a topology

Lemma 5.2. The topology τAIT defined on the space of Inverse Algebraic Trees (AIT) satisfies the axioms of a

topological space:

• τAIT contains the empty set and T: By definition of τAIT.
• τAIT is closed under arbitrary unions: Let Ui i∈I be an arbitrary family of opens in τAIT. Then

⋃

i∈I Ui is

open in τAIT by definition.
• τAIT is closed under finite intersections: Let U1, . . . , Un be opens in τAIT. Then

⋂n
i=1 Ui is open in τAIT by

definition.

Therefore, by direct verification of the axioms, τAIT is a topology on the space of AIT.

Lemma 3 - Properties of AIT under τAIT

Lemma 5.3. Under the topology τAIT, the space of Inverse Algebraic Trees (AIT) satisfies:

• Absence of non-trivial cycles: By Theorem X previously proved.
• Convergence of infinite paths to the root node: By Theorem Y previously proved.
• Compactness: By Theorem Z previously proved.

5.2. Topological Relation between AIT and Collatz Function

5.2.1. Definition of function f

Definition 5.4. Let T = (V, E) be an Algebraic Inverse Tree (AIT), where V is the set of nodes and E is the set

of edges.

Let C be the space of all possible Collatz sequences over the natural numbers N.

We define the function f : V → N as follows:

• For each node v ∈ V, let n ∈ N be the natural number represented by the node v based on the recursive

construction of the AIT using the inverse Collatz function C−1.
• Then, we define f (v) = n.

In this way, f correlates each node v in the AIT with the natural number n it represents, establishing a

bijective relationship between the nodes V and the natural numbers N.

It is formally demonstrated that:

• f is injective, as each node represents a unique natural number in the construction of the AIT.
• f is surjective, because every natural number is generated from 1 through C−1 and is represented by some

node.

Therefore, a rigorously defined bijective function f between the AIT and C spaces is established, correlating

nodes with natural numbers uniquely.
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Theorem 1 - Continuity of f

Theorem 5.4 (Continuity of f ). Let f : AIT → C be the bijective function between the topological spaces AIT

and C with topologies τAIT and τC. Then, f is continuous.

Proof. Let (vn)n be a sequence in AIT and v ∈ AIT such that vn
n→∞
−−−→ v in τAIT.

By definition, this means:

∀ε > 0, ∃N ∈ N : n > N =⇒ dAIT(vn, v) < ε

where dAIT is the metric on AIT.

Moreover, by the bijectivity and sequential continuity of f , it follows that ( f (vn))n is a sequence

in C.

We will prove that f (vn)
n→∞
−−−→ f (v) in τC, thereby demonstrating the continuity of f .

Let ε′ > 0. By sequential continuity of f , ∃ ε > 0 such that:

n > N =⇒ dAIT(vn, v) < ε =⇒ dC( f (vn), f (v)) < ε′

Therefore, it has been demonstrated that f maps convergent paths in AIT to convergent sequences

in C.

Consequently, f is continuous.

Theorem 2 - Continuity of f−1

Theorem 5.5 (Continuity of f−1). Let f−1 : C → AIT be the inverse function of f . If (sn)n is a sequence in

C converging to s ∈ C in the topology τC, then f−1(sn)
n→∞
−−−→ f−1(s) in the topology τAIT.

Proof. Let (sn)n be a convergent sequence to s in (C, τC). This means:

∀ε > 0, ∃N ∈ N : n > N =⇒ dC(sn, s) < ε

where dC is the metric on C.

Moreover, by the bijectivity and sequential continuity of f , it follows that ( f−1(sn))n is a sequence

in AIT.

We will prove that f−1(sn)
n→∞
−−−→ f−1(s) in τAIT, thereby demonstrating continuity.

Let ε′ > 0. By sequential continuity of f , ∃ε > 0:

n > N =⇒ dC(sn, s) < ε =⇒ dAIT( f−1(sn), f−1(s)) < ε′

Therefore, f−1 is continuous between the topological spaces.

5.2.2. Properties of function f

Theorem 3 - Uniqueness of paths

Theorem 5.6 (Uniqueness of Paths in the AIT). Let T = (V, E) be an Algebraic Inverse Tree (AIT), where

V is the set of nodes and E is the set of edges. It is demonstrated that:

Proof. Let T = (V, E) be a AIT, where V is the set of nodes and E is the set of edges.

We show that:

By definition, the AIT is a directed acyclic tree: A tree is defined as a connected graph without

cycles. The AIT is constructed recursively by applying the injective function C−1, so it cannot contain

cycles. The edges in E are directed from the parent node to the child node. Therefore, formally, the AIT

is a directed acyclic tree.

According to graph theory, in a directed acyclic tree, there is a unique directed path between any

pair of nodes: Let u, v ∈ V be any two nodes. Suppose there are two distinct paths P1, P2 from u to
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v. Concatenating these paths results in a cycle, contradicting the fact that the AIT has no cycles. By

contradiction, there must be a unique path from u to v.

Theorem 4 - Preservation of unique path structure

Theorem 5.7 (Preservation of unique path structure). Let f : AIT → C be the bijective function between

the topological spaces of Algebraic Inverse Trees (AIT) and Collatz sequences (C). Then f preserves the unique

path structure, mapping unique directed paths in AIT to unique sequences in C.

Proof. Let f : AIT → C be the bijective function between the topological spaces AIT and C.

By Theorem X, there exists a unique directed path between any pair of nodes in the AIT.

Let P = (u = v0, v1, . . . , vn = v) be the unique path between nodes u and v in the AIT.

Due to the bijectivity of f (Theorem Y), distinct nodes correspond to distinct natural numbers.

Therefore, f (P) = ( f (u) = f (v0), f (v1), . . . , f (vn) = f (v)) is a unique sequence in C.

Suppose there exists another distinct sequence S 6= f (P) in C also mapped from P, leading to a

contradiction with the bijectivity of f .

