
Article

Not peer-reviewed version

Two-way Linear Probing Revisited

Ketan Dalal , Luc Devroye , Ebrahim Malalla

*

Posted Date: 7 October 2023

doi: 10.20944/preprints202310.0408.v1

Keywords: Open addressing hashing; linear probing; parking problem; worst-case search time; two-way

chaining; multiple-choice paradigm; randomized algorithms; witness tree; probabilistic analysis

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3187496

Concept Paper

Two-Way Linear Probing Revisited

Ketan Dalal 1, Luc Devroye 1 and Ebrahim Malalla 1,†,*
1 School of Computer Science, McGill University, Montreal, Canada H3A 2K6; lucdevroye@gmail.com (L.D.);

emalalla@ahlia.edu.bh (E.M.)
* Correspondence: emalalla@ahlia.edu.bh
† Current address: Department of Mathematical Sciences, Ahlia University, P.O. Box 10878, Manama, Bahrain.

Abstract: We introduce linear probing hashing schemes that construct a hash table of size n, with
constant load factor α, on which the worst-case unsuccessful search time is asymptotically almost
surely O(log log n). The schemes employ two linear probe sequences to find empty cells for the keys.
Matching lower bounds on the maximum cluster size produced by any algorithm that uses two linear
probe sequences are obtained as well.

Keywords: open addressing hashing; linear probing; parking problem; worst-case search time;
two-way chaining; multiple-choice paradigm; randomized algorithms; witness tree; probabilistic
analysis

1. Introduction

In classical open addressing hashing [75], m keys are hashed sequentially and on-line into a
table of size n > m, (that is, a one-dimensional array with n cells which we denote by the set
T = {0, . . . , n − 1}), where each cell can harbor at most one key. Each key x has only one infinite probe
sequence fi(x) ∈ T , for i ∈ N. During the insertion process, if a key is mapped to a cell that is already
occupied by another key, a collision occurs, and another probe is required. The probing continues until
an empty cell is reached where a key is placed. This method of hashing is pointer-free, unlike hashing
with separate chaining where keys colliding in the same cell are hashed to a separate linked list or
chain. For a discussion of different hashing schemes see [41,51,92].

The purpose of this paper is to design efficient open addressing hashing schemes that improve the
worst-case performance of classical linear probing where fi+1(x) = fi(x) + 1 mod n, for i ∈ [[n]] :=
{1, . . . , n}. Linear probing is known for its good practical performance, efficiency, and simplicity. It
continues to be one of the best hash tables in practice due to its simplicity of implementation, absence
of overhead for internally used pointers, cache efficiency, and locality of reference [46,73,81,88]. On the
other hand, the performance of linear probing seems to degrade with high load factors m/n, due to a
primary-clustering tendency of one collision to cause more nearby collisions.

Our study concentrates on schemes that use two linear probe sequences to find possible hashing
cells for the keys. Each key chooses two initial cells independently and uniformly at random, with
replacement. From each initial cell, we probe linearly, and cyclically whenever the last cell in the
table is reached, to find two empty cells which we call terminal cells. The key then is inserted into
one of these terminal cells according to a fixed strategy. We consider strategies that utilize the greedy

multiple-choice paradigm [5,93]. We show that some of the trivial insertion strategies with two-way linear
probing have unexpected poor performance. For example, one of the trivial strategies we study inserts
each key into the terminal cell found by the shorter probe sequence. Another simple strategy inserts
each key into the terminal cell that is adjacent to the smaller cluster, where a cluster is an isolated set of
consecutively occupied cells. Unfortunately, the performances of these two strategies are not ideal.
We prove that when any of these two strategies is used to construct a hash table with constant load
factor, the maximum unsuccessful search time is Ω(log n), with high probability (w.h.p.). Indeed, we
prove that, w.h.p., a giant cluster of size Ω(log n) emerges in a hash table of constant load factor, if it is
constructed by a two-way linear probing insertion strategy that always inserts any key upon arrival
into the empty cell of its two initial cells whenever one of them is empty.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-1109-106X
https://doi.org/10.20944/preprints202310.0408.v1
http://creativecommons.org/licenses/by/4.0/

2 of 28

Consequently, we introduce two other strategies that overcome this problem. First, we partition
the hash table into equal-sized blocks of size β, assuming n/β is an integer. We consider the following
strategies for inserting the keys:

A. Each key is inserted into the terminal cell that belongs to the least crowded block, i.e., the block
with the least number of keys.

B. For each block i, we define its weight to be the number of keys inserted into terminal cells found
by linear probe sequences whose starting locations belong to block i. Each key, then, is inserted
into the terminal cell found by the linear probe sequence that has started from the block of smaller
weight.

For strategy B, we show that β can be chosen such that for any constant load factor α := m/n, the
maximum unsuccessful search time is not more than c log2 log n, w.h.p., where c is a function of α. If
α < 1/2, the same property also holds for strategy A. Furthermore, these schemes are optimal up to
a constant factor in the sense that an Ω(log log n) universal lower bound holds for any strategy that
uses two linear probe sequences, even if the initial cells are chosen according to arbitrary probability
distributions.

For hashing with separate chaining, one can achieve O(log log n) maximum search time by
applying the two-way chaining scheme [5] where each key is inserted into the shorter chain among two
chains chosen independently and uniformly at random, with replacement, breaking ties randomly.
It is proved [5,8] that when r = Ω(n) keys are inserted into a hash table with n chains, the length
of the longest chain upon termination is log2 log n + r/n ± O(1), w.h.p. Of course, this idea can be
generalized to open addressing. Assuming the hash table is partitioned into blocks of size β, we
allow each key to choose two initial cells, and hence two blocks, independently and uniformly at
random, with replacement. From each initial cell and within its block, we probe linearly and cyclically,
if necessary, to find two empty cells; that is, whenever we reach the last cell in the block and it is
occupied, we continue probing from the first cell in the same block. The key, then, is inserted into the
empty cell that belongs to the least full block. Using the two-way chaining result, one can show that
for suitably chosen β, the maximum unsuccessful search time is O(log log n), w.h.p. However, this
scheme uses probe sequences that are not totally linear; they are locally linear within the blocks.

1.1. History and Motivation

Probing and Replacement

Open addressing schemes are determined by the type of the probe sequence, and the replacement
strategy for resolving the collisions. Some of the commonly used probe sequences are:

1. Random Probing [67]: For every key x, the infinite sequence fi(x) is assumed to be independent
and uniformly distributed over T . That is, we require to have an infinite sequence fi of truly
uniform and independent hash functions. If for each key x, the first n probes of the sequence fi(x)

are distinct, i.e., it is a random permutation, then it is called uniform probing [75].
2. Linear Probing [75]: For every key x, the first probe f1(x) is assumed to be uniform on T , and

the next probes are defined by fi+1(x) = fi(x) + 1 mod n, for i ∈ [[n]]. So we only require f1 to
be a truly uniform hash function.

3. Double Probing [6]: For every key x, the first probe is f1(x), and the next probes are defined
by fi+1(x) = fi(x) + g(x) mod n, for i ∈ N, where f1 and g are truly uniform and independent
hash functions.

Random and uniform probings are, in some sense, the idealized models [89,97], and their plausible
performances are among the easiest to analyze; but obviously they are unrealistic. Linear probing is
perhaps the simplest to implement, but it behaves badly when the table is almost full. Double probing
can be seen as a compromise.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

3 of 28

During the insertion process of a key x, suppose that we arrive at the cell fi(x) which is already
occupied by another previously inserted key y, that is, fi(x) = f j(y), for some j ∈ N. Then a
replacement strategy for resolving the collision is needed. Three strategies have been suggested in the
literature (see [68] for other methods):

1. FIRST COME FIRST SERVED (FCFS) [75]: The key y is kept in its cell, and the key x is referred to the
next cell fi+1(x).

