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Abstract: In South Korea, demolition waste (DW) management has become increasingly significant owing to 

the rising number of old buildings. Effective DW management requires an efficient approach that accurately 

quantifies and predicts the generation of DW (DWG) of various types, which necessitates access to the required 

information or technology capable of achieving this. Hence, we developed an artificial intelligence-based 

model that predicts the generation of ten DW types, specifically from buildings in redevelopment areas. We 

used an artificial neural network algorithm with < 10 neurons in the hidden layer to derive individual input 

variables and optimal hyperparameters for each DW type. All DWG prediction models achieved an average 

validation and test prediction performance (R²) of 0.970 and 0.952, respectively, with their ratios of percent 

deviation ≥ 2.5, verifying them as excellent models. Moreover, a Shapley additive explanations analysis 

revealed that DWG was most impacted by the floor area for all the DW types, with a positive correlation with 

DWG. Conversely, other factors showed either a positive or negative correlation with DWG depending on the 

DW type. The study findings will enable demolition companies and local governments in making informed 

decisions for efficient DW management and resource allocation by accurately predicting the generation of 

various types of DW. 

Keywords: waste management; demolition waste generation; machine learning; artificial neural 

network; SHAP analysis 

 

1. Introduction 

The generation of municipal solid waste (MSW) is continually increasing worldwide owing to 

factors such as economic development, population growth, and increasing consumption [1]. 

Furthermore, the rise in MSW may be attributed to factors such as increased production, consumer 

activity, and urbanization [2,3]. Construction and demolition waste (CDW) is defined as the MSW 

from construction, renovation, and demolition processes [4,5]. It accounts for 35–40% of the total 

waste generated worldwide [6], and within the European Union and the United States, it accounts 

for 36 and 67% of the total waste generated, respectively [7]. Moreover, 70–90% of CDW is demolition 

waste (DW) [8,9]. Therefore, CDW management is considered a major sustainability challenge in the 

global construction industry.  

Effective waste management (WM) can be achieved by developing efficient approaches based 

on the appropriate quantification of waste generation (WG) and composition [10,11]. However, the 

composition of DW generated at the end-of-life of buildings varies according to its characteristics 

(e.g., region, age, structure, usage, and floor area), which makes it difficult to accurately quantify and 

predict the generation of various types of DW. Moreover, accurate DWG information, such as 

environmental impact assessment, prediction of waste disposal charges, recycling practices, and 

pick-up truck estimation, is required to enable optimal DW management through empirical quantity 

predictions during the building removal process [9]. Therefore, accurate estimations of the DW type 
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and generation is important [12,13] for the government and contractors to plan waste control 

strategies [14].  

The advent of artificial intelligence (AI) has allowed machine learning (ML) models to mimic 

human characteristics, such as problem solving, learning, perception, comprehension, and inference 

[15,16]. Additionally, many researchers worldwide have employed AI for WM. Specifically, artificial 

neural networks (ANNs), a representative AI technology, have attracted significant attention owing 

to their functions for big data processing, nonlinear relationship mapping, and result predictions [17]. 

Therefore, they have gradually become the most widely used ML algorithms in WM-related fields 

[15]. Many researchers have conducted ANN-based WG prediction studies and achieved good 

performance. Kumar et al. [18] developed ML models using ANN, support vector machine (SVM), 

and random forest (RF) algorithms to predict plastic generation rate. Their ANN-based model 

exhibited higher predictive performance than the SVM- and RF-based ones (coefficient of 
determination R2 = 0.75). Soni et al. [19] adopted an ANN algorithm to predict MSW generation in 

India and extensively researched the development of a hybrid ANN model to enhance overall 

performance. Wu et al. [20] employed an ANN model to predict MSW generation across several parts 

of China. They analyzed the factors that directly affect differences in MSW generation in each region 

using the results of the ANN model. Hoque and Rahman [21] used an ANN for landfill area 

estimation according to the predictions of MSW generation in the southern region of Dhaka, 

Bangladesh. Their model employed only two input variables and exhibited excellent results, yielding 

R² values of 0.85 and 0.86 for the training and test models, respectively. Ayeleru et al. [22] developed 

ANN- and SVM-based models to predict MSW generation in Johannesburg, South Africa. Their ANN 

model outperformed the SVM model, achieving training and test performance results (R²) of 0.99 and 

0.99, respectively. Jassim et al. [23] developed an ANN model to predict the annual MSW generation 

in Bahrain and achieved excellent MSW prediction performance (R2) of 0.94. Cha et al. [24] used 

various ML algorithms (ANN, SVM, RF, linear regression, and k-nearest neighbor) for DWG 

prediction, wherein the ANN model achieved superior predictive performance with R2 = 0.9 

compared to other algorithms. As mentioned previously, ANN-based models have been widely used 

by researchers for MSW generation predictions and yielded excellent results. Hoque and Rahman 

[21] demonstrated that a simple and low-cost ML model can be developed with only two input 

variables and a basic ANN structure (i.e., one each of input, hidden, and output layers), 

demonstrating that the ANN algorithm is useful for developing highly effective MSW prediction 

models. 

