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Abstract: Analyzing network robustness against random failures or malicious attacks is a critical

research issue in network science as it helps to enhance the robustness of beneficial networks or

efficiently disintegrate harmful networks. Most previous studies commonly neglect the impact of

the attack success rate (ASR) and assume that attacks on the network will always be successful.

However, in real-world scenarios, an attack may not always succeed. Therefore, this paper

proposes a novel robustness measure called RASR, which utilizes mathematical expectations to

assess network robustness when considering the ASR of each node. To efficiently compute the

RASR for large-scale networks, a parallel algorithm named PRQMC is presented, which leverages

randomized quasi-Monte Carlo integration to approximate the RASR with a faster convergence rate.

Additionally, a new attack strategy named HBnnsAGP is introduced to better assess the lower bound

of network RASR. Finally, the experimental results on 6 representative real-world complex networks

demonstrate the effectiveness of the proposed methods compared with the state-of-the-art baselines.

Keywords: complex network; robustness; quasi-Monte Carlo; attack success rate

1. Introduction

Complex networks can effectively represent many real-world networks, such as the Internet, social

networks, power grids, and so on. Most networks are beneficial to people and bring many positive

effects. However, some networks also have negative effects, with the most important examples being

terrorism and disease transmission networks [1,2]. Whether beneficial or harmful, these networks

substantially influence the functioning and development of our society. In recent decades, the study of

diverse complex networks has gained significant attention from researchers across various fields such

as computer science, statistical physics, systems engineering, and applied mathematics [3–7]. One hot

topic point in these studies is the error and attack tolerance of complex networks [8–16], a concept

referred to as robustness within the context of this paper.

The robustness of a network refers to its ability to keep functioning when some of its components,

such as nodes or edges, malfunction due to random failures or malicious attacks [12,17,18]. The study

of network robustness is valuable from two main perspectives. Firstly, the failure of components can

lead to the breakdown of beneficial networks and result in significant economic losses. A typical

example is the Northeast blackout of 2003 [19,20]. Analyzing network robustness aids in developing

methods to enhance it. On the other hand, for harmful networks, such as terrorist networks [21] or

COVID-19 transmission networks [22], analyzing their robustness assists in developing effective attack

strategies to dismantle them. Therefore, analyzing network robustness is of great importance.

To analyze the robustness of the network, it is necessary to choose a suitable metric to evaluate

how robust a network is. Since almost all network applications are typically designed to operate in

a connected environment [23], network connectivity is selected as the primary indicator to assess

network robustness in this study.

The robustness of a network depends not only on its structural features but also on the mechanisms

of random failures or malicious attacks. In random failures, nodes or edges are attacked with equal

probability, while malicious attacks target nodes or edges in decreasing order of their importance.
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Typically random failures are less severe than malicious attacks [24,25]. Evaluating the impacts of node

or edge removal using various malicious attack strategies is a crucial approach to analyzing network

robustness. Determining the lower bound of network robustness is critical as it allows for analysis

of network robustness under worst-case scenarios, identification of the most vulnerable components,

and development of robustness improvement methods. An effective approach to addressing this issue

involves identifying an optimal attack strategy that inflicts maximum damage on the network [26].

Extensive research has been conducted on the robustness of complex networks. Albert et al. [8]

studied the robustness of scale-free networks and found that while these networks are robust to random

failures, they are extremely vulnerable to malicious attacks. Iyer et al. [9] conducted a systematic

examination of the robustness of complex networks by employing simultaneous and sequential

targeted attacks based on various centrality measures such as degree, betweenness, closeness, and

eigenvector centrality. Fan et al. [10] proposed a deep reinforcement learning algorithm, FINDER, to

effectively identify critical network nodes. Wang et al. [11] introduced region centrality and proposed

an efficient network disintegration strategy based on this concept, which combines topological

properties and geographic structure in complex networks. Ma et al. [12] conducted a study on

the robustness of complex networks against incomplete information. They employed link prediction

methods to restore missing network topology information and identify critical nodes. Lou et al. [14]

introduced LFR-CNN, a CNN-based approach that utilizes learning feature representation for

predicting network robustness, which exhibits excellent predictive performance notably smaller

prediction errors.

However, the aforementioned research generally assumes that attacks on the network will always

be successful, neglecting the important factor of attack success rate (ASR). In fact, an attack may not

succeed in real-world scenarios. For example, even if the enemy forces launch an attack on a target

within a military communication network, there is no guarantee of successfully destroying it. Figure 1

illustrates the main process of network disintegration under varying ASR. Moreover, selecting an

optimum attack strategy that can lead to maximal destructiveness to the network is challenging due to

the NP-hard nature of this problem [10]. Existing methods often encounter difficulties in achieving a

desirable balance between effectiveness and computational efficiency.

Therefore, the purpose of this paper is to analyze network robustness when considering ASR under

an optimal attack strategy. To achieve this purpose, a novel robustness measure called Robustness-ASR

(RASR) is introduced, which utilizes mathematical expectations to evaluate network robustness when

considering ASR. In addition, an efficient algorithm called PRQMC is proposed to calculate the RASR

for large-scale networks. Furthermore, to assess the lower bound of network RASR, a new attack

strategy, named HBnnsAGP, is proposed. The main contributions of this study are as follows:

• We introduce and define a novel robustness measure called RASR, which utilizes mathematical

expectations to assess network robustness when considering the ASR of each node.
• To efficiently calculate the RASR for large-scale networks, we propose the PRQMC algorithm.

PRQMC leverages randomized quasi-Monte Carlo (QMC) integration to approximate the RASR

with a faster convergence rate and utilizes parallelization to speed up the calculation.
• To assess the lower bound of network RASR, we present a new attack strategy, named HBnnsAGP.