2. LAST COME FIRST SERVED (LCFS) [78]: The key x is inserted into the cell fi(x), and the key y is
pushed along to the next cell in its probe sequence, f j+1(y).

3. ROBIN HOOD [13,14]: The key which travelled the furthest is inserted into the cell. That is, if
i > j, then the key x is inserted into the cell fi(x), and the key y is pushed along to the next cell
f j+1(y); otherwise, y is kept in its cell, and the key x tries its next cell fi+1(x).

Average Performance

Evidently, the performance of any open addressing scheme deteriorates when the ratio m/n

approaches 1, as the cluster sizes increase, where a cluster is an isolated set of consecutively occupied
cells (cyclically defined) that are bounded by empty cells. Therefore, we shall assume that the hash
table is α-full, that is, the number of hashed keys m = ⌊ αn ⌋, where α ∈ (0, 1) is a constant called the
load factor. The asymptotic average-case performance has been extensively analyzed for random and
uniform probing [9,55,67,75,89,97], linear probing [50,51,54,61], and double probing [6,43,57,84,86]. The
expected search times were proven to be constants, more or less, depending on α only. Recent results
about the average-case performance of linear probing, and the limit distribution of the construction
time have appeared in [32,52,91]. See also [3,39,76] for the average-case analysis of linear probing for
nonuniform hash functions.

It is worth noting that the average search time of linear probing is independent of the replacement
strategy; see [51,75]. This is because the insertion of any order of the keys results in the same set of
occupied cells, i.e., the cluster sizes are the same; and hence, the total displacement of the keys—from
their initial hashing locations—remains unchanged. It is not difficult to see that this independence is
also true for random and double probings. That is, the replacement strategy does not have any effect
on the average successful search time in any of the above probings. In addition, since in linear probing
the unsuccessful search time is related to the cluster sizes (unlike random and double probings),
the expected and the maximum unsuccessful search times in linear probing are invariant to the
replacement strategy.

It is known that LCFS [78,79] and ROBIN HOOD [13,14,68,91] strategies minimize the variance of
displacement. Recently, Janson [45] and Viola [90] have reaffirmed the effect of these replacement
strategies on the individual search times in linear probing hashing.

Worst-case Performance

The focal point of this article, however, is the worst-case search time which is proportional to the
length of the longest probe sequence over all keys (LLPS, for short). Many results have been established
regarding the worst-case performance of open addressing.

The worst-case performance of linear probing with FCFS policy was analyzed by Pittel [77]. He
proved that the maximum cluster size, and hence the LLPS needed to insert (or search for) a key, is
asymptotic to (α − 1 − log α)−1 log n, in probability. As we mentioned above, this bound holds for
linear probing with any replacement strategy. Chassaing and Louchard [15] studied the threshold
of emergence of a giant cluster in linear probing. They showed that when the number of keys
m = n − ω(

√
n), the size of the largest cluster is o(n), w.h.p.; however, when m = n − o(

√
n), a giant

cluster of size Θ(n) emerges, w.h.p.
Gonnet [40] proved that with uniform probing and FCFS replacement strategy, the expected LLPS

is asymptotic to log1/α n − log1/α log1/α n + O(1), for α-full tables. However, Poblete and Munro

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

4 of 28

[78,79] showed that if random probing is combined with LCFS policy, then the expected LLPS is at most
(1 + o(1))Γ−1(αn) = O(log n/ log log n), where Γ is the gamma function.

On the other hand, the ROBIN HOOD strategy with random probing leads to a more striking
performance. Celis [13] first proved that the expected LLPS is O(log n). However, Devroye, Morin
and Viola [22] tightened the bounds and revealed that the LLPS is indeed log2 log n ± Θ(1), w.h.p.,
thus achieving a double logarithmic worst-case insertion and search times for the first time in open
addressing hashing. Unfortunately, one cannot ignore the assumption in random probing about the
availability of an infinite collection of hash functions that are sufficiently independent and behave like
truly uniform hash functions in practice. On the other side of the spectrum, we already know that
ROBIN HOOD policy does not affect the maximum unsuccessful search time in linear probing. However,
ROBIN HOOD may be promising with double probing.

Other Initiatives

Open addressing methods that rely on rearrangement of keys were under investigation for many
years, see, e.g., [10,42,58,60,68,82]. Pagh and Rodler [74] studied a scheme called cuckoo hashing that
exploits the LCFS replacement policy. It uses two hash tables of size n > (1 + ǫ)m, for some constant
ǫ > 0; and two independent hash functions chosen from an O(log n)-universal class—one function
only for each table. Each key is hashed initially by the first function to a cell in the first table. If the cell
is full, then the new key is inserted there anyway, and the old key is kicked out to the second table to be
hashed by the second function. The same rule is applied in the second table. Keys are moved back and
forth until a key moves to an empty location or a limit has been reached. If the limit is reached, new
independent hash functions are chosen, and the tables are rehashed. The worst-case search time is at
most two, and the amortized expected insertion time, nonetheless, is constant. However, this scheme
utilizes less than 50% of the allocated memory, has a worst-case insertion time of O(log n), w.h.p., and
depends on a wealthy source of provably good independent hash functions for the rehashing process.
For further details see [21,26,33,70].

The space efficiency of cuckoo hashing is significantly improved when the hash table is divided
into blocks of fixed size b ≥ 1 and more hash functions are used to choose k ≥ 2 blocks for each
key where each is inserted into a cell in one of its chosen blocks using the cuckoo random walk
insertion method [25,34,35,37,56,95]. For example, it is known [25,56] that 89.7% space utilization can
be achieved when k = 2 and the hash table is partitioned into non-overlapping blocks of size b = 2.
On the other hand, when the blocks are allowed to overlap, the space utilization improves to 96.5%
[56,95]. The worst-case insertion time of this generalized cuckoo hashing scheme, however, is proven
[35,38] to be polylogarithmic, w.h.p.

Many real-time static and dynamic perfect hashing schemes achieving constant worst-case search
time, and linear (in the table size) construction time and space were designed in [11,23,24,27,28,36,71,
72]. All of these schemes, which are based, more or less, on the idea of multilevel hashing, employ
more than a constant number of perfect hash functions chosen from an efficient universal class. Some
of them even use O(n) functions.

1.2. Our Contribution

We design linear probing algorithms that accomplish double logarithmic worst-case search time.
Inspired by the two-way chaining algorithm [5], and its powerful performance, we promote the
concept of open addressing hashing with two-way linear probing. The essence of the proposed concept
is based on the idea of allowing each key to generate two independent linear probe sequences and
making the algorithm decide, according to some strategy, at the end of which sequence the key should
be inserted. Formally, each input key x chooses two cells independently and uniformly at random,
with replacement. We call these cells the initial hashing cells available for x. From each initial hashing
cell, we start a linear probe sequence (with FCFS policy) to find an empty cell where we stop. Thus, we

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

5 of 28

end up with two unoccupied cells. We call these cells the terminal hashing cells. The question now is:
into which terminal cell should we insert the key x?

