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Abstract: This study introduces an original comprehensive system centered on identifying specific 

terms that indicate a user's position, particularly the numerical values representing latitude and 

longitude. This system not only detects these terms but also retrieves the corresponding numerical 

data for accurate and efficient determination of locations. The importance of this endeavour 

encompasses various fields, notably aiding offline operations of military personnel, who often lack 

internet access. In such contexts, precise awareness of location is vital for strategic manoeuvres, 

rescue operations, and navigating unfamiliar landscapes. The system empowers these personnel by 

allowing them to extract exact location coordinates from spoken terms, thereby enhancing their 

awareness even in challenging surroundings. Apart from its military utility, the project holds 

broader significance. Teams responding to emergencies, personnel involved in disaster 

management, and exploratory missions can all gain from this technology during disruptions in 

communication infrastructure. Furthermore, travelers, adventurers, and outdoor enthusiasts can 

utilize this system to accurately determine their positions in remote areas without relying on online 

maps.  

Keywords: keyword detection; audio models; speech processing 

 

The methodology of this study revolves around the application of offline speech recognition 

techniques to precisely transcribe spoken terms, achieving an accuracy of over 91.3% and a word 

error rate of 4.2%. For sound recognition, the OpenAI Whisper model was employed, and a 

conversion process from SpeechRecognition to AudioSegmentation was implemented, followed by 

transforming the audio into .wav format, we have also developed the interface of the app to use it 

efficiently using Streamlit. This was done to ensure seamless compatibility with the Whisper model 

and uninterrupted audio input. By training the system to identify specific linguistic cues linked to 

location, it achieves robust detection and extraction of relevant terms. This innovative approach 

eliminates the necessity for constant internet connectivity, rendering it exceptionally useful in remote, 

offline, and resource-limited situations. 

Introduction 

The process of speech recognition focuses on transforming spoken language into written text. 

This endeavour enhances and promotes more human-like communication, as the goal of this 

recognition method is to empower individuals to interact in a manner that is both instinctive and 

proficient. Implementing continuous speech recognition is a complicated task due to its need to 

handle various language features like word lengths, co-articulation effects, and casual 

pronunciations, each unique to different voices. One effective solution involves employing language 

models, particularly n-grams, to calculate the most accurate estimations for context-related 

probabilities. 
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Several reasons drive the need for adaptive interfaces incorporating speech recognition. Firstly, 

it aligns with the natural way humans communicate. Secondly, traditional touch interfaces pose 

challenges for composing lengthy texts. As a result, using speech recognition accelerates the 

utilization and retrieval of information in software and applications, circumventing the use of 

traditional input methods like keyboards, mice, and touchscreens. Progress in speech recognition 

methods has opened up the possibility of applying this technology across numerous contexts, 

particularly on portable gadgets. Individuals with unique requirements also experience advantages 

from these systems. Those unable to employ their hands, as well as individuals with visual 

impairments, utilize this innovation to communicate and manage diverse computer operations using 

voice commands. Various Application Programming Interfaces (APIs) & Speech recognition models 

are available to help incorporate voice recognition into software and applications. Examples include 

Web speech, Java speech, Google cloud speech, and Bing speech, among others. Yet, none of these 

enable offline recognition. This implies that users need an active internet connection, posing a 

significant obstacle. This issue is particularly critical in countries like Brazil, where just about half of 

the population has internet access (IBGE, 2014). This concern is notable due to the vital role voice 

recognition plays in enhancing accessibility. Speech recognition without an internet connection is 

computationally complex and needs lots of memory. Yet, this demand isn't restrictive, as modern 

smartphones are getting stronger. To manage offline recognition, an effective approach involves 

combining a neural network and a statistical model. This combo offers efficient processing and 

memory use, helping save smartphone battery and other resource limited devices. 

We've introduced a method that involves using the foundational structure of Whisper, a speech-

to-text library developed by OpenAI. In this approach, we've incorporated a technique for identifying 

specific keywords that indicate the speaker's location. Through a dedicated algorithm, we extract 

these keywords and decipher their associated values, which play a role in pinpointing where the 

speaker is located. What sets our system apart is its complete offline functionality. This signifies that 

the entire process, ranging from capturing the voice recording, extracting the keywords, to detecting 

their corresponding values, operates independently without relying on external internet and other 

network connections. 

