
Article

Not peer-reviewed version

New Solution to 3D Projection in

Human-like Binocular Vision

Ming Xie 

*

 , Yuhui Fang , Tingfeng Lai

Posted Date: 8 October 2023

doi: 10.20944/preprints202310.0444.v1

Keywords: Monocular Vision; Binocular Vision; Forward Projection; Inverse Projection; Displacement

Projection

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/698898


 

Article 

New Solution to 3D Projection in Human-like 
Binocular Vision 

Ming Xie 1,*, Yuhui Fang 2 and Tingfeng Lai 2 

1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 
2 Master of Science Program, Mechanical Engineering, Nanyang Technological University, Singapore 

* Correspondence: mmxie@ntu.edu.sg; Tel.: +65 98379612;  

Abstract: A human eye has about 120 million rod cells and 6 million cone cells. This huge number of light 

sensing cells inside a human eye will continuously produce a huge quantity of visual signals which flow into 

a human brain for daily processing. However, the real-time processing of these visual signals does not cause 

any fatigue to a human brain. This fact tells us the truth which is to say that human-like vision processes do 

not rely on complicated formulas to compute depth, displacement, and colors, etc. On the other hand, a human 

eye is like a PTZ camera. Here, PTZ stands for pan, tilt and zoom. We all know that in computer vision, each 

set of PTZ parameters (i.e., coefficients of pan, tilt and zoom) requires a dedicated calibration to determine a 

camera’s projection matrix. Since there is an infinite number of PTZ parameters which could be produced by a 
human eye, it is unlikely that a human brain stores an infinite number of calibration matrices for each human 

eye. Therefore, it is an interesting question for us to answer, which is to say whether simpler formulas of 

computing depth and displacement exist or not. Moreover, these formulas must be calibration friendly (i.e., 

easy process on the fly or on the go). In this paper, we disclose an important discovery of a new solution to 3D 

projection in a human-like binocular vision system. The purpose of doing 3D projection in binocular vision is 

to undertake forward and inverse transformations (or mappings) between coordinates in 2D digital images 

and coordinates in a 3D analogue scene. The formulas underlying the new solution are accurate, easily 

computable, easily tunable (i.e., to be calibrated on the fly or on the go) and could be easily implemented by a 

neural system (i.e., a network of neurons). Experimental results have validated the discovered formulas. 

Keywords: Monocular Vision; Binocular Vision; Forward Projection; Inverse Projection; Displacement 

Projection.  

 

1. Introduction 

We are living inside an ocean of signals. Among all the signals, the most important ones should 

be the visual signals. Therefore, vision is extremely important to the intelligence of human beings [1]. 

Similarly, vision is also extremely important to the intelligence of autonomous robots [2]. In the past 

decades, there have been extensive research activities dedicated to computer vision research. The 

intensity of such research has been witnessed by the huge amount of conference paper submissions 

to ICCV (i.e., International Conference on Computer Vision) and CVPR (i.e., International Conference 

of Computer Vision and Pattern Recognition). However, despite the continuous efforts of research, 

today’s computer vision is far behind the performance of human vision. Hence, it is important for us 
to seriously analyze the gaps between computer vision and human vision. 

As shown in Figure 1, the motion aspects of a human eye are like a PTZ camera. Here, PTZ 

stands for pan, tilt and zoom. We know that a human eye can undertake continuous motion and 

zooming. This implies that a human eye has an infinite number of PTZ parameters (i.e., the 

coefficients of pan, tilt and zoom). However, our vision processes are not sensitive to the change of 

PTZ parameters [3–5].  

On the other hand, a human eye has about 120 million rod cells and 6 million cone cells. These 

cells are responsible for converting lights into visual signals which will then be processed by a 

human’s brain. Our daily experience tells us that our brains do not experience any heating-effect and 

fatigue despite the huge quantity of visual signals under processing in real-time and continuously. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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This observation leads us to believe that the formulas of the visual processes running inside a human 

brain must be simple and be suitable for easy and quick implementation by human-brain-like neural 

systems [6,7]. 

 

Figure 1. Comparison of the motion aspects between human eye and electronic camera (photo 

courtesy of free source in Internet). 

In view of the above concise analysis, it is reasonable for us to believe that future research 

direction in computer vision (or robot vision) should be focused on the discovery and invention of 

the principles and algorithms which are like the formulas behind the visual processes running inside 

a human brain. Hopefully, the outcomes of this discovery and invention could be implemented in a 

brain-like digital computer [7]. 

In this paper, we prove and validate a new solution which will enable autonomous robots, such 

as car-like robots and humanoid robots, to undertake 3D projection in a human-like binocular vision. 

The 3D projection includes both forward and inverse projections among positions as well as 

displacements. 

This paper is organized as follows: The technical problem under investigation will be described 

in Section 2. The background knowledge or related works will be presented in Section 3. The new 

solution to 3D projection in a human-like binocular vision and its proof will be shown in Section 4. 