The insertion process of a two-way linear probing algorithm could follow one of the strategies we
mentioned earlier: it may insert the key at the end of the shorter probe sequence, or into the terminal
cell that is adjacent to the smaller cluster. Others may make an insertion decision even before linear
probing starts. In any of these algorithms, the searching process for any key is basically the same: just
start probing in both sequences alternately, until the key is found, or the two empty cells at the end
of the sequences are reached in the case of an unsuccessful search. Thus, the maximum unsuccessful
search time is at most twice the size of the largest cluster plus two.

We study the two-way linear probing algorithms stated above, and show that the hash table,
asymptotically and almost surely, contains a giant cluster of size Ω(log n). Indeed, we prove that a
cluster of size Ω(log n) emerges, asymptotically and almost surely, in any hash table of constant load
factor that is constructed by a two-way linear probing algorithm that inserts any key upon arrival into
the empty cell of its two initial cells whenever one of them is empty.

We introduce two other two-way linear probing heuristics that lead to Θ(log log n) maximum
unsuccessful search times. The common idea of these heuristics is the marriage between the two-way
linear probing concept and a technique we call blocking where the hash table is partitioned into
equal-sized blocks. These blocks are used by the algorithm to obtain some information about the keys
allocation. The information is used to make better decisions about where the keys should be inserted,
and hence, lead to a more even distribution of the keys.

Two-way linear probing hashing has several advantages over other proposed hashing methods,
mentioned above: it reduces the worst-case behavior of hashing, it requires only two hash functions,
it is easy to parallelize, it is pointer-free and easy to implement, and unlike the hashing schemes
proposed in [25,74], it does not require any rearrangement of keys or rehashing. Its maximum cluster
size is O(log log n), and its average-case performance can be at most twice the classical linear probing
as shown in the simulation results. Furthermore, it is not necessary to employ perfectly random hash
functions as it is known [73,81,88] that hash functions with smaller degree of universality will be
sufficient to implement linear probing schemes. See also [27,49,70,74,84–86] for other suggestions on
practical hash functions.

Paper Scope

In the next section, we recall some of the useful results about the greedy multiple-choice paradigm.
We prove, in Section 3, a universal lower bound of order of log log n on the maximum unsuccessful
search time of any two-way linear probing algorithm. We prove, in addition, that not every two-way
linear probing scheme behaves efficiently. We devote Section 4 to the positive results, where we present
our two two-way linear probing heuristics that accomplish O(log log n) worst-case unsuccessful search
time. Simulation results of the studied algorithms are summarized in Section 5.

Throughout, we assume the following. We are given m keys—from a universe set of keys U—to be
hashed into a hash table of size n such that each cell contains at most one key. The process of hashing is
sequential and on-line, that is, we never know anything about the future keys. The constant α ∈ (0, 1)
is preserved in this article for the load factor of the hash table, that is, we assume that m = ⌊ αn ⌋. The
n cells of the hash table are numbered 0, . . . , n − 1. The linear probe sequences always move cyclically
from left to right of the hash table. The replacement strategy of all of the introduced algorithms is
FCFS. The insertion time is defined to be the number of probes the algorithm performs to insert a key.
Similarly, the search time is defined to be the number of probes needed to find a key, or two empty
cells in the case of unsuccessful search. Observe that unlike classical linear probing, the insertion time
of two-way linear probing may not be equal to the successful search time. However, they are both
bounded by the unsuccessful search time. Notice also that we ignore the time to compute the hash
functions.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

6 of 28

2. The Multiple-choice Paradigm

Allocating balls into bins is one of the historical assignment problems [48,53]. We are given r

balls that have to be placed into s bins. The balls have to be inserted sequentially and on-line, that
is, each ball is assigned upon arrival without knowing anything about the future coming balls. The
load of a bin is defined to be the number of balls it contains. We would like to design an allocation
process that minimizes the maximum load among all bins upon termination. For example, in a classical
allocation process, each ball is placed into a bin chosen independently and uniformly at random, with
replacement. It is known [40,63,80] that if r = Θ(s), the maximum load upon termination is asymptotic
to log s/ log log s, in probability.

On the other hand, the greedy multiple-choice allocation process, appeared in [30,49] and studied by
Azar et al. [5], inserts each ball into the least loaded bin among d ≥ 2 bins chosen independently and
uniformly at random, with replacement, breaking ties randomly. Throughout, we will refer to this
process by GREEDYMC(s, r, d) for inserting r balls into s bins. Surprisingly, the maximum bin load of
GREEDYMC(s, s, d) decreases exponentially to logd log s ± O(1), w.h.p., [5]. However, one can easily
generalize this to the case r = Θ(s). It is also known that the greedy strategy is stochastically optimal
in the following sense.

Theorem 1 (Azar et al. [5]). Let s, r, d ∈ N, where d ≥ 2, and r = Θ(s). Upon termination of

GREEDYMC(s, r, d), the maximum bin load is logd log s ± O(1), w.h.p. Furthermore, the maximum bin

load of any on-line allocation process that inserts r balls sequentially into s bins where each ball is inserted into a

bin among d bins chosen independently and uniformly at random, with replacement, is at least logd log s−O(1),
w.h.p.

Berenbrink et al. [8] extended Theorem 1 to the heavily loaded case where r ≫ s, and recorded
the following tight result.

Theorem 2 (Berenbrink et al. [8]). There is a constant C > 0 such that for any integers r ≥ s > 0, and d ≥ 2,

the maximum bin load upon termination of the process GREEDYMC(s, r, d) is logd log s + r/s ± C, w.h.p.

Theorem 2 is a crucial result that we have used to derive our results, see Theorems 8 and 9. It
states that the deviation from the average bin load which is logd log s stays unchanged as the number
of balls increases.

Vöcking [93,94] demonstrated that it is possible to improve the performance of the greedy process,
if non-uniform distributions on the bins and a tie-breaking rule are carefully chosen. He suggested
the following variant which is called Always-Go-Left. The bins are numbered from 1 to n. We partition
the s bins into d groups of almost equal size, that is, each group has size Θ(s/d). We allow each ball
to select upon arrival d bins independently at random, but the i-th bin must be chosen uniformly
from the i-th group. Each ball is placed on-line, as before, in the least full bin, but upon a tie, the
ball is always placed in the leftmost bin among the d bins. We shall write LEFTMC(s, r, d) to refer
to this process. Vöcking [93] showed that if r = Θ(s), the maximum load of LEFTMC(s, r, d) is
log log s/(d log φd) + O(1), w.h.p., where φd is a constant related to a generalized Fibonacci sequence.
For example, the constant φ2 = 1.61... corresponds to the well-known golden ratio, and φ3 = 1.83.... In
general, φ2 < φ3 < φ4 < · · · < 2, and limd→∞ φd = 2. Observe the improvement on the performance of
GREEDYMC(s, r, d), even for d = 2. The maximum load of LEFTMC(s, r, 2) is 0.72...× log2 log s +O(1),
whereas in GREEDYMC(s, r, 2), it is log2 log s + O(1). The process LEFTMC(s, r, d) is also optimal in
the following sense.

Theorem 3 (Vöcking [93]). Let r, s, d ∈ N, where d ≥ 2, and r = Θ(s). The maximum bin load of of

LEFTMC(s, r, d) upon termination is log log s/(d log φd)± O(1), w.h.p. Moreover, the maximum bin load of

any on-line allocation process that inserts r balls sequentially into s bins where each ball is placed into a bin

among d bins chosen according to arbitrary, not necessarily independent, probability distributions defined on the

bins is at least log log s/(d log φd)− O(1), w.h.p.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

7 of 28

Berenbrink et al. [8] studied the heavily loaded case and recorded the following theorem.