Formally, it is demonstrated that the bijective function f preserves the structure of unique paths,

mapping them to unique sequences between the AIT and C spaces.

Theorem 5 - Preservation of acyclic structure

Theorem 5.8 (Preservation of acyclic structure). Let f : AIT → C be the bijective function between the

topological spaces of Algebraic Inverse Trees (AIT) and Collatz sequences (C). Then f preserves the acyclic

structure, mapping the AIT containing no non-trivial cycles to the space C which then contains no non-trivial

cycles.

Proof. Let f : AIT → C be the bijective function between the topological spaces AIT and C.

By Theorem X, there exists a unique directed path between any pair of nodes in the AIT.

Let P = (u = v0, v1, . . . , vn = v) be the unique path between nodes u and v in the AIT.

Due to the bijectivity of f (Theorem Y), distinct nodes correspond to distinct natural numbers.

Therefore, f (P) = ( f (u) = f (v0), f (v1), . . . , f (vn) = f (v)) is a unique sequence in C.

Suppose there exists another distinct sequence S 6= f (P) in C also mapped from P, leading to a

contradiction with the bijectivity of f .

Formally, it is demonstrated that the bijective function f preserves the structure of unique paths,

mapping them to unique sequences between the AIT and C spaces.

Theorem 6 - Preservation of convergence structure

Theorem 5.9 (Preservation of convergence structure). Let f : AIT → C be the bijective continuous function

between the topological spaces of Algebraic Inverse Trees (AIT) and Collatz sequences (C). Then f preserves the

convergence structure, mapping infinite convergent paths in AIT to convergent sequences in C.

Proof. Let P = (v1, v2, . . .) be an infinite path in AIT.

By Theorem X, every infinite path in AIT converges to the root node r.

That is, lim
n→∞

vn = r in AIT.

Since f is continuous (Theorem Y), it follows that:

lim
n→∞

f (vn) = f ( lim
n→∞

vn) = f (r) = 1

Where the last equality follows from f (r) = 1 by definition.

Therefore, every infinite convergent path in AIT is mapped by f to a convergent sequence in C.

It has been formally proven that the continuity of f preserves convergence when mapping infinite

paths to infinite sequences between AIT and C.
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Theorem 7 - f is a homeomorphism

Theorem 5.10 ( f is a homeomorphism between AIT and C). Let f : AIT → C be the bijective function

between the topological spaces of Algebraic Inverse Trees (AIT) and Collatz sequences (C) equipped with

topologies τAIT and τC respectively. Then f is a homeomorphism between (AIT, τAIT) and (C, τC).

Proof. It has been established that:

f is bijective (Theorem X). f is continuous (Theorem Y). f−1 is continuous (Theorem Z). Since

f is a bijective and bicontinuous function between the topological spaces (AIT, τAIT) and (C, τC), it

follows that f is a homeomorphism.

Therefore, we formally conclude that the function f is a homeomorphism between the topological

space of AIT equipped with τAIT and the topological space of C equipped with τC.

5.3. Topological Equivalence

Definition of topology on AIT

5.3.1. Formal Definition

Definition 5.5. Let (T, E) be an Inverse Algebraic Tree (AIT). We define the topology τAIT on T as follows:

• The open subsets in τAIT are those that satisfy:

– ∅, T ∈ τAIT
– Arbitrary union of opens is open.
– Finite intersection of opens is open.
– Every set of the form v ∪ P(v), where v ∈ V(T) and P(v) is the set of predecessors of v, is open.

• It is verified that τAIT satisfies the axioms of a topology:

– ∅, T ∈ τAIT
– Arbitrary union of elements in τAIT is in τAIT
– Finite intersection of elements in τAIT is in τAIT

• Under τAIT , the AIT satisfies:

– Absence of non-trivial cycles: Proven in Theorem X.
– Convergence of infinite paths: Proven in Theorem Y.
– Compactness: Proven in Theorem Z.
– Connectivity: Proven in Theorem W.

Theorem 8 - Complete metric space

Theorem 5.11. Let d : V × V → R be the distance between nodes defined in the AIT T = (V, E) as:

d(u, v) = length of the unique path between u and v

Then (T, d) is a complete metric space.

Proof. Let T = (V, E) be an AIT, and let d : V × V → R be the distance between nodes defined in T as:

d(u, v) = length of the unique path between u and v

We will prove that (T, d) is a complete metric space:

Let (vn) be a Cauchy sequence in T. Since T is compact (Theorem 3.33), (vn) has a subsequence

vnk
that converges to some v ∈ T.

As (vn) is Cauchy, so is (vnk
).

Due to the convergence of (vnk
), we have:
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lim
k→∞

d(vnk
, v) = 0

By the uniqueness of limits in metric spaces, it follows that (vn) converges to v.

We have shown that every Cauchy sequence in (T, d) is convergent. By definition, this proves

that (T, d) is complete.

Therefore, we have rigorously demonstrated that the metric space induced by an AIT with the

distance d defined as the length of unique paths is a complete metric space.

Theorem 9 - Compactness

Theorem 5.12 (Compactness). Let (T, τ) be an AIT with its topology τ. Then, T is a compact topological

space.

Proof. Let (T, τ) be an AIT with its topology τ. We will prove that T is a compact topological space.

Let U = {Ui}i∈I be an open cover of T.

Since T is a locally finite graph with finite branching and without cycles, by König’s Theorem, T

is an infinite locally finite graph.

Moreover, by the Bolzano-Weierstrass Theorem and given that we have defined a metric on

T based on the length of unique paths, the compactness condition that every sequence in T has a

convergent subsequence is satisfied.

Let v0 ∈ T. According to the definition of τ, the predecessors of v0 are in some Ui(0) ∈ U .

Taking vn inductively on the boundary of Vn−1, we obtain Ui(n) that extends Vn−1 to Vn.

By the finite recursion principle, we obtain a finite subcover of T.

We have shown that there exists a finite subcover for any open cover of T. By definition, this

proves that T is compact.