In HBnnsAGP, a novel centrality measure called BCnns is proposed to quantify the importance of

a node.
• The experimental results on 6 representative real-world networks demonstrate the effectiveness

of the proposed methods compared with the baselines.

The rest of this paper is organized as follows. Section 2 provides an introduction to the

preliminaries, including classical centrality measures, traditional network robustness measures, and

the principles of Monte Carlo (MC) and QMC integration. Section 3 presents the proposed methods

for analyzing network robustness when considering ASR, including the RASR, the PRQMC algorithm,

and the HBnnsAGP attack strategy. The experiments and results are demonstrated in Section 4. Finally,

Section 5 concludes the paper.
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Figure 1. An example of network disintegration process under different ASR. Gray nodes indicate

successful attacks, green nodes represent unsuccessful attacks, and blue nodes denote unattacked

nodes.

2. Preliminaries

A complex network can be modeled as an unweighted undirected graph G = (V, E), where

V(|V| = N) and E(|E| = M) represent the set of nodes and the set of edges in the network G,

respectively. The network G can be also represented as an adjacency matrix A = (aij)N×N , if node i

and node j are connected, aij = 1, otherwise aij = 0.

2.1. Centrality Measures

The concept of a centrality measure attempts to quantify how important a node is [27]. Here we

introduce two classical centrality measures: degree centrality and betweenness centrality.

2.1.1. Degree centrality (DC)

DC is the simplest measure of centrality. The DC of a node is defined by its degree, that is, its

number of edges. The DC is formally defined as follows.

Definition 1. Given a network G = (V, E), A = (aij)N×N is the adjacency matrix of the network G. The DC

of node i is defined as:

DC(i) = ∑
j∈V

aij. (1)

The DC is frequently a reliable and effective measure of a node’s importance. A higher DC value

typically signifies a more critical node.

2.1.2. Betweenness centrality (BC)

BC quantifies the number of shortest paths passing through a particular node in a network[28].

BC characterizes the extent to which a node acts as a mediator among all other nodes in a network[27].
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Nodes that lie on numerous shortest paths are likely to play a crucial role in information transmission,

exhibiting higher BC values. The BC is defined as follows.

Definition 2. Given a network G = (V, E). The BC of node v in G is defined as:

BC(v) = ∑
s,t∈V

σ(s, t | v)

σ(s, t)
, (2)

where, v ∈ V, σ(s, t) is the total number of shortest paths from node s to node t and σ(s, t | v) is the number of

those paths that pass through node v. σ(s, t) = 1, if s = t. σ(s, t | v) = 0, if v ∈ s, t.

2.2. Accumulated Normalized Connectivity

Traditionally, network robustness has been evaluated by calculating the size of the giant connected

component (GCC) after the network has endured attacks. The Accumulated Normalized Connectivity

(ANC), also known as R, is a well-known measure of network robustness for node attacks [10,17,29].

The ANC is defined as follows.

Definition 3. For a network G = (V, E), |V| = N. Given an attack sequence of nodes (v1, v2, . . . , vN), where

vi ∈ V indicates the ith node to be attacked, the ANC of G under this attack sequence is defined as:

ANC(v1, v2, . . . , vN) =
1

N

N

∑
k=1

σgcc(G\{v1, v2, . . . , vk})
σgcc(G)

, (3)

here, σgcc(G\{v1, v2, . . . , vk}) is the size of the GCC of the residual network after the sequential removal of nodes

from the set {v1, v2, . . . , vk} in G, and σgcc(G) the initial size of the GCC of G before any nodes are removed.

The normalization factor 1
N ensures that the robustness of networks with different sizes can be compared.

A larger ANC value indicates a higher level of network robustness against attacks. Additionally,

the ANC can be used to assess the destructiveness of attacks, lower ANC values correspond to

more destructive attack strategies. The ANC value can be viewed as an estimate of the area

beneath the ANC curve, which is plotted with the horizontal axis as k/N and the vertical axis as

σgcc(G\{v1, v2, . . . , vk})/σgcc(G).

2.3. Monte Carlo Integration

Monte Carlo (MC) integration is a numerical technique that is particularly useful for

higher-dimensional integrals[30]. Caflisch[31] provides a comprehensive review of this method.

The integral of a Lebesgue integrable function f (X) can be expressed as the average or expectation of

the function evaluated at random locations. Considering X as a random variable uniformly distributed

on the one-dimensional unit interval [0, 1], the integration of f (X) over this interval can be represented

as follows:

I[ f ] = E[ f (X)] =
∫

[0,1]
f (X)dP(X), (4)

in which P(X) is the probability measure of X on the interval [0, 1], then

dP(X) = dX, (5)

therefore

I[ f ] = E[ f (X)] =
∫

[0,1]
f (X)dX. (6)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 October 2023                   doi:10.20944/preprints202310.0451.v1

https://doi.org/10.20944/preprints202310.0451.v1


5 of 20

Similarly, for an integral on the unit hypercube [0, 1]N in N dimensions,

I[ f ] = E[ f (X)] =
∫

[0,1]N
f (X)dX, (7)

in which X = (x1, x2, . . . , xN) is a uniformly distributed vector in [0, 1]N , where xi ∈ [0, 1], i ∈
{1, 2, . . . , N}. Given that the hyper-volume of [0, 1]N is equal to 1, thus [0, 1]N can be viewed as the

total probability space.

The MC integration method approximates definite integrals utilizing random sampling. It draws

K uniform samples from [0, 1]N , in turn generating a points set {X1, X2, . . . , XK}. The empirical

approximation of the integral I[ f ] is then procured by computing the mean of the K sample outcomes

f (X i), which can be expressed as follows:

I[ f ] ≈ IK[ f ] =
1

K

K

∑
i=1

f (X i). (8)

According to the Strong Law of Large Numbers [32], this approximation is convergent with probability

1, that is,

lim
K→∞

P (|IK[ f ]− I[ f ]| = 0) = 1. (9)

Figure 2 illustrates the application of the MC integration method in approximating definite

integrals over a one-dimensional unit interval. As shown in Figure 2a, MC integration approximates

the area under the curve of the integral by summing the areas of the bars corresponding to the sampled

points. The bars are rearranged sequentially to avoid overlap on the X-axis, as shown in Figure 2b.

