Pre prints.org

Brief Report Not peer-reviewed version

Precision Location Keyword
Detection Using Offline Speech
Recognition Technique

Mohsin Imam ~ and Gaurav Gupta
Posted Date: 11 October 2023
doi: 10.20944/preprints202310.0690.v1

Keywords: Keyword Detection; Audio Models; Speech Processing

E E Preprints.org is a free multidiscipline platform providing preprint service that
E_-.. ; is dedicated to making early versions of research outputs permanently
E available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3044639

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 do0i:10.20944/preprints202310.0690.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Brief Report
Precision Location Keyword Detection Using Offline
Speech Recognition Technique

Mohsin Imam ** and Gaurav Gupta 2

! Department of Computer Science, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi,
India

2 Institute of System Studies & Analysis, Defence Research and Development Organization, New Delhi,
India

Correspondence: mohsinimam651@gmail.com

Abstract: This study introduces an original comprehensive system centered on identifying specific
terms that indicate a user's position, particularly the numerical values representing latitude and
longitude. This system not only detects these terms but also retrieves the corresponding numerical
data for accurate and efficient determination of locations. The importance of this endeavour
encompasses various fields, notably aiding offline operations of military personnel, who often lack
internet access. In such contexts, precise awareness of location is vital for strategic manoeuvres,
rescue operations, and navigating unfamiliar landscapes. The system empowers these personnel by
allowing them to extract exact location coordinates from spoken terms, thereby enhancing their
awareness even in challenging surroundings. Apart from its military utility, the project holds
broader significance. Teams responding to emergencies, personnel involved in disaster
management, and exploratory missions can all gain from this technology during disruptions in
communication infrastructure. Furthermore, travelers, adventurers, and outdoor enthusiasts can
utilize this system to accurately determine their positions in remote areas without relying on online
maps.

Keywords: keyword detection; audio models; speech processing

The methodology of this study revolves around the application of offline speech recognition
techniques to precisely transcribe spoken terms, achieving an accuracy of over 91.3% and a word
error rate of 4.2%. For sound recognition, the OpenAl Whisper model was employed, and a
conversion process from SpeechRecognition to AudioSegmentation was implemented, followed by
transforming the audio into .wav format, we have also developed the interface of the app to use it
efficiently using Streamlit. This was done to ensure seamless compatibility with the Whisper model
and uninterrupted audio input. By training the system to identify specific linguistic cues linked to
location, it achieves robust detection and extraction of relevant terms. This innovative approach
eliminates the necessity for constant internet connectivity, rendering it exceptionally useful in remote,
offline, and resource-limited situations.

Introduction

The process of speech recognition focuses on transforming spoken language into written text.
This endeavour enhances and promotes more human-like communication, as the goal of this
recognition method is to empower individuals to interact in a manner that is both instinctive and
proficient. Implementing continuous speech recognition is a complicated task due to its need to
handle various language features like word lengths, co-articulation effects, and casual
pronunciations, each unique to different voices. One effective solution involves employing language
models, particularly n-grams, to calculate the most accurate estimations for context-related
probabilities.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202310.0690.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0690.v1

Several reasons drive the need for adaptive interfaces incorporating speech recognition. Firstly,
it aligns with the natural way humans communicate. Secondly, traditional touch interfaces pose
challenges for composing lengthy texts. As a result, using speech recognition accelerates the
utilization and retrieval of information in software and applications, circumventing the use of
traditional input methods like keyboards, mice, and touchscreens. Progress in speech recognition
methods has opened up the possibility of applying this technology across numerous contexts,
particularly on portable gadgets. Individuals with unique requirements also experience advantages
from these systems. Those unable to employ their hands, as well as individuals with visual
impairments, utilize this innovation to communicate and manage diverse computer operations using
voice commands. Various Application Programming Interfaces (APIs) & Speech recognition models
are available to help incorporate voice recognition into software and applications. Examples include
Web speech, Java speech, Google cloud speech, and Bing speech, among others. Yet, none of these
enable offline recognition. This implies that users need an active internet connection, posing a
significant obstacle. This issue is particularly critical in countries like Brazil, where just about half of
the population has internet access (IBGE, 2014). This concern is notable due to the vital role voice
recognition plays in enhancing accessibility. Speech recognition without an internet connection is
computationally complex and needs lots of memory. Yet, this demand isn't restrictive, as modern
smartphones are getting stronger. To manage offline recognition, an effective approach involves
combining a neural network and a statistical model. This combo offers efficient processing and
memory use, helping save smartphone battery and other resource limited devices.