Experimental results for validating the described new solution are included in Section 5. Finally, we 

conclude this paper in Section 6. 

2. Problem Statement 

We are living in a three-dimensional space or scene. Similarly, an autonomous robot also 

manifests its existence or activities in a three-dimensional space or scene. In general, a 3D scene 

consists of a set of entities which have both global poses (i.e., positions and orientations) and local 

shapes. If we follow the convention in robotics, each entity in a scene will be assigned a coordinate 

system (or frame in short) which is called a local coordinate system (or local frame in short). Within 

a global coordinate system (or global frame in short), an entity’s pose is represented by the position 

and orientation of its local coordinate system. Within the local coordinate system of an entity, the 

shape of the entity could be represented by a mesh of triangles or a cloud of points [8]. 

Therefore, the success of our daily behaviors or activities depends on our mental capabilities of 

perceiving a three-dimensional space or scene. Similarly, the success of an autonomous robot also 

depends on its mental capabilities of perceiving a three-dimensional space or scene. More specifically, 

the intelligence of a human being or an autonomous robot depends on the proper functioning of the 

outer loop which includes perception, planning and control as shown in Figure 2 [9,10]. 

It goes without saying that human vision is binocular in nature. Certainly, binocular vision has 

empowered a human’s mind to achieve impressive intelligent behaviors guided by the perception-

planning-control loop. Hence, there is no doubt to us that it is an important research topic which aims 

at achieving human-like intelligent behaviors by autonomous robots under the guidance of human-

like binocular vision [11]. 
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Figure 2. Outer loop of perception, planning and control inside autonomous robot arm manipulator 

and autonomous car-like robot. 

With visual signals as input, two important tasks of binocular vision are to provide information 

and knowledge about the answers to these two general questions which are: a) what have been seen? 

and b) where are the entities seen? Figure 3 illustrates these two related questions faced by a binocular 

vision system. Please take note that a third popular question in binocular vision is: what are the 

shapes of the entities seen? However, the solution to the first question is also the solution to this third 

question. Hence, without loss of generality, it is not necessary to specifically highlight this third 

popular question. 

 

Figure 3. Two fundamental questions faced by a human-like binocular vision system are: a) what 

have been seen? and where are the entities seen? 

As shown in Figure 3, the first question refers to the problem of entity detection (e.g., object 

detection), entity identification (e.g., object identification), or entity classification (e.g., object 

classification). The second question refers to the problem of 2D/3D localization or 2D/3D 

reconstruction. In this paper, the problem under investigation is to develop a better solution which 

provides the answer to the second question.   

3. Related Works 

The problem under investigation in this paper belongs to computer vision. which is a well-

established discipline in science and engineering [12–18]. Since computer vision is a very important 

module or perception system inside autonomous robots, the problem under investigation is also 

related to robotics, in which an interesting concept is about forward and inverse kinematics. In this 

section, we summarize the background knowledge (or related works) in robotics and computer 

vision, which serve as the foundation of the new solution presented in this paper. 
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3.1. Concept of Kinematic Chain 

In robotics [19–22], the study of kinematics starts with the assignment of a local coordinate 

system (or frame) to each rigid body (e.g., a link in a robot). In this way, a series of links in a robot 

arm manipulator become a kinematic chain. Hence, the topic of kinematics in robotics is about the 

study the motion relationships among the local coordinate systems assigned to the links of a robot 

arm manipulator.  

In general, a vision system must involve the use of at least one camera which includes a lens (i.e. 

a rigid body), an imaging sensor array (i.e. a rigid body) and a digital image matrix (i.e. a virtual rigid 

body). Also, a camera must be mounted on a robot, a machine, or a supporting ground, each of which 

could be considered as a rigid body. Hence, a camera should be considered as a kinematic chain. In 

this way, we could talk about the kinematics of a camera, a monocular vision, or a binocular vision. 

For example, in Figure 3, a binocular vision system could be considered as the sum of two 

monocular vision systems. Each monocular vision system consists of a single camera. If we look at 

the left camera, we could see its kinematic chain which includes the motion transformations such as: 

transformation from world frame to left-camera frame, transformation from left-camera frame to 

analogue-image frame, and transformation from analogue-image frame to digital-image frame. 

3.2. Forward Projection Matrix of Camera 

A single camera is the basis of a monocular vision. Before we could understand the 2D forward 

and inverse projections of monocular vision, it is necessary for us to know the details of a camera’s 
forward projection matrix.  

