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Abstract: Analyzing network robustness against random failures or malicious attacks is a critical
research issue in network science as it helps to enhance the robustness of beneficial networks or
efficiently disintegrate harmful networks. Most previous studies commonly neglect the impact of
the attack success rate (ASR) and assume that attacks on the network will always be successful.
However, in real-world scenarios, an attack may not always succeed. Therefore, this paper
proposes a novel robustness measure called RASR, which utilizes mathematical expectations to
assess network robustness when considering the ASR of each node. To efficiently compute the
RABSR for large-scale networks, a parallel algorithm named PROMC is presented, which leverages
randomized quasi-Monte Carlo integration to approximate the RASR with a faster convergence rate.
Additionally, a new attack strategy named HBnnsAGP is introduced to better assess the lower bound
of network RASR. Finally, the experimental results on 6 representative real-world complex networks
demonstrate the effectiveness of the proposed methods compared with the state-of-the-art baselines.

Keywords: complex network; robustness; quasi-Monte Carlo; attack success rate

1. Introduction

Complex networks can effectively represent many real-world networks, such as the Internet, social
networks, power grids, and so on. Most networks are beneficial to people and bring many positive
effects. However, some networks also have negative effects, with the most important examples being
terrorism and disease transmission networks [1,2]. Whether beneficial or harmful, these networks
substantially influence the functioning and development of our society. In recent decades, the study of
diverse complex networks has gained significant attention from researchers across various fields such
as computer science, statistical physics, systems engineering, and applied mathematics [3-7]. One hot
topic point in these studies is the error and attack tolerance of complex networks [8-16], a concept
referred to as robustness within the context of this paper.

The robustness of a network refers to its ability to keep functioning when some of its components,
such as nodes or edges, malfunction due to random failures or malicious attacks [12,17,18]. The study
of network robustness is valuable from two main perspectives. Firstly, the failure of components can
lead to the breakdown of beneficial networks and result in significant economic losses. A typical
example is the Northeast blackout of 2003 [19,20]. Analyzing network robustness aids in developing
methods to enhance it. On the other hand, for harmful networks, such as terrorist networks [21] or
COVID-19 transmission networks [22], analyzing their robustness assists in developing effective attack
strategies to dismantle them. Therefore, analyzing network robustness is of great importance.

To analyze the robustness of the network, it is necessary to choose a suitable metric to evaluate
how robust a network is. Since almost all network applications are typically designed to operate in
a connected environment [23], network connectivity is selected as the primary indicator to assess
network robustness in this study.

The robustness of a network depends not only on its structural features but also on the mechanisms
of random failures or malicious attacks. In random failures, nodes or edges are attacked with equal
probability, while malicious attacks target nodes or edges in decreasing order of their importance.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Typically random failures are less severe than malicious attacks [24,25]. Evaluating the impacts of node
or edge removal using various malicious attack strategies is a crucial approach to analyzing network
robustness. Determining the lower bound of network robustness is critical as it allows for analysis
of network robustness under worst-case scenarios, identification of the most vulnerable components,
and development of robustness improvement methods. An effective approach to addressing this issue
involves identifying an optimal attack strategy that inflicts maximum damage on the network [26].

Extensive research has been conducted on the robustness of complex networks. Albert et al. [8]
studied the robustness of scale-free networks and found that while these networks are robust to random
failures, they are extremely vulnerable to malicious attacks. Iyer et al. [9] conducted a systematic
examination of the robustness of complex networks by employing simultaneous and sequential
targeted attacks based on various centrality measures such as degree, betweenness, closeness, and
eigenvector centrality. Fan et al. [10] proposed a deep reinforcement learning algorithm, FINDER, to
effectively identify critical network nodes. Wang et al. [11] introduced region centrality and proposed
an efficient network disintegration strategy based on this concept, which combines topological
properties and geographic structure in complex networks. Ma et al. [12] conducted a study on
the robustness of complex networks against incomplete information. They employed link prediction
methods to restore missing network topology information and identify critical nodes. Lou et al. [14]
introduced LFR-CNN, a CNN-based approach that utilizes learning feature representation for
predicting network robustness, which exhibits excellent predictive performance notably smaller
prediction errors.

However, the aforementioned research generally assumes that attacks on the network will always
be successful, neglecting the important factor of attack success rate (ASR). In fact, an attack may not
succeed in real-world scenarios. For example, even if the enemy forces launch an attack on a target
within a military communication network, there is no guarantee of successfully destroying it. Figure 1
illustrates the main process of network disintegration under varying ASR. Moreover, selecting an
optimum attack strategy that can lead to maximal destructiveness to the network is challenging due to
the NP-hard nature of this problem [10]. Existing methods often encounter difficulties in achieving a
desirable balance between effectiveness and computational efficiency.

Therefore, the purpose of this paper is to analyze network robustness when considering ASR under
an optimal attack strategy. To achieve this purpose, a novel robustness measure called Robustness-ASR
(RASR) is introduced, which utilizes mathematical expectations to evaluate network robustness when
considering ASR. In addition, an efficient algorithm called PRQMC is proposed to calculate the RASR
for large-scale networks. Furthermore, to assess the lower bound of network RASR, a new attack
strategy, named HBnnsAGP, is proposed. The main contributions of this study are as follows:

U We introduce and define a novel robustness measure called RASR, which utilizes mathematical
expectations to assess network robustness when considering the ASR of each node.