��� ��� ��� ��� ��� ���
X

���

���

���

���

���

���

f(X
)

K=30

(a)

��� ��� ��� ��� ��� ���
X

���

���

���

���

���

���

f(X
)

K=30

(b)

Figure 2. An example of MC integration method for approximating a definite integral over a

one-dimensional unit interval. (a) illustrates the approximation of the integral by summing the

areas of bars that correspond to the sampled points. Each bar’s height represents the value of f (X) at

X i and its width is 1/K, where K denotes the total number of samples. (b) demonstrates the sequential

rearrangement of the bars to prevent overlapping on the X-axis, ensuring a clear visualization of

the areas.

The error of MC integration is

εK = |IK[ f ]− I[ f ]| . (10)

By the Central Limit Theorem [32], for any a, b where a < b, we have

lim
K→∞

P(a <
εK

σ/
√

K
< b) =

∫ b

a

1√
2π

e−t2/2dt = P(a < v < b), (11)
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where v is a standard normal random variable and σ is the square root of the variance of f , given by

σ = (
∫

[0,1]N
( f (X)− I[ f ])2dX)1/2. (12)

When K is sufficiently large, we have

εK ≈ σK−1/2v. (13)

This implies that the order of error convergence rate of the MC integration is O(K−1/2) [33], which

means that the accuracy of the integral error decreases at a rate proportional to the total number of

samples K increases. That is, “an additional factor of 4 increase in computational effort only provides

an additional factor of 2 improvements in accuracy" [31].

In practical applications, the MC integration method draws K uniform samples from an

N-dimensional pseudo-random sequence (PRS) generated by a computer to obtain the points set

{X1, X2, . . . , XK}.

2.4. Quasi-Monte Carlo Integration

The quasi-Monte Carlo (QMC) integration is a method of numerical integration that operates in

the same way as MC integration, but instead uses a deterministic low-discrepancy sequence (LDS) [34]

to approximate the integral. The advantage of using LDSs is a faster rate of convergence. QMC

integration has a rate of convergence close to O(K−1), which is much faster than the rate for the MC

integration, O(K−1/2) [35]

Using the QMC integration method for approximating definite integrals is similar to the MC

integration method. This can be expressed as:

I[ f ] =
∫

[0,1]N
f (X)dX ≈ 1

K

K

∑
i=1

f (Y i), (14)

where {Y1, Y2, . . . , YK} is a points set obtained by combining the first K points from an N-dimensional

LDS. Each Yi is an N-dimensional point, with Yi = (y
{i}
1 , y

{i}
2 , . . . , y

{i}
N ) for i ∈ {1, 2, . . . , K}, and

y
{i}
j ∈ [0, 1] for j ∈ {1, 2, . . . , N}.

The error order of the QMC integration can be determined by the Koksma-Hlawka inequality [36,37],

that is,

εK =

∣∣∣∣∣

∫

[0,1]N
f (X)dX − 1

K

K

∑
i=1

f (Y i)

∣∣∣∣∣ < V( f )D∗K , (15)

where V( f ) is the Hardy–Krause variation of the function f , D∗K is the star discrepancy of

{Y1, Y2, . . . , YK}, and is defined as:

D∗K = sup
Q⊂[0,1]N

∣∣∣∣
M(Y1, Y2, . . . , YK)

K
− λN(Q)

∣∣∣∣ , (16)

where M(Y1, Y2, . . . , YK) is the number of points in {Y1, Y2, . . . , YK} inside the region Q, and λN(Q) is

the Lebesgue measure of region Q in the unit hypercube [0, 1]N . For more detailed information, please

refer to [31].

For an N-dimensional LDS comprising K points, the star discrepancy of the sequence is

O(K−1(log K)N). Consequently, for a function F with V(F) < ∞, a QMC approximation based on this

sequence yields a worst-case error bound in Equation (28) converging at a rate of O(K−1(log K)N) [38].

Since log K ≪ K, the QMC integration convergence rate approaches O(K−1) for low-dimensional

cases [33], which is asymptotically superior to MC.

Figure 3 illustrates the clear differences between MC and QMC integration methods. The

subfigures provide a visual representation of their respective point distributions and demonstrate

their application for approximating definite integrals over a one-dimensional unit interval. The points
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generated from an LDS exhibit greater uniformity than the points generated by a PRS. Consequently,

with the same number of sampling points, LDS has the ability to uniformly fill the integration space,

resulting in a faster convergence rate.

��� ��� ��� ��� ��� ���
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���
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K=30
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)

K=30

LDS

(f)

Figure 3. A comparison of MC and QMC integration methods. (a) and (d) show the two-dimensional

projections of a PRS and an LDS (a Sobol sequence) respectively. (b) and (c) depict the MC integration

for approximating a definite integral over a one-dimensional unit interval, while (e) and (f) present the

QMC integration for approximating a definite integral over a one-dimensional unit interval.

3. Methods

In this section, we will first introduce the major problem we focus on in this paper. Then, we

give the details of the proposed methods for analyzing network robustness when considering ASR,

including the RASR, the PRQMC algorithm, and the HBnnsAGP attack strategy.

3.1. Problem Formalization

Typically, it is assumed that removing a node will also remove all of its connected edges. Therefore,

in this paper, we only consider node attack strategies.