Theorem 4 (Berenbrink et al. [8]). There is a constant A > 0 such that for any integers r ≥ s > 0, and d ≥ 2,

the maximum bin load upon termination of the process LEFTMC(s, r, d) is log log s/(d log φd) + r/s ± A,

w.h.p.

For other variants and generalizations of the multiple-choice paradigm see [1,2,7,18,64,87]. The
paradigm has been used to derive many applications, e.g., in load balancing, circuit routing, IP address
lookups, and computer graphics [12,63,65,66,96].

3. Life is not Always Good!

We prove here that the idea of two-way linear probing alone is not always sufficient to pull off a
plausible hashing performance. We prove that a large group of two-way linear probing algorithms
have an Ω(log n) lower bound on their worst-case search time. To avoid any ambiguity, we consider
this definition.

Definition 1. A two-way linear probing algorithm is an open addressing hashing algorithm that
inserts keys into cells using a certain strategy and does the following upon the arrival of each key:

1. It chooses two initial hashing cells independently and uniformly at random, with replacement.
2. Two terminal (empty) cells are then found by linear probe sequences starting from the initial cells.
3. The key is inserted into one of these terminal cells.

To be clear, we give two examples of inefficient two-way linear probing algorithms. Our first
algorithm places each key into the terminal cell discovered by the shorter probe sequence. More
precisely, once the key chooses its initial hashing cells, we start two linear probe sequences. We
proceed, sequentially and alternately, one probe from each sequence until we find an empty (terminal)
cell where we insert the key. Formally, let f , g : U → {0, . . . , n − 1} be independent and truly uniform
hash functions. For x ∈ U , define the linear sequence f1(x) = f (x), and fi+1(x) = fi(x) + 1 mod n,
for i ∈ [[n]]; and similarly define the sequence gi(x). The algorithm, then, inserts each key x into the
first unoccupied cell in the following probe sequence: f1(x), g1(x), f2(x), g2(x), f3(x), g3(x), We
denote this algorithm that hashes m keys into n cells by SHORTSEQ(n, m), for the shorter sequence.

x

x

Figure 1. An illustration of algorithm SHORTSEQ(n, m) in terms of balls (keys) and bins (cells). Each
ball is inserted into the empty bin found by the shorter sequence.

The second algorithm inserts each key into the empty (terminal) cell that is the right neighbor of
the smaller cluster among the two clusters containing the initial hashing cells, breaking ties randomly.
If one of the initial cells is empty, then the key is inserted into it, and if both of the initial cells are empty,
we break ties evenly. Recall that a cluster is a group of consecutively occupied cells whose left and
right neighbors are empty cells. This means that one can compute the size of the cluster that contains
an initial hashing cell by running two linear probe sequences in opposite directions starting from the
initial cell and going to the empty cells at the boundaries. So practically, the algorithm uses four linear
probe sequences. We refer to this algorithm by SMALLCLUSTER(n, m) for inserting m keys into n cells.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

8 of 28

x

x

Figure 2. Algorithm SMALLCLUSTER(n, m) inserts each key into the empty cell adjacent to the smaller
cluster, breaking ties randomly. The size of the clusters is determined by probing linearly in both
directions.

Before we show that these algorithms produce large clusters, we shall record a lower bound that
holds for any two-way linear probing algorithm.

3.1. Universal Lower Bound

The following lower bound holds for any two-way linear probing hashing scheme, in particular,
the ones that are presented in this article.

Theorem 5. Let n ∈ N, and m = ⌊ αn ⌋, where α ∈ (0, 1) is a constant. Let A be any two-way linear probing

algorithm that inserts m keys into a hash table of size n. Then upon termination of A, w.h.p., the table contains a

cluster of size of at least log2 log n − O(1).

Proof. Imagine that we have a bin associated with each cell in the hash table. Recall that for each key
x, algorithm A chooses two initial cells, and hence two bins, independently and uniformly at random,
with replacement. Algorithm A, then, probes linearly to find two (possibly identical) terminal cells,
and inserts the key x into one of them. Now imagine that after the insertion of each key x, we also
insert a ball into the bin associated with the initial cell from which the algorithm started probing to
reach the terminal cell into which the key x was placed. If both of the initial cells lead to the same
terminal cell, then we break the tie randomly. Clearly, if there is a bin with k balls, then there is a
cluster of size of at least k, because the k balls represent k distinct keys that belong to the same cluster.
However, Theorem 1 asserts that the maximum bin load upon termination of algorithm A is at least
log2 log n − O(1), w.h.p.

The above lower bound is valid for all algorithms that satisfy Definition 1. A more general
lower bound can be established on all open addressing schemes that use two linear probe sequences
where the initial hashing cells are chosen according to some (not necessarily uniform or independent)
probability distributions defined on the cells. We still assume that the probe sequences are used to
find two (empty) terminal hashing cells, and the key is inserted into one of them according to some
strategy. We call such schemes nonuniform two-way linear probing. The proof of the following theorem is
basically similar to Theorem 5, but by using instead Vöcking’s lower bound as stated in Theorem 3.

Theorem 6. Let n ∈ N, and m = ⌊ αn ⌋, where α ∈ (0, 1) is a constant. Let A be any nonuniform two-way

linear probing algorithm that inserts m keys into a hash table of size n where the initial hashing cells are chosen

according to some probability distributions. Then the maximum cluster size produced by A, upon termination,

is at least log log n/(2 log φ2)− O(1), w.h.p.

3.2. Algorithms that Behave Poorly

We characterize some of the inefficient two-way linear probing algorithms. Notice that the main
mistake in algorithms SHORTSEQ(n, m) and SMALLCLUSTER(n, m) is that the keys are allowed to be
inserted into empty cells even if these cells are very close to some giant clusters. This leads us to the
following theorem.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

9 of 28

Theorem 7. Let α ∈ (0, 1) be constant. Let A be a two-way linear probing algorithm that inserts m = ⌊ αn ⌋
keys into n cells such that whenever a key chooses an empty and an occupied initial cells, the algorithm inserts

the key into the empty one. Then algorithm A produces a giant cluster of size Ω(log n), w.h.p.

To prove the theorem, we need to recall the following.

Definition 2 (See, e.g., [29]). Any non-negative random variables X1, . . . , Xn are said to be negatively
associated, if for every disjoint index subsets I, J ⊆ [[n]], and for any functions f : R|I| → R, and
g : R|J| → R that are both non-decreasing or both non-increasing (componentwise), we have

E
[

f (Xi, i ∈ I) g(Xj, j ∈ J)
]

≤ E [f (Xi, i ∈ I)] E
[

g(Xj, j ∈ J)
]

.

Once we establish that X1, . . . , Xn are negatively associated, it follows, by considering inductively
the indicator functions, that

P {X1 < x1, . . . , Xn,< xn} ≤
n

∏
i=1

P {Xi < xi} .

The next lemmas, which are proved in [29,31,47], provide some tools for establishing the negative
association.

Lemma 1 (Zero-One Lemma). Any binary random variables X1, . . . , Xn whose sum is one are negatively

associated.

Lemma 2. If {X1, . . . , Xn} and {Y1, . . . , Ym} are independent sets of negatively associated random variables,

then the union {X1, . . . , Xn, Y1, . . . , Ym} is also a set of negatively associated random variables.