¢ To efficiently calculate the RASR for large-scale networks, we propose the PROMC algorithm.
PROMLC leverages randomized quasi-Monte Carlo (QMC) integration to approximate the RASR
with a faster convergence rate and utilizes parallelization to speed up the calculation.

e  To assess the lower bound of network RASR, we present a new attack strategy, named HBnnsAGP.
In HBnnsAGP, a novel centrality measure called BCnns is proposed to quantify the importance of
anode.

¢  The experimental results on 6 representative real-world networks demonstrate the effectiveness
of the proposed methods compared with the baselines.

The rest of this paper is organized as follows. Section 2 provides an introduction to the
preliminaries, including classical centrality measures, traditional network robustness measures, and
the principles of Monte Carlo (MC) and QMC integration. Section 3 presents the proposed methods
for analyzing network robustness when considering ASR, including the RASR, the PRQMC algorithm,
and the HBnnsAGP attack strategy. The experiments and results are demonstrated in Section 4. Finally,
Section 5 concludes the paper.
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Figure 1. An example of network disintegration process under different ASR. Gray nodes indicate
successful attacks, green nodes represent unsuccessful attacks, and blue nodes denote unattacked
nodes.

2. Preliminaries

A complex network can be modeled as an unweighted undirected graph G = (V, E), where
V(|[V] = N) and E(|E| = M) represent the set of nodes and the set of edges in the network G,
respectively. The network G can be also represented as an adjacency matrix A = (a;;) nx, if node i
and node j are connected, a;; = 1, otherwise a;; = 0.

2.1. Centrality Measures

The concept of a centrality measure attempts to quantify how important a node is [27]. Here we
introduce two classical centrality measures: degree centrality and betweenness centrality.

2.1.1. Degree centrality (DC)

DC is the simplest measure of centrality. The DC of a node is defined by its degree, that is, its
number of edges. The DC is formally defined as follows.

Definition 1. Given a network G = (V,E), A = (a;;) NN is the adjacency matrix of the network G. The DC
of node i is defined as:

DC(I) = Z {Ili]‘. (1)

jev

The DC is frequently a reliable and effective measure of a node’s importance. A higher DC value
typically signifies a more critical node.

2.1.2. Betweenness centrality (BC)

BC quantifies the number of shortest paths passing through a particular node in a network[28].
BC characterizes the extent to which a node acts as a mediator among all other nodes in a network[27].
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Nodes that lie on numerous shortest paths are likely to play a crucial role in information transmission,
exhibiting higher BC values. The BC is defined as follows.

Definition 2. Given a network G = (V, E). The BC of node v in G is defined as:

o(s,t]v)
BC(v) = Yy 2119 @)
(@) s,;v o(s,t)
where, v € V, 0(s,t) is the total number of shortest paths from node s to node t and (s, t | v) is the number of
those paths that pass through node v. o(s,t) =1,ifs =t. o(s,t | v) =0, ifv € s, L.

2.2. Accumulated Normalized Connectivity

Traditionally, network robustness has been evaluated by calculating the size of the giant connected
component (GCC) after the network has endured attacks. The Accumulated Normalized Connectivity
(ANCQ), also known as R, is a well-known measure of network robustness for node attacks [10,17,29].
The ANC is defined as follows.

Definition 3. For a network G = (V,E), |V| = N. Given an attack sequence of nodes (v1,vs, . ..,vN), where
v; € V indicates the ith node to be attacked, the ANC of G under this attack sequence is defined as:

{01102/ . -/Uk})

0gec(C) / ®)

1 & 0eee(G
ANC(vy,v2,...,0N) = N Z gca( \
k=1

here, 0gcc(G\{v1,02, ...,k }) is the size of the GCC of the residual network after the sequential removal of nodes
from the set {vy,vy,...,vc} in G, and 0gcc(G) the initial size of the GCC of G before any nodes are removed.
The normalization factor % ensures that the robustness of networks with different sizes can be compared.

A larger ANC value indicates a higher level of network robustness against attacks. Additionally,
the ANC can be used to assess the destructiveness of attacks, lower ANC values correspond to
more destructive attack strategies. The ANC value can be viewed as an estimate of the area
beneath the ANC curve, which is plotted with the horizontal axis as k/N and the vertical axis as

Ogcc(G\{v1,02,...,0k})/0gec(G).

2.3. Monte Carlo Integration

Monte Carlo (MC) integration is a numerical technique that is particularly useful for
higher-dimensional integrals[30]. Caflisch[31] provides a comprehensive review of this method.
The integral of a Lebesgue integrable function f(X) can be expressed as the average or expectation of
the function evaluated at random locations. Considering X as a random variable uniformly distributed
on the one-dimensional unit interval [0, 1], the integration of f(X) over this interval can be represented
as follows:

I[f] = E[f(X)] = [ f(X)dP(X), 4)

0,]

in which P(X) is the probability measure of X on the interval [0, 1], then
dP(X) = dX, ®)
therefore

If] = Ef(X)] = | f(X)dX. (6)

(01]


https://doi.org/10.20944/preprints202310.0451.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2023 do0i:10.20944/preprints202310.0451.v1

50f 20

Similarly, for an integral on the unit hypercube [0,1]Y in N dimensions,
Ilfl = Elf(X)| = / X)dX, 7
A =Ef ] = J i FX) )

in which X = (x1,xp,...,%y) is a uniformly distributed vector in [0,1]N, where x; € [0,1],i €
{1,2,...,N}. Given that the hyper-volume of [0,1]N is equal to 1, thus [0,1]" can be viewed as the
total probability space.