In South Korea, a substantial amount of DW is expected to be generated in the future owing to 

the increased demolition of old buildings under redevelopment projects. Therefore, DW management 

may pose a significant threat to sustainable development in South Korea. Based on the 

aforementioned factors, appropriate DW management is important, which requires accurate 

information regarding the various types of DW generated from old buildings. Considering the 

situation in South Korea, this study developed ML models to predict various types of DWG from old 

buildings in South Korea's redevelopment areas. Specifically, it developed individual ML models to 

predict the generation of different DW types at the building level. Additionally, it involved extracting 

the variables that primarily affect each DW type and exploring solutions to design an optimal 

prediction model. The main steps of this study are summarized below: 

1. We collected data on the generation of ten types of DW from 150 old buildings in redevelopment 

areas, and the raw data were preprocessed to build a dataset. 

2. Variables primarily affecting the generation of each DW type were analyzed. 

3. The ANN algorithm was applied to develop prediction models for each DW type, and the 

hyperparameters (HPs), including the number of neurons, were adjusted to secure optimal 

predictive performance for each DW type. 

4. The leave-one-out cross-validation (LOOCV) technique was used for model development and 

validation, and the root mean square error (RMSE), coefficient of determination (R2), and mean 

absolute error (MAE) were used as statistical metrics. 

5. By evaluating the performance of the developed models, the optimal ANN models for predicting 

the generation of ten types of DW were proposed. 
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The remainder of this paper is organized as follows. Section 2 describes the data used to develop 

and evaluate the ANN models. Section 3 analyzes the performance of the prediction models 

developed in this study for each DW type. Section 4 compares and discusses the main research 

findings and existing research results. Finally, Section 5 concludes the study, summarizes its key 

findings, and discusses its limitations and future research directions. 

2. Materials and Methods 

This section describes the data used in this study, data processing methods employed, 

development of the DWG prediction models using the ANN algorithm, and methods adopted for 

verification and evaluation. Sections 2.1 and 2.2 describe the data collection and preprocessing 

method used, including categorical variables. Section 2.3 introduces the ANN algorithm used and its 

application, correlations between the DW types and input variables, ANN model structure, and HP 

adjustments employed to optimize the performance of various DW types. Finally, Section 2.4 

describes the verification and evaluation methods employed for the ML models developed for DWG 

predictions. A flowchart of the model development is shown in Figure 1. 

 

Figure 1. Flowchart of ANN model development for predicting the generation of ten types of DW. 

2.1. Data Collection 

In this study, the DWG data were collected from the demolition sites in redevelopment areas of 

Daegu (project A; 81 buildings; 35.88° N, 128.61° E) and Busan (project B; 69 buildings; 35.87° N, 

128.63° E) cities, and were recorded as DWG (kg). Before demolition, a direct survey was conducted 

on 150 buildings to analyze their characteristics (i.e., region, structure, usage, wall type, roof type, 

gross floor area (GFA), and number of floors) and DWG information for 10 types of waste (i.e., mortar, 

concrete, block, brick, roofing tile, wood, plastics, steel bar, slate, and soil). Table 1 presents the 

statistical analysis results of the type-specific DWG, excluding missing values in the collected data. 

The amount of waste generated by the demolition of old buildings in redevelopment areas was the 

highest for block waste at 466.8 kg·m-2, accounting for 40.8% of the total DW (Figure 2). The amount 
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of concrete was also significant at 287.8 kg·m-2, accounting for 25.1% of the total DW. Overall, the 

generated DW comprised 87% minerals (i.e., mortar, concrete, block, brick, roofing tile) (Figure 2), 

which is similar to that reported in previous studies [25–27]. However, in this study, the generation 

of block waste was higher than that of concrete, constituting the largest proportion among the 10 DW 

types, which differed from previous studies [25–27], wherein concrete generation was reported to be 

the highest. This is because many old buildings in the redevelopment areas of South Korea have 

undergone remodeling processes in the past, wherein walls were replaced with blocks [28]. 

Therefore, predicting DWG based on the information from these old buildings is expected be useful 

for future WM in South Korea. 

Table 1. Statistical analysis results for the generation of different DW types. 

DW type Number of 

buildings  

Maximum 

DWG (kg) 

Minimum 

DWG (kg) 

Average 

DWG (kg) 

Total 

DWG (kg) 

Average 

DWG rate 

(kg·m-2) 

Mortar 150 37,329.6  1,010.0  13,141.0 1,971,150.4 98.7  

Concrete 150 169,481.4  645.1  38,318.7 5,747,801.6 287.8  

Block 148 222,621.7  734.4  61,111.3 9,166,689.9 466.8  

Brick 104 74,310.1  265.4  6,273.8 941,063.4  61.1  

Roofing tile 107 17,028.4  4,670.1  7,474.4 1,121,155.7 87.5  

Wood 150 8,638.8  663.3  2,529.3 379,389.3  19.0  

Plastics 150 25,107.5  38.8  6,304.8 945,714.0  47.4  

Steel bar 150 11,744.9  42.5  2,714.2 407,130.4  20.4  

Slate 44 6,642.7  38.1  659.9 98,980.1  15.0  

Soil 64 34,958.4  192.8  2539.6 380,936.8  40.7  

 

Figure 2. Generation ratios of different types of DW. 

