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Abstract: A human eye has about 120 million rod cells and 6 million cone cells. This huge number of light
sensing cells inside a human eye will continuously produce a huge quantity of visual signals which flow into
a human brain for daily processing. However, the real-time processing of these visual signals does not cause
any fatigue to a human brain. This fact tells us the truth which is to say that human-like vision processes do
not rely on complicated formulas to compute depth, displacement, and colors, etc. On the other hand, a human
eye is like a PTZ camera. Here, PTZ stands for pan, tilt and zoom. We all know that in computer vision, each
set of PTZ parameters (i.e., coefficients of pan, tilt and zoom) requires a dedicated calibration to determine a
camera’s projection matrix. Since there is an infinite number of PTZ parameters which could be produced by a
human eye, it is unlikely that a human brain stores an infinite number of calibration matrices for each human
eye. Therefore, it is an interesting question for us to answer, which is to say whether simpler formulas of
computing depth and displacement exist or not. Moreover, these formulas must be calibration friendly (i.e.,
easy process on the fly or on the go). In this paper, we disclose an important discovery of a new solution to 3D
projection in a human-like binocular vision system. The purpose of doing 3D projection in binocular vision is
to undertake forward and inverse transformations (or mappings) between coordinates in 2D digital images
and coordinates in a 3D analogue scene. The formulas underlying the new solution are accurate, easily
computable, easily tunable (i.e., to be calibrated on the fly or on the go) and could be easily implemented by a
neural system (i.e., a network of neurons). Experimental results have validated the discovered formulas.

Keywords: Monocular Vision; Binocular Vision; Forward Projection; Inverse Projection; Displacement
Projection.

1. Introduction

We are living inside an ocean of signals. Among all the signals, the most important ones should
be the visual signals. Therefore, vision is extremely important to the intelligence of human beings [1].
Similarly, vision is also extremely important to the intelligence of autonomous robots [2]. In the past
decades, there have been extensive research activities dedicated to computer vision research. The
intensity of such research has been witnessed by the huge amount of conference paper submissions
to ICCV (i.e., International Conference on Computer Vision) and CVPR (i.e., International Conference
of Computer Vision and Pattern Recognition). However, despite the continuous efforts of research,
today’s computer vision is far behind the performance of human vision. Hence, it is important for us
to seriously analyze the gaps between computer vision and human vision.

As shown in Figure 1, the motion aspects of a human eye are like a PTZ camera. Here, PTZ
stands for pan, tilt and zoom. We know that a human eye can undertake continuous motion and
zooming. This implies that a human eye has an infinite number of PTZ parameters (i.e., the
coefficients of pan, tilt and zoom). However, our vision processes are not sensitive to the change of
PTZ parameters [3-5].

On the other hand, a human eye has about 120 million rod cells and 6 million cone cells. These
cells are responsible for converting lights into visual signals which will then be processed by a
human’s brain. Our daily experience tells us that our brains do not experience any heating-effect and
fatigue despite the huge quantity of visual signals under processing in real-time and continuously.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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This observation leads us to believe that the formulas of the visual processes running inside a human
brain must be simple and be suitable for easy and quick implementation by human-brain-like neural
systems [6,7].

-

Human Eye with Its Muscles PTZ Camera

Figure 1. Comparison of the motion aspects between human eye and electronic camera (photo
courtesy of free source in Internet).

In view of the above concise analysis, it is reasonable for us to believe that future research
direction in computer vision (or robot vision) should be focused on the discovery and invention of
the principles and algorithms which are like the formulas behind the visual processes running inside
a human brain. Hopefully, the outcomes of this discovery and invention could be implemented in a
brain-like digital computer [7].

In this paper, we prove and validate a new solution which will enable autonomous robots, such
as car-like robots and humanoid robots, to undertake 3D projection in a human-like binocular vision.
The 3D projection includes both forward and inverse projections among positions as well as
displacements.

This paper is organized as follows: The technical problem under investigation will be described
in Section 2. The background knowledge or related works will be presented in Section 3. The new
solution to 3D projection in a human-like binocular vision and its proof will be shown in Section 4.
Experimental results for validating the described new solution are included in Section 5. Finally, we
conclude this paper in Section 6.

