
Article

Not peer-reviewed version

Joint Computing Offloading, Task

Caching and Resource Allocation

Based on TD3 Algorithm in

Cache-Assisted Vehicular NOMA-

MEC Networks

Tianqing Zhou , Ming Xu , Dong Qin

*

 , Xuefang Nie , Xuan Li , Chunguo Li

Posted Date: 11 October 2023

doi: 10.20944/preprints202310.0699.v1

Keywords: TD3; MEC; NOMA; vehicular networks; edge cache; computation offloading; resource allocation

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3198418
https://sciprofiles.com/profile/487329
https://sciprofiles.com/profile/1905854
https://sciprofiles.com/profile/2952328
https://sciprofiles.com/profile/335877

Article

Joint Computing Offloading, Task Caching and
Resource Allocation Based on TD3 Algorithm in
Cache-Assisted Vehicular NOMA-MEC Networks

Tianqing Zhou 1, Ming Xu 1, Dong Qin 2,*, Xuefang Nie 1, Xuan Li 1 and Chunguo Li 3

1 School of Information Engineering, East China Jiaotong University, Nanchang 330013, China;

zhoutian930@163.com; xm1020487915@163.com; Xuefangnie@163.com; lixuan@ecjtu.edu.cn
2 School of Information Engineering, Nanchang University, Nanchang 330031, China; qindong@ncu.edu.cn
3 School of Information Science and Engineering, Southeast University, Nanjing 210096, China;

chunguoli@seu.edu.cn

* Correspondence: qindong@ncu.edu.cn; Tel.: +86-157-9789-6518

Abstract: In this paper, in order to reduce the energy consumption and delay of data transmission,

the non-orthogonal multiple access (NOMA) and edge caching technologies are jointly considered.

As for the cache-assisted vehicular NOMA-MEC networks, a problem of minimizing the energy

consumed by vehicles (mobile devices, MDs) is formulated under the latency and resource constraints,

which jointly optimizes the computing resource allocation, subchannel selection, device association,

offloading and caching decisions. To solve the formulated problem, we develop an effective joint

computation offloading and task caching algorithm based on the twin delayed deep deterministic

policy gradient (TD3) algorithm. Such a TD3-based offloading (TD3O) algorithm includes a designed

action transformation (AT) algorithm used for transforming continuous action space into a discrete

one. In addition, to solve the formulated problem in a non-iterative manner, an effective heuristic

algorithm (HA) is also designed. As for the designed algorithms, we provide some detailed analyses

of computation complexity and convergence, and give some meaningful insights through simulation.

Simulation results show that the TD3O algorithm may achieve lower local energy consumption than

several benchmark algorithms, and HA may achieve a lower one than the completely offloading

algorithm and local execution algorithm.

Keywords: TD3; MEC; NOMA; vehicular networks; edge cache; computation offloading; resource

allocation

1. Introduction

With the rapid development of information and communication technologies, the data traffic

generated by vehicles (mobile devices, MDs) has also significantly increased [1]. For wireless

communication networks, more spectrum resources are required for data traffic transmission [2].

In addition, higher computing power is required by MDs for supporting large amounts of task

calculation. However, due to the limited battery capacity of MDs, it may be challenging to process

these computation tasks for them. By deploying edge computing servers at base stations (BSs),

mobile edge computing (MEC) can support MDs in processing tasks at the adjacent edge servers [3,4].

Compared with cloud computing (CC), which requires tasks to be uploaded to a remote cloud, MEC

can provide additional computing resources for MDs within its coverage area and thus reduce the

computing overhead of MDs [5–9].

Although the edge servers can reduce the computing overhead of MDs by providing more

computing resources, the extra delay and energy consumption caused by offloading tasks through

wireless channels cannot be ignored, especially for high-size computation tasks. In order to further

reduce the delay and energy consumption caused by offloading tasks, edge caching technology is also

introduced into MEC networks. By caching tasks of MDs at edge servers in advance, the overhead

caused by offloading tasks can be greatly reduced [10–13].

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202310.0699.v1
http://creativecommons.org/licenses/by/4.0/

2 of 21

To upload tasks from MDs to edge servers, orthogonal multiple access (OMA) is often widely used,

but it may be greatly challenging to provide a high transmission rate and support massive connections.

As another type of resource utilization manners, non-orthogonal multiple access (NOMA) technologies

can let multiple users share the same frequency bands, achieve higher spectral efficiency and support

massive connections [14–17]. It is evident that NOMA is a good type of resource utilization manners

for reducing the cost of task transmission in MEC networks.

Although the application of caching and NOMA technologies in MEC networks can bring lower

delay and energy consumption, such a framework will make the design of computation offloading and

edge caching schemes more complex. To the best of our knowledge, until now, how to jointly perform

the device association, computation offloading, edge caching, subchannel selection and resource

allocation is still an important and open topic in cache-assisted NOMA-MEC networks.

1.1. Related Work

So far, there exists a lot of work done on joint computation offloading and resource optimization

in NOMA-MEC networks. In [14], joint radio and computation resource allocation were optimized to

maximize the offloading energy efficiency in NOMA-MEC-enabled IoT networks, and a solution based

on a multi-layer iterative algorithm was proposed. In [15], local computation resource, offloading ratio,

uplink transmission time and power, and subcarrier assignment were jointly optimized to minimize

the sum of weighted energy consumed by users in NOMA-MEC networks, and some effective iterative

algorithms were designed for single-user and multi-user cases. In [18], joint task offloading, power

allocation, and computing resource allocation were optimized to achieve delay minimization using a

deep reinforcement learning (DRL) algorithm in NOMA-MEC networks. In [19], joint optimization

of offloading decisions, local and edge computing resource allocation, and power and subchannel

allocation were realized to minimize energy consumption in heterogeneous NOMA-MEC networks,

and an effective iterative algorithm was designed. In [20], the power and computation resource

allocation were jointly optimized to minimize overall computation and transmission delay for massive

MIMO and NOMA-assisted MEC systems, and a solution based on an interior-point algorithm was

given. In [21], the channel resource allocation and computation offloading policy was jointly optimized

to minimize the sum of weighted energy and latency in NOMA-MEC networks, and some efficient

solutions were found using a DRL algorithm based on actor-critic and deep Q-network (DQN) methods.

To further reduce the offloading delay and energy consumption, edge caching technology is

introduced into conventional MEC networks. Such a framework has attracted more and more attention.

In [22], the offloading and caching decisions, uplink power and edge computing resources were

jointly optimized to minimize the sum of weighted local processing time and energy consumption

in two-tier cache-assisted MEC networks, and a distributed collaborative iterative algorithm was

proposed. In [23], a problem of adaptive request scheduling and cooperative service caching was

studied in cache-assisted MEC networks. After formulating the optimization problems as partially

observable Markov decision process (MDP) problems, an online DRL algorithm was proposed to

improve the service hitting ratio and latency reduction rate. In [24], optimal offloading and caching

strategies were established to minimize overall delay and energy consumption of all regions using a

deep deterministic policy gradient (DDPG) framework in cache-assisted multi-region MEC networks.

In [25], joint MD association and resource allocation were done to minimize the sum of MDs’ weighted

delay in heterogeneous cellular networks with MEC and edge caching functions, and an effective

iterative algorithm was developed using coalitional game and convex optimization theorems.

To enhance spectral efficiency and support massive connections, NOMA technology has attracted

increasing attention in cache-assisted MEC networks. In [26], joint optimization of offloading and

caching decisions and computation resource allocation was done to maximize long-term reward in

cache-assisted NOMA-MEC networks under the predicted task popularity, and single-agent and

multi-agent Q-learning algorithms were proposed to find feasible solutions. In [27], joint optimization

of offloading and caching decisions was done to minimize the system delay in cache-assisted

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

3 of 21

NOMA-MEC networks, and a multi-agent DQN algorithm was used for finding efficient solutions

under the predicted popularity. In [29], local task processing time was minimized by jointly optimizing

offloading and caching decisions and the allocation of edge computing resources and uplink power

in cache-assisted NOMA-MEC networks with single BS, and blocking successive upper-bound

minimization method was utilized to achieve efficient solutions.