Refer to Figure 4. With the use of the terminology of kinematic chain, the derivation of camera 

matrix starts with the transformation from reference frame to camera frame. If the coordinates of 

point Q with respect to reference frame are (𝑋, 𝑌, 𝑍), the coordinates (𝑋𝑐 , 𝑌𝑐, 𝑍𝑐) of the same point Q 

with respect to camera frame will be [12]: 

[𝑋𝑐𝑌𝑐𝑍𝑐1 ] = [𝑟11 𝑟12 𝑟13 𝑡𝑥𝑟21 𝑟22 𝑟23 𝑡𝑦𝑟310 𝑟320 𝑟330 𝑡𝑧1 ] ∙ [𝑋𝑌𝑍1] (1) 

where rotation matrix {𝑟𝑖𝑗 , 𝑖 ∈ [1,3], 𝑗 ∈ [1,3]}  represents the orientation of reference frame with 

respect to camera frame, and translation vector (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)𝑡  represents the position of reference 

frame’s origin with respect to camera frame. 

 

Figure 4. A single camera is the basis of a monocular vision. 

Inside the camera frame, the transformation from the coordinates (𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐) of point Q to the 

analogue image coordinates (𝑥, 𝑦)𝑡 of point q will be: 
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[𝑠 ∙ 𝑥𝑠 ∙ 𝑦𝑠 ] = [𝑓 0 0 00 𝑓 0 00 0 1 0] ∙ [𝑋𝑐𝑌𝑐𝑍𝑐1 ] (2) 

where 𝑓 is the focal length of the camera and 𝑠 is a scaling factor. 

By default, we are using digital cameras. Hence, an analogue image is converted into its 

corresponding digital image. Such process of digitization results in the further transformation from 

analogue image frame to digital image frame. This transformation is described by the following 

equation:  

[𝑠 ∙ 𝑢𝑠 ∙ 𝑣𝑠 ] = [  
  1∆𝑢 0 𝑢00 1∆𝑣 𝑣00 0 1 ]  

  ∙ [𝑠 ∙ 𝑥𝑠 ∙ 𝑦𝑠 ] (3) 

where (𝑢, 𝑣)𝑡 are the digital image coordinates of point q, ∆𝑢 is the width of a pixel (i.e., a digital 

image’s pixel density in horizontal direction), ∆𝑣 is the height of a pixel (i.e., a digital image’s pixel 
density in vertical direction), and (𝑢0, 𝑣0)𝑡 are the digital image coordinates of the intersection point 

between the optical axis (i.e., camera frame’s Z axis) and the image plane (note: this point is also 
called a camera’s principal point). 

Now, by substituting Equation 1 and Equation 2 into Equation 3, we will be able to obtain the 

following equation [16]: 

[𝑠 ∙ 𝑢𝑠 ∙ 𝑣𝑠 ] = 𝐶𝑓 ∙ [𝑋𝑌𝑍1] (4) 

with 

𝐶𝑓 = [  
  𝑓∆𝑢 0 𝑢0 00 𝑓∆𝑣 𝑣0 00 0 1 0 ]  

  ∙ [𝑟11 𝑟12 𝑟13 𝑡𝑥𝑟21 𝑟22 𝑟23 𝑡𝑦𝑟310 𝑟320 𝑟330 𝑡𝑧1 ] (5) 

where matrix 𝐶𝑓 is called a camera’s forward projection matrix which is a 3 × 4 matrix. 

3.3. 3D Forward Projection of Monocular Vision 

A monocular vision system uses a single camera. Its kinematic chain is the same as the one 

shown in Figure 4. Most importantly, Equation 4 describes 3D forward projection of a monocular 

vision system, in which 3D coordinates (𝑋, 𝑌, 𝑍)𝑡  are projected into 2D digital image coordinates (𝑢, 𝑣)𝑡.  

3.4. 3D Inverse Projection of Monocular Vision 

From the viewpoint of pure mathematics, Equation 4 could re-written into the following form: 

[𝑘 ∙ 𝑋𝑘 ∙ 𝑌𝑘 ∙ 𝑍𝑘 ] = 𝐶𝑖 ∙ [𝑢𝑣1] (6) 

with 𝐶𝑖 = (𝐶𝑓𝑡 ∙ 𝐶𝑓)−1 ∙ 𝐶𝑓𝑡 (7) 

and 𝑘 = 1/𝑠.  

In theory, Equation 6 describes 3D inverse projection of a monocular vision system. In practice, 

Equation 6 could be graphically represented by an artificial neural network which serves as predictor. 
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The input layer consists of (𝑢, 𝑣, 1)𝑡 and the output layer consists of (𝑋, 𝑌, 𝑍)𝑡. Matrix 𝐶𝑖 contains 

the weighting coefficients. Hence, it is clear to us that different matrix 𝐶𝑖 will enable the prediction 

of coordinates (𝑋, 𝑌, 𝑍)𝑡  on a different planar surface. Most importantly, matrix 𝐶𝑖  could be 

obtained by a top-down process of calibration or a bottom-up process of tuning (i.e., optimization). 

Therefore, Equation 6 serves as a good example which helps us to understand the difference between 

machine learning and machine calibration (or tuning). 