2. Problem Statement

We are living in a three-dimensional space or scene. Similarly, an autonomous robot also
manifests its existence or activities in a three-dimensional space or scene. In general, a 3D scene
consists of a set of entities which have both global poses (i.e., positions and orientations) and local
shapes. If we follow the convention in robotics, each entity in a scene will be assigned a coordinate
system (or frame in short) which is called a local coordinate system (or local frame in short). Within
a global coordinate system (or global frame in short), an entity’s pose is represented by the position
and orientation of its local coordinate system. Within the local coordinate system of an entity, the
shape of the entity could be represented by a mesh of triangles or a cloud of points [8].

Therefore, the success of our daily behaviors or activities depends on our mental capabilities of
perceiving a three-dimensional space or scene. Similarly, the success of an autonomous robot also
depends on its mental capabilities of perceiving a three-dimensional space or scene. More specifically,
the intelligence of a human being or an autonomous robot depends on the proper functioning of the
outer loop which includes perception, planning and control as shown in Figure 2 [9,10].

It goes without saying that human vision is binocular in nature. Certainly, binocular vision has
empowered a human’s mind to achieve impressive intelligent behaviors guided by the perception-
planning-control loop. Hence, there is no doubt to us that it is an important research topic which aims
at achieving human-like intelligent behaviors by autonomous robots under the guidance of human-
like binocular vision [11].
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(a) Robot Arm Manipulator Guided by Human-like Binocular Vision (b) Autonomous Vehicle Guided by Human-like Binocular Vision

Figure 2. Outer loop of perception, planning and control inside autonomous robot arm manipulator
and autonomous car-like robot.

With visual signals as input, two important tasks of binocular vision are to provide information
and knowledge about the answers to these two general questions which are: a) what have been seen?
and b) where are the entities seen? Figure 3 illustrates these two related questions faced by a binocular
vision system. Please take note that a third popular question in binocular vision is: what are the
shapes of the entities seen? However, the solution to the first question is also the solution to this third
question. Hence, without loss of generality, it is not necessary to specifically highlight this third
popular question.

Question 1: Question 2:

> . L,
\% ’_. What have been seen? Where are the entities seen?

Left Camera Frame

|_» a
Right |—
Image
Ve

Right Camera Frame

Right

Camera
a 7 v .
X World Frame

Figure 3. Two fundamental questions faced by a human-like binocular vision system are: a) what
have been seen? and where are the entities seen?

As shown in Figure 3, the first question refers to the problem of entity detection (e.g., object
detection), entity identification (e.g., object identification), or entity classification (e.g., object
classification). The second question refers to the problem of 2D/3D localization or 2D/3D
reconstruction. In this paper, the problem under investigation is to develop a better solution which
provides the answer to the second question.

3. Related Works

The problem under investigation in this paper belongs to computer vision. which is a well-
established discipline in science and engineering [12-18]. Since computer vision is a very important
module or perception system inside autonomous robots, the problem under investigation is also
related to robotics, in which an interesting concept is about forward and inverse kinematics. In this
section, we summarize the background knowledge (or related works) in robotics and computer
vision, which serve as the foundation of the new solution presented in this paper.
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3.1. Concept of Kinematic Chain

In robotics [19-22], the study of kinematics starts with the assignment of a local coordinate
system (or frame) to each rigid body (e.g., a link in a robot). In this way, a series of links in a robot
arm manipulator become a kinematic chain. Hence, the topic of kinematics in robotics is about the
study the motion relationships among the local coordinate systems assigned to the links of a robot
arm manipulator.

In general, a vision system must involve the use of at least one camera which includes a lens (i.e.
arigid body), an imaging sensor array (i.e. a rigid body) and a digital image matrix (i.e. a virtual rigid
body). Also, a camera must be mounted on a robot, a machine, or a supporting ground, each of which
could be considered as a rigid body. Hence, a camera should be considered as a kinematic chain. In
this way, we could talk about the kinematics of a camera, a monocular vision, or a binocular vision.

For example, in Figure 3, a binocular vision system could be considered as the sum of two
monocular vision systems. Each monocular vision system consists of a single camera. If we look at
the left camera, we could see its kinematic chain which includes the motion transformations such as:
transformation from world frame to left-camera frame, transformation from left-camera frame to
analogue-image frame, and transformation from analogue-image frame to digital-image frame.

3.2. Forward Projection Matrix of Camera

A single camera is the basis of a monocular vision. Before we could understand the 2D forward
and inverse projections of monocular vision, it is necessary for us to know the details of a camera’s
forward projection matrix.