Lemma 3. Suppose that X1, . . . , Xn are negatively associated. Let I1, . . . , Ik ⊆ [[n]] be disjoint index subsets,

for some positive integer k. For j ∈ [[k]], let hj : R|Ij| → R be non-decreasing functions, and define Zj =

hj(Xi, i ∈ Ij). Then the random variables Z1, . . . , Zk are negatively associated. In other words, non-decreasing

functions of disjoint subsets of negatively associated random variables are also negatively associated. The same

holds if hj are non-increasing functions.

Throughout, we write binomial(n, p) to denote a binomial random variable with parameters
n ∈ N and p ∈ [0, 1].

Proof of Theorem 7.

Let β =
⌊

b loga n
⌋

for some positive constants a and b to be defined later, and without loss of
generality, assume that N := n/β is an integer. Suppose that the hash table is divided into N disjoint
blocks, each of size β. For i ∈ [[N]], let Bi = {β(i − 1) + 1, . . . , βi} be the set of cells of the i-th block,
where we consider the cell numbers in a circular fashion. We say that a cell j ∈ [[n]] is “covered" if there
is a key whose first initial hashing cell is the cell j and its second initial hashing cell is an occupied
cell. A block is covered if all of its cells are covered. Observe that if a block is covered then it is fully
occupied. Thus, it suffices to show that there would be a covered block, w.h.p.

For i ∈ [[N]], let Yi be the indicator that the i-th block is covered. The random variables Y1, . . . , YN

are negatively associated which can been seen as follows. For j ∈ [[n]] and t ∈ [[m]], let Xj(t) be
the indicator that the j-th cell is covered by the t-th key, and set X0(t) := 1 − ∑

n
j=1 Xj(t). Notice

that the random variable X0(t) is binary. The zero-one Lemma asserts that the binary random
variables X0(t), . . . , Xn(t) are negatively associated. However, since the keys choose their initial
hashing cells independently, the random variables X0(t), . . . , Xn(t) are mutually independent from
the random variables X0(t

′), . . . , Xn(t′), for any distinct t, t′ ∈ [[m]]. Thus, by Lemma 2, the union
∪m

t=1 {X0(t), . . . , Xn(t)} is a set of negatively associated random variables. The negative association

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

10 of 28

of the Yi is assured now by Lemma 3 as they can be written as non-decreasing functions of disjoint
subsets of the indicators Xj(t). Since the Yi are negatively associated and identically distributed, then

P {Y1 = 0, . . . , YN = 0} ≤ P {Y1 = 0} × · · · × P {YN = 0} ≤ exp (−NP {Y1 = 1}) .

Thus, we only need to show that NP {Y1 = 1} tends to infinity as n goes to infinity. To bound the last
probability, we need to focus on the way the first block B1 = {1, 2, . . . , β} is covered. For j ∈ [[n]], let tj

be the smallest t ∈ [[m]] such that Xj(t) = 1 (if such exists), and m + 1 otherwise. We say that the first
block is “covered in order" if and only if 1 ≤ t1 < t2 < · · · < tβ ≤ m. Since there are β! orderings of
the cells in which they can be covered (for the first time), we have

P {Y1 = 1} = β! P {B1is covered in order} .

For t ∈ [[m]], let M(t) = 1 if block B1 is full before the insertion of the t-th key, and otherwise be the
minimum i ∈ B1 such that the cell i has not been covered yet. Let A be the event that, for all t ∈ [[m]],
the first initial hashing cell of the t-th key is either cell M(t) or a cell outside B1. Define the random
variable W := ∑

m
t=1 Wt, where Wt is the indicator that the t-th key covers a cell in B1. Clearly, if A is

true and W ≥ β, then the first block is covered in order. Thus,

P {Y1 = 1} ≥ β! P {[W ≥ β] ∩ A} = β! P {A}P {W ≥ β | A} .

However, since the initial hashing cells are chosen independently and uniformly at random, then for n

chosen large enough, we have

P {A} ≥
(

1 − β

n

)m

≥ e−2β ,

and for t ≥ ⌈m/2 ⌉,

P {Wt = 1 | A} =
1

n − β + 1
· t − 1

n
≥ α

4n
.

Therefore, for n sufficiently large, we get

NP {Y1 = 1} ≥ Nβ! e−2β
P {binomial (⌈m/2 ⌉ , α/(4n)) ≥ β}

≥ Nβ! e−2β (m/2 − β)β

β!

(α

4n

)β (

1 − α

4n

)n

≥ N

(

α2

8e2

)β (

1 − 2β

m

)β (

1 − 1
4n

)n

≥ n

4β

(

α2

8e2

)β

,

which goes to infinity as n approaches infinity whenever a = 8e2/α2 and b is any positive constant less
than 1. �

Clearly, algorithms SHORTSEQ(n, m) and SMALLCLUSTER(n, m) satisfy the condition of
Theorem 7. So this corollary follows.

Corollary 1. Let n ∈ N, and m = ⌊ αn ⌋, where α ∈ (0, 1) is constant. The size of the largest

cluster generated by algorithm SHORTSEQ(n, m) is Ω(log n), w.h.p. The same result holds for algorithm

SMALLCLUSTER(n, m).

4. Hashing with Blocking

To overcome the problems of Section 3.2, we introduce blocking. The hash table is partitioned into
equal-sized disjoint blocks of cells. Whenever a key has two terminal cells, the algorithm considers the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

11 of 28

information provided by the blocks, e.g., the number of keys it harbors, to make a decision. Thus, the
blocking technique enables the algorithm to avoid some of the bad decisions the previous algorithms
make. This leads to a more controlled allocation process, and hence, to a more even distribution of
the keys. We use the blocking technique to design two two-way linear probing algorithms, and an
algorithm that uses linear probing locally within each block. The algorithms are characterized by the
way the keys pick their blocks to land in. The worst-case performance of these algorithms is analyzed
and proven to be O(log log n), w.h.p.

Note also that (for insertion operations only) the algorithms require a counter with each block,
but the extra space consumed by these counters is asymptotically negligible. In fact, we will see
that the extra space is O(n/ log log n) in a model in which integers take O(1) space, and at worst
O(n log log log n/ log log n) = o(n) units of memory, w.h.p., in a bit model.

Since the block size for each of the following algorithms is different, we assume throughout
and without loss of generality, that whenever we use a block of size β, then n/β is an integer. Recall
that the cells are numbered 0, . . . , n − 1, and hence, for i ∈ [[n/β]], the i-th block consists of the cells
(i − 1)β, . . . , iβ − 1. In other words, the cell k ∈ {0, . . . , n − 1} belongs to block number λ(k) :=
⌊ k/β ⌋+ 1.

4.1. Two-way Locally-Linear Probing

As a simple example of the blocking technique, we present the following algorithm which is a
trivial application of the two-way chaining scheme [5]. The algorithm does not satisfy the definition
of two-way linear probing as we explained earlier, because the linear probes are performed within
each block and not along the hash table. That is, whenever the linear probe sequence reaches the right
boundary of a block, it continues probing starting from the left boundary of the same block.

