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Abstract: In this paper, in order to reduce the energy consumption and delay of data transmission,
the non-orthogonal multiple access (NOMA) and edge caching technologies are jointly considered.
As for the cache-assisted vehicular NOMA-MEC networks, a problem of minimizing the energy
consumed by vehicles (mobile devices, MDs) is formulated under the latency and resource constraints,
which jointly optimizes the computing resource allocation, subchannel selection, device association,
offloading and caching decisions. To solve the formulated problem, we develop an effective joint
computation offloading and task caching algorithm based on the twin delayed deep deterministic
policy gradient (TD3) algorithm. Such a TD3-based offloading (TD30) algorithm includes a designed
action transformation (AT) algorithm used for transforming continuous action space into a discrete
one. In addition, to solve the formulated problem in a non-iterative manner, an effective heuristic
algorithm (HA) is also designed. As for the designed algorithms, we provide some detailed analyses
of computation complexity and convergence, and give some meaningful insights through simulation.
Simulation results show that the TD3O algorithm may achieve lower local energy consumption than
several benchmark algorithms, and HA may achieve a lower one than the completely offloading
algorithm and local execution algorithm.

Keywords: TD3; MEC; NOMA; vehicular networks; edge cache; computation offloading; resource
allocation

1. Introduction

With the rapid development of information and communication technologies, the data traffic
generated by vehicles (mobile devices, MDs) has also significantly increased [1]. For wireless
communication networks, more spectrum resources are required for data traffic transmission [2].
In addition, higher computing power is required by MDs for supporting large amounts of task
calculation. However, due to the limited battery capacity of MDs, it may be challenging to process
these computation tasks for them. By deploying edge computing servers at base stations (BSs),
mobile edge computing (MEC) can support MDs in processing tasks at the adjacent edge servers [3,4].
Compared with cloud computing (CC), which requires tasks to be uploaded to a remote cloud, MEC
can provide additional computing resources for MDs within its coverage area and thus reduce the
computing overhead of MDs [5-9].

Although the edge servers can reduce the computing overhead of MDs by providing more
computing resources, the extra delay and energy consumption caused by offloading tasks through
wireless channels cannot be ignored, especially for high-size computation tasks. In order to further
reduce the delay and energy consumption caused by offloading tasks, edge caching technology is also
introduced into MEC networks. By caching tasks of MDs at edge servers in advance, the overhead
caused by offloading tasks can be greatly reduced [10-13].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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To upload tasks from MDs to edge servers, orthogonal multiple access (OMA) is often widely used,
but it may be greatly challenging to provide a high transmission rate and support massive connections.
As another type of resource utilization manners, non-orthogonal multiple access (NOMA) technologies
can let multiple users share the same frequency bands, achieve higher spectral efficiency and support
massive connections [14-17]. It is evident that NOMA is a good type of resource utilization manners
for reducing the cost of task transmission in MEC networks.

Although the application of caching and NOMA technologies in MEC networks can bring lower
delay and energy consumption, such a framework will make the design of computation offloading and
edge caching schemes more complex. To the best of our knowledge, until now, how to jointly perform
the device association, computation offloading, edge caching, subchannel selection and resource
allocation is still an important and open topic in cache-assisted NOMA-MEC networks.

1.1. Related Work

So far, there exists a lot of work done on joint computation offloading and resource optimization
in NOMA-MEC networks. In [14], joint radio and computation resource allocation were optimized to
maximize the offloading energy efficiency in NOMA-MEC-enabled IoT networks, and a solution based
on a multi-layer iterative algorithm was proposed. In [15], local computation resource, offloading ratio,
uplink transmission time and power, and subcarrier assighment were jointly optimized to minimize
the sum of weighted energy consumed by users in NOMA-MEC networks, and some effective iterative
algorithms were designed for single-user and multi-user cases. In [18], joint task offloading, power
allocation, and computing resource allocation were optimized to achieve delay minimization using a
deep reinforcement learning (DRL) algorithm in NOMA-MEC networks. In [19], joint optimization
of offloading decisions, local and edge computing resource allocation, and power and subchannel
allocation were realized to minimize energy consumption in heterogeneous NOMA-MEC networks,
and an effective iterative algorithm was designed. In [20], the power and computation resource
allocation were jointly optimized to minimize overall computation and transmission delay for massive
MIMO and NOMA -assisted MEC systems, and a solution based on an interior-point algorithm was
given. In [21], the channel resource allocation and computation offloading policy was jointly optimized
to minimize the sum of weighted energy and latency in NOMA-MEC networks, and some efficient
solutions were found using a DRL algorithm based on actor-critic and deep Q-network (DQN) methods.

To further reduce the offloading delay and energy consumption, edge caching technology is
introduced into conventional MEC networks. Such a framework has attracted more and more attention.
In [22], the offloading and caching decisions, uplink power and edge computing resources were
jointly optimized to minimize the sum of weighted local processing time and energy consumption
in two-tier cache-assisted MEC networks, and a distributed collaborative iterative algorithm was
proposed. In [23], a problem of adaptive request scheduling and cooperative service caching was
studied in cache-assisted MEC networks. After formulating the optimization problems as partially
observable Markov decision process (MDP) problems, an online DRL algorithm was proposed to
improve the service hitting ratio and latency reduction rate. In [24], optimal offloading and caching
strategies were established to minimize overall delay and energy consumption of all regions using a
deep deterministic policy gradient (DDPG) framework in cache-assisted multi-region MEC networks.
In [25], joint MD association and resource allocation were done to minimize the sum of MDs’ weighted
delay in heterogeneous cellular networks with MEC and edge caching functions, and an effective
iterative algorithm was developed using coalitional game and convex optimization theorems.

To enhance spectral efficiency and support massive connections, NOMA technology has attracted
increasing attention in cache-assisted MEC networks. In [26], joint optimization of offloading and
caching decisions and computation resource allocation was done to maximize long-term reward in
cache-assisted NOMA-MEC networks under the predicted task popularity, and single-agent and
multi-agent Q-learning algorithms were proposed to find feasible solutions. In [27], joint optimization
of offloading and caching decisions was done to minimize the system delay in cache-assisted
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NOMA-MEC networks, and a multi-agent DQN algorithm was used for finding efficient solutions
under the predicted popularity. In [29], local task processing time was minimized by jointly optimizing
offloading and caching decisions and the allocation of edge computing resources and uplink power
in cache-assisted NOMA-MEC networks with single BS, and blocking successive upper-bound
minimization method was utilized to achieve efficient solutions.