Speech-2-Text Models 

Speech-to-Text (STT) technology allows you to turn any audio content into written text. It is also 

called Automatic Speech Recognition (ASR), or computer speech recognition. Speech-to-Text is based 

on acoustic modelling and language modelling. Note that it is commonly confused with voice 

recognition, but it focuses on the translation of speech from a verbal format to a text one whereas 

voice recognition just seeks to identify an individual user’s voice. 
Speech-to-Text APIs offer versatile applications across various industries. They find significant 

utility in call centres, enabling the analysis of customer data to detect trends. In banking, these APIs 

enhance customer communications, ensuring security and efficiency. Automation benefits from STT, 

enabling tasks like appointment scheduling and order tracking. Governance and security sectors 

employ STT for customer identification and verification. In healthcare and media, STT drives voice-

driven medical reports, form filling, and content conversion into searchable text across TV, radio, and 

social networks. In the table below, a list of some popular speech-2-text APIs/services are mentioned. 

Table 1. Popular Text-2-Speech Model. 

Company Name API Name Release 

Year 

Pricing Supported 

Languages 

Accuracy/WER 

Assembly AI AssemblyAI S2T 2020 Paid 9 16.8 (WER) 

AWS  AWS Transcribe 2017 Paid 75 18.42% (WER) 

Wit.ai Wit Speech 2015 Paid 132 — 

Microsoft Microsoft Azure Speech 2018 Paid 147 9.2% (WER)  
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Vosk VoskAPI 2020 Free 20 63.4% Acc. 

Whisper OpenAI 2022 Free 99 11.4 % / 4.2 % 

(best model-EN) 

IBM IBM Watson S2T 2017 Paid 13 11.3%-36.4% 

Google Google S2T 2017 Paid 119 16% (WER) 

I have chosen Whisper by OpenAI for text-to-speech work due to its compelling combination of 

factors that make it a strong choice in the field. Whisper, released in 2022, offers a substantial library 

of 99 supported languages, which is one of the widest languages supports among the options listed. 

Moreover, its accuracy, with the best model achieving an impressive 11.4% Word Error Rate (WER) 

and an even more impressive 4.2% WER on English text-to-speech, makes it one of the most accurate 

options available. Notably, Whisper is free to use, making it an accessible choice for individuals and 

businesses looking for a cost-effective solution without compromising on quality. These factors, the 

wide language support, high accuracy rates, and cost-effectiveness, justify using Whisper for text-to-

speech work for keyword detection. In addition to its extensive language support and impressive 

accuracy rates, another key factor that influenced my choice of Whisper for text-to-speech work is its 

efficiency in terms of resource utilization. The Whisper base model stands out for its minimal memory 

and computational resource requirements, all while delivering a remarkable 4.2% Word Error Rate 

(WER). This means that it not only offers top-tier accuracy but does so without imposing a heavy 

burden on hardware or cloud resources, making it an efficient and practical choice for a wide range 

of applications, from small-scale projects to large-scale deployments. Whisper's ability to strike a 

balance between accuracy and resource efficiency further solidifies its position as a compelling choice 

for text-to-speech tasks. 

OpenAI Whisper 

Whisper represents an automated speech recognition (ASR) system that has undergone training 

using 680,000 hours of diverse and multilingual supervised data garnered from online sources. The 

utilization of this extensive and varied dataset results in enhanced resistance against accents, ambient 

disturbances, and specialized terminology. Additionally, this facilitates the conversion of speech into 

text across numerous languages, along with subsequent translation into English. The models and 

inference code are being made available through open-source to establish a base for creating practical 

applications and to encourage continued exploration in the domain of resilient speech analysis. 

Whisper's design is a straightforward end-to-end technique, realized as an encoder-decoder 

Transformer model. The initial audio is divided into segments of 30 seconds each, transformed into 

a log-Mel spectrogram, and fed into an encoder. Concurrently, a decoder is educated to foresee the 

related textual description. This procedure includes distinct tokens that instruct the unified model to 

execute various functions like recognizing languages, marking timestamps for phrases, transcribing 

multilingual speech, and translating speeches to English. 

Whisper's training used a broad dataset without focusing on any single one, causing it to not 

outperform specialized models on the highly competitive LibriSpeech benchmark. However, when 

examining Whisper's performance on various datasets without prior tuning, it proves notably robust, 

displaying a 50% reduction in errors compared to those models. Around 33% of Whisper's audio data 

is in languages other than English. It's assigned the task of either transcribing in its original language 

or translating into English. This technique is particularly successful in mastering speech-to-text 

translation, surpassing the state-of-the-art supervised method on CoVoST2-to-English translation 

without specific training. 