The MC integration method approximates definite integrals utilizing random sampling. It draws
K uniform samples from [0, 1]V, in turn generating a points set {X1, X»,..., Xk }. The empirical
approximation of the integral I[f] is then procured by computing the mean of the K sample outcomes
f(X;), which can be expressed as follows:

i Mw

1] % (] = g LX), ®

According to the Strong Law of Large Numbers [32], this approximation is convergent with probability
1, that is,
lim P (|Ix[f] = I[f]| = 0) = 1. ©)

K—oo

Figure 2 illustrates the application of the MC integration method in approximating definite
integrals over a one-dimensional unit interval. As shown in Figure 2a, MC integration approximates
the area under the curve of the integral by summing the areas of the bars corresponding to the sampled
points. The bars are rearranged sequentially to avoid overlap on the X-axis, as shown in Figure 2b.

1.0 1 il 1.0 ,t;;a'--- TR
038 038
5 0.6 *4%:’ 0.6
04 04
02 02
"o 0z %o 0z o4

(b)

Figure 2. An example of MC integration method for approximating a definite integral over a
one-dimensional unit interval. (a) illustrates the approximation of the integral by summing the
areas of bars that correspond to the sampled points. Each bar’s height represents the value of f(X) at
X and its width is 1/K, where K denotes the total number of samples. (b) demonstrates the sequential
rearrangement of the bars to prevent overlapping on the X-axis, ensuring a clear visualization of
the areas.

The error of MC integration is

ex = |Ik[f] = 1[f]]- (10)

By the Central Limit Theorem [32], for any a,b where a < b, we have

lim P(a < e 24t = P(a < v < b), (11)

EK b1
= ——_
K—o0 a/\/K < ) /u \/277'[
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where v is a standard normal random variable and ¢ is the square root of the variance of f, given by

7= ([ SO0~ 11A1Pax) 12)

When K is sufficiently large, we have
ex ~ oK~ 1V?p. (13)

This implies that the order of error convergence rate of the MC integration is O(K~1/2) [33], which
means that the accuracy of the integral error decreases at a rate proportional to the total number of
samples K increases. That is, “an additional factor of 4 increase in computational effort only provides
an additional factor of 2 improvements in accuracy" [31].

In practical applications, the MC integration method draws K uniform samples from an
N-dimensional pseudo-random sequence (PRS) generated by a computer to obtain the points set
{X1,Xa,..., Xk}

2.4. Quasi-Monte Carlo Integration

The quasi-Monte Carlo (QMC) integration is a method of numerical integration that operates in
the same way as MC integration, but instead uses a deterministic low-discrepancy sequence (LDS) [34]
to approximate the integral. The advantage of using LDSs is a faster rate of convergence. QMC
integration has a rate of convergence close to O(K~!), which is much faster than the rate for the MC
integration, O(K~1/2) [35]

Using the QMC integration method for approximating definite integrals is similar to the MC
integration method. This can be expressed as:

1 K
I = Y;), 14
1= [ FOIX % 3 1000 a9
where {Y1,Y,, ..., Yk} is a points set obtained by combining the first K points from an N-dimensional
LDS. Each Y; is an N-dimensional point, with ¥; = (yi },yé }, .. ,yij}) fori € {1,2,...,K}, and
yih e 01 forje {1,2,...,N}.

The error order of the QMC integration can be determined by the Koksma-Hlawka inequality [36,37],
that is,

XX - Y A0

where V(f) is the Hardy—Krause variation of the function f, D} is the star discrepancy of
{M1,Y2,..., Yk}, and is defined as:

(f)Dx, (15)

1]N

M(Y1,Ys,...,Yk)
K

- An(Q)|,

Dy = sup
QcloN

(16)

where M(Y1,Y,...,Yk) is the number of points in {Y1, Y, ..., Yk} inside the region Q, and Ax(Q) is
the Lebesgue measure of region Q in the unit hypercube [0, 1]N. For more detailed information, please
refer to [31].

For an N-dimensional LDS comprising K points, the star discrepancy of the sequence is
O(K~!(log K)N). Consequently, for a function F with V(F) < co, a QMC approximation based on this
sequence yields a worst-case error bound in Equation (28) converging at a rate of O(K~!(log K)) [38].
Since log K < K, the QMC integration convergence rate approaches O(K~!) for low-dimensional
cases [33], which is asymptotically superior to MC.

Figure 3 illustrates the clear differences between MC and QMC integration methods. The
subfigures provide a visual representation of their respective point distributions and demonstrate
their application for approximating definite integrals over a one-dimensional unit interval. The points

do0i:10.20944/preprints202310.0451.v1
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generated from an LDS exhibit greater uniformity than the points generated by a PRS. Consequently,
with the same number of sampling points, LDS has the ability to uniformly fill the integration space,
resulting in a faster convergence rate.

PRS

- 04 0.6 . K 0. ¥ 0.4
Y1 Y

(d) () (f)
Figure 3. A comparison of MC and QMC integration methods. (a) and (d) show the two-dimensional
projections of a PRS and an LDS (a Sobol sequence) respectively. (b) and (c) depict the MC integration
for approximating a definite integral over a one-dimensional unit interval, while (e) and (f) present the
QMC integration for approximating a definite integral over a one-dimensional unit interval.

3. Methods

In this section, we will first introduce the major problem we focus on in this paper. Then, we
give the details of the proposed methods for analyzing network robustness when considering ASR,
including the RASR, the PROMC algorithm, and the HBnnsAGP attack strategy.

3.1. Problem Formalization

Typically, it is assumed that removing a node will also remove all of its connected edges. Therefore,
in this paper, we only consider node attack strategies.