Although the framework of cache-assisted (vehicular) NOMA-MEC networks can greatly reduce
the task processing delay and energy consumption and support massive connections, there exist very
few relevant efforts. Unlike the mentioned-above work, we jointly optimize the edge computing
resource allocation, subchannel selection, device association, offloading and caching decisions for the
cache-assisted vehicular NOMA-MEC networks with multiple BSs, minimizing the energy consumed
by MDs under the latency and resource constraints. In addition, unlike existing efforts, we develop an
effective dynamic joint computation offloading and task caching algorithm based on the twin delayed
deep deterministic policy gradient algorithm (TD3) to find efficient solutions, which is named as
TD3-based offloading (TD30) algorithm.

1.2. Contribution and Organization

In this paper, we jointly optimize the edge computing resource allocation, subchannel selection,
device association, offloading and caching decisions in cache-assisted vehicular NOMA-MEC networks,
minimizing the energy consumed by MDs under the latency and resource constraints. Specifically, the
main contributions and work of this paper can be listed as follows.

¢ Edge computing resource allocation, subchannel selection, device association, computation
offloading and edge caching are jointly performed in cache-assisted vehicular NOMA-MEC
networks. To the best of our knowledge, such work that concerns subchannel selection should
be a new investigation for the cache-assisted vehicular NOMA-MEC networks with multi-server
scenarios.

¢ Formulating a problem of jointly optimizing the edge computing resource allocation, subchannel
selection, device association, offloading and caching decisions in cache-assisted vehicular
NOMA-MEC networks. Its goal is to minimize the energy consumed by MDs under the constraints
of latency, computing resources, caching capacity, the number of MDs associated with each BS,
and the number of MDs associated with each subchannel. As far as we know, such an optimization
problem should be a new concentration in cache-assisted vehicular NOMA-MEC networks.

* Designing effective algorithms to find feasible solutions to the formulated problem. Considering
that the formulated problem is in a mixed-integer nonlinear multi-constraint form, a simple map
between actions and actual policies in a conventional twin delayed deep deterministic policy
gradient (TD3) algorithm cannot be well applied. In addition, too large an action space will cause
the TD3 algorithm to fail to search for correct actions and thus fail to converge. In view of these,
we develop an effective TD30 algorithm integrating with the AT algorithm to solve the formulated
problem. Moreover, in order to solve this problem in a non-iterative manner, an effective heuristic
algorithm (HA) is also designed.

¢ Performance analyses of the designed algorithms. Some analyses are made for the computation
complexity and convergence of the designed algorithms in detail. In addition, some meaningful
simulation analyses are also made by introducing other benchmark algorithms for comparison,
and some good results and insights are achieved.

The rest of the paper is organized as follows. Section 2 introduces the system model. Section
3 formulates a problem of minimizing local energy consumption in cache-assisted vehicular
NOMA-MEC networks. Section 4 designs the HA and TD3O algorithm. Section 5 gives the
computation complexity and convergence analyses for the designed algorithms. Section 6 investigates
the performance of the designed algorithms through simulation. Section 7 gives conclusions and
discussions.
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2. System Model

2.1. Network Model

Figure 1 shows the cache-assisted vehicular NOMA-MEC networks. In such networks, there
exist M MDs, and the index set of them is denoted as M = {1,2,--- , M}; B BSs are deployed, and
the index set of them is given by Z = {1,2,-- - ,I}. In addition, each BS is equipped with one edge
computing server and one edge caching server, and these BSs connect to each other through wired
links. We assume that each MD has one computation task at any timeslot, which can be processed
by itself, its associated BS or another auxiliary BS selected by this associated BS. When tasks have
been cached at BSs used for processing them, they don’t need to be uploaded to these BSs; when the
associated BSs have not cached tasks, MDs need to upload tasks to these BSs; when the auxiliary BSs
have not cached tasks, the associated BSs need to upload tasks to their selected auxiliary BSs.
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Figure 1. cache-assisted vehicular NOMA-MEC networks.

Assume that the association index between MD m and BS i is x,,; € {0,1}, where X =
{xpi|Vm e M,Yie€ I}. x,,; = 1if MD m is associated with BS i, x,,,; = 0 otherwise. In addition,
we assume that the caching index of task of MD m at BS i is denoted as y,,; € {0,1}, where
Y = {ypilVme M,Vie I}. y,,; = 1 if the task of MD m is cached at BS i, y,,; = 0 otherwise.
We also assume that the offloading (execution) index of task of MD m at BS i is denoted as u,,,,
where U = {u,,;|VYm € M,Vi € I}. u,; = 1 if the task of MD m is executed at BS i, u,,; = 0
otherwise. At last, we assume that the association index between MD m and subchannel k of BS i is
denoted as z,,;x, where Z = {z,,;|Vm € M,Vi € T,Vk € K}. If x,,i(1 — yp,i) (1 — y,,, )1t,,, 7 = 1 or
Xp,i(1 = Ymi)um; = 1 under i # i, MD m can select (be associated with) some subchannel k of BS i,
which means z,, ; , = 1. Otherwise, the subchannel k of BS i cannot be selected by MD m, which means
Zmik = 0.

2.2. Communication Model

In this paper, the system bandwidth W is divided into K subchannels with equal bandwidth,
which are indexed by K = {1,2, - - - ,K}. These subchannels can be shared by different MDs through
NOMA manner. Significantly, each MD can occupy at most one subchannel, the number of MDs
selecting each subchannel cannot exceed the upper limit p, and the number of MDs associated with
any BS that need to upload tasks should be less than or equal to the number of subchannes K [27].