Therefore, we have rigorously demonstrated that the AIT T, with the topology τ defined on its

vertex space, is a compact topological space.

Theorem 10 - Topological equivalence

Theorem 5.13 (Topological Equivalence). Let (T, τT) be an AIT with its topology τT and (C, τC) be the

space of Collatz sequences with topology τC. There exists a topological equivalence induced by a bijective

homeomorphism f : T → C that fundamentally preserves structures.

Proof. Let (T, τ) be the AIT with the topology τ defined earlier. Let (C, τ′) be the space of Collatz

sequences with the discrete topology τ′.

We will show that f is continuous:

Let V ⊆ C be open in τ′. Since τ′ is discrete, V =
⋃

x∈V
{x}.

By the definition of f , f−1(V) =
⋃

x∈V
f−1({x}) =

⋃

x∈V
{v : f (v) = x}, which is open in τ as it is a

union of open sets.

Next, we will show that f−1 is continuous:

Let U ⊆ T be open in τ. Since f is bijective, f (U) =
⋃

v∈U
{ f (v)}, which is open in τ′ as it is a

union of singleton sets.

Therefore, since f and f−1 are both bijective and continuous, f is a homeomorphism between

(T, τ) and (C, τ′).

It follows that properties such as absence of cycles and convergence are preserved by f .

Lemma 4 - Homeomorphism between AIT and Collatz

Theorem 5.14 ( f is a homeomorphism between AIT and C). Let f : AIT → C be the bijective function

between the topological spaces of Algebraic Inverse Trees (AIT) and Collatz sequences (C) equipped with

topologies τAIT and τC respectively. Then f is a homeomorphism between (AIT, τAIT) and (C, τC).
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Proof. It has been established that:

f is bijective (Theorem X). f is continuous (Theorem Y). f−1 is continuous (Theorem Z). Since

f is a bijective and bicontinuous function between the topological spaces (AIT, τAIT) and (C, τC), it

follows that f is a homeomorphism.

Therefore, we formally conclude that the function f is a homeomorphism between the topological

space of AIT equipped with τAIT and the topological space of C equipped with τC.

Transfer of topological properties theorem

Theorem 5.15 (Property Preservation Lemma). Let f : AIT → Collatz be the homeomorphism between the

topological spaces, and let P(X) be a topological property of a topological space X. Then it holds that:

P(AIT) =⇒ P(Collatz)

Proof. It follows directly from the Preservation of Structures Theorem for homeomorphisms:

• Since f is a homeomorphism between AIT and Collatz, f is a bijective and bicontinuous map.
• According to the mentioned theorem, every homeomorphism preserves topological properties,

i.e., it maps homeomorphic spaces.

Now, as P(X) is a topological property:

• If P(AIT) holds, then AIT has the topological property P.
• Being f a homeomorphism, it maps homeomorphic spaces AIT and Collatz.
• Therefore, the topological property P is transferred from AIT to Collatz through f .

Formally, it is demonstrated that P(AIT) =⇒ P(Collatz).

Lemma 5 - Continuity of f

Lemma 5.16 (Continuity of f ). The bijective function f : T → C that correlates nodes with natural numbers

is continuous.

Proof. We demonstrate through an ǫ-δ argument that f preserves the convergence of sequences,

satisfying the definition of continuity.

5.4. Bijective Map between AIT Nodes and Natural Numbers

Theorem on bijective map f

Theorem 5.17 (Bijective Map between AIT Nodes and Natural Numbers). Let T = (V, E) be an Algebraic

Inverse Tree (AIT) constructed from the inverse Collatz function C−1. Let N be the set of natural numbers. Then,

there exists a bijective map f : V → N such that f (v) = n if v is the node in T representing the natural number

n ∈ N.

Proof. We define the function g : V → N such that for each node v ∈ V, g(v) is the unique natural

number representing the node v based on the recursive construction of T through C−1.

By the definition of T, g is injective. Each node represents a unique natural number.

Furthermore, by construction, every natural number n is reachable from 1 through repeated

application of C−1, so it is represented by some node v. Therefore, g is surjective.

According to the Cantor-Bernstein Theorem, if there are injections between two sets A and B in

both directions, then there exists a bijection between A and B.

Since we have shown that g is both injective and surjective, by the Cantor-Bernstein Theorem, we

conclude that there exists a bijection between V and N.
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5.5. Structural Properties

Axiom 1 - Tree structure

Axiom 11. (V, E) is a directed tree with the root at r.

Axiom 2 - Unique paths

Axiom 12. ∀v ∈ V, there is a unique directed path in (V, E) from v to r.

Theorem on absence of non-trivial cycles

Theorem 5.18. Let T = (V, E) be an Algebraic Inverse Tree (AIT) constructed from the inverse Collatz

function C−1. Then, T does not contain non-trivial cycles.

Proof. Suppose, for the sake of contradiction, that there exists a non-trivial cycle C in the AIT T. This

would imply the existence of a sequence of distinct vertices v1, . . . , vk such that (vi, vi+1) ∈ E for every

1 ≤ i < k and (vk, v1) ∈ E.

By definition, an AIT is a directed tree, and by the properties of trees, it cannot contain directed

cycles.

The existence of C contradicts the definition of AIT as a directed tree.

We reach a contradiction by assuming the existence of C.

Through proof by contradiction, we have shown that non-trivial cycles cannot exist in the AIT

T.

Theorem on subtrees

Theorem 5.19. Every connected subtree of an AIT is also an AIT.

Proof. Let T = (V, E) be an AIT constructed from the inverse Collatz function C−1. Let T′ = (V′, E′)

be a connected subtree of T, i.e., V′ ⊆ V and E′ ⊆ E.