We've introduced a method that involves using the foundational structure of Whisper, a speech-
to-text library developed by OpenAL. In this approach, we've incorporated a technique for identifying
specific keywords that indicate the speaker's location. Through a dedicated algorithm, we extract
these keywords and decipher their associated values, which play a role in pinpointing where the
speaker is located. What sets our system apart is its complete offline functionality. This signifies that
the entire process, ranging from capturing the voice recording, extracting the keywords, to detecting
their corresponding values, operates independently without relying on external internet and other
network connections.

Speech-2-Text Models

Speech-to-Text (STT) technology allows you to turn any audio content into written text. It is also
called Automatic Speech Recognition (ASR), or computer speech recognition. Speech-to-Text is based
on acoustic modelling and language modelling. Note that it is commonly confused with voice
recognition, but it focuses on the translation of speech from a verbal format to a text one whereas
voice recognition just seeks to identify an individual user’s voice.

Speech-to-Text APIs offer versatile applications across various industries. They find significant
utility in call centres, enabling the analysis of customer data to detect trends. In banking, these APIs
enhance customer communications, ensuring security and efficiency. Automation benefits from STT,
enabling tasks like appointment scheduling and order tracking. Governance and security sectors
employ STT for customer identification and verification. In healthcare and media, STT drives voice-
driven medical reports, form filling, and content conversion into searchable text across TV, radio, and
social networks. In the table below, a list of some popular speech-2-text APIs/services are mentioned.

Table 1. Popular Text-2-Speech Model.

Company Name API Name Release Pricing Supported Accuracy/WER
Year Languages

Assembly Al AssemblyAI S2T 2020 Paid 9 16.8 (WER)

AWS AWS Transcribe 2017 Paid 75 18.42% (WER)

Wit.ai Wit Speech 2015 Paid 132 —

Microsoft Microsoft Azure Speech 2018 Paid 147 9.2% (WER)

https://doi.org/10.20944/preprints202310.0690.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0690.v1

3
Vosk VoskAPI 2020 Free 20 63.4% Acc.
Whisper OpenAl 2022 Free 99 114 % / 42 %
(best model-EN)
IBM IBM Watson S2T 2017 Paid 13 11.3%-36.4%
Google Google S2T 2017 Paid 119 16% (WER)

I have chosen Whisper by OpenAl for text-to-speech work due to its compelling combination of
factors that make it a strong choice in the field. Whisper, released in 2022, offers a substantial library
of 99 supported languages, which is one of the widest languages supports among the options listed.
Moreover, its accuracy, with the best model achieving an impressive 11.4% Word Error Rate (WER)
and an even more impressive 4.2% WER on English text-to-speech, makes it one of the most accurate
options available. Notably, Whisper is free to use, making it an accessible choice for individuals and
businesses looking for a cost-effective solution without compromising on quality. These factors, the
wide language support, high accuracy rates, and cost-effectiveness, justify using Whisper for text-to-
speech work for keyword detection. In addition to its extensive language support and impressive
accuracy rates, another key factor that influenced my choice of Whisper for text-to-speech work is its
efficiency in terms of resource utilization. The Whisper base model stands out for its minimal memory
and computational resource requirements, all while delivering a remarkable 4.2% Word Error Rate
(WER). This means that it not only offers top-tier accuracy but does so without imposing a heavy
burden on hardware or cloud resources, making it an efficient and practical choice for a wide range
of applications, from small-scale projects to large-scale deployments. Whisper's ability to strike a
balance between accuracy and resource efficiency further solidifies its position as a compelling choice
for text-to-speech tasks.

OpenAl Whisper

Whisper represents an automated speech recognition (ASR) system that has undergone training
using 680,000 hours of diverse and multilingual supervised data garnered from online sources. The
utilization of this extensive and varied dataset results in enhanced resistance against accents, ambient
disturbances, and specialized terminology. Additionally, this facilitates the conversion of speech into
text across numerous languages, along with subsequent translation into English. The models and
inference code are being made available through open-source to establish a base for creating practical
applications and to encourage continued exploration in the domain of resilient speech analysis.
Whisper's design is a straightforward end-to-end technique, realized as an encoder-decoder
Transformer model. The initial audio is divided into segments of 30 seconds each, transformed into
a log-Mel spectrogram, and fed into an encoder. Concurrently, a decoder is educated to foresee the
related textual description. This procedure includes distinct tokens that instruct the unified model to
execute various functions like recognizing languages, marking timestamps for phrases, transcribing
multilingual speech, and translating speeches to English.

