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Abstract: In South Korea, demolition waste (DW) management has become increasingly significant owing to
the rising number of old buildings. Effective DW management requires an efficient approach that accurately
quantifies and predicts the generation of DW (DWG) of various types, which necessitates access to the required
information or technology capable of achieving this. Hence, we developed an artificial intelligence-based
model that predicts the generation of ten DW types, specifically from buildings in redevelopment areas. We
used an artificial neural network algorithm with < 10 neurons in the hidden layer to derive individual input
variables and optimal hyperparameters for each DW type. All DWG prediction models achieved an average
validation and test prediction performance (R?) of 0.970 and 0.952, respectively, with their ratios of percent
deviation > 2.5, verifying them as excellent models. Moreover, a Shapley additive explanations analysis
revealed that DWG was most impacted by the floor area for all the DW types, with a positive correlation with
DWG. Conversely, other factors showed either a positive or negative correlation with DWG depending on the
DW type. The study findings will enable demolition companies and local governments in making informed
decisions for efficient DW management and resource allocation by accurately predicting the generation of
various types of DW.

Keywords: waste management; demolition waste generation; machine learning; artificial neural
network; SHAP analysis

1. Introduction

The generation of municipal solid waste (MSW) is continually increasing worldwide owing to
factors such as economic development, population growth, and increasing consumption [1].
Furthermore, the rise in MSW may be attributed to factors such as increased production, consumer
activity, and urbanization [2,3]. Construction and demolition waste (CDW) is defined as the MSW
from construction, renovation, and demolition processes [4,5]. It accounts for 35-40% of the total
waste generated worldwide [6], and within the European Union and the United States, it accounts
for 36 and 67% of the total waste generated, respectively [7]. Moreover, 70-90% of CDW is demolition
waste (DW) [8,9]. Therefore, CDW management is considered a major sustainability challenge in the
global construction industry.

Effective waste management (WM) can be achieved by developing efficient approaches based
on the appropriate quantification of waste generation (WG) and composition [10,11]. However, the
composition of DW generated at the end-of-life of buildings varies according to its characteristics
(e.g., region, age, structure, usage, and floor area), which makes it difficult to accurately quantify and
predict the generation of various types of DW. Moreover, accurate DWG information, such as
environmental impact assessment, prediction of waste disposal charges, recycling practices, and
pick-up truck estimation, is required to enable optimal DW management through empirical quantity
predictions during the building removal process [9]. Therefore, accurate estimations of the DW type
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and generation is important [12,13] for the government and contractors to plan waste control

strategies [14].

The advent of artificial intelligence (AI) has allowed machine learning (ML) models to mimic
human characteristics, such as problem solving, learning, perception, comprehension, and inference
[15,16]. Additionally, many researchers worldwide have employed Al for WM. Specifically, artificial
neural networks (ANNSs), a representative Al technology, have attracted significant attention owing
to their functions for big data processing, nonlinear relationship mapping, and result predictions [17].
Therefore, they have gradually become the most widely used ML algorithms in WM-related fields
[15]. Many researchers have conducted ANN-based WG prediction studies and achieved good
performance. Kumar et al. [18] developed ML models using ANN, support vector machine (SVM),
and random forest (RF) algorithms to predict plastic generation rate. Their ANN-based model
exhibited higher predictive performance than the SVM- and RF-based ones (coefficient of
determination R? = 0.75). Soni et al. [19] adopted an ANN algorithm to predict MSW generation in
India and extensively researched the development of a hybrid ANN model to enhance overall
performance. Wu et al. [20] employed an ANN model to predict MSW generation across several parts
of China. They analyzed the factors that directly affect differences in MSW generation in each region
using the results of the ANN model. Hoque and Rahman [21] used an ANN for landfill area
estimation according to the predictions of MSW generation in the southern region of Dhaka,
Bangladesh. Their model employed only two input variables and exhibited excellent results, yielding
R? values of 0.85 and 0.86 for the training and test models, respectively. Ayeleru et al. [22] developed
ANN- and SVM-based models to predict MSW generation in Johannesburg, South Africa. Their ANN
model outperformed the SVM model, achieving training and test performance results (R?) of 0.99 and
0.99, respectively. Jassim et al. [23] developed an ANN model to predict the annual MSW generation
in Bahrain and achieved excellent MSW prediction performance (R?) of 0.94. Cha et al. [24] used
various ML algorithms (ANN, SVM, RF, linear regression, and k-nearest neighbor) for DWG
prediction, wherein the ANN model achieved superior predictive performance with R? = 0.9
compared to other algorithms. As mentioned previously, ANN-based models have been widely used
by researchers for MSW generation predictions and yielded excellent results. Hoque and Rahman
[21] demonstrated that a simple and low-cost ML model can be developed with only two input
variables and a basic ANN structure (i.e., one each of input, hidden, and output layers),
demonstrating that the ANN algorithm is useful for developing highly effective MSW prediction
models.