For a network G = (V,E), |V| = N. A node attack strategy can be represented as a sequence
Seq = (vq,vp, ..., UN), where v; € V indicates the ith node to be attacked. Given a predefined metric
®(Seq) to measure network robustness against attacks. The primary goal is to evaluate the lower
bound of network robustness. Therefore, the objective is to minimize ®(Seq), as presented below:

Minimize ®(Seq). (17)

To achieve this objective, it is crucial to determine the optimal node attack strategy that will minimize
the ®(Seq).

3.2. The Proposed Robustness Measure RASR

The ANC, as defined in Definition 3, does not consider the ASR, or it is a special case where the
ASR of each node is 100%. To this end, the proposed robustness measure RASR utilizes mathematical
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expectations to assess network robustness when considering ASR. Before introducing the RASR, we
will first present a weighted ANC (named ANCw), which takes into account both the state of the attack
sequence state and the associated attack cost.

For a network G = (V,E) with N nodes, Seq = (v1,vy,...,vyN) is an attack sequence, where
v; € V. The state of Seq is denoted as a random variable S = (sy,, S0, - . .,S0y ), Where

i

T, if the attack on v; succeeded
Sy, = . (18)

F, otherwise
Then, the ANCw is defined as follows.
Definition 4. The ANCw of G under an attack sequence Seq is defined as:

1 N G 1 .:T,.:llzl...,k
ANCuw(Seq,$) = 77 1. Tgee(G\{vilso, = T, b

: oy (G) (P(vk)/ (19)
=0 cc

here ogcc is the same as defined in Definition 3. When k = 0, it indicates that no nodes have been attacked. ¢(vy)
is a weighted function, that is,

(20)
1, otherwise

0, if vy is an isolated node

p(vg) = { :

There are two main reasons for using the weighted function ¢(vy ). Firstly, it is important for an

attacker to choose an optimal attack strategy at a minimum attack cost to efficiently disintegrate the

network [11,26]. Secondly, as illustrated in Figure 1, with an increased number of nodes removed, the

network will eventually fragment into isolated nodes, thereby losing its functionality as a network.
Therefore, this paper sets the attack cost of an isolated node to 0.

Let P, = (po,, Poys - - - Poy) Tepresent the ASR of each node corresponding to Seq, where py,

represents the ASR of node v;. Assuming that attacks on different nodes are independent, then the

probability of S is
N

p(S) =1 1r(ss), (21)

i=1

vis ifs,, =T
p(s0,) = {p 1 (22)

1—py, otherwise '

where

Based on the above formulas, the proposed RASR can defined as follows.

Definition 5. Considering the ASR of each node, the robustness of a network G against an attack sequence Seq
can be quantified by the RASR, which is defined as:

RASR = E(ANCw(Seq,S)) = ), ANCw(Seq,S)p(S) 23)
)
where S is a random variable representing the state of Seq, Q) is the sample space of S, E(ANCw(Seq, S)) is
the expectation of the ANCw.

In theory, the value of RASR can be calculated using Equation (23) once all the samples of S are
obtained in the sample space (). However, it confronts “the curse of dimensionality" [39] when applied
to networks with a large number of nodes. In such cases, the size of Q grows exponentially to 2V. As a
result, the analytical approach becomes infeasible when N is significantly large.


https://doi.org/10.20944/preprints202310.0451.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2023 do0i:10.20944/preprints202310.0451.v1

9 of 20

3.3. The Proposed PRQMC Algorithm

To efficiently calculate the RASR for large-scale networks, the PRQMC algorithm is proposed,
which leverages randomized QMC integration to approximate the RASR with a faster convergence rate
and utilizes parallelization techniques to speed up the calculation. In the following, we first introduce
the RASR calculation model based on QMC integration and then give the PROMC algorithm.

3.3.1. RASR Calculation Model Based on QMC Integration

The RASR of a network G, as defined in Definition 5, can be expressed using Lebesgue integration
based on the principle of MC integration (see Section 2), that is,

RASR = E(ANCw(Seq, S)) = /Q ANCuw(Seq, S)dP(S), (24)

where S = (sy,,50,, - - ., Sy ) denotes a random variable representing the state of an attacking sequence
Seq, Q) is the sample space of S, P(S) is the probability measure of S.

Let P, = (po,,Poys---,Poy) Tepresent the ASR of each node corresponding to Seq, X =
(x1,x2,...xN) is a uniformly distributed vector in [0, 1]V, where x; € [0,1],i € {1,2,...,N}. Then,
S = (50,50, - - -, Suy ) Can be represented as follows:

S = G(X), (25)
where
T, ifx; <py .
S0, = Gi(x;) = BY=Po e 1,2, N} (26)
F, otherwise

When the Seq is determined, the ANCw(Seq, S) can be represented as a function of X, that is,
F(X) = ANCw(Seq, G(X)) = ANCw(Seq,S). (27)

By substituting Equation (27) into Equation (24) and transforming the integral space from Q to [0, 1]V,
we obtain the following expression for RASR:

RASR = E[F(X)] = /[O i FO)aP(S). (28)

This equation represents the integration of F(X) with respect to the probability measure P(S) over the
N-dimensional unit hypercube [0, 1]V.

For the given network G, the sample space Q) has a size of 2V. Let the state of Seq be S;, where
i€{1,2,3,...,2N}. Based on P,, the unit hypercube [0, 1]V can be divided into 2N regions denoted by
Q;, where region Q; corresponds to state S;, i € {1,2,.. 2N }. Figure 4 illustrates this process for the
case when N = 2. Then, the integral in Equation (28) can be transformed into:

oN '
/[0,1]N FX)ap(s) = 1; /QiF(Xl)dP(Si)’ (29)

where X1} is a vector uniformly distributed within region Q;.
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X1

Figure 4. An example to illustrate the division of the unit hypercube, where N = 2 and P, =
(Pvy, Pv,)- The unit hypercube [0,1]? is divided into 4 regions, namely Q;, Q2, Q3, Q4, where each
region corresponds to a state of Seg, denoted by Sy, So, S3, S4.