2.2. Data Preprocessing 

To improve the prediction performance of AI models, a stable dataset must be constructed. The 

main purpose of building a stable dataset is to suppress the unwanted impact of distortions or 

outliers in the data [29,30]. This study preprocessed datasets for each of the 10 DW types to improve 

the performance of the DW prediction models. Data preprocessing was performed through 

normalization to standardize the data scale as follows:  𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  𝑥−𝑥𝑚𝑖𝑛𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛, (1) 

where 𝑥 is the data element, and 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and minimum amounts of data, 

respectively. 

2.3. Model Development 
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2.3.1. ANN Architecture 

ANNs are ML models comprising multiple layers and neurons. They are widely used in the 

fields of engineering and science for solving complex and challenging problems. ANNs are broadly 

classified into feedforward and feedback neural networks; feedforward networks have been widely 

used in engineering fields owing to their relative simplicity and superior performance, and are one 

of the most frequently used algorithms for developing AI models for WM [15,16]. The basic structure 

of an ANN comprises three layers (input, hidden, and output) and nonlinear transfer functions that 

allow them to learn nonlinear and linear relationships between the input and output neurons 

comprising several layers of neurons. Additionally, the ANN structure can be used to realize 

multilayer perceptron neural networks by expanding the hidden layer.  

Because this study aimed to develop ANN models for predicting the generation of ten types of 

DW, an extremely simple architecture that ensured good performance was required. Therefore, a 

feedforward neural network with a single hidden layer was adopted. This ANN architecture has been 

frequently used in WM studies and demonstrated good performance [31,32]. As shown in Figure 3, 

the ANN architecture comprised up to 7 and 100 neurons in the input and hidden layers, respectively. 

This architecture was designed to output the resulting values for the ten types of DW in the output 

layer. 

 

Figure 3. ANN architecture comprising three layers for predicting the generation of different DW 

types (i, m, and n denote the DW type, number of input variables, and number of neurons, 

respectively). 

2.3.2. Input Variable Selection for Different Waste Types 

Previous studies have reported that CDW generation is significantly affected by the internal 

factors of buildings, such as type or structure [14,27,28,33–36], region [28,35,37–40], use [27,28,33–
35,41,42], and floor area [26–28,33,35,43]. The internal factors of a building are key factors that affect 

DW generation. Therefore, for predicting the generation of various DW types, appropriate 

influencing factors must be considered and a suitable set of input variables must be developed for 

each DW type. 

This study employed information regarding the generation of different DW types as well as the 

building features such as region, structure, usage, wall type, roof type, GFA, and number of floors 

that affect the generation of different DW types. For this, the Pearson correlation coefficients between 

the generation of different DW types and building features were analyzed; the results are presented 

in Figure 4 show that DW generation differs significantly based on building features. Specifically, 

there is a strong correlation between some DW types, such as mortar, concrete, blocks, plastics, steel 

bars, and soil, in terms of region, floor area, and number of floors. Additionally, certain building 

features exhibit greater influence on specific DW types. Thus, an input variable set was created to 
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reflect the priority of DW types identified through the Pearson correlation analysis of the building 

features. Additionally, different combinations of input variables were tested to determine the optimal 

combination for each DW type, as presented in Table 2. 

 

Figure 4. Pearson correlation coefficients between building features and DWG for different DW 

types. 

Table 2. Input variable sets tested to develop prediction models for different DW types. 

DW type Input variable combination Number of input variables 

tested and combinations of 

methods employed 

Mortar  R + N + W + S + F + R.t + U 1, 2, 3, 4, 5, 6, 7 

For example, in the case of 

mortar, the number of 

input variables was as 

follows: 

1: R 

2: R + N 

3: R + N + W 

4: R + N + W + S 

5: R + N + W + S + F 

6: R + N + W + S + F + R.t 
7: R + N + W + S + F + R.t + U 

Concrete F + N + R + S + U + R.t + W 

Block  F + N + R + W + S + U + R.t 

Brick  W + U + S + R + R.t + F + N 

Roofing tile R.t + R + S + W + N + F + U 

Wood  R + N + S + W + F + U + R.t 

Plastics  R + F + N + W + U + R.t + S 

Steel bar F + N + R + S + U + R.t + W 

Slate R.t + R + N + F + S + U + W 

Soil W + R + S + N + F + R.t + U 

R: Region, S: structure, U: usage, W: wall type, R.t: roof type, F: floor area, and N: number of floors. 

2.3.3. HP Tuning 

Generally, building an effective ML model is a complex and time-consuming process because it 

involves appropriate HP tuning for developing an optimal model [44]. The process of designing an 

optimal model architecture with an optimal HP configuration is called HP tuning, which is a core 

component that must be considered when building an effective ML model, particularly tree-based 

models and neural networks with numerous HPs [45]. To prevent overfitting in an ANN model and 

ensure good prediction performance, we considered two essential HPs: number of hidden layers and 

neurons and type of activation function. Furthermore, to improve the generalizability and reduce 
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training time, appropriate HPs, such as epochs and regularization methods (e.g., learning rate), must 

be selected [46]. Therefore, we tuned some HPs, including the number of neurons, activation function, 

learning rate, and number of epochs, with the goals of preventing overfitting, ensuring predictive 

performance, and reducing the time required for model construction. Additionally, various HP 

values were tested to determine the model with optimal performance (Table 3). All experiments were 

conducted using Python 3.7 and Scikit-learn v1.0 on a computer comprising an AMD Ryzen 7 5800X 

8-Core CPU (3.8 GHz, boosting up to 4.7 GHz) and 64 GB RAM. 