Whisper's training used a broad dataset without focusing on any single one, causing it to not
outperform specialized models on the highly competitive LibriSpeech benchmark. However, when
examining Whisper's performance on various datasets without prior tuning, it proves notably robust,
displaying a 50% reduction in errors compared to those models. Around 33% of Whisper's audio data
is in languages other than English. It's assigned the task of either transcribing in its original language
or translating into English. This technique is particularly successful in mastering speech-to-text
translation, surpassing the state-of-the-art supervised method on CoVoST2-to-English translation
without specific training.

Whisper serves as a versatile speech recognition system. It's trained on an extensive range of
audio samples and functions as a multitasking entity, capable of executing tasks like recognizing
speech in multiple languages, translating spoken words, and identifying languages. The training
employs a Transformer model specialized in converting sequences, tackling diverse speech-related
duties like recognizing speech in different languages, translating spoken content, identifying spoken

https://doi.org/10.20944/preprints202310.0690.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 do0i:10.20944/preprints202310.0690.v1

language, and detecting voice activity. These roles are collectively encoded as a series of forecasted
tokens for the decoder, the training architecture of Whisper is shown in Figure 1. This approach
enables one model to replace multiple steps of a conventional speech processing setup. The multi-
task training technique involves distinct tokens used for indicating tasks or acting as goals for
classification.

Next-token prediction
h TR

(EN ||5&RBe[i 00 || The | quick brown
Encoder Block T
Encoder Block — Decoder Block

.

L

4 — Decoder Block

Encoder Block

Encoder Block

Cross attention

— Decoder Block

@ Sinusoidal
Positional Encoding ——— Decoder Block
/ 2x ConviD + GELU \ Learned @
Positional Encoding

sor || EN [[&RE: |} 00 i The | quick

Log-mel spectrogram Tokens in multitask training format

Figure 1. Base architecture of OpenAl’s Whisper.

Input audio is split into 30-second chunks, converted into a log-Mel spectrogram, and then
passed into an encoder. A decoder is trained to predict the corresponding text caption, intermixed
with special tokens that direct the single model to perform tasks such as language identification,
phrase-level timestamps, multilingual speech transcription, and to-English speech translation.

There are five model sizes, four with English-only versions, offering speed and accuracy trade-
offs. Below are the names of the available models and their approximate memory requirements and
relative speed.

Table 2. Various Whisper’s Model.

Size Parameters English-only model Multilingual model Required VRAM Relative speed

tiny 39M tiny.en tiny ~1 GB ~32x
base 74 M base.en base ~1 GB ~16x
small 244 M small.en small ~2 GB ~6X
medium 769 M medium.en medium ~5 GB ~2X
large 1550 M N/A large ~10 GB 1x

System Overview

https://doi.org/10.20944/preprints202310.0690.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0690.v1

We only used the Whisper base model because higher models require expensive computational
hardware that was not practical at the time of our experiment and because we seek to extract location
from the text, which typically doesn't encompass a large range of variety. Designing the location
keyword and its value extraction, designing the audio conversion to.wav/mp3 for continuous audio
recording, and finally designing the transcription of the recorded using model and passing it to get
ingested in the interface, are the three phases of high-level implementation, the system overview is
visualized in Figure 2 below.

Audiolata _/;ud io

"\ Converter

Activation
Keyword
Detector

Activator
Keyword
(Start / Ready)

Audio

\Record e[

[pdugnem)
oIprky ndu)

Output

@ openal
Speech2Text Engine
Whisper
[Base Model]

Visual Interface

Audio Qutput

Transcribad Keyviord
Text Extractor

Figure 2. System Overview.

Implementation

The system functions via a two-stage sequence launched by a recognition keyword, similar to
verbal cues such as "Start" or "Ready."” This keyword acts as the system's trigger, resembling the way
devices like Alexa or Google Home are activated. Upon triggering, the system comes to life. For
instance, if the keyword "start" is detected, it signifies the user's intent to initiate the system's audio
recording for location detection, starting the microphone to capture spoken content. For this purpose,
the SpeechRecognition library is employed, which facilitates audio recording from the microphone.
The library establishes a Recognizer object designed for speech recognition and integrates the
microphone as the primary audio source. During this phase, a status message is displayed, signifying
the commencement of recording. Subsequently, the system utilizes the listen() method within the
Recognizer object to capture audio inputs from the microphone. Once recording is complete, the
resultant audio is encapsulated within an AudioData object.