The Lebesgue measure of region Q; in [0, 1]V, denoted by Ax(Q;), is equivalent to the probability
measure of S;, denoted as P(S;). Based on the principle of MC integration, we have:

5 i} = {ihx (1
;/Qip(x )dP(Si)Zi;/QiF(X JdX :/[O F(X)dX. (30)

AN

Combining Equation (28), Equation (29), and Equation (30), we obtain:
RASR = E[F(X :/ F(X)dX. 31
FOO)= [ FX) @1

By referencing Equation (14) and Equation (31), the RASR of a network can be approximated
using the QMC integration method. The approximation of RASR, denoted by R, is defined as follows.

Definition 6. Consider a network G = (V,E) with N nodes. Suppose a sequence of nodes Seq =
(v1,09,...,0N) is targeted for attack, Py = (Po,, Poy, - - - » Poy ) Signifies the ASR of each node. The RASR of
the network G can be approximated by R, which is defined as:

R= F(Y;) ~ RASR. (32)

R| =
T~

i=1

Here, {Y1,Ya,..., Yk}, as specified in Equation (14), represents a set of points obtained from an N-dimensional
LDS. K is the total number of samples. The function F(X) is defined in Equation (27).

The error bound of the QMC integral is determined by the star discrepancy of the chosen LDS,
making the selection of LDSs important for improving the accuracy of approximations. Two frequently
used LDSs are the Halton sequence and the Sobol sequence [40]. In this research, the Sobol sequence
is adopted, as it demonstrates better performance in higher dimensions compared to the Halton
sequence [41].

3.3.2. Parallel Randomized QMC (PRQMC) Algorithm

Despite the faster convergence rate of the QMC integration method compared to MC integration, it
still necessitates a large number of samples to calculate the average value. Furthermore, the calculation
of function ANCw(Seq,S), typically done through attack simulations, demands considerable
computational resources, especially for large-scale networks [42]. Consequently, the computational
process of obtaining R for large-scale networks remains time-consuming. Additionally, due to the
deterministic nature of the LDS, the QMC integration method can be seen as a deterministic algorithm,
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thus presenting challenges in assessing the reliability of numerical integration results and potentially
leading to being stuck in local optima. In light of these issues, the PROMC algorithm capitalizes on the
benefits of the Randomized QMC method and parallelization.

The PROMC algorithm improves computational efficiency through parallelization. This is because
the computational cost of sampling the attack sequence’s state § is significantly lower than that of
computing the function ANCw(Seq, S). Therefore, by initially sampling the attack sequence’s state
S and obtaining a sufficient number of samples, it is possible to calculate the R by parallelizing the
computation of the function ANCw(Seq, S) with various samples. This approach effectively accelerates
the calculation process by distributing the task across multiple processors or computing nodes.

Additionally, the PRQMC algorithm enhances randomness by randomly sampling points from the
LDS, providing unbiased estimation and improved variance reduction capabilities. This is particularly
advantageous in high-dimensional problems, where RQOMC often outperforms QMC in terms of
accuracy and efficiency [43].

The procedure of the PRQMC algorithm is presented in Algorithm 1, which consists of two main
steps: “sampling state" and “paralleling stage". In the sampling stage, we first randomly sample
K points {Y1,Y,,..., Yk} from an N-dimensional Sobol sequence, then determine K states of the
attack sequence, {S1, S, ..., Sk}, by comparing the values of each dimension of the sampled points
with the ASR of each node. In the paralleling stag, we parallelize the computation of the function
ANCuw(Seq, S;), then obtain R by calculating the average value of ANCw(Seq, S;).

Algorithm 1 PROMC(G, Segq, P, K)

Input: G = (V, E): a network with N nodes,
Seq = (v1,vy,...,vN): an attacking sequence of G,
P = (po,, Poys - -+, Poy): ASR of each node in Seg,
K: the total number of samples.
Output: R: the approximate value of the RASR of G.
Stepl: Sampling stage.
1 sampling K points {Y1,Y>, ..., Yk } randomly from an N-dimensional Sobol sequence,
where Y; = (yiz},yil},...,yi{\;}) fori e {1,2,...,K};

2 let State = {S1,Sy,...,Sk}, where S; = (sz{,i},sz{,;‘},...,s;{,fv}) fori € {1,2,...,K};
3 forizltoKdo{‘}
. T,y.l < Po; )
SZ{);}: 1y TLje{12,- N}
F,y]. > Po;

4

Step2: Paralleling stage.
5 let Res = {Rl,Rz, .. .,RK};
6 parallel for all S; € State do
7 | R; = ANCuw(Seq,S;);
8 R= %2{11 R\i}

9 return R.