Whisper serves as a versatile speech recognition system. It's trained on an extensive range of 

audio samples and functions as a multitasking entity, capable of executing tasks like recognizing 

speech in multiple languages, translating spoken words, and identifying languages. The training 

employs a Transformer model specialized in converting sequences, tackling diverse speech-related 

duties like recognizing speech in different languages, translating spoken content, identifying spoken 
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language, and detecting voice activity. These roles are collectively encoded as a series of forecasted 

tokens for the decoder, the training architecture of Whisper is shown in Figure 1. This approach 

enables one model to replace multiple steps of a conventional speech processing setup. The multi-

task training technique involves distinct tokens used for indicating tasks or acting as goals for 

classification. 

 

Figure 1. Base architecture of OpenAI’s Whisper. 

Input audio is split into 30-second chunks, converted into a log-Mel spectrogram, and then 

passed into an encoder. A decoder is trained to predict the corresponding text caption, intermixed 

with special tokens that direct the single model to perform tasks such as language identification, 

phrase-level timestamps, multilingual speech transcription, and to-English speech translation. 

There are five model sizes, four with English-only versions, offering speed and accuracy trade-

offs. Below are the names of the available models and their approximate memory requirements and 

relative speed. 

Table 2. Various Whisper’s Model. 

Size Parameters English-only model Multilingual model Required VRAM Relative speed 

tiny 39 M tiny.en tiny ~1 GB ~32x 

base 74 M base.en base ~1 GB ~16x 

small 244 M small.en small ~2 GB ~6x 

medium 769 M medium.en medium ~5 GB ~2x 

large 1550 M N/A large ~10 GB 1x 

System Overview 
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We only used the Whisper base model because higher models require expensive computational 

hardware that was not practical at the time of our experiment and because we seek to extract location 

from the text, which typically doesn't encompass a large range of variety. Designing the location 

keyword and its value extraction, designing the audio conversion to.wav/mp3 for continuous audio 

recording, and finally designing the transcription of the recorded using model and passing it to get 

ingested in the interface, are the three phases of high-level implementation, the system overview is 

visualized in Figure 2 below. 

 

Figure 2. System Overview. 

Implementation 

The system functions via a two-stage sequence launched by a recognition keyword, similar to 

verbal cues such as "Start" or "Ready." This keyword acts as the system's trigger, resembling the way 

devices like Alexa or Google Home are activated. Upon triggering, the system comes to life. For 

instance, if the keyword "start" is detected, it signifies the user's intent to initiate the system's audio 

recording for location detection, starting the microphone to capture spoken content. For this purpose, 

the SpeechRecognition library is employed, which facilitates audio recording from the microphone. 

The library establishes a Recognizer object designed for speech recognition and integrates the 

microphone as the primary audio source. During this phase, a status message is displayed, signifying 

the commencement of recording. Subsequently, the system utilizes the listen() method within the 

Recognizer object to capture audio inputs from the microphone. Once recording is complete, the 

resultant audio is encapsulated within an AudioData object. 

To align the recorded audio with the requirements of the Whisper model, which expects data in 

byte or np.array formats, a conversion function has been implemented. This function translates the 

AudioData object into either .wav or mp3 formats. The converted audio file is then channelled into 

the transcriber model, facilitating its transcription in the text format which is further processed.  

The audio output undergoes processing through the conversion model, specifically the base 

model of Whisper developed by OpenAI. This formidable model boasts an impressive array of over 

70 million parameters, meticulously trained across a staggering 680,000 hours of diverse multilingual 

audio data. This extensive training equips the model with unparalleled proficiency in accurately 

capturing spoken words, irrespective of nuances like word accent or other linguistic intricacies.  

Initially, we collected transcribed text derived from a pretrained Whisper model, by sending the 

received audio from the convertor function we discussed above. Subsequently, this text is then sent 

to a specialized location keyword detection and extractor function named 
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extract_lat_long_from_text. The extracted latitude and longitude values were then seamlessly 

presented on the Streamlit interface, offering users an insightful visualization. 

The core of the implementation exist in in the main() function. Starting with the Streamlit 

interface initiation titled "Latitude and Longitude Detection," accompanied by a descriptive sub 

header, users are prompted to record their geographic coordinates. Using the whisper.load_model() 

function, the Whisper model's base version is instantiated. Within the Streamlit interface, distinct 

sections for latitude and longitude outputs are initialized. The sr.Microphone() context manager 

establishes the microphone source, enabling the ongoing capture of user input. Within an infinite 

loop, the code alertly awaits user input from the microphone. The identification of the activation 

keyword "start" within user input serves as a initialization of the system. This prompts the system to 

audibly signal initiation through a startup tone, subsequently commencing the recording of audio 

data which is converted to a suitable format via a conversion function. 