As revealed in [28], the channel gains of MDs sharing the same subchannel of a BS should be
sorted in descending order at first, and then the uplink NOMA signals received by this BS can be
decoded in this order. We assume that ./\/l,fc is the set of MDs selecting subchannel k, and o0, ;
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represents the sequence number of channel gain between MD m and BS i on subchannel k. When MD i
and MD m access the subchannel k of BS i simultaneously, and the channel gain £; ; x between MD j
and BS i on subchannel k is lower than the channel gain #,, ; x between MD m and BS i on subchannel
k, 0jix < 0, is satistied. Then, the signal of MD m is decoded, but the signal of MD j will be treated
as noise. Therefore, when MD m selects subchannel k of BS i, its uplink data rate r,, ; ; can be given by

Pk = W10g, (14 pubanif/ (Tmis+ %) ) /K, (1)

where 'y, i = Zje MG /{m}:0) 11 <Om pjhj,ix is the interference caused by other MDs (excluding MD m)

sharing subchannel k of BS i through NOMA manner; p;;, is the transmission power of MD m; o2 is the
noise power.

2.3. Caching and Offloading Models

In this paper, we assume that any MD m has a delay-sensitive task denoted as £, = {dm, ¢, T}
at each timeslot, where d, is the data size of task of MD m, ¢;, is the number of CPU cycles required to
complete one-bit task, and 7,;®* is the maximum task processing time (delay) of MD m.

Figure 2 illustrates the caching and offloading models. At each timeslot, BSs precache the tasks
for processing at the next timeslot. When MD m is associated with BS i, it first checks whether the
associated BS has cached the corresponding task. If } ;.7 u,,; = 0, the task of MD m is calculated
by itself, e.g., MD 1 in Figure 2; if x,, jyy, ittyy; = 1, the task of MD m can be directly calculated at
its associated BS i and the results will be fed back from BS i to MD m, e.g., MD 2 in Figure 2; if
X,iYm,i(1 =Yy ;)b 7 = 1, the task of MD m is offloaded from its associated BS i to another auxiliary
BS i # i for computing through a wired link, e.g., MD 3 in Figure 2; if x5, iy i¥/,, iU, ; = 1, the task of
MD m can be directly calculated at auxiliary BS 7 # i, e.g., MD 4 in Figure 2; if X i(1 = Y i) Ui = 1,
the task of MD m will be offloaded to its associated BS i for computing, e.g., MD 5 in Figure 2; if
i (1= Ym,i) (1 = Yy )14y, 7 = 1, the task of MD m first needs to be offloaded to its associated BS i, and
then it is transmitted from this BS to another auxiliary BS 7 # i for computing through a wired link, e.g.,
MD 6 in Figure 2; if Xy i(1 — Yy, ) Y, 7 ; = 1, the task of MD m can be directly calculated at auxiliary
BSi # i, e.g., MD 4 in Figure 2.

1200 I2|7|I4I|II |3|5I6I|2I3I41|

. MD i [4]

A — offloading with uploading —--—> nonoffloading
— offloading without uploading & caching server
—>cooperative offloading with transimission = computing server

Figure 2. Caching and offloading Models.
2.3.1. Local Computing

If } je7 uy; = 0 is satisfied, the task of MD m should be executed locally, and the processing delay
and energy consumption are respectively given by

loc = Cpdum /floc (2)

loc _ gcm m( loc)zl (3)
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where fI°¢ is the computing capacity of MD m, and ¢ is an energy-consumption coefficient depending
on the hardware architecture.

2.3.2. Task Transmission

I 2,1 (1= Yn,i) (L= Yy )tk 7 = 1 0T Xy i (1 — Yy i) thy,i = 1 is satisfied under i # i, the task of
MD m should be respectively uploaded to BS i or i for execution through NOMA manner. Then, the
uploading delay and energy consumption of MD m are respectively given by

t
Tnis = Ziel ZkelC Zm,i,kdm /rm,i,k/ 4)
€ = P ©)

In addition, if X, (1 = Ypi) (1 = Y, 1) thy 7 = 10T Xy iYim,i(1 — Y, 7)1y, 7 = 11is satisfied under 7 # i,
the task of MD m should be transmitted from its associated BS i to auxiliary BS 7 through a wired link,
and the corresponding delay is given by

h = d,, / rPh, (6)

where P! is the backhualing rate between any two BSs.

In this paper, we mainly concentrate on the energy consumption of MDs but not the energy
consumed by BSs. In addition, the downlink transferring delay of results is often ignored since they
are fairly small [30].

2.3.3. Edge Computing

When MD m executes its task at BS i, the task processing time at this BS can be given by

T;Z)fie = Cmdm/fm,ir (7)

where f,, ; is the computing capacity allocated to MD m by BS i.
Then, the total time used for processing the task of MD m can be given by

T =Y ier ((1 = Yiez i) T
+ 2, (1= Ymi) Yoger giy Ymi(1— Y2 T
+ % (1= Vi) Y giy i (1= Y ) T
+ X, (1= Yim, ) Z{ez\{i} Uy i Tt
+ XYt g iy Ui (L= Y d) T
+ XmiYm,i Z{el\{i} Ui Ty

A X (1= Yo i (Tt + Ty )

®)

exe
+ Xm,iYm,i%m,i Ty i ) .

On the right side of equality sign in (8), the 1st item represents the local executing time; the 2nd item
is the time used for uploading the task from MD m to the associated BS i that doesn’t cache this task
and further transmits it to auxiliary BS for computing; the 3rd item is the time used for transmitting
task from the associated BS i to another auxiliary BS, where these two BSs don’t cache this task; the
4th item is the time used for executing the task of MD m at an auxiliary BS, where the associated BS
doesn’t cache this task; the 5th item is the time used for transmitting task from the associated BS i to
another auxiliary BS, where the associated BS caches this task but the auxiliary BS doesn’t; the 6th item
is the time used for executing task of MD m at an auxiliary BS, where the associated BS caches this
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task; the 7th item includes the time used for transmitting task from MD m to the associated BS i that
doesn’t cache this task, and the time used for executing the task of MD m at this BS; the 8th item is the
time used for executing the task of MD m at the associated BS i that caches this task.