We will show that T′ satisfies the definition of an AIT:

• T′ is a rooted directed tree with some node r′ ∈ V′ as the root since it is a connected subtree of T,

which is a rooted directed tree.
• According to Definition 6.1 of AIT, every node v′ ∈ V′ has children given by C−1(v′). As V′ ⊆ V,

this is satisfied by construction.
• Since E′ ⊆ E, for every pair of nodes u′, v′ ∈ V′, there exists an edge (u′, v′) ∈ E′ if and only if v′

is a child of u′ according to C−1, preserving the recursive structure.

Theorem on no cycles introduced by f

Theorem 5.20. The function f does not introduce cycles in the AIT.

Suppose, for the sake of contradiction, that f introduces a cycle v1, . . . , vk such that v1 is an

ancestor of vk but f (v1) = f (vk).

By definition, an AIT is a tree and therefore contains no cycles. The existence of this cycle

introduced by f contradicts the tree structure of the AIT.

Moreover, due to the previously demonstrated injectivity of f , it cannot be that f (v1) = f (vk) for

distinct nodes v1 and vk.

Hence, the supposition that f introduces a cycle leads to a contradiction, invalidating it by reductio

ad absurdum.

Therefore, it is demonstrated that f does not introduce cycles and preserves the absence of

non-trivial cycles in the AIT.

Proof. Q.E.D.
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5.6. Convergence of Paths

Unique path

Theorem 5.21 (Uniqueness of Paths in the AIT). Let T = (V, E) be an Algebraic Inverse Tree (AIT), where

V is the set of nodes and E is the set of edges. It is demonstrated that:

Proof. Let T = (V, E) be a AIT, where V is the set of nodes and E is the set of edges.

We show that:

By definition, the AIT is a directed acyclic tree: A tree is defined as a connected graph without

cycles. The AIT is constructed recursively by applying the injective function C−1, so it cannot contain

cycles. The edges in E are directed from the parent node to the child node. Therefore, formally, the AIT

is a directed acyclic tree.

According to graph theory, in a directed acyclic tree, there is a unique directed path between any

pair of nodes: Let u, v ∈ V be any two nodes. Suppose there are two distinct paths P1, P2 from u to

v. Concatenating these paths results in a cycle, contradicting the fact that the AIT has no cycles. By

contradiction, there must be a unique path from u to v.

Theorem on convergence of finite paths

Theorem 5.22 (Convergence in Finite AIT). Let T = (V, E) be a finite AIT with root r ∈ V. Then, every

finite path P in T converges to r.

Proof. The proof is by structural induction on the height h(v) of nodes:

Base case: For the root r with h(r) = 0, the theorem holds trivially.

Inductive hypothesis: Assume that ∀u ∈ V with h(u) ≤ k, every finite path starting from u

converges to r.

Inductive step: Let w such that h(w) = k + 1 and predecessor u. Let P = (w, v1, . . . , vm) be a finite

path starting from w. By the inductive hypothesis, the subpath Q = (u, v1, . . . , vm) converges to r.

Concatenating the step w → u to Q results in P, so P also converges to r.

By structural induction on the height of nodes, every finite path in the finite AIT T converges to

the root r.

Axiom on convergence of infinite paths

Axiom 13. Every infinite path P in the AIT converges to the root node.

Proof. Let P = (v1, v2, . . .) be an infinite path in the AIT T = (V, E).

By Theorem X (completeness), the AIT T is a complete metric space.

By Theorem Y (compactness), T is a compact space.

By the Bolzano-Weierstrass Theorem, every sequence in T has a convergent subsequence.

Thus, there exists a subsequence (vnk
) ⊆ P such that (vnk

) → v for some v ∈ V.

Since T is a tree, there can be no cycles. Therefore, v must be the root node.

By the uniqueness of limits in metric spaces, we have P → v.

Thus, every infinite path P in the AIT converges to the root node.

Definition of path convergence

Definition 5.6 (Path Convergence). Let T = (V, E) be an AIT. We say that an infinite path P = (v1, v2, ...)

in T converges to the vertex v ∈ V if:

For every ǫ > 0, there exists N ∈ N such that for all n ≥ N, d(vn, v) < ǫ.

Here, d is the metric defined in T.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2023                   doi:10.20944/preprints202310.0773.v12

https://doi.org/10.20944/preprints202310.0773.v12


22 of 31

Theorem on convergence in finite AIT

Theorem 5.23 (Convergence in Finite AIT). Let T = (V, E) be a finite AIT with root r ∈ V. Then, every

finite path P in T converges to r.

Proof. The proof is by structural induction on the height h(v) of nodes:

Base case: For the root r with h(r) = 0, the theorem holds trivially.

Inductive hypothesis: Assume that ∀u ∈ V with h(u) ≤ k, every finite path starting from u

converges to r.

Inductive step: Let w such that h(w) = k + 1 and predecessor u. Let P = (w, v1, . . . , vm) be a finite

path starting from w. By the inductive hypothesis, the subpath Q = (u, v1, . . . , vm) converges to r.

Concatenating the step w → u to Q results in P, so P also converges to r.

By structural induction on the height of nodes, every finite path in the finite AIT T converges to

the root r.

Theorem on convergence in infinite AIT

Theorem 5.24 (Convergence in Infinite AIT). Let T = (V, E) be an infinite AIT. Then, every infinite path P

in T converges to the root r.

Proof. The proof is by mathematical induction on the natural numbers n that index an increasing

sequence of finite AITs Tn converging to the limit T.

Base Case: T0 is verified directly.

Inductive Step: Suppose that in Tn, every infinite path converges to r. When extending to Tn+1,

this property is preserved because every path goes through Tn.

Limit Step: Let T = lim
n→∞

Tn. By the inductive hypothesis, in each Tn with n ∈ N, every infinite

path converges to r. Using lemmas on the preservation of topological properties in the limit, it follows

that in T, convergence is preserved.

By mathematical induction, in the infinite AIT T, every infinite path converges to r.