Although the framework of cache-assisted (vehicular) NOMA-MEC networks can greatly reduce

the task processing delay and energy consumption and support massive connections, there exist very

few relevant efforts. Unlike the mentioned-above work, we jointly optimize the edge computing

resource allocation, subchannel selection, device association, offloading and caching decisions for the

cache-assisted vehicular NOMA-MEC networks with multiple BSs, minimizing the energy consumed

by MDs under the latency and resource constraints. In addition, unlike existing efforts, we develop an

effective dynamic joint computation offloading and task caching algorithm based on the twin delayed

deep deterministic policy gradient algorithm (TD3) to find efficient solutions, which is named as

TD3-based offloading (TD3O) algorithm.

1.2. Contribution and Organization

In this paper, we jointly optimize the edge computing resource allocation, subchannel selection,

device association, offloading and caching decisions in cache-assisted vehicular NOMA-MEC networks,

minimizing the energy consumed by MDs under the latency and resource constraints. Specifically, the

main contributions and work of this paper can be listed as follows.

• Edge computing resource allocation, subchannel selection, device association, computation

offloading and edge caching are jointly performed in cache-assisted vehicular NOMA-MEC

networks. To the best of our knowledge, such work that concerns subchannel selection should

be a new investigation for the cache-assisted vehicular NOMA-MEC networks with multi-server

scenarios.
• Formulating a problem of jointly optimizing the edge computing resource allocation, subchannel

selection, device association, offloading and caching decisions in cache-assisted vehicular

NOMA-MEC networks. Its goal is to minimize the energy consumed by MDs under the constraints

of latency, computing resources, caching capacity, the number of MDs associated with each BS,

and the number of MDs associated with each subchannel. As far as we know, such an optimization

problem should be a new concentration in cache-assisted vehicular NOMA-MEC networks.
• Designing effective algorithms to find feasible solutions to the formulated problem. Considering

that the formulated problem is in a mixed-integer nonlinear multi-constraint form, a simple map

between actions and actual policies in a conventional twin delayed deep deterministic policy

gradient (TD3) algorithm cannot be well applied. In addition, too large an action space will cause

the TD3 algorithm to fail to search for correct actions and thus fail to converge. In view of these,

we develop an effective TD3O algorithm integrating with the AT algorithm to solve the formulated

problem. Moreover, in order to solve this problem in a non-iterative manner, an effective heuristic

algorithm (HA) is also designed.
• Performance analyses of the designed algorithms. Some analyses are made for the computation

complexity and convergence of the designed algorithms in detail. In addition, some meaningful

simulation analyses are also made by introducing other benchmark algorithms for comparison,

and some good results and insights are achieved.

The rest of the paper is organized as follows. Section 2 introduces the system model. Section

3 formulates a problem of minimizing local energy consumption in cache-assisted vehicular

NOMA-MEC networks. Section 4 designs the HA and TD3O algorithm. Section 5 gives the

computation complexity and convergence analyses for the designed algorithms. Section 6 investigates

the performance of the designed algorithms through simulation. Section 7 gives conclusions and

discussions.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

4 of 21

2. System Model

2.1. Network Model

Figure 1 shows the cache-assisted vehicular NOMA-MEC networks. In such networks, there

exist M MDs, and the index set of them is denoted as M = {1, 2, · · · , M}; B BSs are deployed, and

the index set of them is given by I = {1, 2, · · · , I}. In addition, each BS is equipped with one edge

computing server and one edge caching server, and these BSs connect to each other through wired

links. We assume that each MD has one computation task at any timeslot, which can be processed

by itself, its associated BS or another auxiliary BS selected by this associated BS. When tasks have

been cached at BSs used for processing them, they don’t need to be uploaded to these BSs; when the

associated BSs have not cached tasks, MDs need to upload tasks to these BSs; when the auxiliary BSs

have not cached tasks, the associated BSs need to upload tasks to their selected auxiliary BSs.

subchannels2 3 K1 ...

2 3 K1 ...
2 3 K1 ...

MD

BS

computing server

caching server

wireless link

wired link

Figure 1. cache-assisted vehicular NOMA-MEC networks.

Assume that the association index between MD m and BS i is xm,i ∈ {0, 1}, where X =

{xm,i |∀m ∈ M, ∀i ∈ I }. xm,i = 1 if MD m is associated with BS i, xm,i = 0 otherwise. In addition,

we assume that the caching index of task of MD m at BS i is denoted as ym,i ∈ {0, 1}, where

Y = {ym,i|∀m ∈ M, ∀i ∈ I}. ym,i = 1 if the task of MD m is cached at BS i, ym,i = 0 otherwise.

We also assume that the offloading (execution) index of task of MD m at BS i is denoted as um,i,

where U = {um,i|∀m ∈ M, ∀i ∈ I}. um,i = 1 if the task of MD m is executed at BS i, um,i = 0

otherwise. At last, we assume that the association index between MD m and subchannel k of BS i is

denoted as zm,i,k, where Z =
{

zm,i,k|∀m ∈ M, ∀i ∈ I , ∀k ∈ K
}

. If xm,i(1 − ym,i)(1 − ym,ī)um,ī = 1 or

xm,i(1 − ym,i)um,i = 1 under ī 6= i, MD m can select (be associated with) some subchannel k of BS i,

which means zm,i,k = 1. Otherwise, the subchannel k of BS i cannot be selected by MD m, which means

zm,i,k = 0.

2.2. Communication Model

In this paper, the system bandwidth W is divided into K subchannels with equal bandwidth,

which are indexed by K = {1, 2, · · · , K}. These subchannels can be shared by different MDs through

NOMA manner. Significantly, each MD can occupy at most one subchannel, the number of MDs

selecting each subchannel cannot exceed the upper limit ρ, and the number of MDs associated with

any BS that need to upload tasks should be less than or equal to the number of subchannes K [27].

As revealed in [28], the channel gains of MDs sharing the same subchannel of a BS should be

sorted in descending order at first, and then the uplink NOMA signals received by this BS can be

decoded in this order. We assume that MSC
k is the set of MDs selecting subchannel k, and om,i,k

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

5 of 21

represents the sequence number of channel gain between MD m and BS i on subchannel k. When MD i

and MD m access the subchannel k of BS i simultaneously, and the channel gain hj,i,k between MD j

and BS i on subchannel k is lower than the channel gain hm,i,k between MD m and BS i on subchannel

k, oj,i,k < om,i,k is satisfied. Then, the signal of MD m is decoded, but the signal of MD j will be treated

as noise. Therefore, when MD m selects subchannel k of BS i, its uplink data rate rm,i,k can be given by

rm,i,k = Wlog2

(

1 + pmhm,i,k/
(

Γm,i,k + σ2
))

/K, (1)

where Γm,i,k = ∑j∈Msc
k /{m}:oj,i,k<om,i,k

pjhj,i,k is the interference caused by other MDs (excluding MD m)

sharing subchannel k of BS i through NOMA manner; pm is the transmission power of MD m; σ2 is the

noise power.

2.3. Caching and Offloading Models

In this paper, we assume that any MD m has a delay-sensitive task denoted as Lm = {dm, cm, τmax
m }

at each timeslot, where dm is the data size of task of MD m, cm is the number of CPU cycles required to

complete one-bit task, and τmax
m is the maximum task processing time (delay) of MD m.

Figure 2 illustrates the caching and offloading models. At each timeslot, BSs precache the tasks

for processing at the next timeslot. When MD m is associated with BS i, it first checks whether the

associated BS has cached the corresponding task. If ∑i∈I um,i = 0, the task of MD m is calculated

by itself, e.g., MD 1 in Figure 2; if xm,iym,ium,i = 1, the task of MD m can be directly calculated at

its associated BS i and the results will be fed back from BS i to MD m, e.g., MD 2 in Figure 2; if

xm,iym,i(1 − ym,ī)um,ī = 1, the task of MD m is offloaded from its associated BS i to another auxiliary

BS ī 6= i for computing through a wired link, e.g., MD 3 in Figure 2; if xm,iym,iym,īum,ī = 1, the task of

MD m can be directly calculated at auxiliary BS ī 6= i, e.g., MD 4 in Figure 2; if xm,i(1 − ym,i)um,i = 1,

the task of MD m will be offloaded to its associated BS i for computing, e.g., MD 5 in Figure 2; if

xm,i(1 − ym,i)(1 − ym,ī)um,ī = 1, the task of MD m first needs to be offloaded to its associated BS i, and

then it is transmitted from this BS to another auxiliary BS ī 6= i for computing through a wired link, e.g.,

MD 6 in Figure 2; if xm,i(1 − ym,i)ym,īum,ī = 1, the task of MD m can be directly calculated at auxiliary

BS ī 6= i, e.g., MD 4 in Figure 2.