Then, the total local energy consumption used for processing the task of MD m can be given by

en =) et ((1 = Yliex tmi) e

+ Xom,i (1 - ]/m,i) Zfel’\{i} um,f(l - ym,f) E’;rl;s )

+ Xm,i (1 - ym,i) um,iggf) .

On the right side of equality sign in (9), the 1st item represents the local executing energy
consumption; the 2nd item is the energy consumption caused by offloading the task from MD m to its
associated BS i that further transmits this task to auxiliary BS i # i for computing; the 3rd item is the
energy consumption caused by transmitting task from MD m to the associated BS i that doesn’t cache
this task.

3. Problem Formulation

Until now, we can formulate a problem of minimizing local energy consumption at each period.
Specifically, under the constraints of latency, computing resources, caching capacity, the number of MDs
associated with each BS, and the number of MDs associated with each subchannel, we jointly optimize
the edge computing resource allocation, subchannel selection, device association, offloading and
caching decisions to minimize the energy consumed by MDs in cache-assisted vehicular NOMA-MEC
networks. Mathematically, it is formulated as

Pl: min ghot
X,Y,U,ZF ZmeM m

st. Cp: Tt < 1y, Vm € M,
Cy: Zid Xpi=1,Yme M,

C3:Y s Y pex Zmik < LVmeM,

Cat) iens dner Zmik SKVieT,

Cs: ZieI Ui < 1,Ym e M,

Co: Xy € {0,1},¥m € M,Vi € T, (10)
Cy:iymi€{0,1},Vme M,VieZ,

Cg:zpir €{0,1},Vme M,Vie I,Vk € K,

Co:uyi€{0,1},Vme M,Viec I,

C10: Y e pg Ymithm < 0, Vi € T,

Cip Zme/\/l ZieZ Zmik < P Vk e K,
BS \/:
Cip: ZmeM Upifmi < fio Vi€,

where F = {f,,; [Vm € M, Vi € T }; the constraint C; gives the maximum task processing time of MD
m; Cp and Cq indicate that any MD m just can select only one BS; C3 and Cg indicate that any MD m
can occupy at most one subchannel; C4 and Cg mean that the number of MDs selecting any BS who
need to upload tasks should be less than or equal to the number of subchannels; Cs and C9 mean that
any MD m can select at most one BS to execute its task; C; and Cpg indicate that the data size of tasks
cached at BS i doesn’t exceed the caching capacity ¢; of this BS; Cg and C;; show that the number of
MDs selecting a subchannel cannot exceed its upper limit; C; and Cjp reveal that the total computing
capacity allocated to MDs by BS i cannot exceed the computing capacity of this BS.
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4. Algorithm Design

As previously mentioned, the optimization problem P1 refers to minimizing local energy
consumption within a period. In view of this, we adopt the DRL algorithm to solve it. DRL is based
on MDP, which implements the environment-based output of agent policy in MDP through neural
networks, maximizing certain rewards. Considering that the overestimation of some conventional
DRL algorithms (e.g., DON and DDPG), the TD3 algorithm has been widely advocated [31,32].

Evidently, the problem P1 has both continuous and discrete variables and it is in a highly-complex
form, a simple map between actions and actual policies in a conventional TD3 algorithm cannot be
well applied to this problem. Considering that too large action space will cause the TD3 algorithm to
fail to search for correct actions and thus fail to converge, we develop an effective TD30 algorithm
integrating with the AT algorithm to solve the problem P1.

Considering that the optimization problem P1 needs to be tackled within a period, in order
to apply TD3O to the problem P1, such a period is divided into T timeslots and denoted as 7 =
{1,2,---,T}. Furthermore, the problem of joint computing offloading, task caching and resource
allocation is described as a MDP, the state space, action space and reward function are defined as
follows.

O State space: At each timeslot, the state space contains the information used for decisions made
by the network. Here, the state s; at timeslot t can be denoted as sy = {D (t +1),Y (¢) }. The detailed
definitions can be found as follows.

o D(t+1) = {dn(t+1)|Vm € M} are the standardized data sizes of tasks of MDs at timeslot

t+ 1, where .
2o A (t) —d™" (1)
dm (t) T gmax (t) — Jmin (f) ’

(11)

d™in (t) is the minimum data size of tasks of all MDs at timeslot ¢, and 4™ is the maximum data
size of tasks of all MDs at timeslot .

o Y(t) = {fm (t) |Vm € M} are the task caching decision factors at BSs at timeslot t, where 7, €
[0,1].

® Action space: At each timeslot, the action space refers to the decisions made by the
network according to the state s;. The action a; at timeslot t can be denoted as a; =
{X(t),Y(t+1),Z(t),0(t),F(t)}. Specifically,
e X(t) = {Zm (t) |Vm € M} are the association decision factors of MDs at timeslot t, where %, €
0,1].
. L_{(t]—i— 1) = {Jm (t+1)|Vm € M} are the caching decision factors at timeslot t for the next
timeslot.
Z(t)={z
z; € [0,1].
U(t) = {m
0,1].
o F(t) = {fu(t)|Vm € M} are the computing resource allocation factors of MDs at timeslot ¢,
where f,,, € [0,1].

(t) |Vi € I} are the subchannel allocation decision factors of BSs at timeslot f, where

=
I |

m (t) [Vm € M} are the offloading decision factors of MDs at timeslot t, where i, €

It is noteworthy that the dimension of the above-mentioned state and action spaces have been
greatly reduced compared to the actual ones. The actual state and action spaces can be achieved by
executing AT algorithm in the following parts.

® Reward: Considering that the goal of problem P1 is to minimize local energy consumption,
and the constraints C; and Cyg cannot be strictly satisfied in the DRL-based iteration procedure, the
reward w; at timeslot ¢ is given by

Wy = —w ZmEM e (1) — wap (1) — w3 (1), (12)
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where ¢(t) = ¥,,,c vy max(Tit(t) — T, 0) is the penalty function added for guaranteeing the constraint

Ci, and ¢(t) = Yiegmax(Luea Ymi(t)dm(t) — 0;(£),0) is the penalty function introduced for
guaranteeing the constraint Cjg; w is the energy-consumption discount factor; w, and w3 are penalty
coefficients.