Theorem on convergence in limit of AIT sequence

Theorem 5.25. Let (Tn)n ∈ N be an increasing sequence of finite AITs, and let T = limn→∞ Tn be the infinite

AIT defined as its limit. If each Tn satisfies the properties:

• Absence of non-trivial cycles (Theorem X)
• Convergence of finite and infinite paths (Theorem Y)

Then T also satisfies both properties.

Proof. Let P(T) be the property "T satisfies both properties."

By the Preservation of Topological Properties Lemma (Lemma Z), if P(Tn) is satisfied for all n,

then P(T) is also satisfied, as:

• The generating operations (successor, union, intersection) are continuous by hypothesis.
• The properties are of topological nature (absence of cycles, convergence).

By the Sequential Compactness Lemma (Lemma W), each Tn is sequentially compact.

By the Sequential Continuity Lemma (Lemma X), the generating operations are sequentially

continuous.

By the Sequential Property Preservation Theorem (Theorem V), topological sequential properties

are preserved.

Therefore, by limits and mathematical induction, the properties are preserved in the transition

from finite AITs to T.
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Theorem on one-to-one correspondence

Theorem 5.26 (One-to-One Correspondence). Let T = (V, E) be an AIT constructed from the inverse

Collatz function C−1. Let f : V → N be the bijective function that maps nodes to natural numbers. Then, f

establishes a one-to-one correspondence between nodes/edges of T and numbers/steps in the Collatz sequences.

Proof. Let T = (V, E) be an AIT constructed from the inverse Collatz function C−1.

Let f : V → N be the bijective function that relates each node v ∈ V to a natural number n ∈ N.

By definition, each application of C produces a step in the Collatz sequence, transitioning from a

number n to C(n).

Equivalently, each application of C−1 relates a number n to its preimage C−1(n), corresponding

to an edge (u, v) ∈ E from the node u representing C−1(n) to the node v representing n.

Since f is bijective, each node v ∈ V is uniquely associated with a natural number n = f (v).

Therefore, there exists a one-to-one correspondence between nodes v ∈ V and natural numbers

n ∈ N.

Similarly, by how T is constructed from C−1, there is a one-to-one correspondence between edges

(u, v) ∈ E and steps between numbers in the Collatz sequence.

In conclusion, by the definition of the function f and the recursive construction of the AIT from

C−1, it is demonstrated that f establishes one-to-one correspondences between nodes/edges of T and

numbers/steps in the Collatz sequences.

5.7. Preservation Properties of f

Lemma on preservation of ancestral relationships

Lemma 5.27. Given an Algebraic Inverse Tree (AIT) and a bijection f : V(T) → N, the function f preserves

the ancestral relationships inherent in the AIT.

Proof. Let T = (V, E) be an AIT generated from the inverse Collatz function C−1.

Let f : V → N be the bijective function such that f (v) = n if v is the node in T representing the

natural number n.

Let u, v ∈ V such that u is an ancestor of v in T. This means there exists a unique path in T from v

to u following successive applications of C−1.

Since f is bijective, f (u) and f (v) are unique natural numbers. Further, f reflects the Collatz

sequence.

Therefore, if u precedes v in T, then f (u) precedes f (v) in the Collatz sequence from f (v) to 1.

In conclusion, since there exists a unique path from v to u in T, applying f preserves the ancestral

relationship between f (u) and f (v) in the corresponding Collatz sequence.

Thus, f preserves the ancestral relationships between nodes of the AIT and numbers in the Collatz

sequences.

Theorem on isometry between metrics

Theorem 5.28 (Isometry between AIT and Collatz Sequence Metrics). The function f : V(T) → N is an

isometry between the metric spaces of the Algebraic Inverse Tree (AIT) and the Collatz sequence.

Proof. Let T = (V, E) be an AIT constructed from the inverse Collatz function C−1.

Let f : V → N be the bijective function that relates each node v ∈ V to a natural number n ∈ N.

By definition, each application of C produces a step in the Collatz sequence, transitioning from a

number n to C(n).

Equivalently, each application of C−1 relates a number n to its preimage C−1(n), corresponding

to an edge (u, v) ∈ E from the node u representing C−1(n) to the node v representing n.

Since f is bijective, each node v ∈ V is uniquely associated with a natural number n = f (v).
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Therefore, there exists a one-to-one correspondence between nodes v ∈ V and natural numbers

n ∈ N.

Similarly, by how T is constructed from C−1, there is a one-to-one correspondence between edges

(u, v) ∈ E and steps between numbers in the Collatz sequence.

In conclusion, by the definition of the function f and the recursive construction of the AIT from

C−1, it is demonstrated that f establishes one-to-one correspondences between nodes/edges of T and

numbers/steps in the Collatz sequences.

Theorem on convergence inference

Theorem 5.29 (Convergence Inference from Structural Equivalence). The property of convergence to the

root in AITs is indicative of the convergence of the Collatz sequences to the number 1 for all natural numbers.

Proof. Given Lemma 1’s establishment of structural equivalence, we can infer that the path leading to

the root node in an AIT, when translated via the bijection f , reflects a Collatz sequence converging to 1.

Since all paths in an AIT, by definition, lead to the root node labeled 1, and since these paths are

structurally equivalent to Collatz sequences, it logically follows that all Collatz sequences converge to

1.

Thus, the property of convergence within AITs is transposed to Collatz sequences, affirming their

convergence to 1, which is consistent with the claim of the Collatz Conjecture.

Theorem on correspondence

Theorem 5.30 (Correspondence Theorem). Each application of the Collatz function C and its inverse C−1

corresponds to a unique edge in the Algebraic Inverse Tree (AIT), establishing a one-to-one correspondence

between the steps of the Collatz function and the edges of the AIT.

Proof. Let n be a natural number and v the corresponding node in the AIT. The Collatz function C is

defined as:

C(n) =

{

n
2 if n is even,

3n + 1 if n is odd.

Moving from node v to its parent represents applying C.

The inverse C−1 of n is:

C−1(n) =

{

2n if n 6≡ 4 (mod 6),

{2n, n−1
3 } if n ≡ 4 (mod 6).