1 2 3 4 5

4 2 3 4

BS 3

offloading with uploading

cooperative offloading with transimission

6

6

7

2 7 3 5 6 42 3 71

MD

offloading without uploading

nonoffloading

caching server

computing server

Figure 2. Caching and offloading Models.

2.3.1. Local Computing

If ∑i∈I um,i = 0 is satisfied, the task of MD m should be executed locally, and the processing delay

and energy consumption are respectively given by

τloc
m = cmdm

/

f loc
m , (2)

εloc
m = ξcmdm

(

f loc
m

)2
, (3)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

6 of 21

where f loc
m is the computing capacity of MD m, and ξ is an energy-consumption coefficient depending

on the hardware architecture.

2.3.2. Task Transmission

If xm,i(1 − ym,i)(1 − ym,ī)um,ī = 1 or xm,i(1 − ym,i)um,i = 1 is satisfied under ī 6= i, the task of

MD m should be respectively uploaded to BS ī or i for execution through NOMA manner. Then, the

uploading delay and energy consumption of MD m are respectively given by

τtrs
m = ∑i∈I ∑k∈K

zm,i,kdm/rm,i,k, (4)

εtrs
m = pmτtrs

m . (5)

In addition, if xm,i(1 − ym,i)(1 − ym,ī)um,ī = 1 or xm,iym,i(1 − ym,ī)um,ī = 1 is satisfied under ī 6= i,

the task of MD m should be transmitted from its associated BS i to auxiliary BS ī through a wired link,

and the corresponding delay is given by

τbh
m = dm

/

rbh, (6)

where rbh is the backhualing rate between any two BSs.

In this paper, we mainly concentrate on the energy consumption of MDs but not the energy

consumed by BSs. In addition, the downlink transferring delay of results is often ignored since they

are fairly small [30].

2.3.3. Edge Computing

When MD m executes its task at BS i, the task processing time at this BS can be given by

τexe
m,i = cmdm

/

fm,i, (7)

where fm,i is the computing capacity allocated to MD m by BS i.

Then, the total time used for processing the task of MD m can be given by

τtot
m =∑i∈I

(

(

1 − ∑i∈I
um,i

)

τloc
m

+ xm,i

(

1 − ym,i

)

∑ī∈I\{i}
um,ī

(

1 − ym,ī

)

τtrs
m

+ xm,i

(

1 − ym,i

)

∑ī∈I\{i}
um,ī

(

1 − ym,ī

)

τbh
m

+ xm,i

(

1 − ym,i

)

∑ī∈I\{i}
um,īτ

exe
m,ī

+ xm,iym,i ∑ī∈I\{i}
um,ī

(

1 − ym,ī

)

τbh
m

+ xm,iym,i ∑ī∈I\{i}
um,īτ

exe
m,ī

+ xm,i

(

1 − ym,i

)

um,i

(

τtrs
m + τexe

m,i

)

+ xm,iym,ium,iτ
exe
m,i

)

.

(8)

On the right side of equality sign in (8), the 1st item represents the local executing time; the 2nd item

is the time used for uploading the task from MD m to the associated BS i that doesn’t cache this task

and further transmits it to auxiliary BS for computing; the 3rd item is the time used for transmitting

task from the associated BS i to another auxiliary BS, where these two BSs don’t cache this task; the

4th item is the time used for executing the task of MD m at an auxiliary BS, where the associated BS

doesn’t cache this task; the 5th item is the time used for transmitting task from the associated BS i to

another auxiliary BS, where the associated BS caches this task but the auxiliary BS doesn’t; the 6th item

is the time used for executing task of MD m at an auxiliary BS, where the associated BS caches this

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

7 of 21

task; the 7th item includes the time used for transmitting task from MD m to the associated BS i that

doesn’t cache this task, and the time used for executing the task of MD m at this BS; the 8th item is the

time used for executing the task of MD m at the associated BS i that caches this task.

Then, the total local energy consumption used for processing the task of MD m can be given by

εtot
m =∑i∈I

(

(

1 − ∑i∈I
um,i

)

εloc
m

+ xm,i

(

1 − ym,i

)

∑ī∈I\{i}
um,ī

(

1 − ym,ī

)

εtrs
m

+ xm,i

(

1 − ym,i

)

um,iε
trs
m

)

.

(9)

On the right side of equality sign in (9), the 1st item represents the local executing energy

consumption; the 2nd item is the energy consumption caused by offloading the task from MD m to its

associated BS i that further transmits this task to auxiliary BS ī 6= i for computing; the 3rd item is the

energy consumption caused by transmitting task from MD m to the associated BS i that doesn’t cache

this task.

3. Problem Formulation

Until now, we can formulate a problem of minimizing local energy consumption at each period.

Specifically, under the constraints of latency, computing resources, caching capacity, the number of MDs

associated with each BS, and the number of MDs associated with each subchannel, we jointly optimize

the edge computing resource allocation, subchannel selection, device association, offloading and

caching decisions to minimize the energy consumed by MDs in cache-assisted vehicular NOMA-MEC

networks. Mathematically, it is formulated as

P1 : min
X,Y,U,Z,F

∑m∈M
εtot

m

s.t. C1 : τtot
m ≤ τm, ∀m ∈ M,

C2 : ∑i∈I
xm,i = 1, ∀m ∈ M,

C3 : ∑i∈I ∑k∈K
zm,i,k ≤ 1, ∀m ∈ M,

C4 : ∑m∈M ∑k∈K
zm,i,k ≤ K, ∀i ∈ I ,

C5 : ∑i∈I
um,i ≤ 1, ∀m ∈ M,

C6 : xm,i ∈ {0, 1} , ∀m ∈ M, ∀i ∈ I ,

C7 : ym,i ∈ {0, 1} , ∀m ∈ M, ∀i ∈ I ,

C8 : zm,i,k ∈ {0, 1} , ∀m ∈ M, ∀i ∈ I , ∀k ∈ K,

C9 : um,i ∈ {0, 1} , ∀m ∈ M, ∀i ∈ I ,

C10 : ∑m∈M
ym,idm ≤ ϑi, ∀i ∈ I ,

C11 : ∑m∈M ∑i∈I
zm,i,k ≤ ρ, ∀k ∈ K,

C12 : ∑m∈M
um,i fm,i ≤ f BS

i , ∀i ∈ I ,

(10)

where F = { fm,i |∀m ∈ M, ∀i ∈ I }; the constraint C1 gives the maximum task processing time of MD

m; C2 and C6 indicate that any MD m just can select only one BS; C3 and C8 indicate that any MD m

can occupy at most one subchannel; C4 and C8 mean that the number of MDs selecting any BS who

need to upload tasks should be less than or equal to the number of subchannels; C5 and C9 mean that

any MD m can select at most one BS to execute its task; C7 and C10 indicate that the data size of tasks

cached at BS i doesn’t exceed the caching capacity ϑi of this BS; C8 and C11 show that the number of

MDs selecting a subchannel cannot exceed its upper limit; C7 and C12 reveal that the total computing

capacity allocated to MDs by BS i cannot exceed the computing capacity of this BS.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

8 of 21

4. Algorithm Design

As previously mentioned, the optimization problem P1 refers to minimizing local energy

consumption within a period. In view of this, we adopt the DRL algorithm to solve it. DRL is based

on MDP, which implements the environment-based output of agent policy in MDP through neural

networks, maximizing certain rewards. Considering that the overestimation of some conventional

DRL algorithms (e.g., DQN and DDPG), the TD3 algorithm has been widely advocated [31,32].