Table 3. Network HP specifications used to develop optimal ANN models for different DW types. 

HP Tested values or type 

Solver “Adam,” “L-BFGS,” “SGD” 

Activation function  “Identity,” “Logistic,” “ReLU,” “Tanh” 

Number of neurons in the 

hidden layer 

1, 2, 3, 4, 5, 6, 7, 8, 9,10,12, 14, 16, 18, 20, 24, 26, 28, 30, 40, 

50, 60, 70, 80, 90, 100 

Learning rate 
0.0001, 0.001, 0.01, 0.1 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 

200, 300, 400, 500, 600, 700, 800, 900, 1000 

Epochs 
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 

500, 1000 

L-BFGS: limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm, SGD: stochastic gradient descent, 

ReLU: rectified linear unit. 

2.4. Model Testing, Validation, and Evaluation 

To develop the DWG prediction models, the data were divided into training and test sets at a 

ratio of 80:20. For developing a robust ML model, data are generally split into two sets (i.e., training 

and test), and the data between these sets are typically divided at a ratio of 80:20 [47]. Both sets were 

generated through uniform random sampling of the preprocessed data [48]. The training set was 

used to learn the general patterns and features of the dataset, whereas the test set was used to evaluate 

the performance of the trained model using the optimized HPs obtained during training.  

Additionally, the number of samples used to develop the prediction models for different DW 

types ranged from 44–150 (Table 1), which is considered a small sample size. Therefore, we adopted 

LOOCV for validating the developed model as it is a special case of k-fold cross-validation and is 

considered suitable for validating small sample sizes [49,50]. In contrast to 10-fold or k-fold cross-

validation, LOOCV can validate a small dataset because it uses all samples as test and training data 

to ensure that a sufficient number of training and validation sets are employed [51–53]. 

Additionally, we adopted MAE, RMSE, and R2 as the evaluation metrics for the developed ANN 

models, which are computed as follows: 

MAE = 
∑ |𝑦𝑖−𝑥𝑖|𝑛𝑖=1 𝑛 , (2) 

RMSE = √∑ (𝑦𝑖−𝑥𝑖)2𝑛𝑛𝑖=1 , and (3) 

R2 = 1 −  ∑ (𝑦𝑖−𝑥𝑖)2𝑛𝑖=1∑ (𝑦𝑖−𝑥̅𝑖)2𝑛𝑖=1 , (4) 

where 𝑥𝑖 , 𝑦𝑖 , 𝑥̅𝑖 , and 𝑦̅𝑖  are the observed, predicted, average observed, and average predicted 

quantities of the generated DWs, respectively, and n is the number of samples. A satisfactory model 

generally yields high R2 values and low MAE, MSE, and RMSE values. 

Additionally, the ML model performance must be validated through a multi-criteria process to 

ensure that its accuracy is not exaggerated or distorted [54,55]. In addition to evaluating the 

performance using single metrics such as MAE, RMSE, and R2, the ratio of percent deviation (RPD) 

was also considered as a complementary performance indicator. The RPD was calculated using 

Equation (5), and performance classification according to the RPD value is presented in Table 4 [55]. 
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RPD = 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑀𝑆𝐸  (5) 

Table 4. Model performance classification based on RPD values. 

RPD values Performance indicator  Remarks 

RPD < 1 Very poor Model/predictions whose use 

is not recommended 

1 ≤ RPD < 1.4 Poor  Model/predictions where only 

high and low values are 

distinguishable 

1.4 ≤ RPD < 1.8 Fair  Model/predictions which may 

be used for assessment and 

correlation 

1.8 ≤ RPD < 2 Good  Model/predictions where 

quantitative predictions are 

possible 

2 ≤ RPD < 2.5 Very good Quantitative model/ predictions 

3. Results 

3.1. Optimal HP Values and Input Variable Sets for Various DW Types 

A wide range of HP values and input variable sets were tested to develop optimal DWG 

prediction models for different DW types, and the resulting optimal HPs are listed in Table 5. The 

“solver” that is not included in Table 5 was tested against Adam, L-BFGS, and SGD. Because L-BFGS 

showed superior performance compared to Adam and SGD, only the results for L-BFGS are included 

in Table 5. For different DW types, the optimal HP values of the ANN models for DWG predictions 

varied according to the activation function; thus, various HP values were selected. In particular, most 

models had fewer than 20 neurons in the hidden layer and involved ≤ 200 epochs. This simple 

structure and low calculation count were considered to be efficient and cost-effective for model 

development. Additionally, we tested various combinations of input variables for different DW 

types, and each model yielded different optimal combinations, comprising one to seven input 

variables. These results suggest that input variable selection is crucial for ANN models and depends 

on the type of activation function employed. Moreover, it is essential to develop an appropriate set 

of input variables based on the selected HPs. 