Although 𝐶𝑖  is a 4 × 3 matrix, it is not possible to use Equation 6 to generally compute 3D 

coordinates (𝑋, 𝑌, 𝑍)𝑡 in an analogue scene from 2D index coordinates (𝑢, 𝑣)𝑡 (i.e., u is column index 

while v is row index) in a digital image. However, the philosophy behind Equation 6 has inspired us 

to discover a similar, but very useful, 3D inverse projection of binocular vision which will be 

described in Section 4. 

3.5. 2D Forward Projection of Monocular Vision 

Refer to Figure 4. If we consider the points or locations on the OXY plane of reference frame, Z 

coordinate in Equation 4 becomes zero. Hence, Equation 4 could be re-written into the following 

form: 

[𝑠 ∙ 𝑢𝑠 ∙ 𝑣𝑠 ] = 𝑀𝑓 ∙ [𝑋𝑌1] (8) 

where matrix 𝑀𝑓 is the version of matrix 𝐶𝑓 after removing its third column because Z is equal to 

zero. Clearly, matrix 𝑀𝑓 is a 2 × 2 matrix and is invertible. As shown in Figure 8, Equation 8 actually 

describes the 2D forward projection from coordinates (𝑋, 𝑌)𝑡  on a plane of reference frame into 

digital image coordinates (𝑢, 𝑣)𝑡 of monocular vision. 

3.6. 2D Inverse Projection of Monocular Vision 

Now, by inverting Equation 8, we could easily obtain the following result: 

[𝑘 ∙ 𝑋𝑘 ∙ 𝑌𝑘 ] = 𝑀𝑖 ∙ [𝑢𝑣1] (9) 

with 𝑀𝑖 = (𝑀𝑓𝑡 ∙ 𝑀𝑓)−1 ∙ 𝑀𝑓𝑡 (10) 

where matrix 𝑀𝑖 is also a 2 × 2 matrix. 

It goes without saying that Equation 8 and Equation 9 fully describe 2D forward and inverse 

projections of a monocular vision system as shown in Figure 5. 

 

Figure 5. Full illustration of a monocular vision system’s 2D forward and inverse projections. 
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3.7. Textbook Solution of Computing 3D Coordinates from Binocular Vision 

As we have mentioned above, in theory, it is not possible to generally compute 3D coordinates 

in an analogue scene from 2D index coordinates in a digital image. This fact is proven by Equation 4 

and Equation 6 because there is a shortage of one constraint.  

It is well-known in computer vision textbooks [12–18] that one additional constraint is needed if 

we want to fully determine 3D coordinates in a scene in general. The popular solution to add one 

extra constraint is to introduce a second camera. This solution results in what is called a binocular 

vision system as shown in Figure 3. 

Now, by applying Equation 4 to Figure 3, we will have the following two relationships: 

[𝑠𝑙 ∙ 𝑢𝑙𝑠𝑙 ∙ 𝑣𝑙𝑠𝑙 ] = 𝐶𝑓𝑙 ∙ [𝑋𝑌𝑍1] (11) 

and  

[𝑠𝑟 ∙ 𝑢𝑟𝑠𝑟 ∙ 𝑣𝑟𝑠𝑟 ] = 𝐶𝑓𝑟 ∙ [𝑋𝑌𝑍1] (12) 

where 𝐶𝑓𝑙 = {𝑐𝑖𝑗𝑙 , 𝑖 ∈ [1,3], 𝑗 ∈ [1,4]}  and 𝐶𝑓𝑟 = {𝑐𝑖𝑗𝑟 , 𝑖 ∈ [1,3], 𝑗 ∈ [1,4]}  are respectively the forward 

projection matrices of left and right cameras, (𝑢𝑙 , 𝑣𝑙)𝑡 are index coordinates of point b which is the 

image of point Q inside left camera, and (𝑢𝑟 , 𝑣𝑟)𝑡 are index coordinates of point a which is the image 

of point Q inside right camera. 

If define matrix U and vector V as follows: 

𝑈 = [  
 (𝑐11𝑙 − 𝑐31𝑙 ∙ 𝑢𝑙) (𝑐12𝑙 − 𝑐32𝑙 ∙ 𝑢𝑙) (𝑐13𝑙 − 𝑐33𝑙 ∙ 𝑢𝑙)(𝑐21𝑙 − 𝑐31𝑙 ∙ 𝑣𝑙) (𝑐22𝑙 − 𝑐32𝑙 ∙ 𝑣𝑙) (𝑐23𝑙 − 𝑐33𝑙 ∙ 𝑣𝑙)(𝑐11𝑟 − 𝑐31𝑟 ∙ 𝑢𝑟)(𝑐21𝑟 − 𝑐31𝑟 ∙ 𝑣𝑟) (𝑐12𝑟 − 𝑐32𝑟 ∙ 𝑢𝑟)(𝑐22𝑟 − 𝑐32𝑟 ∙ 𝑣𝑟) (𝑐13𝑟 − 𝑐33𝑟 ∙ 𝑢𝑟)(𝑐23𝑟 − 𝑐33𝑟 ∙ 𝑣𝑟)]  