When the network obtains action a; according to the state s;, the state space will obtain the
next state s;;1 according to the action a;. Specifically, the task caching decisions of BSs can be
directly achieved from Y (f 4 1) in a;. Therefore, the total return of minimizing long-term local energy
consumption within T timeslots can be given by

R= ZtET Ywt, (13)

where 7 is the reward discount factor satisfying v € (0,1).

4.1. TD30O Algorithm

TD3 algorithm is an actor-critic-based framework, it comprises the policy (u) network, critic (Q)
network and their corresponding target networks, and updates the network parameters using gradient
algorithms. It is characterized by using two critic networks and two critic target networks in the
design of critic networks. The TD3 algorithm is often divided into two parts consisting of experience
collection and training. In the phase of collecting experience, new action a; can be generated by adding
random Gaussian noise into the output of policy network at the state sy, i.e.,

ar = p (s¢, M) + > (14)

where 6# is the parameter of policy network, and &2 is the additive Gaussian noise.

After that, the environment is rewarded with w; and the next state s;;1 can be achieved according
to the state and action (st,4;). To enable the algorithm to obtain better decisions through past
experience-assisted training, we put the quadruple (s, a¢, wy, s¢11) into the experience replay buffer as
a historical experience. In the training process, a certain number of quadruples are randomly selected
from the experience replay buffer for training. Specifically, the training process can be divided into the
following steps.

4.1.1. Training Policy Network

The training process of policy network is shown in Figure 3. In the training phase, N quadruples
are extracted from the experience replay buffer and denoted as V' = {1,2,-- - , N}. For any quadruple
n € N, the policy network outputs an new action a’, = p (s,,0") according to the state s,. It
should be noted that the policy a’, is different from a, existing in the experience replay buffer.
After s, and a’, are inputted into any critic network (e.g., critic Q; network), such network outputs
Gn = Q1 (S, pt (50, 0"),091), where 691 is the parameter of the critic Q; network. After achieving all
qn, their mathematical expectation is given by

J(0") =E Qi (8,n(8,01),0%)], (15)
where § = {s;|n € N'}. Then, the policy gradient of function | with respect to 6/ can be given by
Vo] =E |V4Q1 (8,4,6%) Voup (S,0")], (16)

where A = {a,|n € N'}.

Significantly, the calculated gradient requires gradient clipping, which can avoid skipping the
optimal solution because the gradient is too large. The calculated policy gradients will be used to
update the parameters of the policy networks. We assume that the learning rate of the policy network
is B, and Adaptive moment estimation (Adam) is used for achieving optimal 6¥.


https://doi.org/10.20944/preprints202310.0699.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0699.v1

10 of 21

.............

3

Figure 3. Training policy network.

4.1.2. Training Critic Network

Figure 4 shows the training process of the critic network. During the critic network training,
the policy at the next time is first estimated through the policy target (1) network, ie., a’y =
1= (s'y, 01 ) + 62, where 62 is the clipped additive Gaussian noise. Then, the action a’, and the state
s’y are used as the input of the critic target (Q; ) network and critic target (Q, ) network, where 0%
and 0 are their parameters. After that these two networks output 4, ; and §,,» respectively. At
the same time, the action a, and the state s, are used as the input of the critic Q1 network and critic
Q> network, where 21 and 692 are their parameters. After that these two networks output g,,; and
dn,2- Then, the approximation of Q value is §, = 1, + Y§, achieved using Behrman equation, where
Gn = min (§,1,§n2). Atlast, for all §,, according to the theorem of mean-squared error (MSE), the
expectation function of squared loss between Q4 (S LA, GQl) and Q is

Ly (6%) = 05E[(Q1 (8,4,6%) - Q)z], (17)

and the expectation function of squared loss between Qs (S, A, 092) and Q is given by

Lo (6%) = 05E[(Qs (S,4,6%) - Q)Z], (18)

where Q = {Gu|n € N'}. Then, the gradient of the loss function L; (§91) with respect to the parameter
0% is
Voo L1 = E[(Q1 (8,4,6%) = Q) V0,01 (S, 4,6%)], (19)

and the gradient of the loss function L, (692) with respect to the parameter 622 is given by

Voo Lo = ]E[(Qz (5, A, 992) - Q) V00 Q2 (s, A, 9Q2)]. (20)

Similar to calculating the policy gradient, the gradient clipping needs to be performed after
calculating the gradients using (19) and (20). In addition, B€ is the learning rate of the critic network,
and the parameters of the two critic networks are updated using the Adam algorithm. Certainly, the
parameters of critic target networks also need to be updated using soft update manner, i.e.,

o =AM+ (1—A)0", (1)
0% =109 + (1-1)0%, (22)
0% =A0% + (1-1)6%, (23)
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where A is the learning rate of target networks.

state action reward next state +—

q|

Figure 4. Training critic network.

It is noteworthy that a lower network updating frequency is adopted in this paper. We assume
that the update interval of the critic network is £ and the update interval between the policy and
critic networks is tP!i. The critic networks are trained many times to ensure the stability of Q value.
After that the policy network can be updated. The detailed procedure of TD3O algorithm can be
summarized in Algorithm 1, where t™“P is the maximal number of epochs.

Algorithm 1: TD3-based Offloading (TD30O)

1: Initialization: 091, 992, ¥, 091 , 9Q2 , g1~ , #step = (), yepoch —
2: While tePoch < pmep

3: Lett =0, state s; and reward R = 0.

4: Whilet< T

5: Generate action a; using (14).

6.

7

8

Achieve actual action by executing Algorithm 2.
Calculate reward w; using (12) and obtain the state s, 1.

If 15tP >
9: Replace the previous quadruple with (s¢, a¢, Wy, S41)-
10:  Else
11: Put the quadruple (s¢, a¢, wt, s141) into the queue.
12:  EndIf

13:  Update state s; = s;7.

14:  If t5%P%tt = 0 and 5P > N

15: Extract N quadruples for training.

16: For any sample n, Q;" and Q, networks output §,,; and
17: {n 2 respectively, and obtain the minimum value §,.

18: Calculate L(GlQ ) and L(Gg ) using (17)-(18) respectively.
19: Calculate Q gradient using (19)-(20), and clip it.