Table 5. Optimal HP values and input variable sets for different waste types to predict DWG. 

DW type HP  

 

Input variable set  

Activation 

function  

Number of 

neurons in 

hidden layer 

Learning 

rate 

Epochs 

Mortar 

Identity 20 600 50 R + N + W + S + F + R.t + U 

Logistic 10 1 60 R + N + W + S 

Tanh 16 1 1000 R + N + W + S + F 

ReLU 4 0.1 60 R + N + W + S + F + R.t + U 

Concrete  

Identity 1 30 50 F + N + R + S + U + R.t + W 

Logistic 18 0.1 60 F 

Tanh 10 1 120 F + N 

ReLU 5 0.0001 50 F + N + R + S + U + R.t + W 

Block  Identity 2 1 20 F + N + R + W 
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Logistic 4 0.01 40 F 

Tanh 10 1 100 F + N 

ReLU 5 1 40 F + N + R + W + S + U 

Brick  

Identity 4 10 30 W + U + S 

Logistic 60 1 200 W + U + S + R 

Tanh 40 1 40 W + U + S + R 

ReLU 4 0.0001 50 W + U + S + R + R.t + F 

Roofing tile  

Identity 2 1 30 R.t + R + S + W + N + F 

Logistic 70 1 120 R.t + R + S + W + N + F + U 

Tanh 60 1 20 R.t + R + S 

ReLU 10 100 50 R.t + R + S + W + N + F 

Wood  

Identity 8 10 20 R + N + S + W + F + U + R.t 

Logistic 90 1 1000 R + N + S + W + F + U + R.t 

Tanh 26 0.1 120 R + N + S + W + F + U 

ReLU 50 0.01 60 R + N + S + W + F + U 

Plastics  

Identity 1 0.0001 20 R + F + N + W + U + R.t + S 

Logistic 18 1 500 R + F + N 

Tanh 50 0.01 120 R + F + N 

ReLU 10 1 50 R + F 

Steel bar  

Identity 7 100 40 F + N + R + S + U + R.t 

Logistic 6 1 70 F 

Tanh 18 0.1 50 F + N + R 

ReLU 3 1 50 F + N + R + S + U + R.t + W 

Slate  

Identity 16 0.0001 30 F + N + R + S + U 

Logistic 3 1 30 F 

Tanh 60 1 50 F 

ReLU 10 0.001 40 F + N + R + S 

Soil 

Identity 1 0.0001 10 W 

Logistic 3 1 180 W 

Tanh 2 1 50 W 

ReLU 6 0.1 60 W + R + S + N + F 

3.2. Model Performance According to Waste Type 

The performance results (R2) of all the sub-models tested for developing an optimal ANN 

prediction model for the 10 types of DW are shown in Figure 5. The R2 values varied significantly for 

different DW types, depending on the type of activation function employed. However, the ANN 

models using ReLU generally exhibited the best prediction performance for all DW types. In contrast, 

the “identity” function exhibited stable results and little variation in performance regardless of other 

HP values (i.e., number of neurons, learning rate, and epochs). However, the logistic and tanh 

functions showed considerable variations in prediction performance based on the number of 

neurons, learning rate, and epochs. Additionally, they sometimes exhibited high variations, such as 

in the case of blocks, roofing tiles, and soil, and low variations, such as in the case of mortar, roofing 

tiles, wood, and soil. These variations indicate that the models were not stable. Therefore, ReLU is 

considered appropriate for developing the most accurate and stable DWG prediction model for the 

ten DW types. The results of the optimal prediction models, incorporating HPs from Table 5, for each 

activation function type. The validation results indicated that logistic regression obtained the best 

prediction performance for roofing tiles and wood, with R2 values of 0.960 and 0.970, respectively, 

whereas ReLU performed the best for other DW types. However, the test results showed that the 

prediction performance of ReLU was the best for all DW types. The ANN models employing ReLU 

exhibited an average R2 of 0.970, RMSE of 1735.1, and MAE of 1177.0 for the validation results, and 

R2 of 0.952, RMSE of 2320.9, and MAE of 1523.8 for the test results. These results indicate that ANN 
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models employing ReLU have superior prediction performance compared to those employing other 

activation functions. Consequently, the ANN model with ReLU was considered to be the most 

suitable for predicting all 10 types of DW. 

 

Figure 5. Performances of DWG prediction models for all tested HP values and input variable sets. 

Table 6. DWG prediction performance of the ANN models for different DW types. 