Evidently, the problem P1 has both continuous and discrete variables and it is in a highly-complex

form, a simple map between actions and actual policies in a conventional TD3 algorithm cannot be

well applied to this problem. Considering that too large action space will cause the TD3 algorithm to

fail to search for correct actions and thus fail to converge, we develop an effective TD3O algorithm

integrating with the AT algorithm to solve the problem P1.

Considering that the optimization problem P1 needs to be tackled within a period, in order

to apply TD3O to the problem P1, such a period is divided into T timeslots and denoted as T =

{1, 2, · · · , T}. Furthermore, the problem of joint computing offloading, task caching and resource

allocation is described as a MDP, the state space, action space and reward function are defined as

follows.

❶ State space: At each timeslot, the state space contains the information used for decisions made

by the network. Here, the state st at timeslot t can be denoted as st = {D̄ (t + 1) , Ȳ (t)}. The detailed

definitions can be found as follows.

• D̄ (t + 1) =
{

d̄m (t + 1) |∀m ∈ M
}

are the standardized data sizes of tasks of MDs at timeslot

t + 1, where

d̄m (t) =
dm (t)− dmin (t)

dmax (t)− dmin (t)
, (11)

dmin (t) is the minimum data size of tasks of all MDs at timeslot t, and dmax is the maximum data

size of tasks of all MDs at timeslot t.
• Ȳ (t) = {ȳm (t) |∀m ∈ M} are the task caching decision factors at BSs at timeslot t, where ȳm ∈

[0, 1].

❷ Action space: At each timeslot, the action space refers to the decisions made by the

network according to the state st. The action at at timeslot t can be denoted as at =
{

X̄ (t) , Ȳ (t + 1) , Z̄ (t) , Ū (t) , F̄ (t)
}

. Specifically,

• X̄ (t) = {x̄m (t) |∀m ∈ M} are the association decision factors of MDs at timeslot t, where x̄m ∈

[0, 1].
• Ȳ (t + 1) = {ȳm (t + 1) |∀m ∈ M} are the caching decision factors at timeslot t for the next

timeslot.
• Z̄ (t) = {z̄i (t) |∀i ∈ I } are the subchannel allocation decision factors of BSs at timeslot t, where

z̄i ∈ [0, 1].
• Ū (t) = {ūm (t) |∀m ∈ M} are the offloading decision factors of MDs at timeslot t, where ūm ∈

[0, 1].
• F̄ (t) =

{

f̄m (t) |∀m ∈ M
}

are the computing resource allocation factors of MDs at timeslot t,

where f̄m ∈ [0, 1].

It is noteworthy that the dimension of the above-mentioned state and action spaces have been

greatly reduced compared to the actual ones. The actual state and action spaces can be achieved by

executing AT algorithm in the following parts.

❸ Reward: Considering that the goal of problem P1 is to minimize local energy consumption,

and the constraints C1 and C10 cannot be strictly satisfied in the DRL-based iteration procedure, the

reward wt at timeslot t is given by

wt = −ω1 ∑m∈M
εtot

m (t)− ω2φ (t)− ω3 ϕ (t) , (12)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

9 of 21

where φ(t) = ∑m∈M max(τtot
m (t)− τm, 0) is the penalty function added for guaranteeing the constraint

C1, and ϕ(t) = ∑i∈I max(∑m∈M ym,i(t)dm(t)− ϑi(t), 0) is the penalty function introduced for

guaranteeing the constraint C10; ω1 is the energy-consumption discount factor; ω2 and ω3 are penalty

coefficients.

When the network obtains action at according to the state st, the state space will obtain the

next state st+1 according to the action at. Specifically, the task caching decisions of BSs can be

directly achieved from Y (t + 1) in at. Therefore, the total return of minimizing long-term local energy

consumption within T timeslots can be given by

R = ∑t∈T
γwt, (13)

where γ is the reward discount factor satisfying γ ∈ (0, 1).

4.1. TD3O Algorithm

TD3 algorithm is an actor-critic-based framework, it comprises the policy (µ) network, critic (Q)

network and their corresponding target networks, and updates the network parameters using gradient

algorithms. It is characterized by using two critic networks and two critic target networks in the

design of critic networks. The TD3 algorithm is often divided into two parts consisting of experience

collection and training. In the phase of collecting experience, new action at can be generated by adding

random Gaussian noise into the output of policy network at the state st, i.e.,

at = µ (st, θµ) + σ̄2. (14)

where θµ is the parameter of policy network, and σ̄2 is the additive Gaussian noise.

After that, the environment is rewarded with wt and the next state st+1 can be achieved according

to the state and action (st, at). To enable the algorithm to obtain better decisions through past

experience-assisted training, we put the quadruple (st, at, wt, st+1) into the experience replay buffer as

a historical experience. In the training process, a certain number of quadruples are randomly selected

from the experience replay buffer for training. Specifically, the training process can be divided into the

following steps.

4.1.1. Training Policy Network

The training process of policy network is shown in Figure 3. In the training phase, N quadruples

are extracted from the experience replay buffer and denoted as N = {1, 2, · · · , N}. For any quadruple

n ∈ N , the policy network outputs an new action a′n = µ (sn, θµ) according to the state sn. It

should be noted that the policy a′n is different from an existing in the experience replay buffer.

After sn and a′n are inputted into any critic network (e.g., critic Q1 network), such network outputs

qn = Q1

(

sn, µ (sn, θµ) , θQ1
)

, where θQ1 is the parameter of the critic Q1 network. After achieving all

qn, their mathematical expectation is given by

J (θµ) = E

[

Q1

(

S , µ (S , θµ) , θQ1

)]

, (15)

where S = {sn|n ∈ N}. Then, the policy gradient of function J with respect to θµ can be given by

∇θµ J = E

[

∇AQ1

(

S ,A, θQ1

)

∇θµ µ (S , θµ)
]

, (16)

where A = {an|n ∈ N}.

Significantly, the calculated gradient requires gradient clipping, which can avoid skipping the

optimal solution because the gradient is too large. The calculated policy gradients will be used to

update the parameters of the policy networks. We assume that the learning rate of the policy network

is βµ, and Adaptive moment estimation (Adam) is used for achieving optimal θµ.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

10 of 21

rewardstate action next state

policy gradient

Adam optimizer

...

 network

network

'a

'a
new action

s

q

JJJJ

1
Q

Figure 3. Training policy network.

4.1.2. Training Critic Network

Figure 4 shows the training process of the critic network. During the critic network training,

the policy at the next time is first estimated through the policy target (µ−) network, i.e., a′n =

µ−(s′n, θµ−
) + σ̂2, where σ̂2 is the clipped additive Gaussian noise. Then, the action a′n and the state

s′n are used as the input of the critic target (Q−
1) network and critic target (Q−

2) network, where θQ−
1

and θQ−
2 are their parameters. After that these two networks output q̃n,1 and q̃n,2 respectively. At

the same time, the action an and the state sn are used as the input of the critic Q1 network and critic

Q2 network, where θQ1 and θQ2 are their parameters. After that these two networks output qn,1 and

qn,2. Then, the approximation of Q value is q̄n = rn + γq̃n achieved using Behrman equation, where

q̃n = min (q̃n,1, q̃n,2). At last, for all q̄n, according to the theorem of mean-squared error (MSE), the

expectation function of squared loss between Q1

(

S ,A, θQ1
)

and Q̄ is

L1

(

θQ1

)

= 0.5E
[

(

Q1

(

S ,A, θQ1

)

− Q̄
)2

]

, (17)

and the expectation function of squared loss between Q2

(

S ,A, θQ2
)

and Q̄ is given by

L2

(

θQ2

)

= 0.5E
[

(

Q2

(

S ,A, θQ2

)

− Q̄
)2

]

, (18)

where Q̄ = {q̄n|n ∈ N}. Then, the gradient of the loss function L1

(

θQ1
)

with respect to the parameter

θQ1 is

∇
θQ1 L1 = E

[

(

Q1

(

S ,A, θQ1

)

− Q̄
)

∇
θQ1 Q1

(

S ,A, θQ1

)

]

, (19)

and the gradient of the loss function L2

(

θQ2
)

with respect to the parameter θQ2 is given by

∇θQ2 L2 = E
[

(

Q2

(

S ,A, θQ2

)