In South Korea, a substantial amount of DW is expected to be generated in the future owing to
the increased demolition of old buildings under redevelopment projects. Therefore, DW management
may pose a significant threat to sustainable development in South Korea. Based on the
aforementioned factors, appropriate DW management is important, which requires accurate
information regarding the various types of DW generated from old buildings. Considering the
situation in South Korea, this study developed ML models to predict various types of DWG from old
buildings in South Korea's redevelopment areas. Specifically, it developed individual ML models to
predict the generation of different DW types at the building level. Additionally, it involved extracting
the variables that primarily affect each DW type and exploring solutions to design an optimal
prediction model. The main steps of this study are summarized below:

1. We collected data on the generation of ten types of DW from 150 old buildings in redevelopment
areas, and the raw data were preprocessed to build a dataset.

2. Variables primarily affecting the generation of each DW type were analyzed.

3. The ANN algorithm was applied to develop prediction models for each DW type, and the
hyperparameters (HPs), including the number of neurons, were adjusted to secure optimal
predictive performance for each DW type.

4. The leave-one-out cross-validation (LOOCV) technique was used for model development and
validation, and the root mean square error (RMSE), coefficient of determination (R?), and mean
absolute error (MAE) were used as statistical metrics.

5. By evaluating the performance of the developed models, the optimal ANN models for predicting
the generation of ten types of DW were proposed.
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The remainder of this paper is organized as follows. Section 2 describes the data used to develop
and evaluate the ANN models. Section 3 analyzes the performance of the prediction models
developed in this study for each DW type. Section 4 compares and discusses the main research
findings and existing research results. Finally, Section 5 concludes the study, summarizes its key
findings, and discusses its limitations and future research directions.

2. Materials and Methods

This section describes the data used in this study, data processing methods employed,
development of the DWG prediction models using the ANN algorithm, and methods adopted for
verification and evaluation. Sections 2.1 and 2.2 describe the data collection and preprocessing
method used, including categorical variables. Section 2.3 introduces the ANN algorithm used and its
application, correlations between the DW types and input variables, ANN model structure, and HP
adjustments employed to optimize the performance of various DW types. Finally, Section 2.4
describes the verification and evaluation methods employed for the ML models developed for DWG
predictions. A flowchart of the model development is shown in Figure 1.

X - Data preprocessing - Datasets by demolition waste types
ollon

[
' 1
j + Remmp mesha alies | & E @ E
h e
| |
! I
! [

* Normalization

1.Mortar 2.Concrete 3.Block 10. Soil

o i e S e ==

Pearson correlation analysis of
input variables for waste type

|

Create input variable sets for
wasle type

1. Mortar model

. L-J
Data

) 2. Concrete model
’ Search hyper parameter l g p

°

Selecting optimal input variable
set

l

1

1

1

1

1

1

1

1

1

1

1

1

1

1

I

i

1 }

| Evaluating R? performance of
| each learner
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
T
1

‘1 3. Block model

= SRARIAr famg o ‘."‘@ °
|
i* Number of neurons in hidden No &
layer Yes By
Select best

hyper parameter 10.Soil mg_de;

+ Regularization value (a)

ANN predictive models for 10 demolition waste types

I
I
I
|
= Activation function !
I
I
]
1
]
I
]

Epoch !
|
|
LooCcV Evaluating ANN models
Suggesting optimal ANN
O | Evaluation by RMSE, MAE, and | J models for predicting the
demolition waste generation b

Testing set (1) Training set (n-1) R*, RPD typesg !

Figure 1. Flowchart of ANN model development for predicting the generation of ten types of DW.

2.1. Data Collection

In this study, the DWG data were collected from the demolition sites in redevelopment areas of
Daegu (project A; 81 buildings; 35.88° N, 128.61° E) and Busan (project B; 69 buildings; 35.87° N,
128.63° E) cities, and were recorded as DWG (kg). Before demolition, a direct survey was conducted
on 150 buildings to analyze their characteristics (i.e., region, structure, usage, wall type, roof type,
gross floor area (GFA), and number of floors) and DWG information for 10 types of waste (i.e., mortar,
concrete, block, brick, roofing tile, wood, plastics, steel bar, slate, and soil). Table 1 presents the
statistical analysis results of the type-specific DWG, excluding missing values in the collected data.
The amount of waste generated by the demolition of old buildings in redevelopment areas was the
highest for block waste at 466.8 kg-m, accounting for 40.8% of the total DW (Figure 2). The amount
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of concrete was also significant at 287.8 kg:m?2, accounting for 25.1% of the total DW. Overall, the
generated DW comprised 87% minerals (i.e., mortar, concrete, block, brick, roofing tile) (Figure 2),
which is similar to that reported in previous studies [25-27]. However, in this study, the generation
of block waste was higher than that of concrete, constituting the largest proportion among the 10 DW
types, which differed from previous studies [25-27], wherein concrete generation was reported to be
the highest. This is because many old buildings in the redevelopment areas of South Korea have
undergone remodeling processes in the past, wherein walls were replaced with blocks [28].
Therefore, predicting DWG based on the information from these old buildings is expected be useful
for future WM in South Korea.

Table 1. Statistical analysis results for the generation of different DW types.