20: Find #Q" and 02 using Adam optimizer.

21:  If £5PotPH = 0

22: Calculate g through Q1.

23: Calculate policy gradient using (16), and clip it.

24: Find 6" using Adam optimizer.

25: EndIf

26: Calculate 891,02 and 6 using (21)-(23) respectively.
27:  EndIf

28: R = R+ yws.

29: P =P 4 15t =t 4 1.
30: EndWhile

31: tepoch _ repoch 41,

32: EndWhile
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4.2. AT Algorithm

In order to apply TD3O algorithm to solving the problem P1, it is necessary to convert the
achieved continuous action a; = {X (t),Y (t+1),Z(t),U(t),F(t)} into discrete one [33]. To this
end, we consider the following transformations for a;.

4.2.1. The Discretization of Device Association Array

In X = {%,, |Vm € M}, %, is the non-integer association index of MD m, which is the continuous
action achieved by TD3 algorithm. Then, it is converted into an integer form, i.e.,

{xm,ceﬂ(mm) =1, if I%, # 0, o

X1 = 1, otherwise,

where ceil(b) is an upward rounding function with respect to b. Such a transformation can ensure that
each MD can be associated with one BS.

4.2.2. The Discretization of Task Caching Array

In Y, 7 represents the non-integer caching index of MD m, which is the continuous action
achieved by TD3 algorithm. Since each MD can store its task at all BSs, there exist 2! storage options
for it. Consequently, in order to convert i, into a discrete form, we first need to perform

I = floor (2'7) , if 2'7 #0,

Jm = 0, otherwise,

(25)

where floor(b) is a downward rounding function with respect to b. Then, in order to achieve the binary
caching index, the decimal §;;, needs to be converted into a binary number of I 0-1 digits, which is
given by bin(#,,). In it, bin(b) is a function used for calculating the binary number of decimal b. Then,
Ym,i = bin(7);, where bin (7, ); represents the i-th digit of the binary number bin(,,).

4.2.3. The Discretization of Task Offloading Array

In U, iy, is the non-integer offloading index of MD m, which is the continuous action achieved by
TD3 algorithm. Considering that each MD can offload its task to at most one BS, 7, is converted into
an integer form, i.e.,

{um,ceﬂ(mm) =1, if Iy, #0, -

uy; = 0,Vi € Z, otherwise.

4.2.4. The Discretization of Subchannel Allocation Array

In Z, z; is the non-integer index of the subchannels allocated by BS i to its associated MDs who
need to offload tasks, which is the continuous action achieved by TD3 algorithm. To achieve the integer
form of z;, we first need to perform

(27)

A

2; = ceil (C (Ml’, Kz') Zz') , if C (Mz'r Ki) Z; 75 0,
2; = 1, otherwise,

where M; is the number of MDs who are associated with BS i and need to offload tasks; K; is the
number of available subchannels at BS i; C (M;, K;) = fac(K;) /fac(M;)fac (K; — M;) is a function with
respect to M; and K;j, and used for calculating the number of feasible subchannel allocation policies
between M; MDs and K; subchannels at BS i; fac(b) is a factorial function with respect to b; M; < K;
shall be satisfied.
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Then, we assume that Z; = {1,2,--- ,C(M;,K;)} is the set of C (M;, K;) feasible subchannel
allocation policies between M; MDs and K; subchannels at BS i. After that, the subchannel allocation
policy Z; in the set Z; is selected according to the equation (27). It is noteworthy that C (M;, K;) feasible
subchannel allocation policies are generated in advance. That is to say, in the policy Z;, we can easily
know the utilized indices of K; subchannels for M; MDs. According to these rules, we can easily find
the subchannel allocation index Z.

4.2.5. The Transformation of Computing Resource Allocation Array

InF = {f, |[Vm € M}, fi represents the computing resource score of MD m at target BS that
executing its task. If } ;- u,, ; = 1 is satisfied between MD m and BS i, according to the proportional
allocation of computing resources, the computing resources allocated to MD m by BS i can be given by

fmi = Hm,iﬁBSfm/zjeMuj,ifj- (28)

algorithm can be effectively converted into an actual decision, which is summarized as Algorithm 2.

Algorithm 2: Action transformation (AT)

1: Foreach MD m € M

2:  Achieve MD association matrix X using discretization rule.
3:  Achieve task caching matrix Y using discretization rule.

4:  Achieve task offloading matrix U using discretization rule.
5

6

: EndFor
:ForeachBSiecZ
7: Returns the set KC; of available subchannels and the set M; of
offloading MDs.
9: If Mi > Ki
10:  M; — K; associated MDs are randomly selected, disassociated
11: and execute tasks locally.
12: EndIf
13: Achieve subchannel allocation matrix Z using discretization rule.
14: EndFor
15: For each MD m € M
16: If ZiEI Ui = 1

&

17: Iff, =0

18: Assign small enough computing capacity to MD m to avoid
19: zero division.

20: Else

21: Allocate computing resources to MD m using (28).

22:  EndIf

23: EndIf

24: EndFor

4.3. HA

To solve the problem P1 in a non-iterative manner, we design an effective heuristic algorithm,
which is summarized in Algorithm 3. In such an algorithm, in order to reduce the uplink transmission
time and energy consumption, some MDs are associated with the nearest BSs. To guarantee time
constraints, a part of MDs are disassociated with BSs without sufficient subchannels, and execute tasks
by themselves.
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Algorithm 3: Heuristic Algorithm (HA)

1: Initialization: energy consumption g%t = 0.

2: Each MD selects (is associated with) the nearest BS.
3:ForeachBSicZ

4: If M; > K;

5. M; — K; associated MDs are randomly selected, disassociated

6 and execute tasks locally.

7: EndIf

8: Randomly select the tasks of MDs associated with BS i for caching
9:  until the caching space is full.

10: EndFor

11: Fort € T

12: Randomly select a target BS for each MD without cached task.
13: Randomly allocate subchannels to MDs associated with each BS.
14: If subchannels are insufficient

15:  Extra MDs are randomly selected to execute tasks locally.