 
 (13) 

and 

𝑉 = [  
 𝑢𝑙 − 𝑐14𝑙𝑣𝑙 − 𝑐24𝑙𝑢𝑟 − 𝑐14𝑟𝑣𝑟 − 𝑐24𝑟 ]  

 
 (14) 

the elimination of 𝑠𝑙 and 𝑠𝑟 in Equation 11 and Equation 12, followed by the summation of resulting 

equations, will yield the following result: 

𝑈 ∙ [𝑋𝑌𝑍] = 𝑉 (15) 

Finally, the pseudo-inverse of matrix U will result in the following formula for the computation of 

3D coordinates (𝑋, 𝑌, 𝑍)𝑡: 
[𝑋𝑌𝑍] = (𝑈𝑡 ∙ 𝑈)−1(𝑈𝑡 ∙ 𝑉) (16) 

Equation 16 is the textbook solution for computing 3D coordinates if a matched pair of {(𝑢𝑙 , 𝑣𝑙), (𝑢𝑟 , 𝑣𝑟)} are given. 

Clearly, Equation 16 tells us that this way of computing each set of 3D coordinates requires a lot 

of computational resources. If there is a huge quantity of pixels inside the images of a binocular vision 

system, such computation will consume a lot of energy.  

However, our eyes do not cause fatigue to our brains. Certainly, there must be a simpler way of 

precisely computing 3D coordinates inside a human-like binocular vision system. We will present in 
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the next section an interesting solution, which does not require expensive computational resources, 

and consequently will consume much less energy. 

4. Equations of 3D Projection in Human-like Binocular Vision 

Equation 8 and Equation 9 described in Section 3 indicates that a monocular vision system has 

both forward and inverse projections between 2D digital images and 2D planar surfaces. Especially, 

both equations do not require expensive computational resources. Naturally, we are curious to know 

whether such beautiful result do exist for a binocular vision or not.  

In the remaining part of this section, we are going to prove the existence of similar solution for 

both forward and inverse projections in a binocular vision system. First, we will start to prove the 

equation of 3D inverse projection of binocular vision. Then, the result of 3D inverse projection will 

help us to prove the equation of 3D forward projection of binocular vision. 

4.1. Equation of 3D Inverse Projection of Position in Binocular Vision 

The application of Equation 6 to Figure 3 will yield the following two relationships: 

[𝑘𝑙 ∙ 𝑋𝑘𝑙 ∙ 𝑌𝑘𝑙 ∙ 𝑍𝑘𝑙
] = 𝐶𝑖𝑙 ∙ [𝑢𝑙𝑣𝑙1 ] (17) 

and  

[𝑘𝑟 ∙ 𝑋𝑘𝑟 ∙ 𝑌𝑘𝑟 ∙ 𝑍𝑘𝑟
] = 𝐶𝑖𝑟 ∙ [𝑢𝑟𝑣𝑟1 ] (18) 

where 𝐶𝑖𝑙 = {𝑎𝑖𝑗𝑙 , 𝑖 ∈ [1,3], 𝑗 ∈ [1,4]}  and 𝐶𝑖𝑟 = {𝑎𝑖𝑗𝑟 , 𝑖 ∈ [1,3], 𝑗 ∈ [1,4]}  are respectively the inverse 

projection matrices of left and right cameras, (𝑢𝑙 , 𝑣𝑙)𝑡 are index coordinates of point b which is the 

image of point Q inside left camera, and (𝑢𝑟 , 𝑣𝑟)𝑡 are index coordinates of point a which is the image 

of point Q inside right camera. 

Now, if we define matrix 𝐵𝑖 as follows: 

𝐵𝑖 = [   
 𝑎11𝑙 𝑎12𝑙 𝑎11𝑟 𝑎12𝑟 𝑎13𝑙 + 𝑎13𝑟𝑎21𝑙 𝑎22𝑙 𝑎21𝑟 𝑎22𝑟 𝑎23𝑙 + 𝑎23𝑟𝑎31𝑙𝑎41𝑙 𝑎32𝑙𝑎42𝑙 𝑎31𝑟 𝑎32𝑟 𝑎33𝑙 + 𝑎33𝑟𝑎41𝑟 𝑎42𝑟 𝑎43𝑙 + 𝑎43𝑟 ]   

 
 (19) 

the combination (i.e., sum) of Equation 17 and Equation 18 will yield the following result: 

[𝑘 ∙ 𝑋𝑘 ∙ 𝑌𝑘 ∙ 𝑍𝑘 ] = 𝐵𝑖 ∙ [   
 𝑢𝑙𝑣𝑙𝑢𝑟𝑣𝑟1 ]   

 
 (20) 

where 𝑘 = 𝑘𝑙 + 𝑘𝑟. 

Interestingly, Equation 20 is the equation of 3D inverse projection of a binocular vision system. 