DW type Activation 

function  

Performance metrics 

Validation Test 

RMSE MAE  R2 RMSE MAE  R2 

Mortar 

Identity 2692.4 1774.7 0.895 3191.4 2035.6 0.852 

Logistic 3971.4 2760.3 0.771 3877.6 2581.3 0.781 

Tanh 3053.1 1728.1 0.864 3222.5 2243.6 0.849 

ReLU 1059.8 744.0 0.984 1440.5 1007.7 0.970 

Concrete  

Identity 8778.2 6704.6 0.972 10572.3 7721.8 0.959 

Logistic 19882.1 13116.7 0.855 12624.7 9963.8 0.942 

Tanh 11787.3 9524.4 0.949 11459.2 9090.2 0.952 

ReLU 3347.1 2341.4 0.996 4762.4 3153.2 0.992 

Block  

Identity 16887.6 11497.5 0.940 18706.7 12268.5 0.927 

Logistic 21817.7 13618.1 0.900 15756.6 12663.9 0.948 

Tanh 13919.2 10759.3 0.959 16050.4 12551.8 0.946 

ReLU 7353.4 5202.4 0.989 8589.5 6170.2 0.985 

Brick  

Identity 6022.1 3139.2 0.869 7116.0 3593.0 0.817 

Logistic 4486.9 2176.3 0.927 5016.0 2517.0 0.909 

Tanh 6562.4 3250.4 0.845 5856.2 2840.3 0.876 

ReLU 2108.9 986.3 0.984 4017.8 1838.1 0.942 

Roofing tile  
Identity 819.6 649.0 0.915 897.0 702.1 0.898 

Logistic 562.6 416.2 0.960 970.6 732.4 0.881 
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Tanh 2070.9 1639.7 0.458 1988.7 1540.9 0.500 

ReLU 729.6 579.0 0.933 835.4 671.9 0.912 

Wood  

Identity 906.7 612.5 0.620 977.4 671.8 0.559 

Logistic 253.7 162.1 0.970 630.0 438.4 0.817 

Tanh 580.5 407.0 0.844 979.2 661.8 0.557 

ReLU 434.2 325.9 0.913 548.4 413.9 0.861 

Plastics  

Identity 1581.8 1211.7 0.951 1752.7 1329.9 0.940 

Logistic 2450.6 1041.4 0.883 1378.1 852.5 0.963 

Tanh 2144.9 1136.4 0.910 1534.1 889.0 0.954 

ReLU 901.3 571.6 0.984 998.1 629.7 0.981 

Steel bar  

Identity 648.8 502.1 0.969 747.5 558.5 0.959 

Logistic 1263.7 845.6 0.883 891.8 736.6 0.942 

Tanh 1059.3 603.0 0.918 894.9 525.5 0.941 

ReLU 343.9 212.9 0.991 426.9 266.7 0.987 

Slate  

Identity 671.4 487.2 0.921 791.4 593.8 0.890 

Logistic 965.4 774.3 0.836 921.8 707.7 0.851 

Tanh 868.8 630.7 0.867 915.6 667.9 0.853 

ReLU 625.8 431.8 0.931 744.8 536.5 0.902 

Soil 

Identity 1699.3 1494.5 0.967 1784.6 1568.1 0.963 

Logistic 2180.2 1759.9 0.945 1969.5 1674.3 0.955 

Tanh 1736.3 1474.4 0.965 1783.6 1477.8 0.963 

ReLU 447.3 375.1 0.998 845.4 549.9 0.992 

3.3. Prediction Results of Optimal Models 

Table 7 presents the test and validation results of the optimal ANN models for predicting the 

generation (kg) of the ten DW types. The validation results (RPD) of the ANN model for DWG 

prediction indicate excellent predictive performance, with values ≥3.2 for all waste types. The test 

results also indicate excellent predictive performance for all waste types, with RPD values ≥2.6. 

Among the waste types, the models for soil (RPD values: validation = 20.8, test = 11.0) and concrete 

(RPD values: validation = 15.6, test = 10.9) exhibited the best performance, whereas those for wood, 

slate, and roofing tiles exhibited relatively low performance compared with those for other waste 

materials. Nevertheless, the test and validation results showed that the RPD of all prediction models 

was ≥2.5, indicating excellent performance. Furthermore, as shown in Figure 6, the test results for the 

concentration values between the observed and predicted values of the ten DWG prediction models 

indicate that the concentration values of all DWG models are concentrated on the centerline 

(observed value = predicted value), which indicates that the predicted values are close to the observed 

values, again demonstrating excellent performance. 

To develop a prediction model for ten types of DW, maximizing the simplicity of the model 

structure can help reduce the development cost and time. Therefore, the optimal ANN model 

developed in this study had a simple structure with only one hidden layer (Table 7), and the number 

of neurons in the hidden layer was ≤ 10 for all models except that of wood. Moreover, all respective 

models developed for the ten DW types exhibited excellent prediction performance, indicating that 

they can be used for DWG predictions. 

Table 7. Structure and performance results of optimal models for DWG prediction for different waste 

types. 

DW type ANN model structure  RPD value Performance indicator 
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(input layer-hidden 

layer-output layer) 

Validation Test Validation Test 

Mortar 7-4-1 7.8 5.7 Excellent Excellent 

Concrete  7-5-1 15.6 10.9 Excellent Excellent 

Block  6-5-1 9.3 8.0 Excellent Excellent 

Brick  6-4-1 7.9 4.2 Excellent Excellent 

Roofing tile  6-10-1 3.7 3.4 Excellent Excellent 

Wood  6-50-1 3.2 2.6 Excellent Excellent 

Plastics  2-10-1 7.8 7.1 Excellent Excellent 

Steel bar  7-3-1 10.7 8.6 Excellent Excellent 

Slate  4-10-1 3.7 3.1 Excellent Excellent 

Soil 5-6-1 20.8 11.0 Excellent Excellent 

  

(a) (b) 

 
 

(c) (d) 

  
(e) (f) 
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(g) (h) 

  
(i) (j) 

Figure 6. Test results of the observed and predicted concentrations of optimal models for predicting 

DWG by waste type: (a) mortar; (b) concrete; (c) block; (d) brick; (e) roofing tile; (f) wood; (g) plastics; 

(h) steel bar; (i) slate; (j) soil. (Middle line indicates that the observed and predicted values are the 

same).  