DW type Numberof = Maximum Minimum Average Total Average
buildings DWG (kg) DWG (kg) DWG (kg) DWG (kg) DWG rate
(kg:m-)
Mortar 150 37,329.6  1,010.0 13,141.0 1,971,150.4 98.7
Concrete 150 1694814  645.1 38,318.7 5,747,801.6 287.8
Block 148 222,621.7 7344 61,1113 9,166,689.9 466.8
Brick 104 74,310.1 265.4 6,273.8  941,063.4 61.1
Roofing tile 107 17,028.4 4,670.1 74744 1,121,155.7 87.5
Wood 150 8,638.8 663.3 2,529.3 379,389.3 19.0
Plastics 150 25,107.5 38.8 6,304.8 9457140 474
Steel bar 150 11,744.9 42.5 2,7142  407,1304 20.4
Slate 44 6,642.7 38.1 659.9 98,980.1 15.0
Soil 64 34,958.4 192.8 2539.6  380,936.8  40.7
= Mortar
u Concrete
= Block
Brick
» Roofing tile
= Wood
u Plastics
= Steel bar
u Slate
= Soil

Figure 2. Generation ratios of different types of DW.

2.2. Data Preprocessing

To improve the prediction performance of Al models, a stable dataset must be constructed. The
main purpose of building a stable dataset is to suppress the unwanted impact of distortions or
outliers in the data [29,30]. This study preprocessed datasets for each of the 10 DW types to improve
the performance of the DW prediction models. Data preprocessing was performed through
normalization to standardize the data scale as follows:

X—Xmin
x . . = ——-
normalization Xmax—Xmin (1)
where x is the data element, and x5, and X,,;, are the maximum and minimum amounts of data,

respectively.

2.3. Model Development
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2.3.1. ANN Architecture

ANNSs are ML models comprising multiple layers and neurons. They are widely used in the
fields of engineering and science for solving complex and challenging problems. ANNs are broadly
classified into feedforward and feedback neural networks; feedforward networks have been widely
used in engineering fields owing to their relative simplicity and superior performance, and are one
of the most frequently used algorithms for developing Al models for WM [15,16]. The basic structure
of an ANN comprises three layers (input, hidden, and output) and nonlinear transfer functions that
allow them to learn nonlinear and linear relationships between the input and output neurons
comprising several layers of neurons. Additionally, the ANN structure can be used to realize
multilayer perceptron neural networks by expanding the hidden layer.

Because this study aimed to develop ANN models for predicting the generation of ten types of
DW, an extremely simple architecture that ensured good performance was required. Therefore, a
feedforward neural network with a single hidden layer was adopted. This ANN architecture has been
frequently used in WM studies and demonstrated good performance [31,32]. As shown in Figure 3,
the ANN architecture comprised up to 7 and 100 neurons in the input and hidden layers, respectively.
This architecture was designed to output the resulting values for the ten types of DW in the output
layer.
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Figure 3. ANN architecture comprising three layers for predicting the generation of different DW
types (i, m, and n denote the DW type, number of input variables, and number of neurons,
respectively).

2.3.2. Input Variable Selection for Different Waste Types

Previous studies have reported that CDW generation is significantly affected by the internal
factors of buildings, such as type or structure [14,27,28,33-36], region [28,35,37-40], use [27,28,33—
35,41,42], and floor area [26-28,33,35,43]. The internal factors of a building are key factors that affect
DW generation. Therefore, for predicting the generation of various DW types, appropriate
influencing factors must be considered and a suitable set of input variables must be developed for
each DW type.

This study employed information regarding the generation of different DW types as well as the
building features such as region, structure, usage, wall type, roof type, GFA, and number of floors
that affect the generation of different DW types. For this, the Pearson correlation coefficients between
the generation of different DW types and building features were analyzed; the results are presented
in Figure 4 show that DW generation differs significantly based on building features. Specifically,
there is a strong correlation between some DW types, such as mortar, concrete, blocks, plastics, steel
bars, and soil, in terms of region, floor area, and number of floors. Additionally, certain building
features exhibit greater influence on specific DW types. Thus, an input variable set was created to
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reflect the priority of DW types identified through the Pearson correlation analysis of the building
features. Additionally, different combinations of input variables were tested to determine the optimal
combination for each DW type, as presented in Table 2.
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Number of floors 0.411

Figure 4. Pearson correlation coefficients between building features and DWG for different DW
types.

Table 2. Input variable sets tested to develop prediction models for different DW types.

DW type Input variable combination Number of input variables
tested and combinations of
methods employed
Mortar R+N+W+S5+F+Rt+U 1,2,3,4,56,7
Concrete F+N+R+S+U+Rt+W F .
or example, in the case of
Block F+N+R+W+5+U+Rit
Brick W+U+S+RIRI+FLN mortar, the number of
Roofing tile Rt+R+S+W+N+F+U input variables was as
Wood R+N+S+W+F+U+Rt follows:
Plastics R+F+N+W+U+R.t+S 1: R
Steel bar F+N+R+S+U+Rt+W 2. R+ N
Slate Rt+R+N+F+S+U+W
Soil W+R+S+N+F+Rt+U 3R+N+W
4:R+N+W+S

5 R+N+W+S5+F

6:R+N+W+S+F+Rit
727R+N+W+S+F+Rt+U
R: Region, S: structure, U: usage, W: wall type, R.t: roof type, F: floor area, and N: number of floors.