3.4. The Proposed HBnnsAGP Attack Strategy

To assess the lower bound of network RASR, a new attack strategy called the High BCnns
Adaptive GCC-Priority (HBnnsAGP) is presented. In HBnnsAGP, a novel centrality measure called
BCnns is proposed to quantify the significance of a node, and GCC-priority attack strategy is utilized
to improve attack effectiveness. Algorithm 2 describes the procedure of HBnnsAGP, which contains
two steps: “obtaining the first part of Seq" and “obtaining the second part of Seq". In the first step,
the algorithm obtains the first part of the attack sequence by iteratively removing the node with the
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highest BCnns in GCC and recalculating BCnns for the remaining nodes until only isolated nodes
remain in the residual network. In the second step, the algorithm arranges these isolated nodes in
descending order according to their DC values in the initial network to obtain the second part of the
attack sequence. This procedure is aimed at improving the effectiveness of attacks when the ASR is
below 100%. It is important to note that isolated nodes when the ASR is 100% may no longer remain
isolated, as depicted in, as shown in Figure 1. Additionally, previous research has shown that there
is minimal difference in destructiveness between simultaneous attacks and sequential attacks based
on DC [9]. Therefore, by sorting these isolated nodes in descending order based on their DC values
from the initial network (similar to the approach used in simultaneous attacks), the second step further
improves the effectiveness of attacks when the ASR is less than 100%.
In the following, we first introduce the BCnns and then give the GCC-priority attack strategy.

Algorithm 2 HBnnsAGP(G, N1, N)

Input: G = (V,E): a network with N nodes,
Ni and N: sampling numbers.

Output: Seq: an attacking sequence of G.

1 let Seq be an empty list;

2 Gy = (Vo, E0> — G;

Step1: Obtaining the first part of Seq.

3 while E # @ do
4 Ge = (V;, E¢) + get the GCC of G;
5 S, T <SelectST(G¢, N1, Np)
6
7

forallv € V. do

Bcnns(v) = ) Ué?'stf)})}

seSteT
8 attack_node < arg max(BCyus(v));
veV,

9 append attack_node to the end of Seq;

10 | G < G\ {attack_node};

Step2: Obtaining the second part of Seq.
11 V, <+ (W \ Seq);
12 sort the nodes of V; decreasing by DC values from Gy;
13 Seq < Seq + V;;
14 return Seq.

3.4.1. Non-central Nodes Sampling Betweenness Centrality (BCnns)

Contrasted with BC (see Definition 2), which evaluates a node’s role as a mediator in the network
based on the count of shortest paths it traverses for all node pairs. BCnns quantifies the importance
of nodes acting as bridge nodes between different network communities by counting the number of
shortest paths that pass through a node for specific pairs of non-central nodes (nodes located in the
periphery of the network and with less importance). These bridge nodes typically serve as mediators
for non-central nodes across different communities. The BCnns is defined as follows.

Definition 7. For a network G = (V, E) with N nodes, the BCnns of node v in network G is:

o(s,t]v)

BCouns(0) = o(s,t)

seSteT

, (33)

where S, T C Viuns, Vuns is the set of non-central nodes sampled from V, Vyus CV, SNT = @. The 0(s,t)
and o (s, t | v) have the same meaning as defined in Definition 2.
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By selecting the appropriate pairs of non-central nodes, BCnns can more effectively measure the
significance of nodes as bridges between different communities in a network. While these bridge nodes
may not have the highest BC value, they are crucial for maintaining overall network connectivity and
could potentially have the highest BCnns value.

The Definition of BCnns highlights the importance of selecting suitable nodes for sets S and T.
Thus, we proposed an algorithm called SelectionST for node selection. Algorithm 3 describes the
procedure of SelectionST. Initially, the nodes are sorted in ascending order based on their DC values,
and the first Ny nodes with lower DC values are selected to create the non-central nodes set V,;;;5. This
is because nodes with lower DC values typically have lower centrality and are considered non-central
nodes. Next, in order to achieve a more balanced sampling, V;,;s is divided into two subsets: V,f,‘fg
containing nodes at odd indices and V5" containing nodes at even indices. Lastly, N, nodes are
randomly sampled from V2% to create set S, and N, nodes are similarly sampled from V%" to form
set T.

Algorithm 3 SelectionST(G,, N1, N,)

Input: G, = (V,, E.): the GCC of network G,
Nj and Nj: sampling numbers.
Output: S and T: the sets of sampling nodes.
1 if |V;| <= Nj then
| Np< [0.85%|V,|];
sort the nodes of V; increasing by DC values;
Viuns < choose first Ny nodes of V;
Vﬁgf <+ choose nodes at odd indices of V,;s;
Vot «+— choose nodes at even indices of Viys;

N, < Min(|Vdd|, [vser |, Na)
S « choose N, nodes of V2% randomly;

9 T < choose N, nodes of V5" randomly;
10 return S, T.

NS Ul e W N

(o]

The Nj and N; are chosen based on the size of the network and the node degree distribution.
Typically, both N7 and N, are much smaller compared to the total number of nodes N. Therefore,
BCnns have higher computational efficiency compared to BC, especially for large-scale networks.

Figure 5 demonstrates the differences between BC and BCnns. Specifically, Figure 5a identifies the
non-central nodes in red, Figure 5b showcases node sizes based on BC values, and Figure 5c adjusts
node sizes based on their BCnns values. Notably, node 14 plays a critical bridging role between two
communities, a role that BCnns captures more accurately than BC.

Figure 5. An illustrative example of non-central nodes and comparison of BC and BCnns. In this figure,
(a) highlights non-central nodes in red, (b) showcases node sizes based on BC, and (c) showcases node
sizes based on BCnns.
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3.4.2. GCC-Priority Attack Strategy

As the attack progresses, the network fragments into connected components of varying sizes. The
importance of these components varies within the residual network. The GCC refers to the largest
connected component containing the most nodes. The destruction of the GCC accelerates the collapse
of the network. The GCC-priority attack strategy enhances the attack’s effectiveness by targeting nodes
within the GCC at each stage of the attack process.