16: EndIf

17: Proportionally allocate computing resources to MDs associated with
18: each BS according to the CPU cycles required by tasks.

19: Calculate the total local energy consumption &.

20: gt = glot g,

21: EndFor

5. Algorithm Analysis

5.1. Computation Complexity Analysis

In this section, the computation complexity of proposed algorithms are analysed as follows.
Proposition 1: The computation complexity of Algorithm 2 is O (MIK) at the worst case.

proof: In Algorithm 2, the computation complexity of Steps 1-5 is O (M), the computation
complexity of Steps 6-14 is O (MIK) at the worst case, and the computation complexity of Steps 15-24
is O (MI). In general, the computation complexity of Algorithm 2 is O (MIK) at the worst case. O
Proposition 2: The computation complexity of Algorithm 1 is O ( max ( ZIL:QO lpleplQJrl, v,
1/11” lply +1)) at each timeslot, where L* is the number of layers of the policy network, L2 is the number of

layers of the critic network, 1ply is the number of neurons at the I-th layer of the policy network, and 1plQ
is the number of neurons at /-th layer of the critic network.

proof: In Algorithm 1, the computation complexity is mainly related to the action transformation,
the calculation of reward and task processing time, and the structure of the neural network. As
previously mentioned, the computation complexity of the action transformation should be O (MIK)
at the worst case. Seen from the formulas (8) and (12), the computation complexity of the calculation
of reward and task processing time is O (MIK).

In Algorithm 1, there exist four critic networks and two policy networks. We assume that the
structure of the policy network and its target network is the same, and the structure of the two
critic networks and its target network is the same. Then, we can easily deduce that the computation
complexity of establishing policy networks is O( ZlLio lpf lply +1), and the computation complexity of
establishing critic networks is O ( ZIL:QO 1/)1(21[11%1) . Therefore, the computation complexity of establishing
neural networks is O (max ( Eszo l/JlQl/JZQ+1, R AR RS 1))

Since the computation complexity of establishing neural networks is much higher than the
one of other operations in Algorithm 2. In general, the computation complexity of Algorithm 2 is
O (max ( ZZL:QO l/JlQlPlQ_'_l, Yy 1)) at each timeslot. O
Proposition 3: The computation complexity of Algorithm 3 is O (MI) at each timeslot.

proof: In Algorithm 3, the computation complexity of Step 2 is O (MI), the computation
complexity of Steps 3-10 is O (I), the computation complexity of Steps 12-16 is O (M), the computation
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complexity of Steps 17-19 is O (MI). In general, the computation complexity of Algorithm 3 is O (MI)
at each timeslot. O

5.2. Convergence Analysis

Since Algorithm 2 is a part of Algorithm 1 and Algorithm 3 is non-iterative, we just need to
concentrate on the convergence of Algorithm 1. In detail, it is established as follows.
Theorem 1: Algorithm 1 can be guaranteed to converge after finite iterations.

proof: In Algorithm 1, the neural networks are updated by the gradient descent method used in
the Adam optimizer. It utilizes the gradient information of the functions J(6*), L1(691) and L,(92)
to guide the updating directions of the parameters 8#, 891 and 692 so that the values of objective
functions can reach the optimal or suboptimal. When these values tend to be stable, the parameters 6#,
091 and 022 also tend to be stable. At this time, Algorithm 1 is deemed convergent. Q

6. Performance Evaluation

In order to verify the performance of the designed algorithms, we introduce the following
algorithms for comparison.

DDPG-based Offloading (DDPGO): DDPG is a classical DRL algorithm. Compared with the
TD3 algorithm, the DDPG algorithm reduces a critic network and a critic target network. In addition,
both the critic network and policy network are updated at each timeslot in the DDPG algorithm. In
this paper, the DDPG algorithm used for solving the problem P1 is named as DDPG-based offloading
(DDPGO) algorithm.

Completely Offloading (CO): In CO algorithm, the task of each MD is offloaded to the nearest
BS for computing. Such BS proportionally allocates the computing capacity to its associated MDs
according to the CPU cycles required by the tasks of these MDs.

Completely Local Executing (CLE): In CLE algorithm, the tasks of all MDs can be executed by
themselves.

In this paper, we consider that each BS is deployed in a non-overlapping area with a radius of
400 m, and the power spectral density is -174 dBm/Hz. In addition, I = 3, f1°° = 1 GHz, f; = 8 GHz,
W = 40 MHz, K = 4, d;y = 2 ~ 5 MB, ¢, = 50 cycles/bit, & = 107, 7, = 10s, p = 2, ¥ = 1 Gbps,
pm = 23 dBm, x = 80000, N = 128, v = 0.94, and A = 0.04. In the DRL algorithm, we consider that
both the policy network and the critic network are composed of three-layer fully connected neural
networks, where the numbers of neurons of three-layer neural networks in the policy network are
300, 200 and 128 respectively, and the corresponding target network has the same structure with this
policy network; the number of neurons of three-layer neural networks in the critic network are 300,
128 and 32 respectively, and the corresponding target network has the same structure with this critic
network. Significantly, the first-layer fully connected neural network of the policy network and the
critic network utilizes the Rectified Linear Unit 6 (RELU6) suppressing the maximum value as the
activation function, and other layers use RELU as the activation function.

Figure 5 shows the convergence of TD30 and DDPGO algorithms. As shown in Figure 5, DDPGO
may have a higher convergence rate than TD3O, but the former may have worse convergence stability
than the latter. The reason for this may be that the critic network and the policy network are updated
synchronously in DDPGO. In DDPGO, the network parameters are updated in each training, which
speeds up the convergence. Synchronously, the policy network parameters are updated in the training,
which results in the instability of the long-term reward value and training bias. As we know, TD30
is composed of two sets of critic networks. Consequently, it can be trained in a relatively stable Q
value so that the algorithm can converge stably. In the simulation, it is also easy to find that TD30 may
achieve a more stable and better solution to the problem P1 than DDPGO in general.

doi:10.20944/preprints202310.0699.v1
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Figure 5. The convergence of DDPGO and TD3O algorithms.