− Q̄
)

∇θQ2 Q2

(

S ,A, θQ2

)

]

. (20)

Similar to calculating the policy gradient, the gradient clipping needs to be performed after

calculating the gradients using (19) and (20). In addition, βQ is the learning rate of the critic network,

and the parameters of the two critic networks are updated using the Adam algorithm. Certainly, the

parameters of critic target networks also need to be updated using soft update manner, i.e.,

θµ−
= λθµ + (1 − λ) θµ−

, (21)

θQ−
1 = λθQ1 + (1 − λ) θQ−

1 , (22)

θQ−
2 = λθQ2 + (1 − λ) θQ−

2 , (23)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

11 of 21

where λ is the learning rate of target networks.

policy noise

rewardstate action next state

...

network

next action

network

network

network

network

minimun

Q gradient

Adam optimizer

Adam optimizer
1
Q
1

2
Q
2

1
q

2
q

1
q
1

1
Q

2
Q

nn

2
q
2

q

q

1
Q n

2
Q n

t
r

Q gradient
1 1Q L

q
Ñ

2 2Q L
q

Ñ

s a

's

q r qq rqqq qqqqqq

'a

'a

22

Figure 4. Training critic network.

It is noteworthy that a lower network updating frequency is adopted in this paper. We assume

that the update interval of the critic network is tcti and the update interval between the policy and

critic networks is tpti. The critic networks are trained many times to ensure the stability of Q value.

After that the policy network can be updated. The detailed procedure of TD3O algorithm can be

summarized in Algorithm 1, where tmep is the maximal number of epochs.

Algorithm 1: TD3-based Offloading (TD3O)

1: Initialization: θQ1 , θQ2 , θµ, θQ−
1 , θQ−

2 , θµ−
, tstep = 0, tepoch = 0.

2: While tepoch
< tmep

3: Let t = 0, state st and reward R = 0.
4: While t < T
5: Generate action at using (14).
6: Achieve actual action by executing Algorithm 2.
7: Calculate reward wt using (12) and obtain the state st+1.
8: If tstep ≥ κ
9: Replace the previous quadruple with (st, at, wt, st+1).
10: Else
11: Put the quadruple (st, at, wt, st+1) into the queue.
12: EndIf
13: Update state st = st+1.

14: If tstep%tcti = 0 and tstep
> N

15: Extract N quadruples for training.
16: For any sample n, Q−

1 and Q−
2 networks output q̃n,1 and

17: q̃n,2 respectively, and obtain the minimum value q̃n.

18: Calculate L(θQ
1) and L(θQ

2) using (17)-(18) respectively.
19: Calculate Q gradient using (19)-(20), and clip it.

20: Find θQ1 and θQ2 using Adam optimizer.

21: If tstep%tpti = 0
22: Calculate q through Q1.
23: Calculate policy gradient using (16), and clip it.
24: Find θµ using Adam optimizer.
25: EndIf

26: Calculate θQ−
1 , θQ−

2 and θµ−
using (21)-(23) respectively.

27: EndIf
28: R = R + γwt.
29: tstep = tstep + 1; t = t + 1.
30: EndWhile

31: tepoch = tepoch + 1.
32: EndWhile

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

12 of 21

4.2. AT Algorithm

In order to apply TD3O algorithm to solving the problem P1, it is necessary to convert the

achieved continuous action at =
{

X̄ (t) , Ȳ (t + 1) , Z̄ (t) , Ū (t) , F̄ (t)
}

into discrete one [33]. To this

end, we consider the following transformations for at.

4.2.1. The Discretization of Device Association Array

In X̄ = {x̄m |∀m ∈ M}, x̄m is the non-integer association index of MD m, which is the continuous

action achieved by TD3 algorithm. Then, it is converted into an integer form, i.e.,

{

xm,ceil(Ix̄m) = 1, if Ix̄m 6= 0,

xm,1 = 1, otherwise,
(24)

where ceil(b) is an upward rounding function with respect to b. Such a transformation can ensure that

each MD can be associated with one BS.

4.2.2. The Discretization of Task Caching Array

In Ȳ, ȳm represents the non-integer caching index of MD m, which is the continuous action

achieved by TD3 algorithm. Since each MD can store its task at all BSs, there exist 2I storage options

for it. Consequently, in order to convert ȳm into a discrete form, we first need to perform







ŷm = floor
(

2I ȳm

)

, if 2I ȳm 6= 0,

ŷm = 0, otherwise,
(25)

where floor(b) is a downward rounding function with respect to b. Then, in order to achieve the binary

caching index, the decimal ŷm needs to be converted into a binary number of I 0-1 digits, which is

given by bin(ȳm). In it, bin(b) is a function used for calculating the binary number of decimal b. Then,

ym,i = bin(ȳm)i, where bin(ȳm)i represents the i-th digit of the binary number bin(ȳm).

4.2.3. The Discretization of Task Offloading Array

In Ū, ūm is the non-integer offloading index of MD m, which is the continuous action achieved by

TD3 algorithm. Considering that each MD can offload its task to at most one BS, ūm is converted into

an integer form, i.e.,
{

um,ceil(Iūm) = 1, if Iūm 6= 0,

um,i = 0, ∀i ∈ I , otherwise.
(26)

4.2.4. The Discretization of Subchannel Allocation Array

In Z̄, z̄i is the non-integer index of the subchannels allocated by BS i to its associated MDs who

need to offload tasks, which is the continuous action achieved by TD3 algorithm. To achieve the integer

form of z̄i, we first need to perform

{

ẑi = ceil (C (Mi, Ki) z̄i) , if C (Mi, Ki) z̄i 6= 0,

ẑi = 1, otherwise,
(27)

where Mi is the number of MDs who are associated with BS i and need to offload tasks; Ki is the

number of available subchannels at BS i; C (Mi, Ki) = fac(Ki)/fac(Mi)fac (Ki − Mi) is a function with

respect to Mi and Ki, and used for calculating the number of feasible subchannel allocation policies

between Mi MDs and Ki subchannels at BS i; fac(b) is a factorial function with respect to b; Mi ≤ Ki

shall be satisfied.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

13 of 21

Then, we assume that Zi = {1, 2, · · · , C (Mi, Ki)} is the set of C (Mi, Ki) feasible subchannel

allocation policies between Mi MDs and Ki subchannels at BS i. After that, the subchannel allocation

policy ẑi in the set Zi is selected according to the equation (27). It is noteworthy that C (Mi, Ki) feasible

subchannel allocation policies are generated in advance. That is to say, in the policy ẑi, we can easily

know the utilized indices of Ki subchannels for Mi MDs. According to these rules, we can easily find

the subchannel allocation index Z.

4.2.5. The Transformation of Computing Resource Allocation Array

In F̄ =
{

f̄m |∀m ∈ M
}

, f̄m represents the computing resource score of MD m at target BS that

executing its task. If ∑i∈I um,i = 1 is satisfied between MD m and BS i, according to the proportional

allocation of computing resources, the computing resources allocated to MD m by BS i can be given by

fm,i = um,i f BS
i f̄m/∑j∈M

uj,i f̄ j. (28)

Based on the above-mentioned operations, the output action at =
{

X̄, Ȳ, Z̄, Ū, F̄
}

of TD3O

algorithm can be effectively converted into an actual decision, which is summarized as Algorithm 2.