Refer to Figure 4. With the use of the terminology of kinematic chain, the derivation of camera
matrix starts with the transformation from reference frame to camera frame. If the coordinates of
point Q with respect to reference frame are (X,Y,Z), the coordinates (X.,Y.,Z.) of the same point Q
with respect to camera frame will be [12]:

Xc 1 Tz Tz
Yoo 2 T2 byf,
Ze| |1 msz T3 tz“ l
1 0 0 0 1
where rotation matrix {r;;,i € [1,3],j € [1,3]} represents the orientation of reference frame with
respect to camera frame, and translation vector (t,t,,t,)" represents the position of reference

o
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Y
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1

frame’s origin with respect to camera frame.

Digital Image Matrix u

Q=&Y,0)"
a5 t t
g = (x,y) or(u,v)
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Yy ¢ X
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- y

Digital image

Global Reference Frame

Processing

Figure 4. A single camera is the basis of a monocular vision.

Inside the camera frame, the transformation from the coordinates (X.,Y.,Z.) of point Q to the
analogue image coordinates (x,y)" of point q will be:


https://doi.org/10.20944/preprints202310.0444.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2023 do0i:10.20944/preprints202310.0444.v1

5
St x fOOO);C
[s-y]=o fo ol )
S 0 0 1 0 1C

where f is the focal length of the camera and s is a scaling factor.

By default, we are using digital cameras. Hence, an analogue image is converted into its
corresponding digital image. Such process of digitization results in the further transformation from
analogue image frame to digital image frame. This transformation is described by the following
equation:

o [0 ]
Sk /]

sV 1 sy
0 -
Av

S S
0 0 1

(©)

Vo

where (u,v)" are the digital image coordinates of point q, Au is the width of a pixel (i.e., a digital
image’s pixel density in horizontal direction), Av is the height of a pixel (i.e., a digital image’s pixel
density in vertical direction), and (u, vy)" are the digital image coordinates of the intersection point
between the optical axis (i.e., camera frame’s Z axis) and the image plane (note: this point is also
called a camera’s principal point).

Now, by substituting Equation 1 and Equation 2 into Equation 3, we will be able to obtain the
following equation [16]:

s-u X
[s-v]:Cf-§ 4)
§ 1
with
f 0 ol [r T T t
A Up 11 T2 Tz I
Cf — f A2 12 T2z by (5)
| 0 o 0| |31 ™2 T3
l 0 0 1 0J 0 0 0 1

where matrix C; is called a camera’s forward projection matrix which isa 3 X 4 matrix.

3.3. 3D Forward Projection of Monocular Vision

A monocular vision system uses a single camera. Its kinematic chain is the same as the one
shown in Figure 4. Most importantly, Equation 4 describes 3D forward projection of a monocular
vision system, in which 3D coordinates (X,Y,Z)" are projected into 2D digital image coordinates
(u, v)t.

3.4. 3D Inverse Projection of Monocular Vision

From the viewpoint of pure mathematics, Equation 4 could re-written into the following form:

oy o
1 M
k
with
Ci= (7 )
and k =1/s.

In theory, Equation 6 describes 3D inverse projection of a monocular vision system. In practice,
Equation 6 could be graphically represented by an artificial neural network which serves as predictor.
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The input layer consists of (u,v,1)t and the output layer consists of (X,Y,Z)". Matrix C; contains
the weighting coefficients. Hence, it is clear to us that different matrix C; will enable the prediction
of coordinates (X,Y,Z)" on a different planar surface. Most importantly, matrix C; could be
obtained by a top-down process of calibration or a bottom-up process of tuning (i.e., optimization).
Therefore, Equation 6 serves as a good example which helps us to understand the difference between
machine learning and machine calibration (or tuning).

Although C; is a 4 X 3 matrix, it is not possible to use Equation 6 to generally compute 3D
coordinates (X,Y,Z)" in an analogue scene from 2D index coordinates (u,v)" (i.e., uis column index
while v is row index) in a digital image. However, the philosophy behind Equation 6 has inspired us
to discover a similar, but very useful, 3D inverse projection of binocular vision which will be
described in Section 4.

3.5. 2D Forward Projection of Monocular Vision

Refer to Figure 4. If we consider the points or locations on the OXY plane of reference frame, Z
coordinate in Equation 4 becomes zero. Hence, Equation 4 could be re-written into the following

S*u
[S'U

N

form:

X
Y
1

= My - 8)

where matrix My is the version of matrix C; after removing its third column because Z is equal to
zero. Clearly, matrix My isa 2 X 2 matrix and is invertible. As shown in Figure 8, Equation 8 actually
describes the 2D forward projection from coordinates (X,Y)" on a plane of reference frame into
digital image coordinates (u,v)" of monocular vision.