3.4. Key Input Variables of Prediction Models 

This study analyzed the significances of the input variables for the ten DWG prediction models 

using the Shapley additive explanations (SHAP) method, which is used to quantify the significance 

of input variables [56,57]. It is used to identify the contributions of input variables to the final model 

prediction, and can be used to improve model performance and interpretability [58]. In ML models, 

the SHAP algorithm calculates the contribution of each input variable to the final prediction by 

averaging the contributions of all possible combinations of the input variables. A SHAP value close 

to zero indicates that the corresponding input variable does not significantly contribute to model 

prediction. 

Figure 7 shows the ranking of the main input variables affecting the predictions of the ten DW 

types, wherein it is evident that the impacts of the input variables on the DWG models vary 

considerably depending on the DW type, with the following characteristics being the most important: 

• Floor area: Overall, this input variable most critically affected DWG and ranked the highest for 

nine (excluding the brick model) of the ten DWG models. Additionally, it showed a strong 

positive impact on DWG predictions of all models. 

• Region: This input variable had a high impact on DWG prediction, and its correlations with 

DWG predictions varied. For example, in the mortar and slate models, one region (project A) 

showed a positive correlation, whereas another region (project B) showed a negative impact. The 

other DW types also showed contrasting results. 

• Structure: This variable showed varying correlations depending on the DW type; it (reinforce) 

showed a negative correlation with the generation of mortar, roofing tiles, wood, and soil, but a 

positive correlation with that of concrete, blocks, and steel bars. Additionally, various 

correlations were also observed between DW type and DWG in other structures (con_bri, 

con_blo, and wood). 
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• Wall type: This variable had the most significant impact on brick generation, with a positive 

correlation when the wall type was brick. Conversely, when the wall type was block, a negative 

correlation with brick generation was observed. These results contrast with the effects of wall 

type on block generation in the block model. 

• Number of floors, usage, and roof type: The number of floors appeared to affect the generation 

of concrete, blocks, roofing tiles, wood, and steel bars; however, its SHAP values were not large. 

The “number of floors_1” showed a positive correlation with the generation of roofing tiles and 
wood and a negative correlation with that of concrete, blocks, and steel bars. Furthermore, 

“number of floors_2” showed the opposite correlation with “number of floors_1.” Additionally, 
usage affected brick generation; however, its impact was not significant. The brick model shown 

in Figure 7(d) indicates that brick generation varies with usage type. Finally, roof type was an 

important input variable in the mortar, concrete, brick, and roofing tile models; however, its 

SHAP values were not large. 

(a) (b) 

(c) (d) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2023                   doi:10.20944/preprints202310.0661.v1

https://doi.org/10.20944/preprints202310.0661.v1


 15 

 

 
(e) (f) 

 
(g) (h) 

 
(i) (j) 
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Figure 7. Impact of the important variables affecting DWG on model output by waste type according 

to SHAP values: (a) mortar; (b) concrete; (c) block; (d) brick; (e) roofing tile; (f) wood; (g) plastics; (h) 

steel bar; (i) slate; (j) soil. (Con_blo: concrete block; slab/R.t: slab and roofing tile; con_bri: concrete 

brick; reinforced: reinforced concrete, R.t: roofing tile; Re/Co: residential and commercial; Re: 

residential).  

4. Discussion 

Developing prediction models for various types of DW is challenging, primarily because each 

waste type has different characteristics, and individual factors must be pre-analyzed to reflect them. 

Research on the management of various types of waste has been actively conducted in the MSW and 

CDW fields. Adeleke et al. [59] developed prediction models for different types of MSW, including 

organic, paper, plastic, and textile, using ANNs, and their predictive performance (R2) ranged from 

0.826–0.916. They used maximum temperature, minimum temperature, wind speed, and humidity 

as input variables for all four prediction models. Golbaz et al. [60] developed a prediction model for 

infectious, general, and total hospital solid waste using an ANN algorithm and seven input variables, 

and achieved test and validation performance (R2) of 0.64 and 0.76, respectively. Kumar et al. [18] 

developed an ANN model using education, occupation, income, and type of house as input variables 

for predicting various types of plastic waste generated in the city of Dhanbad, India; their model 

achieved an R2 value of 0.75. Kannangara et al. [61] developed prediction models for MSW and paper 

generation in Ontario, Canada using an ANN algorithm and seven socioeconomic input variables. 