For a network G = (V, E), |V| = N. A node attack strategy can be represented as a sequence

Seq = (v1, v2, . . . , vN), where vi ∈ V indicates the ith node to be attacked. Given a predefined metric

Φ(Seq) to measure network robustness against attacks. The primary goal is to evaluate the lower

bound of network robustness. Therefore, the objective is to minimize Φ(Seq), as presented below:

Minimize Φ(Seq). (17)

To achieve this objective, it is crucial to determine the optimal node attack strategy that will minimize

the Φ(Seq).

3.2. The Proposed Robustness Measure RASR

The ANC, as defined in Definition 3, does not consider the ASR, or it is a special case where the

ASR of each node is 100%. To this end, the proposed robustness measure RASR utilizes mathematical
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expectations to assess network robustness when considering ASR. Before introducing the RASR, we

will first present a weighted ANC (named ANCw), which takes into account both the state of the attack

sequence state and the associated attack cost.

For a network G = (V, E) with N nodes, Seq = (v1, v2, . . . , vN) is an attack sequence, where

vi ∈ V. The state of Seq is denoted as a random variable S = (sv1
, sv2 , . . . , svN

), where

svi
=

{
T, if the attack on vi succeeded

F, otherwise
. (18)

Then, the ANCw is defined as follows.

Definition 4. The ANCw of G under an attack sequence Seq is defined as:

ANCw(Seq, S) =
1

N+1

N

∑
k=0

σgcc(G\{vi|svi
= T, i = 1, 2, · · · , k})
σgcc(G)

ϕ(vk), (19)

here σgcc is the same as defined in Definition 3. When k = 0, it indicates that no nodes have been attacked. ϕ(vk)

is a weighted function, that is,

ϕ(vk) =

{
0, if vk is an isolated node

1, otherwise
. (20)

There are two main reasons for using the weighted function ϕ(vk). Firstly, it is important for an

attacker to choose an optimal attack strategy at a minimum attack cost to efficiently disintegrate the

network [11,26]. Secondly, as illustrated in Figure 1, with an increased number of nodes removed, the

network will eventually fragment into isolated nodes, thereby losing its functionality as a network.

Therefore, this paper sets the attack cost of an isolated node to 0.

Let Pv = (pv1
, pv2 , . . . , pvN

) represent the ASR of each node corresponding to Seq, where pvi

represents the ASR of node vi. Assuming that attacks on different nodes are independent, then the

probability of S is

p(S) =
N

∏
i=1

p(svi
), (21)

where

p(svi
) =

{
pvi

, if svi
= T

1− pvi
, otherwise

. (22)

Based on the above formulas, the proposed RASR can defined as follows.

Definition 5. Considering the ASR of each node, the robustness of a network G against an attack sequence Seq

can be quantified by the RASR, which is defined as:

RASR = E(ANCw(Seq, S)) = ∑
S∈Ω

ANCw(Seq, S)p(S), (23)

where S is a random variable representing the state of Seq, Ω is the sample space of S, E(ANCw(Seq, S)) is

the expectation of the ANCw.

In theory, the value of RASR can be calculated using Equation (23) once all the samples of S are

obtained in the sample space Ω. However, it confronts “the curse of dimensionality" [39] when applied

to networks with a large number of nodes. In such cases, the size of Ω grows exponentially to 2N . As a

result, the analytical approach becomes infeasible when N is significantly large.
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3.3. The Proposed PRQMC Algorithm

To efficiently calculate the RASR for large-scale networks, the PRQMC algorithm is proposed,

which leverages randomized QMC integration to approximate the RASR with a faster convergence rate

and utilizes parallelization techniques to speed up the calculation. In the following, we first introduce

the RASR calculation model based on QMC integration and then give the PRQMC algorithm.

3.3.1. RASR Calculation Model Based on QMC Integration

The RASR of a network G, as defined in Definition 5, can be expressed using Lebesgue integration

based on the principle of MC integration (see Section 2), that is,

RASR = E(ANCw(Seq, S)) =
∫

Ω
ANCw(Seq, S)dP(S), (24)

where S = (sv1
, sv2 , . . . , svN

) denotes a random variable representing the state of an attacking sequence

Seq, Ω is the sample space of S, P(S) is the probability measure of S.

Let Pv = (pv1
, pv2 , . . . , pvN

) represent the ASR of each node corresponding to Seq, X =

(x1, x2, . . . xN) is a uniformly distributed vector in [0, 1]N , where xi ∈ [0, 1], i ∈ {1, 2, . . . , N}. Then,

S = (sv1
, sv2 , . . . , svN

) can be represented as follows:

S = G(X), (25)

where

svi
= Gi(xi) =

{
T, if xi ≤ pvi

F, otherwise
, i ∈ {1, 2, . . . , N}. (26)

When the Seq is determined, the ANCw(Seq, S) can be represented as a function of X, that is,

F(X) = ANCw(Seq, G(X)) = ANCw(Seq, S). (27)

By substituting Equation (27) into Equation (24) and transforming the integral space from Ω to [0, 1]N ,

we obtain the following expression for RASR:

RASR = E[F(X)] =
∫

[0,1]N
F(X)dP(S). (28)

This equation represents the integration of F(X) with respect to the probability measure P(S) over the

N-dimensional unit hypercube [0, 1]N .

For the given network G, the sample space Ω has a size of 2N . Let the state of Seq be Si, where

i ∈ {1, 2, 3, . . . , 2N}. Based on Pv, the unit hypercube [0, 1]N can be divided into 2N regions denoted by

Qi, where region Qi corresponds to state Si, i ∈ {1, 2, . . . 2N}. Figure 4 illustrates this process for the

case when N = 2. Then, the integral in Equation (28) can be transformed into:

∫

[0,1]N
F(X)dP(S) =

2N

∑
i=1

∫

Qi

F(X i)dP(Si), (29)

where X{i} is a vector uniformly distributed within region Qi.
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Q2 :S2 =(F,T)
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Q3 Q4

pv2

pv1

Figure 4. An example to illustrate the division of the unit hypercube, where N = 2 and Pv =

(pv1 , pv2 ). The unit hypercube [0, 1]2 is divided into 4 regions, namely Q1, Q2, Q3, Q4, where each

region corresponds to a state of Seq, denoted by S1, S2, S3, S4.