3.6. 2D Inverse Projection of Monocular Vision

Now, by inverting Equation 8, we could easily obtain the following result:

k-X U
k-Y =Ml--[v] ©9)
k 1
with

where matrix M; is alsoa 2 X 2 matrix.
It goes without saying that Equation 8 and Equation 9 fully describe 2D forward and inverse
projections of a monocular vision system as shown in Figure 5.

Manocular Vision’s 2D Projection

Digital Image Matrix u
S-u X k- X U
q- < > SV :Mfy k-Y :Mi'v
s 1 k 1
2D Forward Projection 2D Inverse Projection
N
Camera Frame

Image plane
.

ry e p
X

Global Reference Frame

.
v X
Image
g. #—| Digital image
Processing

Analogue image

Figure 5. Full illustration of a monocular vision system’s 2D forward and inverse projections.
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3.7. Textbook Solution of Computing 3D Coordinates from Binocular Vision

As we have mentioned above, in theory, it is not possible to generally compute 3D coordinates
in an analogue scene from 2D index coordinates in a digital image. This fact is proven by Equation 4
and Equation 6 because there is a shortage of one constraint.

It is well-known in computer vision textbooks [12-18] that one additional constraint is needed if
we want to fully determine 3D coordinates in a scene in general. The popular solution to add one
extra constraint is to introduce a second camera. This solution results in what is called a binocular
vision system as shown in Figure 3.

Now, by applying Equation 4 to Figure 3, we will have the following two relationships:

Sl * ul )Y(
S| = C} |7 (11)
s 1
and
Syt Uy X
[sr-vrl =cr-|Y (12)
Sy 1

where Cf ={c};,i € [13],j € [14]} and Cf ={c[;,i € [1,3],j € [1,4]} are respectively the forward
projection matrices of left and right cameras, (u;, v;)" are index coordinates of point b which is the
image of point Q inside left camera, and (u,, ;)" are index coordinates of point a which is the image
of point Q inside right camera.

If define matrix U and vector V as follows:

l l l l l l
(c11—c3i-w) (C1z—c3w) (13— C33° )

l l l l l l
U= (c21—c31°v) (cz2— €327 v) (€23 — €337 1)

(13)
(cli —c317uy) (el — ¢ uy) (cf3—C33°Uy)
(cz1—c31°v) (€3 —c30 1) (€33 —C33°vp)
and
u — 5{4
ol
v=|"T (14)
Uy — C14
lvr - c£4J

the elimination of s; and s, in Equation 11 and Equation 12, followed by the summation of resulting
equations, will yield the following result:
X

Y
VA

Finally, the pseudo-inverse of matrix U will result in the following formula for the computation of
3D coordinates (X,Y,Z)¢:

u-lr|=v (15)

X
Y
VA

= Ut-u)"Yut-v) (16)

Equation 16 is the textbook solution for computing 3D coordinates if a matched pair of
{(u, v, (uy,v,)} are given.

Clearly, Equation 16 tells us that this way of computing each set of 3D coordinates requires a lot
of computational resources. If there is a huge quantity of pixels inside the images of a binocular vision
system, such computation will consume a lot of energy.

However, our eyes do not cause fatigue to our brains. Certainly, there must be a simpler way of
precisely computing 3D coordinates inside a human-like binocular vision system. We will present in
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the next section an interesting solution, which does not require expensive computational resources,
and consequently will consume much less energy.

4. Equations of 3D Projection in Human-like Binocular Vision

Equation 8 and Equation 9 described in Section 3 indicates that a monocular vision system has
both forward and inverse projections between 2D digital images and 2D planar surfaces. Especially,
both equations do not require expensive computational resources. Naturally, we are curious to know
whether such beautiful result do exist for a binocular vision or not.

In the remaining part of this section, we are going to prove the existence of similar solution for
both forward and inverse projections in a binocular vision system. First, we will start to prove the
equation of 3D inverse projection of binocular vision. Then, the result of 3D inverse projection will
help us to prove the equation of 3D forward projection of binocular vision.