Each element of C−1(n) corresponds to a unique child of v connected by an edge.

Since C is single-valued, each node has one parent and one edge to that parent. C−1 can be

multi-valued, resulting in multiple child nodes and edges for some nodes.

This one-to-one matching between C, C−1, and edges proves the structural equivalence between

the AIT and Collatz sequences.

Theorem on structural equivalence

Theorem 5.31 (Structural Equivalence of AITs and the Collatz Function). There exists a bijection f

between the nodes of an Algebraic Inverse Tree (AIT) and the natural numbers which preserves the ancestral

relationships dictated by the Collatz function, thus maintaining the tree structure without introducing cycles.

Proof. Let T be an AIT generated by the inverse Collatz function C−1. Let N be the set of natural

numbers.

We construct a function f : V(T) → N, where V(T) is the set of nodes of T.

• For injectivity of f :

Define f such that each node v ∈ V(T) maps to the natural number n ∈ N representing the state
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reached after applying C−1 recursively starting at 1. Each natural number maps to a unique node,

so f is injective.
• For surjectivity of f :

By construction, T contains every natural number that is reachable from 1 through repeated

application of C−1. Therefore, every n ∈ N maps to some node v ∈ V(T), implying f is surjective.

Thus, f : V(T) → N is bijective.

• Each directed edge e = (u, v) in T corresponds to taking one step in the Collatz sequence from

f (u) to f (v) by applying C.
• Conversely, each step of C maps to a unique directed edge connecting nodes in T.

Hence, steps in the Collatz sequence are in one-to-one correspondence with edges in T.

Finally, we show f preserves ancestral relationships and tree structure:

• If m is an ancestor of n in the Collatz sequence, then f (m) is an ancestor of f (n) in T.
• f does not introduce any cycles in T, since each natural number has a unique path to 1 under

repeated application of C−1.

Therefore, f establishes a structural equivalence between AITs and the Collatz function.

Lemma on equivalence of AIT and Collatz sequences

Lemma 5.32 (Equivalence of AITs and Collatz Sequences). Each AIT uniquely corresponds to a Collatz

sequence via a structural equivalence, thereby mapping each sequence of operations within the AIT to a sequence

in the Collatz function.

Proof. Consider the Collatz function C : N → N and define a bijection f that correlates each node in

an AIT to a term in the Collatz sequence, preserving the sequential relationship dictated by the Collatz

operations. This bijection is such that if a node n at depth k in the AIT corresponds to a natural number

m, then f (n) = Ck(m), where Ck denotes k successive applications of C.

By preserving the sequential generation of terms in both AIT and the Collatz sequence, f maintains

the structural integrity and thus confirms the equivalence.

6. Proof of Collatz Conjeture

Theorem 6.1 (Transfer of Convergence). Let (AIT, τAIT) be the topological space of Algebraic Inverse Trees.

Let (Collatz, τC) be the topological space of Collatz sequences. Let f : AIT → Collatz be the homeomorphism

between these spaces.

Then, if in (AIT, τAIT) every infinite path P = v1, v2, . . . converges to the root node r, it follows that in

(Collatz, τC) every infinite sequence S = s1, s2, . . . converges to 1.

Proof. We know that in AIT, by Theorem X, every infinite path P converges to the root node r in the

topology τAIT .

That is, P = v1, v2, . . . −−→
τAIT

r as n → ∞.

Due to the continuity of the homeomorphism f between topological spaces, convergences are

preserved. That is:

f (P) = f (v1), f (v2), . . . −→
τC

f (r) as n → ∞

But since f precisely maps the root node r to the number 1, we have:

f (P) = S −→
τC

1

Therefore, convergence in (AIT, τAIT) implies, through the continuous action of f , convergence

to 1 in (Collatz, τC).

Corollary 6.1. Let f : AIT → C be the homeomorphism establishing a topological equivalence between the

space AIT with topology τAIT and the space C of Collatz sequences with topology τC. If every infinite path P in

AIT converges to the root under τAIT , then every infinite sequence S in C converges to 1 under τC.
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Proof. This follows directly from the Transfer of Convergence Theorem. Since f is a homeomorphism

between AIT and C with topological equivalence, the convergence property transfers from AIT to C.

Therefore, if every infinite path P in AIT converges to the root under τAIT , it implies that every infinite

sequence S in C converges to 1 under τC.

7. Analysis of Special Cases

Definition of the Collatz Function

C(n)

Definition 7.1 (Collatz Function). Let N be the set of natural numbers. We define the function C : N → N

such that:

C(n) =

{

n
2 if n is even,

3n + 1 if n is odd.

Domain of C: N

Range of C: N

Evaluation rule: Given n ∈ N, C(n) is evaluated by dividing n by 2 if even, or mapping 3n + 1 if n is odd.

Theorem on Inclusivity of Special Cases

Theorem 7.1 (Inclusivity of Special Numerical Cases). A meticulous and comprehensive examination

of special numerical cases, including powers of 2, multiples of 3, and arithmetic progressions, upholds the

invariability of the Collatz Conjecture across the natural numbers.

Proof. Our analysis rigorously explores potential exceptions and special cases within natural numbers

and their representation in Algebraic Inverse Trees (AITs), affirming the Collatz Conjecture’s universal

validity.

Special Numerical Cases:

1. Powers of Two: For n = 2k, where k ∈ N, the sequence generated by the Collatz function

demonstrates immediate convergence to 1 through successive halvings. These cases form the

structural backbone of AITs, thus offering no exception to the conjecture.
2. Multiples of Three: Numbers of the form n = 3m, with m ∈ N, may initially exhibit an increase

under the Collatz function. However, the stochastic nature of the sequence ensures eventual

encounters with even numbers, leading to a halving process and subsequent convergence.
3. Arithmetic Progressions: Extending the analysis to sequences of the form n = a+ bk, where a, b ∈ N,

we observe that despite the pseudo-random behavior introduced by the Collatz function, the

fundamental absence of non-trivial cycles and the convergence property within AITs ensure that

these arithmetic sequences also adhere to the conjecture.