To align the recorded audio with the requirements of the Whisper model, which expects data in
byte or np.array formats, a conversion function has been implemented. This function translates the
AudioData object into either .wav or mp3 formats. The converted audio file is then channelled into
the transcriber model, facilitating its transcription in the text format which is further processed.

The audio output undergoes processing through the conversion model, specifically the base
model of Whisper developed by OpenAl. This formidable model boasts an impressive array of over
70 million parameters, meticulously trained across a staggering 680,000 hours of diverse multilingual
audio data. This extensive training equips the model with unparalleled proficiency in accurately
capturing spoken words, irrespective of nuances like word accent or other linguistic intricacies.

Initially, we collected transcribed text derived from a pretrained Whisper model, by sending the
received audio from the convertor function we discussed above. Subsequently, this textis then sent
to a specialized location keyword detection and extractor function named

https://doi.org/10.20944/preprints202310.0690.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0690.v1

extract_lat_long_from_text. The extracted latitude and longitude values were then seamlessly
presented on the Streamlit interface, offering users an insightful visualization.

The core of the implementation exist in in the main() function. Starting with the Streamlit
interface initiation titled "Latitude and Longitude Detection," accompanied by a descriptive sub
header, users are prompted to record their geographic coordinates. Using the whisper.load_model()
function, the Whisper model's base version is instantiated. Within the Streamlit interface, distinct
sections for latitude and longitude outputs are initialized. The sr.Microphone() context manager
establishes the microphone source, enabling the ongoing capture of user input. Within an infinite
loop, the code alertly awaits user input from the microphone. The identification of the activation
keyword "start" within user input serves as a initialization of the system. This prompts the system to
audibly signal initiation through a startup tone, subsequently commencing the recording of audio
data which is converted to a suitable format via a conversion function.

The extract_lat_long_from_text() function is then used to extract the transcription from the MP3
audio by utilizing the Whisper model's capabilities. Latitude and longitude data are precisely
determined from the transcribed text by the systematic extraction method. The retrieved geographic
information is displayed on the Streamlit interface, which has a stronger emphasis on user-friendly
visualization.

When there are problems with voice recognition or service outages, understandable error
messages are provided right away. The culmination of this dynamic implementation, which
combines audio recording, complex speech recognition, and exact position extraction, is an easy user
interface that makes it simple to get geographic data using speech input.

Sound Conversion Algorithm:

The function converted(audio) takes an audio object as input and performs a series of operations
aimed at converting the audio format, providing the outcome as a result:

1. Utilize the pydub library's AudioSegment.from_wav() function. The initial audio input is
converted into the WAV format using this function, which creates an audio_segment object.
Notably, the io.ByteslO() function is employed to handle and process the audio data produced
from the input object, which facilitates this transformation.

2. Use the audio_segment object's native export() method. With this technique, the audio is
preserved by having it stored as an MP3 file" The output format is wisely specified by setting
the format argument to "mp3," which is a directive.

3. Allow for the modification of the audio variable, requiring that it be updated to reflect the
location of the just created MP3 audio file ("check.mp3").

4. The method finally completes its work by supplying an enhanced audio variable that includes
the path to the freshly converted MP3 audio file. The transformed audio content can then be
accessed quickly thanks to this route.

Location Extraction Algorithm:

The following steps make up the algorithm for extracting latitude and longitude from text: First,
the text input is used to launch the method extract_lat_long_from_text(). The text is then broken up
into its component words, which are then kept in a list named words. Latitude and longitude are
then set up as two empty variables to contain the corresponding data. The program examines the
digit status of each word in the list, removes the period, and determines whether it is a number. The
method continues if the input is a number; else, it moves on to the following word. If latitude is
empty, the word is designated as the value for latitude inside the validation; if latitude already has a
value, the word is marked as the value for longitude inside the validation; and the loop is terminated
using the break statement. After correctly extracting the latitude and longitude data from the given
text, the algorithm concludes. It is crucial to notice that this technique assumes that the text comprises
latitude and longitude values separated by words, with latitude coming before longitude. If an
accurate longitude or latitude cannot be determined, the corresponding variables are left empty. The
step by step implementation of the extraction algorithm is given below.

https://doi.org/10.20944/preprints202310.0690.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0690.v1

ALGORITHM: "extract_lat_long_from_text’ functioning

1. Start the function extract_lat_long_from_text(text) with text as input.

2. Split the input text into individual words using the split() function, and store the result in the words

list.