4.1. Equation of 3D Inverse Projection of Position in Binocular Vision

The application of Equation 6 to Figure 3 will yield the following two relationships:

kl 'X_ u

k;-Y L

k-z| =G [vz] (17)
k; | 1

and
ky - X7
u

k.Y 4

koz| =G [1;] (18)
k

r

where C = {a};,i € [1,3],j € [1,4]} and C] = {a];,i € [1,3],j € [1,4]} are respectively the inverse
projection matrices of left and right cameras, (u;, v;)" are index coordinates of point b which is the
image of point Q inside left camera, and (u,,v,)" are index coordinates of point a which is the image
of point Q inside right camera.

Now, if we define matrix B; as follows:

l l 4 r 1 T
[a11 a2 aj1 a1, ajz+ags]

l l r r 1 T
Qz1 Q22 Qp1 Gz Qdp3t+ a3

B; = (19)
Yolaby @b, ahy ok, als+al
Ay Qi Ay QA tas
the combination (i.e., sum) of Equation 17 and Equation 18 will yield the following result:
s .
kY o
k-z| =Bt (20)
k o
1

where k =k; + k,.

Interestingly, Equation 20 is the equation of 3D inverse projection of a binocular vision system.
Matrix B; is the 3D inverse projection matrix of binocular vision. This matrix isa 4 X 5 matrix with
20 elements inside. Due to the presence of scaling factor k, there is only 19 independent elements
inside matrix B; which could be determined by a calibration process.

For example, a set of known values {(X,Y,Z), (u;, v;), (u,, v.)} will yield three constraints from
Equation 20. Hence, with a list of 17 sets of {(X,Y,Z), (u;,v;), (W, v,)}, matrix B; could be fully
computed in advance, on the fly, or on the go.

Interestingly, in the context of a binocular vision system mounted inside the head of a humanoid
robot which has dual arms as well as dual multiple-fingered hands, the visually observed fingertips
of a humanoid robot’s hands could easily supply a list of known values {(X,Y,Z), (u;, v;), (u,, v)}.
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These values will allow a humanoid robot to achieve the scenario of doing periodical calibration on
the fly or on the go.

4.2. Equation of 3D Forward Projection of Position in Binocular Vision

Now, if we compute the pseudo-inverse of matrix B;, Equation 20 will become:

S'ul

N %] )Y(

soup|=B,-|Y 21)
N 2%

s 1

where s = 1/k and By = (Bf - B;))™* - Bf.
Equation 21 is the equation of 3D forward projection of binocular vision, in which matrix By is
3D forward projection matrix of binocular vision as shown in Figure 6.

3D Forward Projection 3D Inverse Projection

2 :j; X k-X 112

S U, =Bf-§ i]gg =B; - |uy
1 >

% 5 U K Uy | —
N’ : L
Left Camera Frame
Right
Image
A,

r o,

Right Camera Frame

Left
Camera
7 e’
X World Frame

Qe

Right
Camera

Figure 6. Full illustration of a binocular vision system’s 3D forward and inverse projections.

4.3. Equation of 3D Inverse Projection of Displacement of Binocular Vision

Mathematically, Equation 20 is differentiable. Moreover, the relationship between derivatives
dx dy dzZ.g . . du; dv; duy dvy
(=,—,—)" and derivatives (—,—,—,—
dt’ dt’ dt de ' dt’ dt ' dt

variations (AX,AY,AZ)" and variations (Au,, Av,, Au,., Av,)t. This is because matrix By is a constant

)¢ will be the same as the relationship between

matrix if the kinematic chain of binocular vision remains unchanged [20].
Now, we remove the last column of matrix B; (NOTE: B; = {b;;,i € [1,4],j € [1,5]}) and use the

i€[1,4],je[14]} In

jr
remaining elements to define a new matrix D; as follows: D; = {d;; = .

Kk W
this way, the differentiation of Equation 20 will yield the following result [20]:
AX Aul
A
AY| =D |t 22)
AZ "
Av,

Equation 22 represents 3D inverse projection of displacement in a binocular vision system. Since
scale k isnot constant, matrix D; will not be a constant matrix. However, in practice, we could treat
any instance of matrix D; as a constant matrix. In this way, Equation 22 could be used inside an
autonomous robot’s outer loop of perception, planning and control as shown in Figure 2.
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Therefore, Equation 22 is an iterative solution to 3D inverse projection of displacement in
binocular vision. The application of Equation 22 to robot guidance is an advantage. This is because
Equation 22 will make perception-planning-control loop not to be sensitive to both noise and changes
of internal parameters of a binocular vision system.