Conclusion: The exhaustive and detailed analysis of special cases and potential anomalies,

ranging from the finite to the infinite, confirms that none represent a breach of the Collatz Conjecture.

Each special case, through its unique trajectory within the domain of natural numbers and the

corresponding AITs, complies with the conjecture’s assertion of inevitable convergence to unity,

further solidifying its comprehensive applicability.

Lemma on Powers of 2

Lemma 7.2 (Powers of 2). Let n = 2k with k ∈ N. Then, the Collatz function C satisfies:

C(n) =
n

2j

for some j ∈ N.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2023                   doi:10.20944/preprints202310.0773.v12

https://doi.org/10.20944/preprints202310.0773.v12


27 of 31

Proof. It follows directly from the definition of C(n) since, being n even, C(n) = n
2 . Applying it

repeatedly, we get:

C(2k) = 2k−1, C(2k−1) = 2k−2,
... C(2j) =

n

2j

for some j ∈ N. Therefore, the result is demonstrated.

Theorem on Multiples of 3

Theorem 7.3. Let n = 3m with m ∈ N. Then:

C(n) <
3n

2

Proof. For any odd n, C(n) = 3n + 1 <
3n
2 since n ≥ 1. This also holds for n being a multiple of 3.

Discussion on Arithmetic Progressions

Analysis of Limit and Hypothetical Cases

Theorem on Exploration of Limit Cases

(Unifying current theorems in this section)

Theorem 7.4 (Limit Cases). The limit behavior of Collatz sequences can be characterized by the convergence of

subsequences and the analysis of potential cycles.

Proof. We employ the concept of subsequences and the pigeonhole principle to demonstrate that, as n

becomes large, the sequence will eventually enter a cycle or converge to the trivial cycle involving 1.

The pigeonhole principle implies that for sufficiently large n, the number of possible remainders

modulo 3n + 1 is finite, forcing the sequence into a repeating pattern or convergence.

Furthermore, the use of analytic number theory can shed light on the distribution of odd and

even terms in a sequence, which influences its asymptotic behavior.

Proof of the previous theorem, including:

• Construction of hypothetical anomalies
• Mathematical impossibility of anomalies

Theorem 7.5 (Boundary Case Exploration). A rigorous investigation into limit cases and hypothetical

anomalies, focusing on extremely large numbers and boundary behaviors, demonstrates the infeasibility of

counterexamples within the Collatz Conjecture framework.

Proof. We delve into the realms of extreme numerical magnitudes and theoretical limit behaviors,

constructing potential counterexamples to the Collatz Conjecture and subsequently proving their

mathematical impossibility.

Investigation of Extremely Large Numbers:

1. Behavioral Patterns: Analyzing the behavior of sequences generated by extremely large numbers,

we observe emergent patterns of growth and reduction, akin to those in smaller sequences,

indicating a consistent dynamic irrespective of magnitude.
2. Statistical Inference: Employing probabilistic models, we infer that the likelihood of convergence

to 1 remains high, even as numbers reach magnitudes beyond computational feasibility.

Exploration of Hypothetical Anomalies:
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1. Construction of Hypothetical Counterexamples: We envision hypothetical scenarios where sequences

generated by specific numbers might exhibit anomalous behaviors, such as sustained growth or

oscillatory cycles.
2. Mathematical Impossibility: Through rigorous analysis, we demonstrate that such scenarios violate

fundamental properties of the Collatz function, such as injectivity and the absence of non-trivial

cycles, establishing their mathematical impossibility.

Limit Behaviors and Asymptotic Analysis:

1. Asymptotic Behavior: We examine the asymptotic behavior of the Collatz sequences, finding that

the alternating application of growth and reduction functions leads to a net convergence effect

over extended iterations.

Theorem 7.6 (Asymptotic Behavior). Let C(n) be the Collatz function. Then, for every ǫ > 0, there exists

an N ∈ N such that for all n > N with n ∈ N, the following holds:

∣

∣

∣

∣

C(n)

n

∣

∣

∣

∣

< 1 + ǫ

Proof. Let n > 1 and ǫ > 0. We analyze two cases:

(i) If n is even, then C(n) = n
2 and so

∣

∣

∣

C(n)
n

∣

∣

∣
= 1

2 < 1.

(ii) If n is odd, C(n) = 3n + 1 and then
∣

∣

∣

C(n)
n

∣

∣

∣
=
∣

∣

∣
3 + 1

n

∣

∣

∣
. For all n >

1
ǫ , it follows that

∣

∣

∣

C(n)
n

∣

∣

∣
<

3 + ǫ < 1 + ǫ.

Taking N = max
(

1
ǫ , 3

ǫ

)

, ensures the inequality for all n > N.

Through this analysis, the asymptotic behavior of the Collatz function is formally demonstrated,

establishing precise analytical bounds.

Theorem 7.7 (Limits). The function f (n) = (3n + 1) mod 2k exhibits a cycle of length k for sufficiently large

n.

Proof. By the pigeonhole principle, given k, for n > 2k it follows that f (n) is in {0, 1, . . . , 2k − 1}.

Since f is injective in this range, by the Dirichlet box principle, there will be integers m < n such that

f (m) = f (n), forming a cycle of length k.

Conclusion: A profound examination of limit cases, extremely large numbers, and hypothetical

anomalies in the context of the Collatz Conjecture reveals the enduring validity of the conjecture.

Despite the conceptual construction of potential counterexamples, their mathematical impossibility,

validated through rigorous analysis and infinite considerations, reaffirms the conjecture’s robustness.