3. Initialize an empty string variable latitude to store the latitude value and another empty string variable

longitude to store the longitude value.
4. For each word in the words list, do the following:

a) Check if the current word is a number by removing one period (.) from it using replace('.’, ", 1)
and then checking if the result is a digit using the isdigit() function.

b) If the word is indeed a number, proceed to the next step; otherwise, skip this iteration.
5. Within the if block, check if the latitude variable is empty:

a) If latitude is empty, assign the current word as the value of latitude.

b) If latitude is already assigned, assign the current word as the value of longitude.
6. Exit the loop using the break statement after assigning the longitude value.

7. The function ends, having captured the latitude and longitude values from the input text.

Accuracy

Precise evaluations of speech-to-text model performance are crucial for their trustworthiness
and usefulness. Word Error Rate (WER) and similar methods are essential for this evaluation. WER
checks how well predicted words match the actual words, flagging errors and inconsistencies. This
metric is vital for perfecting models by pinpointing common errors and areas to enhance. Accurate
assessments not only improve transcription quality but also broaden their application, benefiting
various domains. This extends from aiding the hearing-impaired with accessibility services to
streamlining professional tasks like automated transcription, ultimately fostering smoother
communication and easier access to information, and has eventually helped us in our keyword
detection task.

Algorithm for Word Error Rate (WER)

Word Error Rate is a common metric for comparing Audio Speech Recognition. It compares a
reference with a hypothesis.

Word Error Rate = (S +1 + D) /N

Where,

S — is the number of substitutions,

D — is the number of deletions,

I — is the number of insertions and

N — is the number of words in the reference

REFERENCE: Some of words
HYPOTHESIS: Sum of words
“Substitution” is happening in this case. ‘Some’ is substituted by ‘Sum’.

WER calculation is based on Levenshtein distance at the word level. Algorithm for WER is as
follows:

Algorithm 1: Calculation of WER with Levenshtein distance function

https://doi.org/10.20944/preprints202310.0690.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 do0i:10.20944/preprints202310.0690.v1

1 function WER(Reference r, Hypothesis h)

2 int[lrl +1 hl+1]D
*Initialization

3 for (i=0;i<=Irl;i++) do

4 for (j=0;j<= hl;j++) do

5 if i==0 then

6 DIO][j] «j

7 else if j == 0 then

8 DI[i][0] « i

9 end if

10 end for

11 end for

12 for(i=1i<=Irl;i+) *Calculation Part

13 for (j=1;j<= lhl;j++) do

14 if r[i - 1] ==h][j - 1] then

15 DIi][j] < DIfi - 1][j- 1]

16 else

17 sub « D[i-1][j-1]+1

18 ins < D[i][j-1] +1

19 del — DI[i- 1][j] +1

20 D[i][j] < min(sub, ins, del)

21 end if

22 end for

23 end for

We conducted a series of 30 iterations to assess the performance of our developed keyword
detection application. In these experiments, we had Word Error Rate (WER) of 4.2 as we utilized
whisper’s base model on English language (since our application only supports English language).
The resulting metrics were as follows: an F1 score of 0.905, a precision score of 0.92, and a recall score
of 0.89. These values were obtained by assuming an overall accuracy target of approximately 91.3%,
and the confusion matrix of our experiment is shown in Figure 3. To calculate accuracy, we employed
the formula that considers both precision and recall. Our comprehensive evaluation provides insights
into the robustness of our system, with an emphasis on balancing precision and recall. These results
demonstrate that our application excels in identifying keywords related to location within speech,
with high precision and recall rates. This is a promising indication of our system's effectiveness in
capturing location-related information accurately from spoken language. Our commitment to fine-
tuning and optimization has allowed us to achieve these promising results, paving the way for
further improvements and real-world applications of our speech recognition technology.

https://doi.org/10.20944/preprints202310.0690.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0690.v1

9
Confusion Matrix

— 2
m
2
b4

o 3 0

1 0

Predicted

Figure 3. Starting screen of the system.