4.4. Equation of 3D Forward Projection of Displacement of Binocular Vision

Now, by doing a simple pseudo-inverse of matrix D;, Equation 22 will allow us to obtain the
following equation of 3D forward projection of displacement in binocular vision:

Aul AX
A
sz =Dy |AY (23)
uT
AZ
Av,

where Dy = (Df - D;)™* - Df.

In summary, Equation 22 and Equation 23 fully describe 3D forward and inverse projections of
displacement in a binocular vision system. These two solutions are iterative in nature and could be
used inside the outer loop of perception, planning and control of autonomous robots as shown in
Figure 7.

Especially, Equation 22 enables autonomous robots to achieve human-like hand-eye
coordination and head-eye coordination as shown in Figure 7. For example, a control task of hand-
eye coordination or head-eye coordination could be defined as the goal which is to minimize error
vector (Auy, Avy, Au,, Av,)t. As illustrated in Figure 7, the history of error vector (Auy, Avy, Au,, Av,)*
will appear as paths which could be observed inside both left and right images.

/? 3D Forward Projection | 3D Inverse Projection
‘u Left inage 'u ght Image Aul Aul
ey L A ax | rax A

! o oy Pathts vl _ i T3 Vi

v Path *~ v > = Dy - |AY AY|=D;-
> Au, Au,

AZ AZ

Av,] 1} ] lav,

D, = 0F Dy~ Df|

~" Path (t=ti)
f

r

6] X
Frame at tume
(t=0)
Hand-Eye Head-Eye [
= Coordination Coordination

Figure 7. Scenarios of achieving human-like hand-eye coordination and head-eye coordination.

5. Experimental Results

The first important contribution of this paper is the result which is summarized by Figure 6. The
second important contribution from this paper is the result outlined in Figure 7. In this section, we
will share two experiments which validate the results shown in Figure 6 and Figure 7, respectively.

5.1. Real Experiment Validating Equation of 3D Inverse Projection of Position

Here, we would like to share an experiment which makes use of low-cost hardware with low-
resolution binocular cameras and a small-sized checkerboard. In this way, we could appreciate the
validity of Equation 20 and the result summarized in Figure 6.

As shown in Figure 8, the experimental hardware includes a Raspberry Pi single board
computer, a binocular vision module, and a checkerboard. The image resolution of the binocular
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cameras is 480 X 320 pixels. The checkerboard has the size of 18 x 24 cm, which is divided into
6 x 8 squares with the size of 3.0 x 3.0 cm each.

Binocular Camera Module Calibration Data Points: A, B, C, D

Test Data Points: TO, T1, T2, T3, T4
Size: 6 x 8 Squares with Width and Height of 3 cm Each

uy “
Raspberry Pi Single Board Computer Checkerboard

Figure 8. Experimental hardware includes Raspberry Pi single board computer with a binocular
vision module and a checkerboard which serves as input of calibration data-points as well as test
data-points.

Inside the checkerboard, {4,B,C,D} serve as calibration data-points for the purpose of
determining matrix B; in Equation 20, while {T,,T;, T, T5, Ty} serve as test data-points of the
calibration result (i.e., to test the validity of matrix B; in Equation 20).

Refer to Equation 20, matrix B; is a 4 X 5 matrix in which there are nineteen independent
elements or parameters. Since a single Equation 20 will impose three constraints, at least seven pairs
of {X,Y,Z} and {u;, v, u,, v} are needed for us to fully determine matrix B;.

As shown in Figure 9, we define a reference coordinate system as follows: Its Z axis is parallel
to the ground and is pointing toward the scene. Its Y axis is perpendicular to the ground and is
pointing downward. Its X axis is pointing toward the right-hand side.

Then, we place the checkerboard at four locations in front of the binocular vision system. The Z
coordinates of these four locations are 1.0 m, 1.5 m, 2.0 m, and 2.5 m, respectively. The checkerboard
is perpendicular to Z axis, which passes through test data-point T,. Therefore, the X and Y
coordinates of the calibration data-points {4, B,C,D} and the test data-points {Ty, Ty, T, T3, T4} are
known in advance. The values of these X and Y coordinates are shown inside Figure 9.

When the checkerboard is placed at one of the above-mentioned four locations, a pair of stereo
images is taken. The index coordinates of the calibration data-points and the test data-points could
be determined either automatically or manually.

By putting the 3D coordinates and index coordinates of the calibration data-points together, we
obtain Table 1 which contains the data needed for calibrating the equation of 3D inverse projection
of binocular vision (i.e., Equation 20).
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Figure 9. Data set for calibrating matrix B; in Equation 20.