The Lebesgue measure of region Qi in [0, 1]N , denoted by λN(Qi), is equivalent to the probability

measure of Si, denoted as P(Si). Based on the principle of MC integration, we have:

2N

∑
i=1

∫

Qi

F(X{i})dP(Si) =
2N

∑
i=1

∫

Qi

F(X{i})dX{i} =
∫

[0,1]N
F(X)dX. (30)

Combining Equation (28), Equation (29), and Equation (30), we obtain:

RASR = E[F(X)] =
∫

[0,1]N
F(X)dX. (31)

By referencing Equation (14) and Equation (31), the RASR of a network can be approximated

using the QMC integration method. The approximation of RASR, denoted by R̂, is defined as follows.

Definition 6. Consider a network G = (V, E) with N nodes. Suppose a sequence of nodes Seq =

(v1, v2, . . . , vN) is targeted for attack, Pv = (pv1
, pv2 , . . . , pvN

) signifies the ASR of each node. The RASR of

the network G can be approximated by R̂, which is defined as:

R̂ =
1

K

K

∑
i=1

F(Y i) ≈ RASR. (32)

Here, {Y1, Y2, . . . , YK}, as specified in Equation (14), represents a set of points obtained from an N-dimensional

LDS. K is the total number of samples. The function F(X) is defined in Equation (27).

The error bound of the QMC integral is determined by the star discrepancy of the chosen LDS,

making the selection of LDSs important for improving the accuracy of approximations. Two frequently

used LDSs are the Halton sequence and the Sobol sequence [40]. In this research, the Sobol sequence

is adopted, as it demonstrates better performance in higher dimensions compared to the Halton

sequence [41].

3.3.2. Parallel Randomized QMC (PRQMC) Algorithm

Despite the faster convergence rate of the QMC integration method compared to MC integration, it

still necessitates a large number of samples to calculate the average value. Furthermore, the calculation

of function ANCw(Seq, S), typically done through attack simulations, demands considerable

computational resources, especially for large-scale networks [42]. Consequently, the computational

process of obtaining R̂ for large-scale networks remains time-consuming. Additionally, due to the

deterministic nature of the LDS, the QMC integration method can be seen as a deterministic algorithm,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 October 2023                   doi:10.20944/preprints202310.0451.v1

https://doi.org/10.20944/preprints202310.0451.v1


11 of 20

thus presenting challenges in assessing the reliability of numerical integration results and potentially

leading to being stuck in local optima. In light of these issues, the PRQMC algorithm capitalizes on the

benefits of the Randomized QMC method and parallelization.

The PRQMC algorithm improves computational efficiency through parallelization. This is because

the computational cost of sampling the attack sequence’s state S is significantly lower than that of

computing the function ANCw(Seq, S). Therefore, by initially sampling the attack sequence’s state

S and obtaining a sufficient number of samples, it is possible to calculate the R̂ by parallelizing the

computation of the function ANCw(Seq, S) with various samples. This approach effectively accelerates

the calculation process by distributing the task across multiple processors or computing nodes.

Additionally, the PRQMC algorithm enhances randomness by randomly sampling points from the

LDS, providing unbiased estimation and improved variance reduction capabilities. This is particularly

advantageous in high-dimensional problems, where RQMC often outperforms QMC in terms of

accuracy and efficiency [43].

The procedure of the PRQMC algorithm is presented in Algorithm 1, which consists of two main

steps: “sampling state" and “paralleling stage". In the sampling stage, we first randomly sample

K points {Y1, Y2, . . . , YK} from an N-dimensional Sobol sequence, then determine K states of the

attack sequence, {S1, S2, . . . , SK}, by comparing the values of each dimension of the sampled points

with the ASR of each node. In the paralleling stag, we parallelize the computation of the function

ANCw(Seq, Si), then obtain R̂ by calculating the average value of ANCw(Seq, Si).

Algorithm 1 PRQMC(G, Seq, P, K)

Input: G = (V, E): a network with N nodes,
Seq = (v1, v2, . . . , vN): an attacking sequence of G,
P = (pv1

, pv2 , . . . , pvN
): ASR of each node in Seq,

K: the total number of samples.

Output: R̂: the approximate value of the RASR of G.
Step1: Sampling stage.

1 sampling K points {Y1, Y2, . . . , YK} randomly from an N-dimensional Sobol sequence,

where Yi = (y
{i}
1 , y

{i}
2 , . . . , y

{i}
N ) for i ∈ {1, 2, . . . , K};

2 let State = {S1, S2, . . . , SK}, where Si = (s
{i}
v1

, s
{i}
v2

, . . . , s
{i}
vN

) for i ∈ {1, 2, . . . , K};
3 for i = 1 to K do

4 s
{i}
vj

=





T, y
{i}
j ≤ pvj

F, y
{i}
j > pvj

, j ∈ {1, 2, · · · , N};

Step2: Paralleling stage.

5 let Res = {R̂1, R̂2, . . . , R̂K};
6 parallel for all Si ∈ State do

7 R̂i = ANCw(Seq, Si);

8 R̂ = 1
K ∑

K
i=1 R̂i;

9 return R̂.