Matrix 𝐵𝑖 is the 3D inverse projection matrix of binocular vision. This matrix is a 4 × 5 matrix with 

20 elements inside. Due to the presence of scaling factor 𝑘, there is only 19 independent elements 

inside matrix 𝐵𝑖 which could be determined by a calibration process.  

For example, a set of known values {(𝑋, 𝑌, 𝑍), (𝑢𝑙 , 𝑣𝑙), (𝑢𝑟 , 𝑣𝑟)} will yield three constraints from 

Equation 20. Hence, with a list of 17 sets of {(𝑋, 𝑌, 𝑍), (𝑢𝑙 , 𝑣𝑙), (𝑢𝑟 , 𝑣𝑟)}, matrix 𝐵𝑖  could be fully 

computed in advance, on the fly, or on the go.  

Interestingly, in the context of a binocular vision system mounted inside the head of a humanoid 

robot which has dual arms as well as dual multiple-fingered hands, the visually observed fingertips 

of a humanoid robot’s hands could easily supply a list of known values {(𝑋, 𝑌, 𝑍), (𝑢𝑙 , 𝑣𝑙), (𝑢𝑟 , 𝑣𝑟)}. 
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These values will allow a humanoid robot to achieve the scenario of doing periodical calibration on 

the fly or on the go. 

4.2. Equation of 3D Forward Projection of Position in Binocular Vision 

Now, if we compute the pseudo-inverse of matrix 𝐵𝑖, Equation 20 will become: 

[   
 𝑠 ∙ 𝑢𝑙𝑠 ∙ 𝑣𝑙𝑠 ∙ 𝑢𝑟𝑠 ∙ 𝑣𝑟𝑠 ]   

 = 𝐵𝑓 ∙ [𝑋𝑌𝑍1] (21) 

where 𝑠 = 1/𝑘 and 𝐵𝑓 = (𝐵𝑖𝑡 ∙ 𝐵𝑖)−1 ∙ 𝐵𝑖𝑡. 
Equation 21 is the equation of 3D forward projection of binocular vision, in which matrix 𝐵𝑓 is 

3D forward projection matrix of binocular vision as shown in Figure 6. 

 

Figure 6. Full illustration of a binocular vision system’s 3D forward and inverse projections. 

4.3. Equation of 3D Inverse Projection of Displacement of Binocular Vision 

Mathematically, Equation 20 is differentiable. Moreover, the relationship between derivatives (𝑑𝑋𝑑𝑡 , 𝑑𝑌𝑑𝑡 , 𝑑𝑍𝑑𝑡)𝑡  and derivatives (𝑑𝑢𝑙𝑑𝑡 , 𝑑𝑣𝑙𝑑𝑡 , 𝑑𝑢𝑟𝑑𝑡 , 𝑑𝑣𝑟𝑑𝑡 )𝑡  will be the same as the relationship between 

variations (∆𝑋, ∆𝑌, ∆𝑍)𝑡 and variations (∆𝑢𝑙 , ∆𝑣𝑙 , ∆𝑢𝑟 , ∆𝑣𝑟)𝑡. This is because matrix 𝐵𝑓 is a constant 

matrix if the kinematic chain of binocular vision remains unchanged [20].  

Now, we remove the last column of matrix 𝐵𝑖 (NOTE: 𝐵𝑖 = {𝑏𝑖𝑗 , 𝑖 ∈ [1,4], 𝑗 ∈ [1,5]}) and use the 

remaining elements to define a new matrix 𝐷𝑖 as follows: 𝐷𝑖 = {𝑑𝑖𝑗 = 1𝑘 ∙ 𝑏𝑖𝑗 , 𝑖 ∈ [1,4], 𝑗 ∈ [1,4]}. In 

this way, the differentiation of Equation 20 will yield the following result [20]: 

[∆𝑋∆𝑌∆𝑍] = 𝐷𝑖 ∙ [∆𝑢𝑙∆𝑣𝑙∆𝑢𝑟∆𝑣𝑟] (22) 

Equation 22 represents 3D inverse projection of displacement in a binocular vision system. Since 

scale 𝑘 is not constant, matrix 𝐷𝑖 will not be a constant matrix. However, in practice, we could treat 

any instance of matrix 𝐷𝑖 as a constant matrix. In this way, Equation 22 could be used inside an 

autonomous robot’s outer loop of perception, planning and control as shown in Figure 2.  
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Therefore, Equation 22 is an iterative solution to 3D inverse projection of displacement in 

binocular vision. The application of Equation 22 to robot guidance is an advantage. This is because 

Equation 22 will make perception-planning-control loop not to be sensitive to both noise and changes 

of internal parameters of a binocular vision system. 