Table 1. 3D coordinates and Index coordinates of data-points for calibrating binocular vision.

The Coordinates of Calibration Data Points {A, B, C, D} and The Index Coordinates of Their Images

X_tru (cm) Y_tru (em) Z_tru (cm) ul vl ur vr
9 -6 100 135 282 91 283
9 -6 150 146 297 114 298
A 9 -6 200 152 305 127 307
9 -6 250 155 310 134 312
-3 -6 100 196 281 152 284
B -3 -6 150 186 296 155 298
-3 -6 200 183 305 157 307
-3 -6 250 180 310 159 312
9 6 100 136 346 89 346
c 9 6 150 146 339 113 340
9 6 200 152 337 126 339
9 6 250 155 335 152 325
-3 6 100 198 345 151 347
b -3 6 150 188 338 154 341
-3 6 200 183 337 158 339
-3 6 250 180 335 158 337

With the use of data listed in Table 1, we obtain the following result of matrix B;:
—0.4251 -0.7861  —0.2245 0.8267 92.6220

B = 0.2167 —0.3717 —-0.2730 0.9845 —196.0451 (24)
¢ —1.5409 14.4961 1.2774 -14.9300 -71.2214

—0.0874 0.1758 0.0873 —0.1758 1.0000
Now, we use the index coordinates in Table 1, calibrated matrix B;, and Equation 20 to calculate

the 3D coordinates of calibration data-points {4, B, C, D}. By putting these calculated 3D coordinates
into Table 1, we will obtain Table 2 which helps us to compare between the true values of {4, B,C,D}’s
3D coordinates and the calculated values of {4, B, C,D}’s 3D coordinates.

Similarly, we use the index coordinates of the test data-points {Ty, Ty, T», T3, T,}, calibrated matrix
B;, and Equation 20 to calculate the 3D coordinates of {Ty, Ty, T5, T5, T, }. Then, by putting the true values
of {Ty, Ty, T,, T5,T,} s 3D coordinates and the calculated values of {Ty, Ty, T, T, T4 }'s 3D coordinates, we
obtain Table 3 which helps us to appreciate the usefulness and validity of Equation 20.

Table 2. Comparison between true values and calculated values of calibration data-points
{A4,B,C,DY¥s 3D coordinates.

Comparison Between True Coordinates and Computed Coordinates with Calibration Data Points {A, B, C, D}

X_tru (cm) | X_cal (cm) | Y_tru (cm) Y_cal (cm) Z_tru(cm) Z_cal (cm) ul vl ur vr

9 9.98 -6 -7.84 100 91.53 135 282 91 283

A 9 10.07 -6 -4.12 150 162.5 146 297 114 298
9 6.83 -6 -5.34 200 110.1 152 305 127 307

9 6.19 -6 -4.98 250 234.3 155 310 134 312

-3 -4.91 -6 -5.47 100 86.31 196 281 152 284

B -3 -1.91 -6 -5.91 150 169.6 186 296 155 298
-3 -2.83 -6 -6.92 200 214 183 305 157 307

-3 -0.5 -6 -6.01 250 236.5 180 310 159 312

9 8.78 6 6.50 100 95.4 136 346 89 346

¢ 9 10.07 6 6.11 150 168.7 146 339 113 340
9 8.83 6 5.96 200 193.7 152 337 126 339

9 9.19 6 441 250 230.5 155 335 152 325

-3 -6.75 6 8.92 100 90.8 198 345 151 347

-3 -5.92 6 2.69 150 170.5 188 338 154 341

o -3 0.22 6 4.24 200 215.3 183 337 158 339
-3 -4.39 6 6.44 250 237.5 180 335 158 337
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Table 3. Comparison between true values and calculated values of test data-points {Ty, Ty, T5, T3, To}'s
3D coordinates.

Comparison Between True Coordinates and Computed Coordinates with Test Data Points {T0, T1, T2, T3, T4}

X_tru (cm) X_cal (cm) Y_tru (cm) Y_cal (cm) Z_tru (cm) Z_cal (cm) ul vl ur vr

0 1.36 0 4.28 100 89.68 182 313 135 315

) 3.24 0 261 150 164.32 177 317 144 319

To ) 1.02 0 -1.84 200 219.22 175 320 150 323
) 1.17 0 -2.20 250 237.69 174 322 152 312

-6 -6.79 -6 -4.80 100 90.33 221 281 166 285

n -6 -1.32 -6 -1.52 150 161.01 197 296 165 298
-6 -1.77 -6 -4.71 200 213.04 190 305 165 307