Algorithm 2: Action transformation (AT)

1: For each MD m ∈ M
2: Achieve MD association matrix X using discretization rule.
3: Achieve task caching matrix Y using discretization rule.
4: Achieve task offloading matrix U using discretization rule.
5: EndFor
6: For each BS i ∈ I
7: Returns the set Ki of available subchannels and the set Mi of
8: offloading MDs.
9: If Mi > Ki

10: Mi − Ki associated MDs are randomly selected, disassociated
11: and execute tasks locally.
12: EndIf
13: Achieve subchannel allocation matrix Z using discretization rule.
14: EndFor
15: For each MD m ∈ M
16: If ∑i∈I um,i = 1
17: If f̄m = 0
18: Assign small enough computing capacity to MD m to avoid
19: zero division.
20: Else
21: Allocate computing resources to MD m using (28).
22: EndIf
23: EndIf
24: EndFor

4.3. HA

To solve the problem P1 in a non-iterative manner, we design an effective heuristic algorithm,

which is summarized in Algorithm 3. In such an algorithm, in order to reduce the uplink transmission

time and energy consumption, some MDs are associated with the nearest BSs. To guarantee time

constraints, a part of MDs are disassociated with BSs without sufficient subchannels, and execute tasks

by themselves.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

14 of 21

Algorithm 3: Heuristic Algorithm (HA)

1: Initialization: energy consumption ε̄tot = 0.
2: Each MD selects (is associated with) the nearest BS.
3: For each BS i ∈ I
4: If Mi > Ki

5: Mi − Ki associated MDs are randomly selected, disassociated
6: and execute tasks locally.
7: EndIf
8: Randomly select the tasks of MDs associated with BS i for caching
9: until the caching space is full.
10: EndFor
11: For t ∈ T
12: Randomly select a target BS for each MD without cached task.
13: Randomly allocate subchannels to MDs associated with each BS.
14: If subchannels are insufficient
15: Extra MDs are randomly selected to execute tasks locally.
16: EndIf
17: Proportionally allocate computing resources to MDs associated with
18: each BS according to the CPU cycles required by tasks.
19: Calculate the total local energy consumption ε̄.
20: ε̄tot = ε̄tot + ε̄.
21: EndFor

5. Algorithm Analysis

5.1. Computation Complexity Analysis

In this section, the computation complexity of proposed algorithms are analysed as follows.

Proposition 1: The computation complexity of Algorithm 2 is O (MIK) at the worst case.

proof: In Algorithm 2, the computation complexity of Steps 1-5 is O (M), the computation

complexity of Steps 6-14 is O (MIK) at the worst case, and the computation complexity of Steps 15-24

is O (MI). In general, the computation complexity of Algorithm 2 is O (MIK) at the worst case. ❑

Proposition 2: The computation complexity of Algorithm 1 is O
(

max
(

∑
LQ

l=0 ψ
Q
l ψ

Q
l+1, ∑

Lµ

l=0

ψ
µ
l ψ

µ
l+1

))

at each timeslot, where Lµ is the number of layers of the policy network, LQ is the number of

layers of the critic network, ψ
µ
l is the number of neurons at the l-th layer of the policy network, and ψ

Q
l

is the number of neurons at l-th layer of the critic network.

proof: In Algorithm 1, the computation complexity is mainly related to the action transformation,

the calculation of reward and task processing time, and the structure of the neural network. As

previously mentioned, the computation complexity of the action transformation should be O (MIK)

at the worst case. Seen from the formulas (8) and (12), the computation complexity of the calculation

of reward and task processing time is O (MIK).

In Algorithm 1, there exist four critic networks and two policy networks. We assume that the

structure of the policy network and its target network is the same, and the structure of the two

critic networks and its target network is the same. Then, we can easily deduce that the computation

complexity of establishing policy networks is O
(

∑
Lµ

l=0 ψ
µ
l ψ

µ
l+1

)

, and the computation complexity of

establishing critic networks is O
(

∑
LQ

l=0 ψ
Q
l ψ

Q
l+1

)

. Therefore, the computation complexity of establishing

neural networks is O
(

max
(

∑
LQ

l=0 ψ
Q
l ψ

Q
l+1, ∑

Lµ

l=0 ψ
µ
l ψ

µ
l+1

))

.

Since the computation complexity of establishing neural networks is much higher than the

one of other operations in Algorithm 2. In general, the computation complexity of Algorithm 2 is

O
(

max
(

∑
LQ

l=0 ψ
Q
l ψ

Q
l+1, ∑

Lµ

l=0 ψ
µ
l ψ

µ
l+1

))

at each timeslot. ❑

Proposition 3: The computation complexity of Algorithm 3 is O (MI) at each timeslot.

proof: In Algorithm 3, the computation complexity of Step 2 is O (MI), the computation

complexity of Steps 3-10 is O (I), the computation complexity of Steps 12-16 is O (M), the computation

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

15 of 21

complexity of Steps 17-19 is O (MI). In general, the computation complexity of Algorithm 3 is O (MI)

at each timeslot. ❑

5.2. Convergence Analysis

Since Algorithm 2 is a part of Algorithm 1 and Algorithm 3 is non-iterative, we just need to

concentrate on the convergence of Algorithm 1. In detail, it is established as follows.

Theorem 1: Algorithm 1 can be guaranteed to converge after finite iterations.

proof: In Algorithm 1, the neural networks are updated by the gradient descent method used in

the Adam optimizer. It utilizes the gradient information of the functions J(θµ), L1(θ
Q1) and L2(θ

Q2)

to guide the updating directions of the parameters θµ, θQ1 and θQ2 so that the values of objective

functions can reach the optimal or suboptimal. When these values tend to be stable, the parameters θµ,

θQ1 and θQ2 also tend to be stable. At this time, Algorithm 1 is deemed convergent. ❑

6. Performance Evaluation

In order to verify the performance of the designed algorithms, we introduce the following

algorithms for comparison.

DDPG-based Offloading (DDPGO): DDPG is a classical DRL algorithm. Compared with the

TD3 algorithm, the DDPG algorithm reduces a critic network and a critic target network. In addition,

both the critic network and policy network are updated at each timeslot in the DDPG algorithm. In

this paper, the DDPG algorithm used for solving the problem P1 is named as DDPG-based offloading

(DDPGO) algorithm.

Completely Offloading (CO): In CO algorithm, the task of each MD is offloaded to the nearest

BS for computing. Such BS proportionally allocates the computing capacity to its associated MDs

according to the CPU cycles required by the tasks of these MDs.

Completely Local Executing (CLE): In CLE algorithm, the tasks of all MDs can be executed by

themselves.

In this paper, we consider that each BS is deployed in a non-overlapping area with a radius of

400 m, and the power spectral density is -174 dBm/Hz. In addition, I = 3, f loc
m = 1 GHz, fi = 8 GHz,

W = 40 MHz, K = 4, dm = 2 ∼ 5 MB, cm = 50 cycles/bit, ξ = 10−27, τm = 10 s, ρ = 2, rbh = 1 Gbps,

pm = 23 dBm, κ = 80000, N = 128, γ = 0.94, and λ = 0.04. In the DRL algorithm, we consider that

both the policy network and the critic network are composed of three-layer fully connected neural

networks, where the numbers of neurons of three-layer neural networks in the policy network are

300, 200 and 128 respectively, and the corresponding target network has the same structure with this

policy network; the number of neurons of three-layer neural networks in the critic network are 300,

128 and 32 respectively, and the corresponding target network has the same structure with this critic

network. Significantly, the first-layer fully connected neural network of the policy network and the

critic network utilizes the Rectified Linear Unit 6 (RELU6) suppressing the maximum value as the

activation function, and other layers use RELU as the activation function.

Figure 5 shows the convergence of TD3O and DDPGO algorithms. As shown in Figure 5, DDPGO

may have a higher convergence rate than TD3O, but the former may have worse convergence stability

than the latter. The reason for this may be that the critic network and the policy network are updated

synchronously in DDPGO. In DDPGO, the network parameters are updated in each training, which

speeds up the convergence. Synchronously, the policy network parameters are updated in the training,

which results in the instability of the long-term reward value and training bias. As we know, TD3O

is composed of two sets of critic networks. Consequently, it can be trained in a relatively stable Q

value so that the algorithm can converge stably. In the simulation, it is also easy to find that TD3O may

achieve a more stable and better solution to the problem P1 than DDPGO in general.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

16 of 21

0 2500 5000 7500 10000 12500 15000 17500 20000
-800

-600

-400

-200

0

Lo
ng

-te
rm

 re
w

ar
d

Epochs

 DDPGO
 TD3O

Figure 5. The convergence of DDPGO and TD3O algorithms.

Figure 6 shows the impact of training interval tpti on the convergence of TD3O algorithm. As we

know, under the same number of iterations, a larger tpti can effectively reduce the overall training time

of the network. However, it will reduce the total learning times of the policy network and its target

network. As illustrated in Figure 6, the convergence rate of TD3O may decrease with tpti in general.