4.4. Equation of 3D Forward Projection of Displacement of Binocular Vision 

Now, by doing a simple pseudo-inverse of matrix 𝐷𝑖, Equation 22 will allow us to obtain the 

following equation of 3D forward projection of displacement in binocular vision: 

[∆𝑢𝑙∆𝑣𝑙∆𝑢𝑟∆𝑣𝑟] = 𝐷𝑓 ∙ [∆𝑋∆𝑌∆𝑍] (23) 

where 𝐷𝑓 = (𝐷𝑖𝑡 ∙ 𝐷𝑖)−1 ∙ 𝐷𝑖𝑡. 
In summary, Equation 22 and Equation 23 fully describe 3D forward and inverse projections of 

displacement in a binocular vision system. These two solutions are iterative in nature and could be 

used inside the outer loop of perception, planning and control of autonomous robots as shown in 

Figure 7.  

Especially, Equation 22 enables autonomous robots to achieve human-like hand-eye 

coordination and head-eye coordination as shown in Figure 7. For example, a control task of hand-

eye coordination or head-eye coordination could be defined as the goal which is to minimize error 

vector (∆𝑢𝑙 , ∆𝑣𝑙 , ∆𝑢𝑟 , ∆𝑣𝑟)𝑡. As illustrated in Figure 7, the history of error vector (∆𝑢𝑙 , ∆𝑣𝑙 , ∆𝑢𝑟 , ∆𝑣𝑟)𝑡 
will appear as paths which could be observed inside both left and right images. 

 

Figure 7. Scenarios of achieving human-like hand-eye coordination and head-eye coordination. 

5. Experimental Results 

The first important contribution of this paper is the result which is summarized by Figure 6. The 

second important contribution from this paper is the result outlined in Figure 7. In this section, we 

will share two experiments which validate the results shown in Figure 6 and Figure 7, respectively.  

5.1. Real Experiment Validating Equation of 3D Inverse Projection of Position 

Here, we would like to share an experiment which makes use of low-cost hardware with low-

resolution binocular cameras and a small-sized checkerboard. In this way, we could appreciate the 

validity of Equation 20 and the result summarized in Figure 6. 

As shown in Figure 8, the experimental hardware includes a Raspberry Pi single board 

computer, a binocular vision module, and a checkerboard. The image resolution of the binocular 
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cameras is 480 × 320 pixels. The checkerboard has the size of 18 × 24 cm, which is divided into 6 × 8 squares with the size of 3.0 × 3.0 cm each.  

 

Figure 8. Experimental hardware includes Raspberry Pi single board computer with a binocular 

vision module and a checkerboard which serves as input of calibration data-points as well as test 

data-points. 

Inside the checkerboard, {𝐴, 𝐵, 𝐶, 𝐷}  serve as calibration data-points for the purpose of 

determining matrix 𝐵𝑖  in Equation 20, while {𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4}  serve as test data-points of the 

calibration result (i.e., to test the validity of matrix 𝐵𝑖 in Equation 20). 

Refer to Equation 20, matrix 𝐵𝑖  is a 4 × 5 matrix in which there are nineteen independent 

elements or parameters. Since a single Equation 20 will impose three constraints, at least seven pairs 

of {𝑋, 𝑌, 𝑍} and {𝑢𝑙 , 𝑣𝑙 , 𝑢𝑟 , 𝑣𝑟} are needed for us to fully determine matrix 𝐵𝑖.  

As shown in Figure 9, we define a reference coordinate system as follows: Its Z axis is parallel 

to the ground and is pointing toward the scene. Its Y axis is perpendicular to the ground and is 

pointing downward. Its X axis is pointing toward the right-hand side. 

Then, we place the checkerboard at four locations in front of the binocular vision system. The Z 

coordinates of these four locations are 1.0 m, 1.5 m, 2.0 m, and 2.5 m, respectively. The checkerboard 

is perpendicular to Z axis, which passes through test data-point 𝑇0 . Therefore, the X and Y 

coordinates of the calibration data-points {𝐴, 𝐵, 𝐶, 𝐷} and the test data-points {𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4} are 

known in advance. The values of these X and Y coordinates are shown inside Figure 9. 

When the checkerboard is placed at one of the above-mentioned four locations, a pair of stereo 

images is taken. The index coordinates of the calibration data-points and the test data-points could 

be determined either automatically or manually.  

By putting the 3D coordinates and index coordinates of the calibration data-points together, we 

obtain Table 1 which contains the data needed for calibrating the equation of 3D inverse projection 

of binocular vision (i.e., Equation 20). 
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Figure 9. Data set for calibrating matrix 𝐵𝑖 in Equation 20. 

Table 1. 3D coordinates and Index coordinates of data-points for calibrating binocular vision. 

 
With the use of data listed in Table 1, we obtain the following result of matrix 𝐵𝑖: 𝐵𝑖 = [−0.4251 −0.7861 −0.2245 0.8267 92.62200.2167 −0.3717 −0.2730 0.9845 −196.0451−1.5409−0.0874 14.49610.1758 1.27740.0873 −14.9300−0.1758 −71.22141.0000 ] (24) 

Now, we use the index coordinates in Table 1, calibrated matrix 𝐵𝑖, and Equation 20 to calculate 

the 3D coordinates of calibration data-points {𝐴, 𝐵, 𝐶, 𝐷}. By putting these calculated 3D coordinates 

into Table 1, we will obtain Table 2 which helps us to compare between the true values of {𝐴, 𝐵, 𝐶, 𝐷}’s 
3D coordinates and the calculated values of {𝐴, 𝐵, 𝐶, 𝐷}’s 3D coordinates. 