3.4. The Proposed HBnnsAGP Attack Strategy

To assess the lower bound of network RASR, a new attack strategy called the High BCnns

Adaptive GCC-Priority (HBnnsAGP) is presented. In HBnnsAGP, a novel centrality measure called

BCnns is proposed to quantify the significance of a node, and GCC-priority attack strategy is utilized

to improve attack effectiveness. Algorithm 2 describes the procedure of HBnnsAGP, which contains

two steps: “obtaining the first part of Seq" and “obtaining the second part of Seq". In the first step,

the algorithm obtains the first part of the attack sequence by iteratively removing the node with the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 October 2023                   doi:10.20944/preprints202310.0451.v1

https://doi.org/10.20944/preprints202310.0451.v1


12 of 20

highest BCnns in GCC and recalculating BCnns for the remaining nodes until only isolated nodes

remain in the residual network. In the second step, the algorithm arranges these isolated nodes in

descending order according to their DC values in the initial network to obtain the second part of the

attack sequence. This procedure is aimed at improving the effectiveness of attacks when the ASR is

below 100%. It is important to note that isolated nodes when the ASR is 100% may no longer remain

isolated, as depicted in, as shown in Figure 1. Additionally, previous research has shown that there

is minimal difference in destructiveness between simultaneous attacks and sequential attacks based

on DC [9]. Therefore, by sorting these isolated nodes in descending order based on their DC values

from the initial network (similar to the approach used in simultaneous attacks), the second step further

improves the effectiveness of attacks when the ASR is less than 100%.

In the following, we first introduce the BCnns and then give the GCC-priority attack strategy.

Algorithm 2 HBnnsAGP(G, N1, N2)

Input: G = (V, E): a network with N nodes,
N1 and N2: sampling numbers.

Output: Seq: an attacking sequence of G.
1 let Seq be an empty list;
2 G0 = (V0, E0)← G;

Step1: Obtaining the first part of Seq.
3 while E ̸= ∅ do
4 Gc = (Vc, Ec)← get the GCC of G;
5 S, T ←SelectST(Gc, N1, N2)
6 for all v ∈ Vc do

7 BCnns(v) = ∑
s∈S,t∈T

σ(s,t|v)
σ(s,t)

;

8 attack_node← arg max
v∈Vc

(BCnns(v));

9 append attack_node to the end of Seq;
10 G ← G \ {attack_node};

Step2: Obtaining the second part of Seq.
11 Vr ← (V0 \ Seq);
12 sort the nodes of Vr decreasing by DC values from G0;
13 Seq← Seq + Vr;
14 return Seq.

3.4.1. Non-central Nodes Sampling Betweenness Centrality (BCnns)

Contrasted with BC (see Definition 2), which evaluates a node’s role as a mediator in the network

based on the count of shortest paths it traverses for all node pairs. BCnns quantifies the importance

of nodes acting as bridge nodes between different network communities by counting the number of

shortest paths that pass through a node for specific pairs of non-central nodes (nodes located in the

periphery of the network and with less importance). These bridge nodes typically serve as mediators

for non-central nodes across different communities. The BCnns is defined as follows.

Definition 7. For a network G = (V, E) with N nodes, the BCnns of node v in network G is:

BCnns(v) = ∑
s∈S,t∈T

σ(s, t | v)

σ(s, t)
, (33)

where S, T ⊂ Vnns, Vnns is the set of non-central nodes sampled from V, Vnns ⊂ V, S ∩ T = ∅. The σ(s, t)

and σ(s, t | v) have the same meaning as defined in Definition 2.
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By selecting the appropriate pairs of non-central nodes, BCnns can more effectively measure the

significance of nodes as bridges between different communities in a network. While these bridge nodes

may not have the highest BC value, they are crucial for maintaining overall network connectivity and

could potentially have the highest BCnns value.

The Definition of BCnns highlights the importance of selecting suitable nodes for sets S and T.

Thus, we proposed an algorithm called SelectionST for node selection. Algorithm 3 describes the

procedure of SelectionST. Initially, the nodes are sorted in ascending order based on their DC values,

and the first N1 nodes with lower DC values are selected to create the non-central nodes set Vnns. This

is because nodes with lower DC values typically have lower centrality and are considered non-central

nodes. Next, in order to achieve a more balanced sampling, Vnns is divided into two subsets: Vodd
nns

containing nodes at odd indices and Veven
nns containing nodes at even indices. Lastly, N2 nodes are

randomly sampled from Vodd
nns to create set S, and N2 nodes are similarly sampled from Veven

nns to form

set T.

Algorithm 3 SelectionST(Gc, N1, N2)

Input: Gc = (Vc, Ec): the GCC of network G,
N1 and N2: sampling numbers.

Output: S and T: the sets of sampling nodes.
1 if |Vc| <= N1 then
2 N1 ← ⌊0.85 ∗ |Vc|⌋;
3 sort the nodes of Vc increasing by DC values;
4 Vnns ← choose first N1 nodes of Vc;
5 Vodd

nns ← choose nodes at odd indices of Vnns;
6 Veven

nns ← choose nodes at even indices of Vnns;

7 N2 ←Min(
∣∣∣Vodd

nns

∣∣∣, |Veven
nns |, N2)

8 S← choose N2 nodes of Vodd
nns randomly;

9 T ← choose N2 nodes of Veven
nns randomly;

10 return S, T.

The N1 and N2 are chosen based on the size of the network and the node degree distribution.

Typically, both N1 and N2 are much smaller compared to the total number of nodes N. Therefore,

BCnns have higher computational efficiency compared to BC, especially for large-scale networks.

Figure 5 demonstrates the differences between BC and BCnns. Specifically, Figure 5a identifies the

non-central nodes in red, Figure 5b showcases node sizes based on BC values, and Figure 5c adjusts

node sizes based on their BCnns values. Notably, node 14 plays a critical bridging role between two

communities, a role that BCnns captures more accurately than BC.