4. Experimental Studies

In this section, we present a series of experiments to verify the effectiveness of our proposed
methods. Firstly, we introduce the experimental settings including network datasets and baselines.
Next, we compare the proposed PROMC method with the baselines. Additionally, we demonstrate the
effectiveness of the proposed HBnnsAGP attack strategy. Finally, we present further discussions on
network robustness when considering the ASR.

4.1. Experimental Settings

4.1.1. Datasets

In our experiments, we selected six real-world classic complex networks of different scales,
including Karate [44], Krebs [10], Airport [45], Crime [46], Power [47], Oregonl [48]. Table 1 provides
a detailed summary of these networks, with N and M representing the number of nodes and edges,
respectively, and < k > denoting the average degree of the network.

Table 1. Basic Information of 6 Real-World Networks. N and M Represent the Number of Nodes and
Edges, Respectively, and < k > Denotes the Average Degree of the Network.

Network Description N M <k>
Karate [44] Karate club network 34 78 4.59
Krebs [10] Terrorist network 62 159 5.13

Airport [45] Aviation network 332 2126 12.81
Crime [46] Criminal network 829 1473 3.55
Power [47] Power grid 4941 6594 2.67

Oregonl [48] | AS peering network | 10670 | 22002 | 4.12

4.1.2. Comparison Methods

To show the effectiveness of the proposed PROMC algorithm, we compare it with MC and QMC
methods.

e MC: It calculates the estimated value of R using original MC integration and generates a set of
points from a PRS. R

*  QMC: It calculates the estimated value of R using original QMC integration and generates a set
of points from an LDS.

To show the effectiveness of the proposed HBnnsAGP attack strategy, we compare it with three
representative baseline attack strategies, including HDA[49], HBA[28], and FINDER[10].

e  High Degree Adaptive (HDA): HDA is an adaptive version of the high degree method that
ranks nodes based on their DC and sequentially removes the node with the highest DC. HDA
recomputes the DC of the remaining nodes after each node removal and is recognized for its
superior computational efficiency.

e High Betweenness Adaptive (HBA): HBA is an adaptive version of the high betweenness
method. It operates by iteratively removing the node with the highest BC and recomputing
BC for the remaining nodes. HBA has long been considered the most effective strategy for
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the network dismantling problem in the node-unweighted scenario [50]. However, the high

computing cost prohibits its use in medium and large-scale networks.
e FINDER: FINDER is notable as an algorithm based on deep reinforcement learning, which

achieves superior performances in terms of both effectiveness and efficiency.

We implemented the proposed algorithm and baselines using the Python programming language.
All experiments are performed on a server AMD EPYC 7742 64-Core Processor @ 2.25GHz, with

memory (RAM) 1024 GB, running Linux ubuntu 11.10 Operating System.

4.2. Comparison of the PRQMC with Baselines

This subsection presents the comparison results to demonstrate the effectiveness of the proposed

algorithm, PRQMC, on six real-world complex networks. Specifically, we compare PRQMC with two
baselines: MC and QMC. All experiments use the same attack strategy, and the ASR of each node is
randomly generated.

We first compare PROMC with the baselines on two small-scale networks (Karate and Krebs).
This is because precise values of RASR can be calculated analytically for small-scale networks. Then,
for large-scale networks (Airport, Crime, Power, and Oregonl), we utilize the standard deviation
curve as the convergence criterion, as the analytical method is not applicable to large-scale networks.
Figure 6 and Figure 7 present the comparison of the convergence and error between PROMC and
baselines. The figure clearly illustrates that PRQMC achieves faster convergence and better accuracy
with fewer samples compared to the baselines.
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Figure 6. Comparison of the convergence and error of the PRQMC, QMC, and MC methods in assessing

robustness for two smaller-scale networks.
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Figure 7. Comparison of the convergence and standard deviation of the PROMC, QMC, and MC
methods in assessing robustness for four larger-scale networks.

Additionally, Table 2 presents a comparison of the computational efficiency of PROMC and
the baselines, each with 5000 sampling iterations. In the PROMC method, the number of parallel
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computing processes is set based on the network size, assigning 25 processes to the Karate and Krebs,
and 100 processes to the other networks. The results in Table 2 indicate that the PROQMC method
outperforms in terms of computational efficiency. Specifically, the PROMC method operates nearly 50
times faster than the QMC and MC methods on the Oregonl.

Table 2. Computational Time Comparison of PROMC, QMC, and MC Methods(s)

Network MC oMC PROMC
Karate 1.8 1.7 0.4
Krebs 4.5 4.3 0.6
Airport 106.7 104.9 3.0
Crime 518.2 520.6 7.4
Power 20,525.7 20,529.1 343.7

Oregonl | 213,748.2 | 213,758.1 | 4,262.4

4.3. Comparison of the HBnnsAGP with Baselines

In this subsection, we will demonstrate the effectiveness and efficiency of the proposed HBnnsAGP
attack strategy. Specifically, we will compare HBnnsAGP with HDA, HBA, and FINDER on six
real-world complex networks, while considering different ASR conditions. Initially, we will employ
various attack strategies to generate corresponding attack sequences. Subsequently, we will utilize the
PRQMC method to calculate the R value under the following ASR distribution scenarios.

1. ASR=100%: The ASR of each node is set to 100%.

2. ASR =50%: The ASR of each node is set to 50%.

3. ASR =50% for the first 30% of nodes: In the attack sequence generated by different attack strategies,
the ASR of the first 30% of nodes is set to 50%.

4. Random ASR: The ASR of each node is randomly set between 50% and 100%. To obtain more
reliable results, the average of 10 experimental outcomes is taken.