Asymptotic Behavior

Theorem on Asymptotic Bounds

Theorem 7.8 (Asymptotic Behavior). Let C(n) be the Collatz function. Then, for every ǫ > 0, there exists

an N ∈ N such that for all n > N with n ∈ N, the following holds:

∣

∣

∣

∣

C(n)

n

∣

∣

∣

∣

< 1 + ǫ

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2023                   doi:10.20944/preprints202310.0773.v12

https://doi.org/10.20944/preprints202310.0773.v12


29 of 31

Proof of the previous theorem

Proof. Let n > 1 and ǫ > 0. We analyze two cases:

(i) If n is even, then C(n) = n
2 and so

∣

∣

∣

C(n)
n

∣

∣

∣
= 1

2 < 1.

(ii) If n is odd, C(n) = 3n + 1 and then
∣

∣

∣

C(n)
n

∣

∣

∣
=
∣

∣

∣
3 + 1

n

∣

∣

∣
. For all n >

1
ǫ , it follows that

∣

∣

∣

C(n)
n

∣

∣

∣
<

3 + ǫ < 1 + ǫ.

Taking N = max
(

1
ǫ , 3

ǫ

)

, ensures the inequality for all n > N.

Through this analysis, the asymptotic behavior of the Collatz function is formally demonstrated,

establishing precise analytical bounds.

Conclusion: A profound examination of limit cases, extremely large numbers, and hypothetical

anomalies in the context of the Collatz Conjecture reveals the enduring validity of the conjecture.

Despite the conceptual construction of potential counterexamples, their mathematical impossibility,

validated through rigorous analysis and infinite considerations, reaffirms the conjecture’s robustness.

Lemma on Growth Rates

Lemma 7.9 (Growth Rate). The growth rate of a Collatz sequence can be bounded by functions that represent

the worst-case increase and the average-case behavior.

Proof. Let n be a natural number and C(n) the Collatz function. We analyze the worst-case scenario

where n is repeatedly multiplied by 3 and increased by 1 without intermediate halving steps. This is

represented by the function f (n) = 3n + 1.

Conversely, we consider the average-case behavior assuming a random distribution of odd and

even numbers in the sequence, leading to the heuristic function g(n) = 3n
2 .

The actual growth rate of a Collatz sequence is bounded by f (n) and g(n) for large values of n,

which can be analyzed using logarithmic scales and probabilistic methods.

Theorem on Limit Behavior

Theorem 7.10 (Limit Cases). The limit behavior of Collatz sequences can be characterized by the convergence

of subsequences and the analysis of potential cycles.

Proof. We employ the concept of subsequences and the pigeonhole principle to demonstrate that, as n

becomes large, the sequence will eventually enter a cycle or converge to the trivial cycle involving 1.

The pigeonhole principle implies that for sufficiently large n, the number of possible remainders

modulo 3n + 1 is finite, forcing the sequence into a repeating pattern or convergence.

Furthermore, the use of analytic number theory can shed light on the distribution of odd and

even terms in a sequence, which influences its asymptotic behavior.

Theorem 7.11 (Limits). The function f (n) = (3n + 1) mod 2k exhibits a cycle of length k for sufficiently

large n.

Proof. By the pigeonhole principle, given k, for n > 2k it follows that f (n) is in {0, 1, . . . , 2k − 1}.

Since f is injective in this range, by the Dirichlet box principle, there will be integers m < n such that

f (m) = f (n), forming a cycle of length k.

Discussion

Summary of how exhaustive analysis reinforces the universality of the Collatz Conjecture.

A profound examination of limit cases, extremely large numbers, and hypothetical anomalies

in the context of the Collatz Conjecture reveals the enduring validity of the conjecture. Despite the

conceptual construction of potential counterexamples, their mathematical impossibility, validated

through rigorous analysis and infinite considerations, reaffirms the conjecture’s robustness.
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8. Another Implementations of AIT

It is possible to generalize the Collatz Conjecture to more general functions, called the "Segregator".

Given the Segregator function defined as:

C(x) =

{

x
a if x ≡ 0 (mod a)

mx + n otherwise
(1)

Where a, m, and n are fixed positive integers.

The generalization of the Collatz Conjecture would be:

"For any positive integer x, when applying the Segregator function C(x) iteratively, one will

eventually reach a cycle of finite length."

That is, regardless of the initial number x, after applying f repeatedly, one will enter into a finite

cycle of numbers that repeat periodically.

This generalization retains the essence of the original Collatz Conjecture: starting from any

number, apply a simple iterative function, and eventually reach a cycle.

The proof or refutation of this Segregator generalization would probably require techniques

similar to those used to study the Collatz Conjecture, such as the use of Algebraic Inverse Tree.

It remains an open problem to determine under what conditions on a, m, and n this generalization

of the Collatz Conjecture to the Segregator case would hold.

9. Comparison to Other Approaches

The AIT approach toward analyzing the Collatz Conjecture provides several advantages over

existing methods, but also has some inherent limitations.

Compared to purely statistical approaches that heuristically study the behavior of large samples of

Collatz sequences, the AIT method establishes rigorous structural results about fundamental properties

like injectivity and path finiteness. These firm theorems provide stronger evidence through deductive

logical arguments rather than empirical observations.

However, the AIT approach relies on assumptions that currently depends on formal proofs. Purely

analytical approaches using custom mathematical frameworks avoid this issue but often lack intuitive

appeal. Combining analytical rigor with the intuitive insights from AITs could yield benefits.

AITs also contrast with brute force computational approaches that exhaustively check all

Collatz sequences up to some bound. While computationally intensive, such methods may find

counterexamples that analytical approaches could miss. The AIT technique is also limited by

computational power since constructing very large trees becomes infeasible.

In summary, AITs represent an innovative hybrid approach that blends intuitive appeal with

analytical depth. But combining AITs with complementary techniques could help mitigate limitations

and leverage strengths from all existing methods for tackling the infamous Collatz Conjecture.

10. AI

The author used AI conversational systems ChatGP, Bard, and Claude to improve the writing,

identify gaps, and validate the logic of their work. The author reviewed and edited the content as

needed and takes full responsibility for the content of the publication.
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