2.3.3. HP Tuning

Generally, building an effective ML model is a complex and time-consuming process because it
involves appropriate HP tuning for developing an optimal model [44]. The process of designing an
optimal model architecture with an optimal HP configuration is called HP tuning, which is a core
component that must be considered when building an effective ML model, particularly tree-based
models and neural networks with numerous HPs [45]. To prevent overfitting in an ANN model and
ensure good prediction performance, we considered two essential HPs: number of hidden layers and
neurons and type of activation function. Furthermore, to improve the generalizability and reduce
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training time, appropriate HPs, such as epochs and regularization methods (e.g., learning rate), must
be selected [46]. Therefore, we tuned some HPs, including the number of neurons, activation function,
learning rate, and number of epochs, with the goals of preventing overfitting, ensuring predictive
performance, and reducing the time required for model construction. Additionally, various HP
values were tested to determine the model with optimal performance (Table 3). All experiments were
conducted using Python 3.7 and Scikit-learn v1.0 on a computer comprising an AMD Ryzen 7 5800X
8-Core CPU (3.8 GHz, boosting up to 4.7 GHz) and 64 GB RAM.

Table 3. Network HP specifications used to develop optimal ANN models for different DW types.

HP Tested values or type
Solver “Adam,” “L-BFGS,” “SGD”
Activation function “Identity,” “Logistic,” “ReLU,” “Tanh”
Number of neuronsinthe 1,2,3,4,5,6,7,8,9,10,12, 14, 16, 18, 20, 24, 26, 28, 30, 40,
hidden layer 50, 60, 70, 80, 90, 100

0.0001, 0.001, 0.01, 0.1 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
200, 300, 400, 500, 600, 700, 800, 900, 1000
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200,
500, 1000
L-BFGS: limited-memory Broyden-Fletcher-Goldfarb—Shanno algorithm, SGD: stochastic gradient descent,

Learning rate

Epochs

ReLU: rectified linear unit.

2.4. Model Testing, Validation, and Evaluation

To develop the DWG prediction models, the data were divided into training and test sets at a
ratio of 80:20. For developing a robust ML model, data are generally split into two sets (i.e., training
and test), and the data between these sets are typically divided at a ratio of 80:20 [47]. Both sets were
generated through uniform random sampling of the preprocessed data [48]. The training set was
used to learn the general patterns and features of the dataset, whereas the test set was used to evaluate
the performance of the trained model using the optimized HPs obtained during training.

Additionally, the number of samples used to develop the prediction models for different DW
types ranged from 44-150 (Table 1), which is considered a small sample size. Therefore, we adopted
LOOCYV for validating the developed model as it is a special case of k-fold cross-validation and is
considered suitable for validating small sample sizes [49,50]. In contrast to 10-fold or k-fold cross-
validation, LOOCV can validate a small dataset because it uses all samples as test and training data
to ensure that a sufficient number of training and validation sets are employed [51-53].

Additionally, we adopted MAE, RMSE, and R?as the evaluation metrics for the developed ANN
models, which are computed as follows:

MAE = 2= @)

RMSE= |57, 250 and 3)
_ o4 i Oimx)?

Rz=1 - (4)

where x;, y;, X;, and ¥; are the observed, predicted, average observed, and average predicted
quantities of the generated DWs, respectively, and n is the number of samples. A satisfactory model
generally yields high R? values and low MAE, MSE, and RMSE values.

Additionally, the ML model performance must be validated through a multi-criteria process to
ensure that its accuracy is not exaggerated or distorted [54,55]. In addition to evaluating the
performance using single metrics such as MAE, RMSE, and R?, the ratio of percent deviation (RPD)
was also considered as a complementary performance indicator. The RPD was calculated using
Equation (5), and performance classification according to the RPD value is presented in Table 4 [55].
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Standard deviation

RPD = E (5)

Table 4. Model performance classification based on RPD values.

RPD values Performance indicator Remarks
RPD <1 Very poor Model/predictions whose use
is not recommended
1 <RPD <14 Poor Model/predictions where only
high and low values are
distinguishable
14 < RPD < 1.8 Fair Model/predictions which may
be used for assessment and
correlation
1.8 < RPD < 2 Good Model/predictions where
quantitative predictions are
possible
2 <RPD <25 Very good Quantitative model/ predictions
3. Results

3.1. Optimal HP Values and Input Variable Sets for Various DW Types

A wide range of HP values and input variable sets were tested to develop optimal DWG
prediction models for different DW types, and the resulting optimal HPs are listed in Table 5. The
“solver” that is not included in Table 5 was tested against Adam, L-BFGS, and SGD. Because L-BFGS
showed superior performance compared to Adam and SGD, only the results for L-BFGS are included
in Table 5. For different DW types, the optimal HP values of the ANN models for DWG predictions
varied according to the activation function; thus, various HP values were selected. In particular, most
models had fewer than 20 neurons in the hidden layer and involved < 200 epochs. This simple
structure and low calculation count were considered to be efficient and cost-effective for model
development. Additionally, we tested various combinations of input variables for different DW
types, and each model yielded different optimal combinations, comprising one to seven input
variables. These results suggest that input variable selection is crucial for ANN models and depends
on the type of activation function employed. Moreover, it is essential to develop an appropriate set
of input variables based on the selected HPs.

Table 5. Optimal HP values and input variable sets for different waste types to predict DWG.