The algorithm partitions the hash table into disjoint blocks each of size β1(n), where β1(n) is an
integer to be defined later. We save with each block its load, that is, the number of keys it contains,
and keep it updated whenever a key is inserted in the block. For each key we choose two initial
hashing cells, and hence two blocks, independently and uniformly at random, with replacement. From
the initial cell that belongs to the least loaded block, breaking ties randomly, we probe linearly and
cyclically within the block until we find an empty cell where we insert the key. If the load of the block
is β1, i.e., it is full, then we check its right neighbor block and so on, until we find a block that is not
completely full. We insert the key into the first empty cell there. Notice that only one probe sequence
is used to insert any key. The search operation, however, uses two probe sequences as follows. First,
we compute the two initial hashing cells. We start probing linearly and cyclically within the two
(possibly identical) blocks that contain these initial cells. If both probe sequences reach empty cells,
or if one of them reaches an empty cell and the other one finishes the block without finding the key,
we declare the search to be unsuccessful. If both blocks are full and the probe sequences completely
search them without finding the key, then the right neighbors of these blocks (cyclically speaking) are
searched sequentially in the same way mentioned above, and so on. We will refer to this algorithm by
LOCALLYLINEAR(n, m) for inserting m keys into n cells. We show next that β1 can be defined such
that none of the blocks are completely full, w.h.p. This means that whenever we search for any key,
most of the time, we only need to search linearly and cyclically the two blocks the key chooses initially.

Theorem 8. Let n ∈ N, and m = ⌊ αn ⌋, where α ∈ (0, 1) is a constant. Let C be the constant defined in

Theorem 2, and define

β1(n) :=
⌊

log2 log n + C

1 − α
+ 1

⌋

.

Then, w.h.p., the maximum unsuccessful search time of LOCALLYLINEAR(n, m) with blocks of size β1 is at

most 2β1, and the maximum insertion time is at most β1 − 1.

Proof. Notice the equivalence between algorithm LOCALLYLINEAR(n, m) and the allocation process
GREEDYMC(n/β1, m, 2) where m balls (keys) are inserted into n/β1 bins (blocks) by placing each

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

12 of 28

ball into the least loaded bin among two bins chosen independently and uniformly at random, with
replacement. It suffices, therefore, to study the maximum bin load of GREEDYMC(n/β1, m, 2) which
we denote by Ln. However, Theorem 2 says that w.h.p.,

Ln ≤ log2 log n + C + αβ1 < (1 − α)β1 + αβ1 = β1 .

and similarly,

Ln ≥ log2 log n + αβ1 − C >
log2 log n + C

1 − α
− 2C ≥ β1 − 2C − 1 .

4.2. Two-way Pre-linear Probing: algorithm DECIDEFIRST

In the previous two-way linear probing algorithms, each input key initiates linear probe sequences
that reach two terminal cells, and then the algorithms decide in which terminal cell the key should be
inserted. The following algorithm, however, allows each key to choose two initial hashing cells, and
then decides, according to some strategy, which initial cell should start a linear probe sequence to find
a terminal cell to harbor the key. So, technically, the insertion process of any key uses only one linear
probe sequence, but we still use two sequences for any search.

34 2 2 6 3 1
x

x

Figure 3. An illustration of algorithm DECIDEFIRST(n, m). The hash table is divided into blocks of size
β2. The number under each block is its weight. Each key decides first to land into the block of smaller
weight, breaking ties randomly, then probes linearly to find its terminal cell.

Formally, we describe the algorithm as follows. Let α ∈ (0, 1) be the load factor. Partition the hash
table into blocks of size β2(n), where β2(n) is an integer to be defined later. Each key x still chooses,
independently and uniformly at random, two initial hashing cells, say Ix and Jx, and hence, two blocks
which we denote by λ(Ix) and λ(Jx). For convenience, we say that the key x has landed in block i, if the
linear probe sequence used to insert the key x has started (from the initial hashing cell available for x)
in block i. Define the weight of a block to be the number of keys that have landed in it. We save with
each block its weight, and keep it updated whenever a key lands in it. Now, upon the arrival of key x,
the algorithm allows x to land into the block among λ(Ix) and λ(Jx) of smaller weight, breaking ties
randomly. Whence, it starts probing linearly from the initial cell contained in the block until it finds a
terminal cell into which the key x is placed. If, for example, both Ix and Jx belong to the same block,
then x lands in λ(Ix), and the linear sequence starts from an arbitrarily chosen cell among Ix and Jx.
We will write DECIDEFIRST(n, m) to refer to this algorithm for inserting m keys into n cells.

In short, the strategy of DECIDEFIRST(n, m) is: land in the block of smaller weight, walk linearly,
and insert into the first empty cell reached. The size of the largest cluster produced by the algorithm is
Θ(log log n). The performance of this hashing technique is described in Theorem 9:

Theorem 9. Let n ∈ N, and m = ⌊ αn ⌋, where α ∈ (0, 1) is a constant. There is a constant η > 0 such that if

β2(n) :=

⌈

(1 +
√

2 − α)√
2 − α(1 − α)

(log2 log n + η)

⌉

,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

13 of 28

then, w.h.p., the worst-case unsuccessful search time of algorithm DECIDEFIRST(n, m) with blocks of size β2 is

at most ξn := 12(1 − α)−2(log2 log n + η), and the maximum insertion time is at most ξn/2.

Proof. Assume first that DECIDEFIRST(n, m) is applied to a hash table with blocks of size β =

⌈ b(log2 log n + η) ⌉, and that n/β is an integer, where b = (1 + ǫ)/(1 − α), for some arbitrary constant
ǫ > 0. Consider the resulting hash table after termination of the algorithm. Let M ≥ 0 be the maximum
number of consecutive blocks that are fully occupied. Without loss of generality, suppose that these
blocks start at block i + 1, and let S = {i, i + 1, . . . , i + M} represent these full blocks in addition to the
left adjacent block that is not fully occupied (Figure 4).

S

i i + 1 i + M

Figure 4. A portion of the hash table showing the largest cluster, and the set S which consists of the full
consecutive blocks and their left neighbor.

Notice that each key chooses two cells (and hence, two possibly identical blocks) independently
and uniformly at random. Also, any key always lands in the block of smaller weight. Since there are
n/β blocks, and ⌊ αn ⌋ keys, then by Theorem 2, there is a constant C > 0 such that the maximum
block weight is not more than λn := (αb + 1) log2 log n + αbη + α + C, w.h.p. Let An denote the event
that the maximum block weight is at most λn. Let W be the number of keys that have landed in S, i.e.,
the total weight of blocks contained in S. Plainly, since block i is not full, then all the keys that belong
to the M full blocks have landed in S. Thus, W ≥ Mb(log2 log n + η), deterministically. Now, clearly,
if we choose η = C + α, then the event An implies that (M + 1)(αb + 1) ≥ Mb, because otherwise,
we have

W ≤ (M + 1)(αb + 1)
(

log2 log n +
αbη + α + C

αb + 1

)

< Mb(log2 log n + η) ,

which is a contradiction. Therefore, An yields that

M ≤ αb + 1
(1 − α)b − 1

≤ 1 + ǫα

ǫ(1 − α)
.

Recall that (αb + 1) < b = (1 + ǫ)/(1 − α). Again, since block i is not full, the size of the largest cluster
is not more than the total weight of the M + 2 blocks that cover it. Consequently, the maximum cluster
size is, w.h.p., not more than

(M + 2)(αb + 1)(log2 log n + η) ≤ ψ(ǫ)

(1 − α)2 (log2 log n + η) ,

where ψ(ǫ) := 3− α + (2− α)ǫ + 1/ǫ. Since ǫ is arbitrary, we choose it such that ψ(ǫ) is minimum, i.e.,
ǫ = 1/

√
2 − α; in other words, ψ(ǫ) = 3− α + 2

√
2 − α < 6. This concludes the proof as the maximum

unsuccessful search time is at most twice the maximum cluster size plus two.