The extract_lat_long_from_text() function is then used to extract the transcription from the MP3 

audio by utilizing the Whisper model's capabilities. Latitude and longitude data are precisely 

determined from the transcribed text by the systematic extraction method. The retrieved geographic 

information is displayed on the Streamlit interface, which has a stronger emphasis on user-friendly 

visualization. 

When there are problems with voice recognition or service outages, understandable error 

messages are provided right away. The culmination of this dynamic implementation, which 

combines audio recording, complex speech recognition, and exact position extraction, is an easy user 

interface that makes it simple to get geographic data using speech input. 

Sound Conversion Algorithm: 

The function converted(audio) takes an audio object as input and performs a series of operations 

aimed at converting the audio format, providing the outcome as a result: 

1. Utilize the pydub library's AudioSegment.from_wav() function. The initial audio input is 

converted into the WAV format using this function, which creates an audio_segment object. 

Notably, the io.BytesIO() function is employed to handle and process the audio data produced 

from the input object, which facilitates this transformation. 

2. Use the audio_segment object's native export() method. With this technique, the audio is 

preserved by having it stored as an MP3 file" The output format is wisely specified by setting 

the format argument to "mp3," which is a directive. 

3. Allow for the modification of the audio variable, requiring that it be updated to reflect the 

location of the just created MP3 audio file ("check.mp3"). 

4. The method finally completes its work by supplying an enhanced audio variable that includes 

the path to the freshly converted MP3 audio file. The transformed audio content can then be 

accessed quickly thanks to this route. 

Location Extraction Algorithm: 

The following steps make up the algorithm for extracting latitude and longitude from text: First, 

the text input is used to launch the method extract_lat_long_from_text(). The text is then broken up 

into its component words, which are then kept in a list named words. Latitude and longitude are 

then set up as two empty variables to contain the corresponding data. The program examines the 

digit status of each word in the list, removes the period, and determines whether it is a number. The 

method continues if the input is a number; else, it moves on to the following word. If latitude is 

empty, the word is designated as the value for latitude inside the validation; if latitude already has a 

value, the word is marked as the value for longitude inside the validation; and the loop is terminated 

using the break statement. After correctly extracting the latitude and longitude data from the given 

text, the algorithm concludes. It is crucial to notice that this technique assumes that the text comprises 

latitude and longitude values separated by words, with latitude coming before longitude. If an 

accurate longitude or latitude cannot be determined, the corresponding variables are left empty. The 

step by step implementation of the extraction algorithm is given below. 
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ALGORITHM: `extract_lat_long_from_text` functioning 

1. Start the function extract_lat_long_from_text(text) with text as input. 

2. Split the input text into individual words using the split() function, and store the result in the words 

list. 

3. Initialize an empty string variable latitude to store the latitude value and another empty string variable 

longitude to store the longitude value.  

4. For each word in the words list, do the following: 

a) Check if the current word is a number by removing one period (.) from it using replace('.', '', 1) 

and then checking if the result is a digit using the isdigit() function. 

b) If the word is indeed a number, proceed to the next step; otherwise, skip this iteration. 

5. Within the if block, check if the latitude variable is empty: 

 a) If latitude is empty, assign the current word as the value of latitude. 

b) If latitude is already assigned, assign the current word as the value of longitude. 

6. Exit the loop using the break statement after assigning the longitude value.  

7. The function ends, having captured the latitude and longitude values from the input text. 

Accuracy 

Precise evaluations of speech-to-text model performance are crucial for their trustworthiness 

and usefulness. Word Error Rate (WER) and similar methods are essential for this evaluation. WER 

checks how well predicted words match the actual words, flagging errors and inconsistencies. This 

metric is vital for perfecting models by pinpointing common errors and areas to enhance. Accurate 

assessments not only improve transcription quality but also broaden their application, benefiting 

various domains. This extends from aiding the hearing-impaired with accessibility services to 

streamlining professional tasks like automated transcription, ultimately fostering smoother 

communication and easier access to information, and has eventually helped us in our keyword 

detection task. 