DW type HP Input variable set
Activation Number of  Learning Epochs
function neurons in rate
hidden layer
Identity 20 600 50 R+N+W+S+F+Rt+U
Mortar Logistic 10 1 60 R+N+W+S
Tanh 16 1 1000 R+N+W+S5+F
ReLU 4 0.1 60 R+N+W+S5+F+Rt+U
Identity 1 30 50 F+N+R+S+U+Rt+W
Concrete Logistic 18 0.1 60 F
Tanh 10 1 120 F+N
ReLU 5 0.0001 50 F+N+R+S+U+Rt+W

Block Identity 2 1 20 F+N+R+W
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Logistic 4 0.01 40 F
Tanh 10 1 100 F+N
ReLU 5 1 40 F+N+R+W+S+U
Identity 4 10 30 W+U+S
. Logistic 60 1 200 W+U+S+R
Brick
Tanh 40 1 40 W+U+S+R
ReLU 4 0.0001 50 W+U+S+R+Rt+F
Identity 2 1 30 Rt+R+S+W+N+F
Roofing tile Logistic 70 1 120 Rt+R+S+W+N+F+U
Tanh 60 1 20 Rt+R+S
ReLU 10 100 50 Rt+R+S+W+N+F
Identity 8 10 20 R+N+S+W+F+U+Rt
Wood Logistic 90 1 1000 R+N+S+W+F+U+Rt
Tanh 26 0.1 120 R+N+S+W+F+U
ReLU 50 0.01 60 R+N+S+W+F+U
Identity 1 0.0001 20 R+F+N+W+U+Rt+S
Plastics Logistic 18 1 500 R+F+N
Tanh 50 0.01 120 R+F+N
ReLLU 10 1 50 R+F
Identity 7 100 40 F+N+R+S+U+Rt
Logistic 6 1 70 F
Steel bar Tanh 18 0.1 50 F+N+R
ReLU 3 1 50 F+N+R+S+U+Rt+W
Identity 16 0.0001 30 F+N+R+S+U
Logistic 3 1 30 F
Slate Tanh 60 1 50 F
ReLU 10 0.001 40 F+N+R+S
Identity 1 0.0001 10 W
. Logistic 3 1 180 W
Soil Tanh 2 1 50 W
ReLU 6 0.1 60 W+R+S+N+F

3.2. Model Performance According to Waste Type

The performance results (R?) of all the sub-models tested for developing an optimal ANN
prediction model for the 10 types of DW are shown in Figure 5. The R? values varied significantly for
different DW types, depending on the type of activation function employed. However, the ANN
models using ReLU generally exhibited the best prediction performance for all DW types. In contrast,
the “identity” function exhibited stable results and little variation in performance regardless of other
HP values (i.e., number of neurons, learning rate, and epochs). However, the logistic and tanh
functions showed considerable variations in prediction performance based on the number of
neurons, learning rate, and epochs. Additionally, they sometimes exhibited high variations, such as
in the case of blocks, roofing tiles, and soil, and low variations, such as in the case of mortar, roofing
tiles, wood, and soil. These variations indicate that the models were not stable. Therefore, ReLU is
considered appropriate for developing the most accurate and stable DWG prediction model for the
ten DW types. The results of the optimal prediction models, incorporating HPs from Table 5, for each
activation function type. The validation results indicated that logistic regression obtained the best
prediction performance for roofing tiles and wood, with R2 values of 0.960 and 0.970, respectively,
whereas ReLU performed the best for other DW types. However, the test results showed that the
prediction performance of ReLU was the best for all DW types. The ANN models employing ReLU
exhibited an average R? of 0.970, RMSE of 1735.1, and MAE of 1177.0 for the validation results, and
R2 of 0.952, RMSE of 2320.9, and MAE of 1523.8 for the test results. These results indicate that ANN
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models employing ReLU have superior prediction performance compared to those employing other

activation functions. Consequently, the ANN model with ReLU was considered to be the most
suitable for predicting all 10 types of DW.
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Figure 5. Performances of DWG prediction models for all tested HP values and input variable sets.

Table 6. DWG prediction performance of the ANN models for different DW types.

DW type Activation Performance metrics
function Validation Test
RMSE MAE R2 RMSE MAE R2
Identity 2692.4 1774.7 0.895 31914 2035.6 0.852
Mortar Logistic 39714 2760.3 0.771 3877.6 2581.3 0.781
Tanh 3053.1 1728.1 0.864 3222.5 2243.6 0.849
ReLU 1059.8 744.0 0.984 1440.5 1007.7 0.970
Identity 8778.2 6704.6 0.972 10572.3 7721.8 0.959
Logistic 19882.1 13116.7 0.855 12624.7 9963.8 0.942
Concrete
Tanh 11787.3 9524.4 0.949 11459.2 9090.2 0.952
ReLU 3347.1 2341.4 0.996 4762.4 3153.2 0.992
Identity 16887.6 11497.5 0.940 18706.7  12268.5 0.927
Block Logistic 21817.7  13618.1 0.900 15756.6  12663.9 0.948
Tanh 13919.2 10759.3 0.959 16050.4  12551.8 0.946
ReLU 7353.4 5202.4 0.989 8589.5 6170.2 0.985
Identity 6022.1 3139.2 0.869 7116.0 3593.0 0.817
Brick Logistic 4486.9 2176.3 0.927 5016.0 2517.0 0.909
Tanh 6562.4 3250.4 0.845 5856.2 2840.3 0.876
ReLU 2108.9 986.3 0.984 4017.8 1838.1 0.942
Identity 819.6 649.0 0.915 897.0 702.1 0.898
Roofing tile —