Remark. We have showed that w.h.p. the maximum cluster size produced by DECIDEFIRST(n, m) is
in fact not more than

3 − α + 2
√

2 − α

(1 − α)2 log2 log n + O(1) <
6

(1 − α)2 log2 log n + O(1) .

4.3. Two-way Post-linear Probing: algorithm WALKFIRST

We introduce yet another hashing algorithm that achieves Θ(log log n) worst-case search time,
in probability, and shows better performance in experiments than DECIDEFIRST algorithm as

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

14 of 28

demonstrated in the simulation results presented in Section 5. Suppose that the load factor α ∈ (0, 1/2),
and that the hash table is divided into blocks of size

β3(n) :=
⌈

log2 log n + 8
1 − δ

⌉

,

where δ ∈ (2α, 1) is an arbitrary constant. Define the load of a block to be the number of keys (or
occupied cells) it contains. Suppose that we save with each block its load, and keep it updated
whenever a key is inserted into one of its cells. Recall that each key x has two initial hashing cells.
From these initial cells the algorithm probes linearly and cyclically until it finds two empty cells Ux

and Vx, which we call terminal cells. Let λ(Ux) and λ(Vx) be the blocks that contain these cells. The
algorithm, then, inserts the key x into the terminal cell (among Ux and Vx) that belongs to the least
loaded block among λ(Ux) and λ(Vx), breaking ties randomly. We refer to this algorithm of open
addressing hashing for inserting m keys into n cells as WALKFIRST(n, m).

x

x

Figure 5. Algorithm WALKFIRST(n, m) inserts each key into the terminal cell that belongs to the least
crowded block, breaking ties arbitrarily.

In the remainder of this section, we analyze the worst-case performance of algorithm
WALKFIRST(n, m). Recall that the maximum unsuccessful search time is bounded from above by
twice the maximum cluster size plus two. The following theorem asserts that upon termination of the
algorithm, it is most likely that every block has at least one empty cell. This implies that the length of
the largest cluster is at most 2β3 − 2.

Theorem 10. Let n ∈ N, and m = ⌊ αn ⌋, for some constant α ∈ (0, 1/2). Let δ ∈ (2α, 1) be an arbitrary

constant, and define

β3(n) :=
⌈

log2 log n + 8
1 − δ

⌉

.

Upon termination of algorithm WALKFIRST(n, m) with blocks of size β3, the probability that there is a fully

loaded block goes to zero as n tends to infinity. That is, w.h.p., the maximum unsuccessful search time of

WALKFIRST(n, m) is at most 4β3 − 2, and the maximum insertion time is at most 4β3 − 4.

For k ∈ [[m]], let us denote by Ak the event that after the insertion of k keys (i.e., at time k), none
of the blocks is fully loaded. To prove Theorem 10, we shall show that P {Ac

m} = o(1). We do that
by using a witness tree argument; see e.g., [16,17,62,66,83,93]. We show that if a fully-loaded block
exists, then there is a witness binary tree of height β3 that describes the history of that block. The
formal definition of a witness tree is given below. Let us number the keys 1, . . . , m according to their
insertion time. Recall that each key t ∈ [[m]] has two initial cells which lead to two terminal empty cells
belonging to two blocks. Let us denote these two blocks available for the t-th key by Xt and Yt. Notice
that all the initial cells are independent and uniformly distributed. However, all terminal cells—and so
their blocks—are not. Nonetheless, for each fixed t, the two random values Xt and Yt are independent.

The History Tree

We define for each key t a full history tree Tt that describes essentially the history of the block that
contains the t-th key up to its insertion time. It is a colored binary tree that is labelled by key numbers
except possibly the leaves, where each key refers to the block that contains it. Thus, it is indeed a binary

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

15 of 28

tree that represents all the pairs of blocks available for all other keys upon which the final position
of the key t relies. Formally, we construct the binary tree node by node in Breadth-First-Search (BFS)
order as follows. First, the root of Tt is labelled t, and is colored white. Any white node labelled τ gets
two children: a left child corresponding to the block Xτ , and a right child corresponding to the block
Yτ . The left child is labelled and colored according to the following rules:

(a) If the block Xτ contains some keys at the time of insertion of key τ, and the last key inserted in
that block, say σ, has not been encountered thus far in the BFS order of the binary tree Tt, then the
node is labelled σ and colored white.

(b) As in case (a), except that σ has already been encountered in the BFS order. We distinguish such
nodes by coloring them black, but they get the same label σ.

(c) If the block Xτ is empty at the time of insertion of key τ, then it is a “dead end” node without any
label and it is colored gray.

Next, the right child of τ is labelled and colored by following the same rules but with the block Yτ . We
continue processing nodes in BFS fashion. A black or gray node in the tree is a leaf and is not processed
any further. A white node with label σ is processed in the same way we processed the key τ, but with
its two blocks Xσ and Yσ. We continue recursively constructing the tree until all the leaves are black or
gray. See Figure 6 for an example of a full history tree.

3

17

10

9

8

18

7

5

5 3

Figure 6. The full history tree of key 18. White nodes represent type (a) nodes. Black nodes are type (b)
nodes—they refer to keys already encountered in BFS order. Gray nodes are type (c) nodes—they occur
when a key selects an empty block.

Notice that the full history tree is totally deterministic as it does not contain any random value. It
is also clear that the full history tree contains at least one gray leaf and every internal (white) node
in the tree has two children. Furthermore, since the insertion process is sequential, node values
(key numbers) along any path down from the root must be decreasing (so the binary tree has the
heap property), because any non-gray child of any node represents the last key inserted in the block
containing it at the insertion time of the parent. We will not use the heap property however.

Clearly, the full history tree permits one to deduce the load of the block that contains the root key
at the time of its insertion: it is the length of the shortest path from the root to any gray node. Thus,
if the block’s load is more than h, then all gray nodes must be at distance more than h from the root.
This leads to the notion of a truncated history tree of height h, that is, with h + 1 levels of nodes. The top
part of the full history tree that includes all nodes at the first h + 1 levels is copied, and the remainder
is truncated.

We are in particular interested in truncated history trees without gray nodes. Thus, by the property
mentioned above, the length of the shortest path from the root to any gray node (and as noted above,
there is at least one such node) would have to be at least h + 1, and therefore, the load of the block
harboring the root’s key would have to be at least h + 1. More generally, if the load is at least h + ξ for
a positive integer ξ, then all nodes at the bottom level of the truncated history tree that are not black

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

16 of 28

nodes (and there is at least one such node) must be white nodes whose children represent keys that
belong to blocks with load of at least ξ at their insertion time. We redraw these node as boxes to denote
the fact that they represent blocks of load at least ξ, and we call them “block" nodes.

The Witness Tree

Let ξ ∈ N be a fixed integer to be picked later. For positive integers h and k, where h + ξ ≤ k ≤ m,
a witness tree Wk(h) is a truncated history tree of a key in the set [[k]], with h + 1 levels of nodes (thus,
of height h) and with two types of leaf nodes, black nodes and “block" nodes. This means that each
internal node has two children, and the node labels belong to the set [[k]]. Each black leaf has a label of
an internal node that precedes it in BFS order. Block nodes are unlabelled nodes that represent blocks
with load of at least ξ. Block nodes must all be at the furthest level from the root, and there is at least
one such node in a witness tree. Notice that every witness tree is deterministic. An example of a
witness tree is shown in Figure 7.

h

level 0

level h

70

65 61

64 60 58 56

60 58 46 58 46 45 45 52

40 40 40 44 46 48

33 27 21 22 20 19

22 19 21

Figure 7. A witness tree of height h which is a truncated history tree without gray nodes. The boxes at
the lowest level are block nodes. They represent selected blocks with load of at least ξ. The load of the
block that contains key 70 is at least h + ξ.