Algorithm for Word Error Rate (WER) 

Word Error Rate is a common metric for comparing Audio Speech Recognition. It compares a 

reference with a hypothesis. 𝑊𝑜𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =  (𝑆 +  𝐼 +  𝐷) / 𝑁 

Where, 

S — is the number of substitutions, 

D — is the number of deletions, 

I — is the number of insertions and 

N — is the number of words in the reference 

REFERENCE: Some of words 

HYPOTHESIS: Sum of words 

“Substitution” is happening in this case. ‘Some’ is substituted by ‘Sum’. 

WER calculation is based on Levenshtein distance at the word level. Algorithm for WER is as 

follows: 

 Algorithm 1: Calculation of WER with Levenshtein distance function 
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1 function WER(Reference r, Hypothesis h) 

2     int [|r| + 1 |h| + 1] D 

*Initialization 

3     for (i = 0; i <= |r|; i++) do 

4         for (j = 0; j <= |h|; j++) do 

5             if i == 0 then 

6                 D[0][j] ← j 

7             else if j == 0 then 

8                 D[i][0] ← i            

9             end if 

10         end for 

11    end for 

12 for (i = 1; i <= |r|; i++)                                                     *Calculation Part 

13         for (j = 1; j <= |h|; j++) do 

14             if r[i - 1] == h[j - 1] then 

15                 D[i][j] ← D[i - 1][j - 1] 

16             else 

17                 sub ← D[i - 1][j - 1] + 1 

18                 ins ← D[i][j - 1] + 1 

19                 del ← D[i - 1][j] + 1 

20                 D[i][j] ← min(sub, ins, del) 

21            end if 

22        end for 

23 end for 

We conducted a series of 30 iterations to assess the performance of our developed keyword 

detection application. In these experiments, we had Word Error Rate (WER) of 4.2 as we utilized 

whisper’s base model on English language (since our application only supports English language). 

The resulting metrics were as follows: an F1 score of 0.905, a precision score of 0.92, and a recall score 

of 0.89. These values were obtained by assuming an overall accuracy target of approximately 91.3%, 

and the confusion matrix of our experiment is shown in Figure 3. To calculate accuracy, we employed 

the formula that considers both precision and recall. Our comprehensive evaluation provides insights 

into the robustness of our system, with an emphasis on balancing precision and recall. These results 

demonstrate that our application excels in identifying keywords related to location within speech, 

with high precision and recall rates. This is a promising indication of our system's effectiveness in 

capturing location-related information accurately from spoken language. Our commitment to fine-

tuning and optimization has allowed us to achieve these promising results, paving the way for 

further improvements and real-world applications of our speech recognition technology. 
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Figure 3. Starting screen of the system. 

 

Figure 4. WER Analysis of various S2T models on six audio data. 

Interface Illustration 

 

Figure 5. Starting screen of the system. 
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The starting interface of the produced system is shown in the image above, along with the header 

and a prompt asking the user to utter the designated activation keyword in order to wake the system. 

Additionally, we can see the RUNNING state in the screen's upper right corner (depicted by a red 

arrow), which is a result of the infinite loop we set up and is for the system's continuous recording 

so that it would start if the user says the activation keyword. 

 

Figure 6. Activation Keyword Detected. 

In the above screenshot, as we can see that the activation keyword is detected, and a message 

stating that recording has started, and prompting the user to speak. 

 

Figure 7. Activation Keyword Detected. 

Finally, we can see that the audio has been successfully converted into text. According to the 

algorithms we have developed, the words related to the user's location—in this case, Latitude and 

Longitude—have also been identified. The values associated with those keywords are displayed on 

the screen, and once more, the system has begun to voice the recording until something is said. 

Conclusion 
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This project introduces an innovative system that addresses the critical challenge of accurate 

location determination, particularly in offline and resource-limited scenarios. By employing 

advanced offline speech recognition techniques, the system can transcribe spoken terms with 

remarkable accuracy, achieving an over 91.3% accuracy rate and a 4.2% word error rate. The 

utilization of the OpenAI Whisper model, along with sophisticated audio conversion and 

transcription algorithms, empowers the system to identify specific keywords indicative of geographic 

coordinates. This breakthrough holds immense value, especially for military personnel operating 

offline, emergency response teams, exploratory missions, and outdoor enthusiasts. By providing a 

seamless and user-friendly interface, this technology bridges the gap between speech input and 

precise geographic information, enhancing accessibility and awareness across various domains. 

Key Code Snippets 

 

Figure 8. Keyword Extraction Algorithm. 
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Figure 9. Sound Conversion Algorithm. 

 

Figure 10. Sound to text conversion, keyword extraction. 
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