Their prediction model with five socioeconomic input variable sets showed the best performance, 

with the best test R2 values of 0.72 and 0.35 for MSW and paper, respectively. The aforementioned 

studies are examples of those that developed models with simple ANN structures for predicting 

various waste types. However, the prediction performances of these models vary according to the 

type of waste. It should be noted that these studies employed the same set of input variables for 

various types of waste, which did not sufficiently reflect the factors affecting each waste type. In other 

words, independent sets of input variables were not developed for different types of waste, which 

may have partially resulted in their low prediction performance. From this perspective, we believe 

that developing independent input variable sets through a proper impact factor analysis is crucial for 

developing ML-based prediction models for various waste types. As evident from Table 8, this study 

differs from existing research in that it developed individual input variable sets for the ten types of 

DW and constructed DWG prediction models with a simple structure and excellent predictive 

performance. 

Table 8. Comparison of studies on ANN prediction models for various waste types. 

Study Waste type Whether 

individual sets 

of input 

parameters 

were developed 

for each waste 

type 

Performance 

(R2) of 

prediction 

models 

This study 

Mortar 

Concrete 

Block 

Brick 

Roofing tile 

Wood 

Plastics 

Steel bar 

Yes 

Test: 0.861–

0.991; 

Validation: 

0.913–0.998 
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Slate 

Soil 

[59] 

Organic 

Paper 

Plastic 

Textile 

No 0.826–0.916 

[60] 

Infectious hospital solid 

waste 

General hospital solid waste 

Total hospital solid waste 

No 
Test: 0.58–0.64; 

Validation: 

0.66–0.78 

[18] Plastics No 0.75 

[61] MSW 

Paper 
No 0.72 

0.35 

This study analyzed the factors influencing the predictions of the ten types of DW using SHAP 

values. Floor area was identified as the most important factor affecting the generation of all types of 

waste, demonstrating a strong positive correlation. Previous studies [24,33,62] have also found that 

floor area is a major input variable affecting DWG. Additionally, other building characteristics 

(building type or usage, structure, element type, region, etc.) were also shown to be major factors 

influencing DWG. However, in this study, the results for the building characteristics, such as building 

type or usage, structure, element type, and region, across the ten types of DWG models differed from 

those obtained in previous studies. For example, building characteristics other than floor area 

exhibited a positive correlation with the generation of some DW types and a negative correlation 

with that of others. The SHAP values indicated the existence of complex relationships between 

building characteristics and the generation of different DW types. Based on these findings, we believe 

that the development of good prediction models for various DW types requires the simultaneous 

development of an optimal set of input variables using various input variable combinations. 

Furthermore, AI tools, such as the SHAP value, are extremely useful for developing good prediction 

models for WM and understanding the characteristics of waste types. 

5. Conclusions 

This study aimed to understand the characteristics of various DW types from buildings in 

redevelopment areas in South Korea and develop DWG prediction models for ten types of DW. We 

applied an ANN algorithm, derived the optimal set of input variables and HP adjustments for each 

of the ten DW types, and then developed optimal DWG prediction models for each DW type. 

Additionally, individual input variable sets were developed for the ten DW types, and individual 

ANN models were implemented by deriving the optimal HP values. The DWG prediction models 

exhibited high R2 values, ranging from 0.913 (wood model) to 0.998 (soil model) for the validation 

results and from 0.861 (wood model) to 0.992 (concrete and soil models) for the test results. 

Furthermore, the RPD for all DWG models was ≥ 2.5, indicating that they exhibited excellent 

prediction performance. Most of the proposed ANN models had simple structures comprising 3–10 

neurons in the hidden layer; thus, they are considered efficient in terms of development time and 

cost. 

Furthermore, the factors affecting the generation of the ten DW types were analyzed through 

SHAP. Floor area was found to have the strongest positive correlation with DWG and the most 

significant impact on the generation of all DW types. In contrast, other factors (region, number of 

floors, structure, usage, and wall type) showed either a positive or negative correlation with DWG 

depending on the DW type. These results indicate that certain variables are more significant or have 

different relationships with other variables depending on the DW type, and the DWG predictions are 

affected by more complex factors than expected. Therefore, AI technology is highly useful for 
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analyzing these factors, and the results of this study may be significant for selecting input variables 

to develop future DWG prediction models.  

The ten DWG prediction models developed in this study can be effectively used for efficient 

WM. Demolition companies can use accurate DWG results for each waste type to allocate demolition 

personnel, appropriate number of trucks, handling costs, and recycling plans, which can enhance 

their efficiency, cost savings, and resource management. Additionally, central and local governments 

can utilize accurate DWG data for landfill management, identifying waste disposal facility capacity, 

efficiently operating recycling facilities, and urban planning by considering the location and capacity 

of waste disposal facilities. This can support effective decision-making for efficient DW management 

and resource allocation. 

The ANN-based prediction models developed in this study for the ten DW types comprised 

simple structures and exhibited high prediction performance. The simple ANN structure offers 

advantages such as overfitting prevention, improved generalizability, and quick learning and 

predictions. However, the wood model (validation and test R2 values of 0.913 and 0.861, respectively) 

had as many as 50 neurons in the hidden layer and exhibited a relatively low prediction performance 

compared with the other DW models. Because other DW models yielded excellent performance 

results under the same conditions, this cannot be easily attributed to data preprocessing problems, 

insufficient data, or overfitting. The findings of this study indicate that appropriate input variables 

must be employed to develop a model for wood with better performance. Therefore, to address this 

research limitation, future work should aim to develop an improved DWG prediction model by 

employing additional input variables. 
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