The sample numbers (N; and Ny) for different networks used in HBnnsAGP are presented in
Table 3. Table 4 presents the R values of networks in the four specified scenarios. The data suggests that
HBnnsAGP performs better than other attack strategies in terms of destructiveness. The destructiveness
of HBnnsAGDP, on average, has increased by 6.76%, 4.03%, and 7.26% in comparison to the FINDER,
HBA, and HDA strategies, respectively.

Table 5 presents a comparison of computation times for HBnnsAGP and the baselines. As
the network size increases, the computation time for the HBA method becomes excessively long.
In contrast, the HBnnsAGP method maintains commendable computational efficiency even for
larger-scale networks. For the Oregonl network, HBnnsAGP is approximately 28 times faster than
HBA. While the computational efficiency of HBnnsAGP slightly lags behind that of FINDER and HDA
for larger-scale networks, it surpasses them in terms of attack destructiveness.

Figure 8 represents the ANCw curves of the networks under various attack strategies when
the ASR of each node is set to 100%. In this scenario, the state of the attack sequence is unique.
The figure shows that HBnnsAGP excels at identifying critical nodes in the network, leading to the
effective disruption of the network structure compared to other methods. Hence the effectiveness of
the proposed HBnnsAGP attack strategy is verified.

Table 3. The Sample Numbers (N; and N») for Different Networks Used in HBnnsAGP

Network | N N»
Karate 16 8
Krebs 30 16
Airport 100 | 60
Crime 120 80
Power 1300 | 80
Oregonl | 2300 | 80
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Table 4. The Robustness of Networks Under Different ASR. All R Values Are Multiplied by 100
Network [ HBnnsAGP [ FINDER [ HBA [ HDA
1. ASR=100%
Karate 12.77 14.12 15.04 | 15.04
Krebs 12.26 16.26 1421 | 17.23
Airport 7.53 10.25 793 | 11.10
Crime 9.90 11.04 10.14 | 11.54
Power 0.91 5.02 1.01 5.23
Oregonl 0.68 1.06 0.73 1.01
Avg score 7.34 9.63 8.18 | 10.19
2. ASR=50%
Karate 59.90 60.55 60.88 | 61.41
Krebs 57.61 58.38 57.74 | 58.33
Airport 59.45 60.32 60.39 | 60.52
Crime 57.59 59.50 59.50 | 59.08
Power 16.54 19.73 17.31 | 19.93
Oregonl 49.68 51.58 51.28 | 51.33
Avg score 50.13 51.69 51.18 | 51.77
3. ASR = 50% for the first 30% of nodes
Karate 48.61 50.38 49.76 | 50.57
Krebs 45.51 47.16 45.78 | 47.38
Airport 48.78 50.68 51.00 | 50.47
Crime 41.84 48.17 46.90 | 47.12
Power 14.87 17.79 16.32 | 17.86
Oregonl 41.26 4291 42.83 | 43.14
Avg score 40.15 4291 42.10 | 42.76
4. Random ASR
Karate 35.12 36.29 36.50 | 37.57
Krebs 30.39 32.99 31.02 | 33.36
Airport 36.95 38.58 38.67 | 38.99
Crime 27.90 30.96 30.48 | 30.42
Power 5.17 8.46 5.18 8.80
Oregonl 21.61 24.23 23.52 | 23.86
Avg score 26.19 28.56 27.55 | 28.79
Table 5. The Computation Time of Different Attack Strategies(ms)
Network | HBnnsAGP | FINDER HBA HDA
Karate 1.6 16.3 19 0.5
Krebs 3.6 36.6 4.6 2.3
Airport 82.3 218.3 211.0 11.1
Crime 552.1 369.3 4,434.6 49.1
Power 6,760.7 1,397.9 78,1199 | 1,796.8
Oregonl 15,799.1 8,641.5 | 477,802.8 | 2,065.9
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Figure 8. The ANCw curves of networks under different attack strategies.

4.4. Further Discussions About Network Robustness

The data presented in Table 4 indicates that reducing the ASR can significantly enhance network
robustness. Generally, this reduction can be achieved through reinforcing node protection. Comparing
Scenario 2 and Scenario 3, it is apparent that simply reducing the ASR of the first 30% nodes in the attack
sequence (Scenario 3) effectively enhances network robustness. This improvement is approximately
78.25% of that in Scenario 2. Therefore, enhancing the protection of a small subset of crucial nodes in
the network can effectively enhance its robustness.

5. Conclusion

In this paper, we conducted a study to analyze the robustness of networks when considering
ASR. Firstly, we introduce a novel metric called RASR to assess network robustness in this scenario.
Then, we propose the PROMC algorithm to efficiently calculate the RASR for large-scale networks.
PROMC utilizes RQMC integration to approximate the RASR with a faster convergence rate and
employs parallelization to speed up the calculation. Next, we propose a new attack strategy called
HBnnsAGP to evaluate the lower bound of network RASR. In HBnnsAGP, we quantify the significance
of a node using BCnns and enhance the destructiveness of the attack using the GCC-priority attack
strategy. Experimental results on six representative real-world networks demonstrate the effectiveness
of the proposed methods. Furthermore, our work demonstrates that reinforcing the protection of
a small subset of critical nodes significantly improves network robustness. These findings offer
valuable insights for devising more robust networks. The efficiency of the proposed methods can
be further enhanced, particularly when analyzing ultra-large-scale networks. In future research, we
aim to explore efficient algorithms to enhance the network RASR and devise promising methods for
analyzing ultra-large-scale networks.
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