Word Error Rate (WER) for Different S2T APIs

35 —e— Whisper
—e— |BM (Watson)
—&— Amazon
30
—e— Google
—e— Microsoft Azure
25 —&— Speechmatics

Twilio

15
10
5
0.\, Oqf On) Ob‘ O(’) 0@J
& & & & & &
i o ¥ L ¥ L
Categories

Figure 4. WER Analysis of various S2T models on six audio data.

Interface Illustration

Latitude and Longitude Detection

Record ! in terms of latitude and longitude.

Figure 5. Starting screen of the system.

https://doi.org/10.20944/preprints202310.0690.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0690.v1

10

The starting interface of the produced system is shown in the image above, along with the header
and a prompt asking the user to utter the designated activation keyword in order to wake the system.
Additionally, we can see the RUNNING state in the screen's upper right corner (depicted by a red
arrow), which is a result of the infinite loop we set up and is for the system's continuous recording
so that it would start if the user says the activation keyword.

Latitude and Longitude Detection

Record your location in terms of latitude and longitude.

Figure 6. Activation Keyword Detected.

In the above screenshot, as we can see that the activation keyword is detected, and a message
stating that recording has started, and prompting the user to speak.

Latitude and Longitude Detection

Record your location in terms of latitude and longitude.
Lattuce:

a4

Figure 7. Activation Keyword Detected.

Finally, we can see that the audio has been successfully converted into text. According to the
algorithms we have developed, the words related to the user's location—in this case, Latitude and
Longitude —have also been identified. The values associated with those keywords are displayed on
the screen, and once more, the system has begun to voice the recording until something is said.

Conclusion

https://doi.org/10.20944/preprints202310.0690.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0690.v1

11

This project introduces an innovative system that addresses the critical challenge of accurate
location determination, particularly in offline and resource-limited scenarios. By employing
advanced offline speech recognition techniques, the system can transcribe spoken terms with
remarkable accuracy, achieving an over 91.3% accuracy rate and a 4.2% word error rate. The
utilization of the OpenAl Whisper model, along with sophisticated audio conversion and
transcription algorithms, empowers the system to identify specific keywords indicative of geographic
coordinates. This breakthrough holds immense value, especially for military personnel operating
offline, emergency response teams, exploratory missions, and outdoor enthusiasts. By providing a
seamless and user-friendly interface, this technology bridges the gap between speech input and
precise geographic information, enhancing accessibility and awareness across various domains.

Key Code Snippets

re

def extract_lat_long_from_text(

words = re.findall({r’\b\w:\b",

latitude
longitude

word words :

word = re.sub(r’~\W+|\W:$', "°, word)

is_numeric = re.match(r’~[+-]12\d+(\.\d+)?$", word)

is_numeric:
latitude:

latitude - word

longitude - word

latitude, longitude

Figure 8. Keyword Extraction Algorithm.

https://doi.org/10.20944/preprints202310.0690.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023 doi:10.20944/preprints202310.0690.v1

AudioSegment

def convert_audio_to_mp3(audio):

" n

gudio.format wav":
ValueError("Input audio must be in WAV format.")

audio_segment AudioSegment.from wav(io.BytesIO(audio.get wav_data()))

output_file path "check.mp3"

audio_segment.export(output_file_path, format="mp3")

os.path.exists(output_file_path):
Exception("Failed to convert audio to MP3.")

output_file path

Figure 9. Sound Conversion Algorithm.

sr.Microphone SOUrce:
recognizer sr.Recognizer()

st.write("Say 'Start’ to begin recording your location.")

audio - recognizer.listen(source)
audio - mp3(audio)

user_input - model.transcribe(audio)['text”]
"start” user_input.lower():
speak_message("Please speak your location in terms of latitude and longitude. Thank you.")
play_startup_tone()
audio = record_audio()
audio - mp3(audio)

text - model.transcribe(audio)['text"]
latitude, longitude = extract_lat_long_from_text(text)

latitude_output:
st.write("Spoken text:", text)
st.text_input(“Latitude:", value-latitude)

longitude_output:
st.text_input("Longitude:", val longitude)
sr.UnknownValueError:
.error("Unable to recognize speech.™)
sr.RequestError e:
.EFror(Speech recognition service error:™,; e)

Figure 10. Sound to text conversion, keyword extraction.

https://doi.org/10.20944/preprints202310.0690.v1