Logistic 562.6 416.2 0.960 970.6 732.4 0.881
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Tanh 2070.9 1639.7 0.458 1988.7 1540.9 0.500
ReLU 729.6 579.0 0.933 835.4 671.9 0.912
Identity 906.7 612.5 0.620 977.4 671.8 0.559
Logistic 253.7 162.1 0.970 630.0 438.4 0.817
Wood Tanh 580.5 407.0 0.844 979.2 661.8 0.557
ReLU 434.2 325.9 0.913 548.4 413.9 0.861
Identity 1581.8 1211.7 0.951 1752.7 1329.9 0.940
Plastics Logistic 2450.6 1041.4 0.883 1378.1 852.5 0.963
Tanh 21449 1136.4 0.910 1534.1 889.0 0.954
ReLU 901.3 571.6 0.984 998.1 629.7 0.981
Identity 648.8 502.1 0.969 747.5 558.5 0.959
Steel bar Logistic 1263.7 845.6 0.883 891.8 736.6 0.942
Tanh 1059.3 603.0 0.918 894.9 525.5 0.941
ReLU 343.9 212.9 0.991 426.9 266.7 0.987
Identity 671.4 487.2 0.921 7914 593.8 0.890
Slate Logistic 965.4 774.3 0.836 921.8 707.7 0.851
Tanh 868.8 630.7 0.867 915.6 667.9 0.853
ReLU 625.8 431.8 0.931 744.8 536.5 0.902
Identity 1699.3 1494.5 0.967 1784.6 1568.1 0.963
Soil Logistic 2180.2 1759.9 0.945 1969.5 1674.3 0.955
Tanh 1736.3 1474.4 0.965 1783.6 1477.8 0.963
ReLU 447.3 375.1 0.998 845.4 549.9 0.992

3.3. Prediction Results of Optimal Models

Table 7 presents the test and validation results of the optimal ANN models for predicting the
generation (kg) of the ten DW types. The validation results (RPD) of the ANN model for DWG
prediction indicate excellent predictive performance, with values >3.2 for all waste types. The test
results also indicate excellent predictive performance for all waste types, with RPD values >2.6.
Among the waste types, the models for soil (RPD values: validation = 20.8, test = 11.0) and concrete
(RPD values: validation = 15.6, test = 10.9) exhibited the best performance, whereas those for wood,
slate, and roofing tiles exhibited relatively low performance compared with those for other waste
materials. Nevertheless, the test and validation results showed that the RPD of all prediction models
was 2.5, indicating excellent performance. Furthermore, as shown in Figure 6, the test results for the
concentration values between the observed and predicted values of the ten DWG prediction models
indicate that the concentration values of all DWG models are concentrated on the centerline
(observed value = predicted value), which indicates that the predicted values are close to the observed
values, again demonstrating excellent performance.

To develop a prediction model for ten types of DW, maximizing the simplicity of the model
structure can help reduce the development cost and time. Therefore, the optimal ANN model
developed in this study had a simple structure with only one hidden layer (Table 7), and the number
of neurons in the hidden layer was < 10 for all models except that of wood. Moreover, all respective
models developed for the ten DW types exhibited excellent prediction performance, indicating that
they can be used for DWG predictions.

Table 7. Structure and performance results of optimal models for DWG prediction for different waste
types.

DW type ANN model structure RPD value Performance indicator
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(input layer-hidden Validation Test Validation Test
layer-output layer)
Mortar 7-4-1 7.8 5.7 Excellent Excellent
Concrete 7-5-1 15.6 10.9 Excellent Excellent
Block 6-5-1 9.3 8.0 Excellent Excellent
Brick 6-4-1 7.9 4.2 Excellent Excellent
Roofing tile 6-10-1 3.7 34 Excellent Excellent
Wood 6-50-1 3.2 2.6 Excellent Excellent
Plastics 2-10-1 7.8 7.1 Excellent Excellent
Steel bar 7-3-1 10.7 8.6 Excellent Excellent
Slate 4-10-1 3.7 3.1 Excellent Excellent
Soil 5-6-1 20.8 11.0 Excellent Excellent
40,000 e 200,000
//é b) Concrete
- 30,000 150,000
£ 20,000 E 100,000
* 10,000 ¢ 50,000 | Tg | E!EI
:n%z
0 o
0 10,000 20,000 30,000 40,000 0 50,000 100,000 150,000 200,000
Observed value (kg) QObserved value (kg)
(a) (b)
250,000 — —
[+ OC! /
! I e d) Brick 2l
200,000 | /ﬁ:ha
O - 60,000
8 150000 | . a - /f/
= k] o
® 3 40,000 ug 2
S 100,000 | g
« * 20000 }E/
50,000 / =
0 L L L - ! 0 20,000 40,000 60,000 80,000
0 50,000 100,000 150,000 200,000 250,000 Observed value (kg)
Observed value (kg}
24,000 (C) 9,000 (d)
" | ) Roofing tile a P " [hwood o
20,000 P 7,500 w
=]
g 16,000 Q 6,000
E 12,000 g 4,500
E 8,000 E 3,000
4,000 1500 | @
. o £ ' . , .
0 4,000 8,000 12,000 16,000 20,000 24,000 ] 1,500 3,000 4500 6,000 7,500 9,000
Observed value (kg) Observed value (kg)