(a) (b) (c)

Figure 5. An illustrative example of non-central nodes and comparison of BC and BCnns. In this figure,

(a) highlights non-central nodes in red, (b) showcases node sizes based on BC, and (c) showcases node

sizes based on BCnns.
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3.4.2. GCC-Priority Attack Strategy

As the attack progresses, the network fragments into connected components of varying sizes. The

importance of these components varies within the residual network. The GCC refers to the largest

connected component containing the most nodes. The destruction of the GCC accelerates the collapse

of the network. The GCC-priority attack strategy enhances the attack’s effectiveness by targeting nodes

within the GCC at each stage of the attack process.

4. Experimental Studies

In this section, we present a series of experiments to verify the effectiveness of our proposed

methods. Firstly, we introduce the experimental settings including network datasets and baselines.

Next, we compare the proposed PRQMC method with the baselines. Additionally, we demonstrate the

effectiveness of the proposed HBnnsAGP attack strategy. Finally, we present further discussions on

network robustness when considering the ASR.

4.1. Experimental Settings

4.1.1. Datasets

In our experiments, we selected six real-world classic complex networks of different scales,

including Karate [44], Krebs [10], Airport [45], Crime [46], Power [47], Oregon1 [48]. Table 1 provides

a detailed summary of these networks, with N and M representing the number of nodes and edges,

respectively, and < k > denoting the average degree of the network.

Table 1. Basic Information of 6 Real-World Networks. N and M Represent the Number of Nodes and

Edges, Respectively, and < k > Denotes the Average Degree of the Network.

Network Description N M < k >

Karate [44] Karate club network 34 78 4.59

Krebs [10] Terrorist network 62 159 5.13

Airport [45] Aviation network 332 2126 12.81

Crime [46] Criminal network 829 1473 3.55

Power [47] Power grid 4941 6594 2.67

Oregon1 [48] AS peering network 10670 22002 4.12

4.1.2. Comparison Methods

To show the effectiveness of the proposed PRQMC algorithm, we compare it with MC and QMC

methods.

• MC: It calculates the estimated value of R̂ using original MC integration and generates a set of

points from a PRS.
• QMC: It calculates the estimated value of R̂ using original QMC integration and generates a set

of points from an LDS.

To show the effectiveness of the proposed HBnnsAGP attack strategy, we compare it with three

representative baseline attack strategies, including HDA[49], HBA[28], and FINDER[10].

• High Degree Adaptive (HDA): HDA is an adaptive version of the high degree method that

ranks nodes based on their DC and sequentially removes the node with the highest DC. HDA

recomputes the DC of the remaining nodes after each node removal and is recognized for its

superior computational efficiency.
• High Betweenness Adaptive (HBA): HBA is an adaptive version of the high betweenness

method. It operates by iteratively removing the node with the highest BC and recomputing

BC for the remaining nodes. HBA has long been considered the most effective strategy for
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the network dismantling problem in the node-unweighted scenario [50]. However, the high

computing cost prohibits its use in medium and large-scale networks.
• FINDER: FINDER is notable as an algorithm based on deep reinforcement learning, which

achieves superior performances in terms of both effectiveness and efficiency.

We implemented the proposed algorithm and baselines using the Python programming language.

All experiments are performed on a server AMD EPYC 7742 64-Core Processor @ 2.25GHz, with

memory (RAM) 1024 GB, running Linux ubuntu 11.10 Operating System.

4.2. Comparison of the PRQMC with Baselines

This subsection presents the comparison results to demonstrate the effectiveness of the proposed

algorithm, PRQMC, on six real-world complex networks. Specifically, we compare PRQMC with two

baselines: MC and QMC. All experiments use the same attack strategy, and the ASR of each node is

randomly generated.

We first compare PRQMC with the baselines on two small-scale networks (Karate and Krebs).

This is because precise values of RASR can be calculated analytically for small-scale networks. Then,

for large-scale networks (Airport, Crime, Power, and Oregon1), we utilize the standard deviation

curve as the convergence criterion, as the analytical method is not applicable to large-scale networks.

Figure 6 and Figure 7 present the comparison of the convergence and error between PRQMC and

baselines. The figure clearly illustrates that PRQMC achieves faster convergence and better accuracy

with fewer samples compared to the baselines.
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Figure 6. Comparison of the convergence and error of the PRQMC, QMC, and MC methods in assessing

robustness for two smaller-scale networks.
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Figure 7. Comparison of the convergence and standard deviation of the PRQMC, QMC, and MC

methods in assessing robustness for four larger-scale networks.

Additionally, Table 2 presents a comparison of the computational efficiency of PRQMC and

the baselines, each with 5000 sampling iterations. In the PRQMC method, the number of parallel
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computing processes is set based on the network size, assigning 25 processes to the Karate and Krebs,

and 100 processes to the other networks. The results in Table 2 indicate that the PRQMC method

outperforms in terms of computational efficiency. Specifically, the PRQMC method operates nearly 50

times faster than the QMC and MC methods on the Oregon1.

Table 2. Computational Time Comparison of PRQMC, QMC, and MC Methods(s)

Network MC QMC PRQMC

Karate 1.8 1.7 0.4

Krebs 4.5 4.3 0.6

Airport 106.7 104.9 3.0

Crime 518.2 520.6 7.4

Power 20,525.7 20,529.1 343.7

Oregon1 213,748.2 213,758.1 4,262.4

4.3. Comparison of the HBnnsAGP with Baselines

In this subsection, we will demonstrate the effectiveness and efficiency of the proposed HBnnsAGP

attack strategy. Specifically, we will compare HBnnsAGP with HDA, HBA, and FINDER on six

real-world complex networks, while considering different ASR conditions. Initially, we will employ

various attack strategies to generate corresponding attack sequences. Subsequently, we will utilize the

PRQMC method to calculate the R̂ value under the following ASR distribution scenarios.