Figure 6 shows the impact of training interval tP! on the convergence of TD3O algorithm. As we
know, under the same number of iterations, a larger tP can effectively reduce the overall training time
of the network. However, it will reduce the total learning times of the policy network and its target
network. As illustrated in Figure 6, the convergence rate of TD30 may decrease with P! in general.
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Figure 6. The impact of training interval P! on the convergence of TD30 algorithm.

Fig. 7 shows the impacts of learning rates B2 and B# on the convergence of TD30 algorithm. As
we know, when the learning rate B9 of the critic network increases, the parameters of such network
will be updated at a larger scale, which speeds up the convergence of TD30. However, it may lead to
the failure of stable evaluation of environmental information, which weakens the convergence stability
of TD3O0. As illustrated in Figure 7, when ,BQ = 0.001, the convergence rate of TD3O is relatively high,
but the achieved long-term reward dramatically fluctuates at this moment. On the other hand, the
learning rate B/ of the policy network can affect the optimization capability of TD3O. Specifically, a
lower B# means a smaller amplitude of updating the policy network, which is better for finding better
solutions. Seen from Figure 7, TD30 can achieve better long-term reward when 2 = 0.0001 and
B = 0.0001.
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Figure 7. The impacts of learning rates 89 and B* on the convergence of TD30O algorithm.

Figure 8 shows the impact of the number of MDs on the long-term local energy consumption eMP
where eMP

7

is the sum of total local energy consumption in T timeslots. In general, the eMP increases
with the number of MDs since more energy consumption is used for tackling more tasks of more
MDs. Since CLE executes tasks in maximal computation capacity, it may achieve the highest eMP
among all algorithms. In CO, MDs are associated with the nearest BSs, which may result in a relatively
imbalanced load distribution. Then, some overloaded BSs cannot provide good services for their
associated MDs because of limited resources, which may result in high éMP. Consequently, CO may
achieve higher éMP than other algorithms excluding CLE. As illustrated in Figure 8, TD30 may achieve
lower éMP than DDPGO since the former can mitigate the overestimation existing in the latter well.
Although HA lets MDs be associated with the nearest BSs, some MDs associated with overloaded BSs
will disassociate and execute tasks locally. Such an operation may result in relatively low eMP.
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Figure 8. The impacts of the number of MDs on the long-term local energy consumption eMP

Figure 9 shows the impacts of the number of MDs on the long-term reward (R). As illustrated in
Figure 9, R may decrease with the number of MDs since more MDs result in higher energy consumption.
Since both TD30 and DDPGO try to maximize the reward, but other algorithms are not the case, they
may achieve higher R than other algorithms in general. Since TD30 may achieve lower éMP than
DDPGO, the former may achieve a higher R than the latter. In view of the unstable convergence of
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DDPGO, its reward may dramatically fluctuate. Since CLE may achieve the highest e"P among all
algorithms, it may achieve the lowest R in general. In addition, CO may achieve a lower R than HA
since the former consumes more energy than the latter.
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Figure 9. The impacts of the number of MDs on the long-term reward R.

Figure 10 shows the impacts of the size of caching space of each BS on the relative long-term
energy consumption ;¢ denoted as the ratio of €MP achieved by an offloading algorithm to the one
attained by CLE. Evidently, a smaller #* means a higher energy gain caused by offloading tasks. As
illustrated in Figure 10, besides DDPGO and CO, 7° in other algorithms decreases with the size of
caching space of each BS in general. The reason for this may be that a larger caching space can hold
more tasks to reduce the transmission energy consumption. However, as revealed in Figure 5 and
Figure 9, the unstable convergence of DDPGO may result in dramatically fluctuating performance.
Therefore, 7° in DDPGO may be evidently fluctuating. In addition, #° in CO may not change with the
size of caching space of each BS since it doesn’t utilize caching space. By minimizing the eMP, TD30
and DDPGO may achieve a lower 7° than other algorithms in general. In addition, TD3O may achieve
a lower 77* than DDPGO since the former mitigates the overestimation existing in DDPGO. Seen from
Figure 10, CO may achieve the highest #* among all algorithms since it has no sufficient resources to
provide for MDs associated with overloaded BSs.
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Figure 10. The impacts of the size of caching space of each BS on the relative long-term energy
consumption #°.
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Figure 11 shows the impacts of the size of caching space of each BS on the relative long-term
reward ;7R denoted as the ratio of long-term reward achieved by an offloading algorithm to the one
attained by CLE. Evidently, a smaller #R means a higher reward gain caused by offloading tasks. As
illustrated in Figure 11, #R in TD30 and HA decreases with the size of the caching space of each BS
in general. The reason for this may be that a larger caching space can hold more tasks to reduce the
transmission energy consumption, and then bring a higher reward. However, due to the unstable
convergence of DDPGO, #R in DDPGO may be fluctuating. Moreover, 7R in CO may not change with
the size of caching space of each BS since it doesn’t utilize caching space. By minimizing the e"P and
thus increasing reward, TD30 and DDPGO may achieve a lower 71X than other algorithms in general.
In addition, TD30 may achieve a lower 7R than DDPGO since the former mitigates the overestimation
existing in DDPGO. Seen from Figure 11, CO may achieve the highest 7% because of the high energy
consumed by MDs associated with overloaded BSs.
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Figure 11. The impacts of the size of caching space of each BS on the relative long-term reward 7 R.

As seen from the above-mentioned simulation figures, although HA is a non-iterative algorithm,
it may achieve better performance than DDPGO sometimes. In addition, it may always achieve fairly
better performance than CO and CLE.

7. Conclusion

In this paper, the problem of minimizing the local energy consumption is concentrated in
the cache-assisted vehicular NOMA-MEC networks under the latency and resource constraints,
which refers to joint optimization of the computing resource allocation, subchannel selection, device
association, offloading and caching decisions. To solve the formulated problem, we developed an
effective TD30O algorithm integrating with the AT algorithm, and designed HA simultaneously. As
for the designed algorithms, we give some analyses of the convergence and computation complexity.
Simulation results show that such TD30 may achieve local lower energy consumption than several
benchmark algorithms, and the HA may achieve lower local energy consumption than the CO and
CLE algorithms. Future work can include power allocation and secure communications.
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