() (f)


https://doi.org/10.20944/preprints202310.0661.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 October 2023

doi:10.20944/preprints202310.0661.v1

13
25000 15000
g) Plastics h) Steel bar
20000 12000
- = s
2 £ i ‘Hf['hii;
g 15000 -g-"_, 9000 o
[} [
> >
B 3 o
£ 10000 2 6000
8 i
a o x
» _/ .
5000 3000 o’ B
_ s
0 7 1]
0 5,000 10,000 15000 20,000 25,000 0 3,000 6,000 9000 12,000 15,000
Observed value (kg) Observed value (kg)
(8 (h)
10000 40000
i) Slate j) Soil
8000
o 30000
g g
5 6000 3
£ E: 20000
8 m® ol g
g2 4000 - ®
£ @
@ T
10000
2000 E E
&
=]
0= 0 - -
0] 2,000 4,000 6,000 8,000 10,000 0 10,000 20,000 30,000 40,000
Observed value (kg) Observed value (kg)
(@) ()

Figure 6. Test results of the observed and predicted concentrations of optimal models for predicting
DWG by waste type: (a) mortar; (b) concrete; (c) block; (d) brick; (e) roofing tile; (f) wood; (g) plastics;
(h) steel bar; (i) slate; (j) soil. (Middle line indicates that the observed and predicted values are the

same).

3.4. Key Input Variables of Prediction Models

This study analyzed the significances of the input variables for the ten DWG prediction models

using the Shapley additive explanations (SHAP) method, which is used to quantify the significance
of input variables [56,57]. It is used to identify the contributions of input variables to the final model
prediction, and can be used to improve model performance and interpretability [58]. In ML models,
the SHAP algorithm calculates the contribution of each input variable to the final prediction by
averaging the contributions of all possible combinations of the input variables. A SHAP value close
to zero indicates that the corresponding input variable does not significantly contribute to model
prediction.

Figure 7 shows the ranking of the main input variables affecting the predictions of the ten DW
types, wherein it is evident that the impacts of the input variables on the DWG models vary
considerably depending on the DW type, with the following characteristics being the most important:
e  Floor area: Overall, this input variable most critically affected DWG and ranked the highest for

nine (excluding the brick model) of the ten DWG models. Additionally, it showed a strong

positive impact on DWG predictions of all models.

e  Region: This input variable had a high impact on DWG prediction, and its correlations with
DWG predictions varied. For example, in the mortar and slate models, one region (project A)
showed a positive correlation, whereas another region (project B) showed a negative impact. The
other DW types also showed contrasting results.

e  Structure: This variable showed varying correlations depending on the DW type; it (reinforce)
showed a negative correlation with the generation of mortar, roofing tiles, wood, and soil, but a
positive correlation with that of concrete, blocks, and steel bars. Additionally, various
correlations were also observed between DW type and DWG in other structures (con_bri,
con_blo, and wood).
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e  Wall type: This variable had the most significant impact on brick generation, with a positive
correlation when the wall type was brick. Conversely, when the wall type was block, a negative
correlation with brick generation was observed. These results contrast with the effects of wall
type on block generation in the block model.

e  Number of floors, usage, and roof type: The number of floors appeared to affect the generation
of concrete, blocks, roofing tiles, wood, and steel bars; however, its SHAP values were not large.
The “number of floors_1"” showed a positive correlation with the generation of roofing tiles and
wood and a negative correlation with that of concrete, blocks, and steel bars. Furthermore,
“number of floors_2” showed the opposite correlation with “number of floors_1.” Additionally,
usage affected brick generation; however, its impact was not significant. The brick model shown
in Figure 7(d) indicates that brick generation varies with usage type. Finally, roof type was an
important input variable in the mortar, concrete, brick, and roofing tile models; however, its
SHAP values were not large.
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Figure 7. Impact of the important variables affecting DWG on model output by waste type according
to SHAP values: (a) mortar; (b) concrete; (c) block; (d) brick; (e) roofing tile; (f) wood; (g) plastics; (h)
steel bar; (i) slate; (j) soil. (Con_blo: concrete block; slab/R.t: slab and roofing tile; con_bri: concrete
brick; reinforced: reinforced concrete, R.t: roofing tile; Re/Co: residential and commercial; Re:
residential).

4. Discussion

Developing prediction models for various types of DW is challenging, primarily because each
waste type has different characteristics, and individual factors must be pre-analyzed to reflect them.
Research on the management of various types of waste has been actively conducted in the MSW and
CDW fields. Adeleke et al. [59] developed prediction models for different types of MSW, including
organic, paper, plastic, and textile, using ANNs, and their predictive performance (R?) ranged from
0.826-0.916. They used maximum temperature, minimum temperature, wind speed, and humidity
as input variables for all four prediction models. Golbaz et al. [60] developed a prediction model for
infectious, general, and total hospital solid waste using an ANN algorithm and seven input variables,
and achieved test and validation performance (R?) of 0.64 and 0.76, respectively. Kumar et al. [18]
developed an ANN model using education, occupation, income, and type of house as input variables
for predicting various types of plastic waste generated in the city of Dhanbad, India; their model
achieved an R? value of 0.75. Kannangara et al. [61] developed prediction models for MSW and paper
generation in Ontario, Canada using an ANN algorithm and seven socioeconomic input variables.
Their prediction model with five socioeconomic input variable sets showed the best performance,
with the best test R? values of 0.72 and 0.35 for MSW and paper, respectively. The aforementioned
studies are examples of those that developed models with simple ANN structures for predicting
various waste types. However, the prediction performances of these models vary according to the
type of waste. It should be noted that these studies employed the same set of input variables for
various types of waste, which did not sufficiently reflect the factors affecting each waste type. In other
words, independent sets of input variables were not developed for different types of waste, which
may have partially resulted in their low prediction performance. From this perspective, we believe
that developing independent input variable sets through a proper impact factor analysis is crucial for
developing ML-based prediction models for various waste types. As evident from Table 8, this study
differs from existing research in that it developed individual input variable sets for the ten types of
DW and constructed DWG prediction models with a simple structure and excellent predictive
performance.