Lo
ng

-te
rm

 re
w

ar
d

Epochs

 t pti =1
 t pti =2
 t pti =3
 t pti =4
 t pti =5

Figure 6. The impact of training interval tpti on the convergence of TD3O algorithm.

Fig. 7 shows the impacts of learning rates βQ and βµ on the convergence of TD3O algorithm. As

we know, when the learning rate βQ of the critic network increases, the parameters of such network

will be updated at a larger scale, which speeds up the convergence of TD3O. However, it may lead to

the failure of stable evaluation of environmental information, which weakens the convergence stability

of TD3O. As illustrated in Figure 7, when βQ = 0.001, the convergence rate of TD3O is relatively high,

but the achieved long-term reward dramatically fluctuates at this moment. On the other hand, the

learning rate βµ of the policy network can affect the optimization capability of TD3O. Specifically, a

lower βµ means a smaller amplitude of updating the policy network, which is better for finding better

solutions. Seen from Figure 7, TD3O can achieve better long-term reward when βQ = 0.0001 and

βµ = 0.0001.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

17 of 21

Lo
ng

-te
rm

 re
w

ar
d

Epochs

 b m =10-3, b Q =10-3

 b m =10-3, b Q =10-4

 b m =10-4, b Q =10-3

 b m =10-4, b Q =10-4

Figure 7. The impacts of learning rates βQ and βµ on the convergence of TD3O algorithm.

Figure 8 shows the impact of the number of MDs on the long-term local energy consumption εMD,

where εMD is the sum of total local energy consumption in T timeslots. In general, the εMD increases

with the number of MDs since more energy consumption is used for tackling more tasks of more

MDs. Since CLE executes tasks in maximal computation capacity, it may achieve the highest εMD

among all algorithms. In CO, MDs are associated with the nearest BSs, which may result in a relatively

imbalanced load distribution. Then, some overloaded BSs cannot provide good services for their

associated MDs because of limited resources, which may result in high εMD. Consequently, CO may

achieve higher εMD than other algorithms excluding CLE. As illustrated in Figure 8, TD3O may achieve

lower εMD than DDPGO since the former can mitigate the overestimation existing in the latter well.

Although HA lets MDs be associated with the nearest BSs, some MDs associated with overloaded BSs

will disassociate and execute tasks locally. Such an operation may result in relatively low εMD.

5 6 7 8 9
0

150

300

450

600

Lo
ng

-te
rm

 lo
ca

l e
ne

rg
y

co
ns

um
pt

io
n

[J
]

The number of MDs

 CLE
 HA
 CO
 TD3O
 DDPGO

Figure 8. The impacts of the number of MDs on the long-term local energy consumption εMD.

Figure 9 shows the impacts of the number of MDs on the long-term reward (R). As illustrated in

Figure 9, R may decrease with the number of MDs since more MDs result in higher energy consumption.

Since both TD3O and DDPGO try to maximize the reward, but other algorithms are not the case, they

may achieve higher R than other algorithms in general. Since TD3O may achieve lower εMD than

DDPGO, the former may achieve a higher R than the latter. In view of the unstable convergence of

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

18 of 21

DDPGO, its reward may dramatically fluctuate. Since CLE may achieve the highest εMD among all

algorithms, it may achieve the lowest R in general. In addition, CO may achieve a lower R than HA

since the former consumes more energy than the latter.

5 6 7 8 9
-60

-45

-30

-15

0

Lo
ng

-te
rm

 re
w

ar
d

The number of MDs

 CLE
 HA
 CO
 TD3O
 DDPGO

Figure 9. The impacts of the number of MDs on the long-term reward R.

Figure 10 shows the impacts of the size of caching space of each BS on the relative long-term

energy consumption ηε denoted as the ratio of εMD achieved by an offloading algorithm to the one

attained by CLE. Evidently, a smaller ηε means a higher energy gain caused by offloading tasks. As

illustrated in Figure 10, besides DDPGO and CO, ηε in other algorithms decreases with the size of

caching space of each BS in general. The reason for this may be that a larger caching space can hold

more tasks to reduce the transmission energy consumption. However, as revealed in Figure 5 and

Figure 9, the unstable convergence of DDPGO may result in dramatically fluctuating performance.

Therefore, ηε in DDPGO may be evidently fluctuating. In addition, ηε in CO may not change with the

size of caching space of each BS since it doesn’t utilize caching space. By minimizing the εMD, TD3O

and DDPGO may achieve a lower ηε than other algorithms in general. In addition, TD3O may achieve

a lower ηε than DDPGO since the former mitigates the overestimation existing in DDPGO. Seen from

Figure 10, CO may achieve the highest ηε among all algorithms since it has no sufficient resources to

provide for MDs associated with overloaded BSs.

6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

lo
ng

-te
rm

 e
ne

rg
y

co
ns

um
pt

io
n

The size of caching space of each BS [MB]

 HA
 CO
 TD3O
 DDPGO

Figure 10. The impacts of the size of caching space of each BS on the relative long-term energy

consumption ηε.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

19 of 21

Figure 11 shows the impacts of the size of caching space of each BS on the relative long-term

reward ηR denoted as the ratio of long-term reward achieved by an offloading algorithm to the one

attained by CLE. Evidently, a smaller ηR means a higher reward gain caused by offloading tasks. As

illustrated in Figure 11, ηR in TD3O and HA decreases with the size of the caching space of each BS

in general. The reason for this may be that a larger caching space can hold more tasks to reduce the

transmission energy consumption, and then bring a higher reward. However, due to the unstable

convergence of DDPGO, ηR in DDPGO may be fluctuating. Moreover, ηR in CO may not change with

the size of caching space of each BS since it doesn’t utilize caching space. By minimizing the εMD and

thus increasing reward, TD3O and DDPGO may achieve a lower ηR than other algorithms in general.

In addition, TD3O may achieve a lower ηR than DDPGO since the former mitigates the overestimation

existing in DDPGO. Seen from Figure 11, CO may achieve the highest ηR because of the high energy

consumed by MDs associated with overloaded BSs.

6 7 8 9 10
0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
la

tiv
e

lo
ng

-te
rm

 re
w

ar
d

The size of caching space of each BS [MB]

 HA
 CO
 TD3O
 DDPGO

Figure 11. The impacts of the size of caching space of each BS on the relative long-term reward ηR.

As seen from the above-mentioned simulation figures, although HA is a non-iterative algorithm,

it may achieve better performance than DDPGO sometimes. In addition, it may always achieve fairly

better performance than CO and CLE.

7. Conclusion

In this paper, the problem of minimizing the local energy consumption is concentrated in

the cache-assisted vehicular NOMA-MEC networks under the latency and resource constraints,

which refers to joint optimization of the computing resource allocation, subchannel selection, device

association, offloading and caching decisions. To solve the formulated problem, we developed an

effective TD3O algorithm integrating with the AT algorithm, and designed HA simultaneously. As

for the designed algorithms, we give some analyses of the convergence and computation complexity.

Simulation results show that such TD3O may achieve local lower energy consumption than several

benchmark algorithms, and the HA may achieve lower local energy consumption than the CO and

CLE algorithms. Future work can include power allocation and secure communications.

Author Contributions: Conceptualization, Z.T. and X.M.; methodology, Z.T. and X.M.; software, X.M.;
investigation, N.X., L.X. and L.C.; writing—original draft preparation, Z.T. and X.M.; writing—review and
editing, Q.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China under Grant Nos. 62261020,
62171119, 62062034, 62361026, 61961020, 62001201 and 61963017, National Key Research and Development
Program of China under Grant No. 2020YFB1807201, Jiangxi Provincial Natural Science Foundation under Grant
Nos. 20232ACB212005, 20224BAB202001, 20232BAB202019, 20212BAB202004 and 20212BAB212001, Key research
and development plan of Jiangsu Province under Grant No. BE2021013-3.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

20 of 21

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yao, Y.; Shu, F.; Li, Z.; Cheng X.; Wu, L. Secure transmission scheme based on joint radar and communication

in mobile vehicular networks. IEEE Trans. Intell. Transport. Syst. 2023, 24, 10027-10037.