1. ASR = 100%: The ASR of each node is set to 100%.
2. ASR = 50%: The ASR of each node is set to 50%.
3. ASR = 50% for the first 30% of nodes: In the attack sequence generated by different attack strategies,

the ASR of the first 30% of nodes is set to 50%.
4. Random ASR: The ASR of each node is randomly set between 50% and 100%. To obtain more

reliable results, the average of 10 experimental outcomes is taken.

The sample numbers (N1 and N2) for different networks used in HBnnsAGP are presented in

Table 3. Table 4 presents the R̂ values of networks in the four specified scenarios. The data suggests that

HBnnsAGP performs better than other attack strategies in terms of destructiveness. The destructiveness

of HBnnsAGP, on average, has increased by 6.76%, 4.03%, and 7.26% in comparison to the FINDER,

HBA, and HDA strategies, respectively.

Table 5 presents a comparison of computation times for HBnnsAGP and the baselines. As

the network size increases, the computation time for the HBA method becomes excessively long.

In contrast, the HBnnsAGP method maintains commendable computational efficiency even for

larger-scale networks. For the Oregon1 network, HBnnsAGP is approximately 28 times faster than

HBA. While the computational efficiency of HBnnsAGP slightly lags behind that of FINDER and HDA

for larger-scale networks, it surpasses them in terms of attack destructiveness.

Figure 8 represents the ANCw curves of the networks under various attack strategies when

the ASR of each node is set to 100%. In this scenario, the state of the attack sequence is unique.

The figure shows that HBnnsAGP excels at identifying critical nodes in the network, leading to the

effective disruption of the network structure compared to other methods. Hence the effectiveness of

the proposed HBnnsAGP attack strategy is verified.

Table 3. The Sample Numbers (N1 and N2) for Different Networks Used in HBnnsAGP

Network N1 N2

Karate 16 8

Krebs 30 16

Airport 100 60

Crime 120 80

Power 1300 80

Oregon1 2300 80
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Table 4. The Robustness of Networks Under Different ASR. All R̂ Values Are Multiplied by 100

Network HBnnsAGP FINDER HBA HDA

1. ASR=100%

Karate 12.77 14.12 15.04 15.04

Krebs 12.26 16.26 14.21 17.23

Airport 7.53 10.25 7.93 11.10

Crime 9.90 11.04 10.14 11.54

Power 0.91 5.02 1.01 5.23

Oregon1 0.68 1.06 0.73 1.01

Avg score 7.34 9.63 8.18 10.19

2. ASR=50%

Karate 59.90 60.55 60.88 61.41

Krebs 57.61 58.38 57.74 58.33

Airport 59.45 60.32 60.39 60.52

Crime 57.59 59.50 59.50 59.08

Power 16.54 19.73 17.31 19.93

Oregon1 49.68 51.58 51.28 51.33

Avg score 50.13 51.69 51.18 51.77

3. ASR = 50% for the first 30% of nodes

Karate 48.61 50.38 49.76 50.57

Krebs 45.51 47.16 45.78 47.38

Airport 48.78 50.68 51.00 50.47

Crime 41.84 48.17 46.90 47.12

Power 14.87 17.79 16.32 17.86

Oregon1 41.26 42.91 42.83 43.14

Avg score 40.15 42.91 42.10 42.76

4. Random ASR

Karate 35.12 36.29 36.50 37.57

Krebs 30.39 32.99 31.02 33.36

Airport 36.95 38.58 38.67 38.99

Crime 27.90 30.96 30.48 30.42

Power 5.17 8.46 5.18 8.80

Oregon1 21.61 24.23 23.52 23.86

Avg score 26.19 28.56 27.55 28.79

Table 5. The Computation Time of Different Attack Strategies(ms)

Network HBnnsAGP FINDER HBA HDA

Karate 1.6 16.3 1.9 0.5

Krebs 3.6 36.6 4.6 2.3

Airport 82.3 218.3 211.0 11.1

Crime 552.1 369.3 4,434.6 49.1

Power 6,760.7 1,397.9 78,119.9 1,796.8

Oregon1 15,799.1 8,641.5 477,802.8 2,065.9
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Figure 8. Cont.
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Figure 8. The ANCw curves of networks under different attack strategies.

4.4. Further Discussions About Network Robustness

The data presented in Table 4 indicates that reducing the ASR can significantly enhance network

robustness. Generally, this reduction can be achieved through reinforcing node protection. Comparing

Scenario 2 and Scenario 3, it is apparent that simply reducing the ASR of the first 30% nodes in the attack

sequence (Scenario 3) effectively enhances network robustness. This improvement is approximately

78.25% of that in Scenario 2. Therefore, enhancing the protection of a small subset of crucial nodes in

the network can effectively enhance its robustness.

5. Conclusion

In this paper, we conducted a study to analyze the robustness of networks when considering

ASR. Firstly, we introduce a novel metric called RASR to assess network robustness in this scenario.

Then, we propose the PRQMC algorithm to efficiently calculate the RASR for large-scale networks.

PRQMC utilizes RQMC integration to approximate the RASR with a faster convergence rate and

employs parallelization to speed up the calculation. Next, we propose a new attack strategy called

HBnnsAGP to evaluate the lower bound of network RASR. In HBnnsAGP, we quantify the significance

of a node using BCnns and enhance the destructiveness of the attack using the GCC-priority attack

strategy. Experimental results on six representative real-world networks demonstrate the effectiveness

of the proposed methods. Furthermore, our work demonstrates that reinforcing the protection of

a small subset of critical nodes significantly improves network robustness. These findings offer

valuable insights for devising more robust networks. The efficiency of the proposed methods can

be further enhanced, particularly when analyzing ultra-large-scale networks. In future research, we

aim to explore efficient algorithms to enhance the network RASR and devise promising methods for

analyzing ultra-large-scale networks.
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