Table 8. Comparison of studies on ANN prediction models for various waste types.

Study Waste type Whether Performance
individual sets (R?) of
of input prediction
parameters models

were developed
for each waste

type
Mortar
Concrete
Block Test: 0.861—
0.991;
This study BfiCk ' Yes Validation:
Roofing tile
Wood 0.913-0.998
Plastics

Steel bar
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Slate
Soil

Organic

[59] Paper No 0.826-0.916
Plastic

Textile

Infectious hospital solid
Test: 0.58-0.64;

[60] waste No Validation:
General hospital solid waste 0.66-0.78
Total hospital solid waste
[18] Plastics No 0.75
[61] MSW No 0.72
Paper 0.35

This study analyzed the factors influencing the predictions of the ten types of DW using SHAP
values. Floor area was identified as the most important factor affecting the generation of all types of
waste, demonstrating a strong positive correlation. Previous studies [24,33,62] have also found that
floor area is a major input variable affecting DWG. Additionally, other building characteristics
(building type or usage, structure, element type, region, etc.) were also shown to be major factors
influencing DWG. However, in this study, the results for the building characteristics, such as building
type or usage, structure, element type, and region, across the ten types of DWG models differed from
those obtained in previous studies. For example, building characteristics other than floor area
exhibited a positive correlation with the generation of some DW types and a negative correlation
with that of others. The SHAP values indicated the existence of complex relationships between
building characteristics and the generation of different DW types. Based on these findings, we believe
that the development of good prediction models for various DW types requires the simultaneous
development of an optimal set of input variables using various input variable combinations.
Furthermore, Al tools, such as the SHAP value, are extremely useful for developing good prediction
models for WM and understanding the characteristics of waste types.

5. Conclusions

This study aimed to understand the characteristics of various DW types from buildings in
redevelopment areas in South Korea and develop DWG prediction models for ten types of DW. We
applied an ANN algorithm, derived the optimal set of input variables and HP adjustments for each
of the ten DW types, and then developed optimal DWG prediction models for each DW type.
Additionally, individual input variable sets were developed for the ten DW types, and individual
ANN models were implemented by deriving the optimal HP values. The DWG prediction models
exhibited high R? values, ranging from 0.913 (wood model) to 0.998 (soil model) for the validation
results and from 0.861 (wood model) to 0.992 (concrete and soil models) for the test results.
Furthermore, the RPD for all DWG models was > 2.5, indicating that they exhibited excellent
prediction performance. Most of the proposed ANN models had simple structures comprising 3—-10
neurons in the hidden layer; thus, they are considered efficient in terms of development time and
cost.

Furthermore, the factors affecting the generation of the ten DW types were analyzed through
SHAP. Floor area was found to have the strongest positive correlation with DWG and the most
significant impact on the generation of all DW types. In contrast, other factors (region, number of
floors, structure, usage, and wall type) showed either a positive or negative correlation with DWG
depending on the DW type. These results indicate that certain variables are more significant or have
different relationships with other variables depending on the DW type, and the DWG predictions are
affected by more complex factors than expected. Therefore, Al technology is highly useful for
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analyzing these factors, and the results of this study may be significant for selecting input variables
to develop future DWG prediction models.

The ten DWG prediction models developed in this study can be effectively used for efficient
WM. Demolition companies can use accurate DWG results for each waste type to allocate demolition
personnel, appropriate number of trucks, handling costs, and recycling plans, which can enhance
their efficiency, cost savings, and resource management. Additionally, central and local governments
can utilize accurate DWG data for landfill management, identifying waste disposal facility capacity,
efficiently operating recycling facilities, and urban planning by considering the location and capacity
of waste disposal facilities. This can support effective decision-making for efficient DW management
and resource allocation.

The ANN-based prediction models developed in this study for the ten DW types comprised
simple structures and exhibited high prediction performance. The simple ANN structure offers
advantages such as overfitting prevention, improved generalizability, and quick learning and
predictions. However, the wood model (validation and test R? values of 0.913 and 0.861, respectively)
had as many as 50 neurons in the hidden layer and exhibited a relatively low prediction performance
compared with the other DW models. Because other DW models yielded excellent performance
results under the same conditions, this cannot be easily attributed to data preprocessing problems,
insufficient data, or overfitting. The findings of this study indicate that appropriate input variables
must be employed to develop a model for wood with better performance. Therefore, to address this
research limitation, future work should aim to develop an improved DWG prediction model by
employing additional input variables.
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