-6 1.24 -6 -5.45 250 275.93 186 310 164 312

6 8.04 -6 -6.23 100 95.53 150 282 106 284

6 10.7 -6 -0.48 150 164.95 156 297 124 298

T2 6 7.54 -6 -3.30 200 214.39 159 305 135 307
6 7.08 -6 -2.68 250 232.64 161 310 140 312

-6 -8.47 6 10.96 100 83.66 214 345 166 348

3 -6 -4.45 6 5.76 150 165.10 198 338 164 341
-6 -0.57 6 7.16 200 210.32 191 337 165 339

-6 1.78 6 5.60 250 233.31 186 335 164 337

6 6.07 6 8.26 100 94.98 151 345 104 346

T 6 10.83 6 10.58 150 162.62 157 339 123 340
6 9.62 6 7.89 200 20451 160 337 134 329

6 8.71 6 6.34 250 22493 162 335 140 337

In view of the low-resolution of digital images (i.e., 480 x 320 pixels) and a small-sized
checkerboard (i.e.,, 18 X 24 cmdivided into 6 X 8 squares), we could say that the comparison results
shown in Table 2 and Table 3 are reasonably good enough for us to experimentally validate Equation
20. In practice, images with much higher resolutions and checkerboards of larger sizes will naturally
increase the accuracy of binocular vision calibration as well as the accuracy of calculated 3D
coordinates by using Equation 20.

5.2. Simulation Validating Equation of 3D Inverse Projection of Displacement

The picture of hand-eye coordination shown inside Figure 7 was a real experiment which has
demonstrated the validity of the 3D inverse projection of displacement in binocular vision, as
described by Equation 22. The video of real demonstration has been broadcasted during a national
TV news in Singapore. Here, we would like to share a simulation result under the context of head-
eye coordination which guides a helicopter to land on a ship’s movable deck, as illustrated by Figure
10.
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(photo courtesy of free source in Internet)
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Figure 10. Illustration of head-eye coordination for the guidance of helicopter during the landing on
a ship’s movable deck.
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In Equation 22, matrix D; is a 3 X 4 matrix which has eleven independent elements or
parameters. Since one pair of {AX.AY,AZ}} and {Au,, Av,, Au,, Av;} imposes three constraints, four
pairs of such calibration data sets are enough to fully determine matrix D;.

After calibration, Equation 22 could be used to serve as the perception and planning modules as
shown in Figure 2. The simulation result of Figure 10’s scenario is shown in Figure 11. The full video
could be viewed at https://youtu.be/BCWpOJyGr6E
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Figure 11. Simulation result of using Equation 22 to serve as perception and planning modules under
the context of head-eye coordination for the guidance of helicopter landing on movable deck.

It is interesting to take note that under the context of a binocular vision system mounted inside
the head of an autonomous humanoid robot, a pair of human-like robot hands will automatically
generate five pairs of {AX.AY,AZ}} and {Au,, Av;, Au,, Av;} which correspond to the displacements
among the five pairs of fingertips. Such observation helps us to understand the power and flexibility
of human beings’ binocular vision.

6. Conclusions

In this paper, we have proven two important equations, which are Equation 20 and Equation 22.
These two equations fully describe the 3D projections in a human-like binocular vision system. It is
interesting to know that they are like the equations underlying 2D forward and inverse projections
in a monocular vision system. These findings help us to unify the geometrical aspects of monocular
vision and binocular vision in terms of equations for forward and inverse projections. Most
importantly, Equation 20 and Equation 22 are in the form of two systems of linear equations, which
could be easily implemented by a network of artificial neurons. Therefore, these theoretical findings
from this paper help us to understand why a huge quantity of visual signals from human vision will
not cause fatigue to human beings’ brains. In addition, the matrices in Equation 20 and Equation 22
could be easily obtained by a calibration process without the need of knowing the intrinsic
parameters of the cameras in binocular vision. Interestingly, if a binocular vision system is mounted
inside the head of a humanoid robot, the fingertips of the humanoid robot will be able to readily
provide the necessary datasets for the calibration of both Equation 20 and Equation 22. This implies
that periodic calibration on the fly or on the go is not a difficult issue. This fact helps us to understand
why human vision could adapt to the growth of human being’s body. We hope to see wide adoption
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and application of Equation 20 and Equation 22 in our future research and product development,
which are related to the use of binocular vision for various purposes in science, engineering and
industry.
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