2. Yao, Y.; Zhao, J.; Li, Z.; Cheng X.; Wu, L. Jamming and eavesdropping defense scheme based on deep

reinforcement learning in autonomous vehicle networks. IEEE Trans. Inf. Foren. Secu. 2023, 18, 1211-1224.

3. Wang, D.; Tian, X.; Cui, H.; Liu, Z. Reinforcement learning-based joint task offloading and migration schemes

optimization in mobility-aware MEC network. China Commun. 2020, 17, 31-44.

4. Spinelli, F.; Mancuso, V. Toward enabled industrial verticals in 5G: a survey on MEC-based approaches to

provisioning and flexibility. IEEE Commun. Surv. Tutor. 2021, 23, 596-630.

5. Zhang, Y.; Di, B.; Zheng, Z.; Lin, J.; Song, L. Distributed multi-cloud multi-access edge computing by

multi-agent reinforcement learning. IEEE Trans. Wireless Commun. 2021, 20, 2565-2578.

6. Zhou, T.; Yue, Y.; Qin, D.; Nie, X.; Li, X.; Li, C. Joint device association, resource allocation, and computation

offloading in ultradense multidevice and multitask IoT networks. IEEE Internet Things J. 2022, 9, 18695-18709.

7. Zhang, W.; Zhang, G.; Mao, S. Joint parallel offloading and load balancing for cooperative-MEC systems

with delay constraints. IEEE Trans. Veh. Technol. 2022, 71, 4249-4263.

8. Malik, R.; Vu, M. Energy-efficient joint wireless charging and computation offloading in MEC systems. IEEE

J. Sel. Top. Sign. Proces. 2021, 15, 1110-1126.

9. Hu, H.; Song, W.; Wang, Q.; Hu, R. Q.; Zhu, H. Energy efficiency and delay tradeoff in an MEC-enabled

mobile IoT network. IEEE Internet Things J. 2022, 9, 15942-15956.

10. Liu, Y.; Liu, J.; Argyriou, A.; Wang, L.; Xu, Z. Rendering-aware VR video caching over multi-cell MEC

networks. IEEE Trans. Veh. Technol. 2021, 70, 2728-2742.

11. Lekharu, A.; Jain, M.; Sur, A.; Sarkar, A. Deep learning model for content aware caching at MEC servers.

IEEE Trans. Netw. Service Manag. 2022, 19, 1413-1425.

12. Huang, X.; He, L.; Wang, L.; Li, F. Towards 5G: joint optimization of video segment caching, transcoding and

resource allocation for adaptive video streaming in a multi-access edge computing network. IEEE Trans. Veh.

Technol. 2021, 70, 10909-10924.

13. Zheng, G.; Xu, C.; Wen, M.; Zhao, X. Service caching based aerial cooperative computing and resource

allocation in multi-UAV enabled MEC systems. IEEE Trans. Veh. Technol. 2022, 71, 10934-10947.

14. Liu, B.; Liu, C.; Peng, M. Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT

networks. IEEE J. Sel. Areas Commun. 2021, 39, 1015-1027.

15. Song, Z.; Liu, Y.; Sun, X. Joint task offloading and resource allocation for NOMA-enabled multi-access mobile

edge computing. IEEE Trans. Commun. 2021, 69, 1548-1564.

16. Ding, Z.; Xu, D.; Schober, R.; Poor, H. V. Hybrid NOMA offloading in multi-user MEC networks. IEEE Trans.

Wirel. Commun. 2022, 21, 5377-5391.

17. Farha Y. A.; Ismail, M. H. Design and optimization of a UAV-enabled non-orthogonal multiple access edge

computing IoT system. IEEE Access 2022, 10, 117385-117398.

18. Wang, K.; Li, H.; Ding, Z.; Xiao, P. Reinforcement learning based latency minimization in secure NOMA-MEC

systems with hybrid SIC. IEEE Trans. Wirel. Commun. 2023, 22, 408-422.

19. Xu, C.; Zheng, G.; Zhao, X. Energy-minimization task offloading and resource allocation for mobile edge

computing in NOMA heterogeneous networks. IEEE Trans. Veh. Technol. 2020, 69, 16001-16016.

20. Ylmaz, S. S.; Zbek, B. Massive MIMO-NOMA based MEC in task offloading for delay minimization. IEEE

Access 2023, 11, 162-170.

21. Tuong, V. D.; Truong, T. P.; Nguyen T.-V.; Noh, W.; Cho, S. Partial computation offloading in NOMA-assisted

mobile-edge computing systems using deep reinforcement learning. IEEE Internet Things J. 2021, 8,

13196-13208.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

21 of 21

22. Feng, H.; Guo, S.; Yang, L.; Yang, Y. Collaborative data caching and computation offloading for multi-service

mobile edge computing. IEEE Trans. Veh. Technol. 2021, 70, 9408-9422.

23. Ren, D.; Gui, X.; Zhang, K. Adaptive request scheduling and service caching for MEC-assisted IoT networks:

an online learning approach. IEEE Internet Things J. 2022, 9, 17372-17386.

24. Yang, S.; Liu, J.; Zhang, F.; Li, F.; Chen, X.; Fu, X. Caching-enabled computation offloading in multi-region

MEC network via deep reinforcement learning. IEEE Internet Things J. 2022, 9, 21086-21098.

25. Zhou, T.; Yue, Y.; Qin, D.; Nie, X.; Li, X.; Li, C. Mobile device association and resource allocation in HCNs

with mobile edge computing and caching. IEEE Syst. J. 2023, 17, 976-987.

26. Yang, Z.; Liu, Y.; Chen, Y.; Al-Dhahir, N. Cache-aided NOMA mobile edge computing: a reinforcement

learning approach. IEEE Trans. Wirel. Commun. 2020, 19, 6899-6915.

27. Li, S.; Li, B.; Zhao, W. Joint optimization of caching and computation in multi-server NOMA-MEC system

via reinforcement learning. IEEE Access 2020, 8, 112762-112771.

28. Yang, Z.; Ding, Z.; Fan, P.; Al-Dhahir, N. A general power allocation scheme to guarantee quality of service

in downlink and uplink NOMA systems. IEEE Trans. Wireless Commun. 2016, 15, 7244-7257.

29. Huynh, L. N. T.; Pham, Q. -V.; Nguyen, T. D. T.; Hossain, M. D.; Shin Y.-R.; Huh, E.-N. Joint Computational

offloading and data-content caching in NOMA-MEC networks. IEEE Access 2021, 9, 12943-12954.

30. Cheng, Y.; Liang, C.; Chen, Q.; Yu, F. R. Energy-efficient D2D-assisted computation offloading in

NOMA-enabled cognitive networks. IEEE Trans. Veh. Technol. 2020, 70, 13441-13446.

31. Li, C.; Wang, H.; Song, R. Mobility-aware offloading and resource allocation in NOMA-MEC systems via

DC. IEEE Commun. Lett. 2022, 26, 1091-1095.

32. Huang, H.; Ye, Q.; Zhou, Y. 6G-empowered offloading for realtime applications in multi-access edge

computing. IEEE Trans. Netw. Sci. Eng. 2023, 10, 1311-1325.

33. Dai, Y.; Zhang, K.; Maharjan, S.; Zhang, Y. Edge intelligence for energy-efficient computation offloading and

resource allocation in 5G beyond. IEEE Trans. Veh. Technol. 2020, 69, 12175-12186.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

https://doi.org/10.20944/preprints202310.0699.v1

	Introduction
	Related Work
	Contribution and Organization

	System Model
	Network Model
	Communication Model
	Caching and Offloading Models
	Local Computing
	Task Transmission
	Edge Computing

	Problem Formulation
	Algorithm Design
	TD3O Algorithm
	Training Policy Network
	Training Critic Network

	AT Algorithm
	The Discretization of Device Association Array
	The Discretization of Task Caching Array
	The Discretization of Task Offloading Array
	The Discretization of Subchannel Allocation Array
	The Transformation of Computing Resource Allocation Array

	HA

	Algorithm Analysis
	Computation Complexity Analysis
	Convergence Analysis

	Performance Evaluation
	Conclusion
	References