Similarly, we use the index coordinates of the test data-points {𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4}, calibrated matrix 𝐵𝑖, and Equation 20 to calculate the 3D coordinates of {𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4}. Then, by putting the true values 

of {𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4}’s 3D coordinates and the calculated values of {𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4}’s 3D coordinates, we 
obtain Table 3 which helps us to appreciate the usefulness and validity of Equation 20. 

Table 2. Comparison between true values and calculated values of calibration data-points {𝐴, 𝐵, 𝐶, 𝐷}’s 3D coordinates. 
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Table 3. Comparison between true values and calculated values of test data-points {𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4}’s 
3D coordinates. 

 

In view of the low-resolution of digital images (i.e., 480 × 320  pixels) and a small-sized 

checkerboard (i.e., 18 × 24 cm divided into 6 × 8 squares), we could say that the comparison results 

shown in Table 2 and Table 3 are reasonably good enough for us to experimentally validate Equation 

20. In practice, images with much higher resolutions and checkerboards of larger sizes will naturally 

increase the accuracy of binocular vision calibration as well as the accuracy of calculated 3D 

coordinates by using Equation 20.  

5.2. Simulation Validating Equation of 3D Inverse Projection of Displacement 

The picture of hand-eye coordination shown inside Figure 7 was a real experiment which has 

demonstrated the validity of the 3D inverse projection of displacement in binocular vision, as 

described by Equation 22. The video of real demonstration has been broadcasted during a national 

TV news in Singapore. Here, we would like to share a simulation result under the context of head-

eye coordination which guides a helicopter to land on a ship’s movable deck, as illustrated by Figure 
10.  

 

Figure 10. Illustration of head-eye coordination for the guidance of helicopter during the landing on 

a ship’s movable deck. 
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In Equation 22, matrix 𝐷𝑖  is a 3 × 4  matrix which has eleven independent elements or 

parameters. Since one pair of {∆𝑋. ∆𝑌, ∆𝑍}} and {∆𝑢𝑙 , ∆𝑣𝑙 , ∆𝑢𝑟 , ∆𝑣𝑙} imposes three constraints, four 

pairs of such calibration data sets are enough to fully determine matrix 𝐷𝑖.  

After calibration, Equation 22 could be used to serve as the perception and planning modules as 

shown in Figure 2. The simulation result of Figure 10’s scenario is shown in Figure 11. The full video 

could be viewed at https://youtu.be/BCWpOJyGr6E  

 

Figure 11. Simulation result of using Equation 22 to serve as perception and planning modules under 

the context of head-eye coordination for the guidance of helicopter landing on movable deck. 

It is interesting to take note that under the context of a binocular vision system mounted inside 

the head of an autonomous humanoid robot, a pair of human-like robot hands will automatically 

generate five pairs of {∆𝑋. ∆𝑌, ∆𝑍}} and {∆𝑢𝑙 , ∆𝑣𝑙 , ∆𝑢𝑟 , ∆𝑣𝑙} which correspond to the displacements 

among the five pairs of fingertips. Such observation helps us to understand the power and flexibility 

of human beings’ binocular vision. 

6. Conclusions 

In this paper, we have proven two important equations, which are Equation 20 and Equation 22. 

These two equations fully describe the 3D projections in a human-like binocular vision system. It is 

interesting to know that they are like the equations underlying 2D forward and inverse projections 

in a monocular vision system. These findings help us to unify the geometrical aspects of monocular 

vision and binocular vision in terms of equations for forward and inverse projections. Most 

importantly, Equation 20 and Equation 22 are in the form of two systems of linear equations, which 

could be easily implemented by a network of artificial neurons. Therefore, these theoretical findings 

from this paper help us to understand why a huge quantity of visual signals from human vision will 

not cause fatigue to human beings’ brains. In addition, the matrices in Equation 20 and Equation 22 

could be easily obtained by a calibration process without the need of knowing the intrinsic 

parameters of the cameras in binocular vision. Interestingly, if a binocular vision system is mounted 

inside the head of a humanoid robot, the fingertips of the humanoid robot will be able to readily 

provide the necessary datasets for the calibration of both Equation 20 and Equation 22. This implies 

that periodic calibration on the fly or on the go is not a difficult issue. This fact helps us to understand 

why human vision could adapt to the growth of human being’s body. We hope to see wide adoption 
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and application of Equation 20 and Equation 22 in our future research and product development, 

which are related to the use of binocular vision for various purposes in science, engineering and 

industry. 
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