Let Wk(h, w, b) denote the class of all witness trees Wk(h) of height h that have w ≥ 1 white
(internal) nodes, and b ≤ w black nodes (and thus w − b + 1 block nodes). Notice that, by definition,
the class Wk(h, w, b) could be empty, e.g., if w < h, or w ≥ 2h. However, |Wk(h, w, b)| ≤ 4w2w+1wbkw,
which is due to the following. Without the labelling, there are at most 4w different shape binary
trees, because the shape is determined by the w internal nodes, and hence, the number of trees is
the Catalan number (2w

w)/(w + 1) ≤ 4w. Having fixed the shape, each of the leaves is of one of two
types. Each black leaf can receive one of the w white node labels. Each of the white nodes gets one of k

possible labels.
Note that, unlike the full history tree, not every key has a witness tree Wk(h): the key must be

placed into a block of load of at least h + ξ − 1 just before the insertion time. We say that a witness tree
Wk(h) occurs, if upon execution of algorithm WALKFIRST, the random choices available for the keys
represented by the witness tree are actually as indicated in the witness tree itself. Thus, a witness tree
of height h exists if and only if there is a key that is inserted into a block of load of at least h + ξ − 1
before the insertion.

Before we embark on the proof of Theorem 10, we highlight three important facts whose proofs
are provided in Appendix A. First, we bound the probability that a valid witness tree occurs.

Lemma 4. Let D denote the event that the number of blocks in WALKFIRST(n, m) with load of at least ξ, after

termination, is at most n/(aβ3ξ), for some constant a > 0. For k ∈ [[m]], let Ak be the event that after the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

17 of 28

insertion of k keys, none of the blocks is fully loaded. Then for any positive integers h, w and k ≥ h + ξ, and a

non-negative integer b ≤ w, we have

sup
Wk(h)∈Wk(h,w,b)

P {Wk(h) occurs | Ak−1 ∩ D} ≤ 4wβw+b−1
3

(aξ)w−b+1nw+b−1
.

The next lemma asserts that the event D in Lemma 4 is most likely to be true, for sufficiently large
ξ < β3.

Lemma 5. Let α, δ, and β3 be as defined in Theorem 10. Let N be the number of blocks with load of at least

ξ upon termination of algorithm WALKFIRST(n, m). If ξ ≥ δβ3, then P {N ≥ n/(aβ3ξ)} = o(1), for any

constant a > 0.

Lemma 6 addresses a simple but crucial fact. If the height of a witness tree Wk(h) ∈ Wk(h, w, b) is
h ≥ 2, then the number of white nodes w is at least two, (namely, the root and its left child); but what
can we say about b, the number of black nodes?

Lemma 6. In any witness tree Wk(h) ∈ Wk(h, w, b), if h ≥ 2 and w ≤ 2h−η , where η ≥ 1, then the number

b of black nodes is ≥ η, i.e., I[[b≥η]∪[w>2h−η]] = 1.

Proof of Theorem 10.

Recall that Ak, for k ∈ [[m]], is the event that after the insertion of k keys (i.e., at time k), none of the
blocks is fully loaded. Notice that Am ⊆ Am−1 ⊆ · · · ⊆ A1, and the event Aβ3−1 is deterministically
true. We shall show that P {Ac

m} = o(1). Let D denote the event that the number of blocks with load of
at least ξ, after termination, is at most n/(aβ3ξ), for some constant a > 1 to be decided later. Observe
that

P {Ac
m} ≤ P {Dc}+ P {Ac

m | D}
≤ P {Dc}+ P {Ac

m | Am−1 ∩ D}+ P
{

Ac
m−1 | D

}

...

≤ P {Dc}+
m

∑
k=β3

P {Ac
k | Ak−1 ∩ D} .

Lemma 5 reveals that P {Dc} = o(1), and hence, we only need to demonstrate that pk :=
P
{

Ac
k | Ak−1 ∩ D

}

= o(1/n), for k = β3, . . . , m. We do that by using the witness tree argument.
Let h, ξ, η ∈ [2, ∞) be some integers to be picked later such that h + ξ ≤ β3. If after the insertion
of k keys, there is a block with load of at least h + ξ, then a witness tree Wk(h) (with block nodes

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

18 of 28

representing blocks with load of at least ξ) must have occurred. Recall that the number of white nodes
w in any witness tree Wk(h) is at least two. Using Lemmas 4 and 6, we see that

pk ≤ ∑
Wk(h)

P {Wk(h) occurs | Ak−1 ∩ D}

≤
2h−1

∑
w=2

w

∑
b=0

∑
Wk(h)∈Wk(h,w,b)

P {Wk(h) occurs | Ak−1 ∩ D}

≤
2h−1

∑
w=2

w

∑
b=0

|Wk(h, w, b)| sup
Wk(h)∈Wk(h,w,b)

P {Wk(h) occurs | Ak−1 ∩ D}

≤
2h

∑
w=2

w

∑
b=0

2w+142wwbkwβw+b−1
3

(aξ)w−b+1 nw+b−1
I[[b≥η]∪[w>2h−η]]

≤ 2n

aξβ3

2h

∑
w=2

(

32αβ3

aξ

)w w

∑
b=0

(

awξβ3

n

)b

I[[b≥η]∪[w>2h−η]] .

Note that we disallow b = w + 1, because any witness tree has at least one block node. We split the
sum over w ≤ 2h−η , and w > 2h−η . For w ≤ 2h−η , we have b ≥ η, and thus

w

∑
b=0

(

awξβ3

n

)b

I[[b≥η]∪[w>2h−η]] =
w

∑
b=η

(

awξβ3

n

)b

≤
(

awξβ3

n

)η ∞

∑
b=0

(

awξβ3

n

)b

< 2
(

awξβ3

n

)η

,

provided that n is so large that a2h+1ξβ3 ≤ n, (this insures that awξβ3/n < 1/2). For w ∈ (2h−η , 2h],
we bound trivially, assuming the same large n condition:

w

∑
b=0

(

awξβ3

n

)b

≤ 2 .

In summary, we see that

pk ≤ 4n ∑
w>2h−η

(

32αβ3

aξ

)w

+ 4
(

aξβ3

n

)η−1 2h−η

∑
w=2

(

32αβ3

aξ

)w

wη .

We set a = 32, and ξ = ⌈ δβ3 ⌉, so that 32αβ3/(aξ) ≤ 1/2, because δ ∈ (2α, 1). With this choice, we
have

pk ≤
4n

22h−η
+ 4c

(

32β2
3

n

)η−1

,

where c = ∑w≥2 wη/2w. Clearly, if we put h = η + ⌈ log2 log2 nη ⌉, and η = 3, then we see that
h + ξ ≤ β3, and pk = o(1/n). Notice that h and ξ satisfy the technical condition a2h+1ξβ3 ≤ n,
asymptotically. �

Remark. The restriction on α is needed only to prove Lemma 5 where the binomial tail inequality is
valid only if α < 1/2. Simulation results, as we show next, suggest that a variant of Theorem 10 might
hold for any α ∈ (0, 1) with block size

⌊

(1 − α)−1 log2 log n
⌋

.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

19 of 28

Tradeoffs

We have seen that by using two linear probe sequences instead of just one, the maximum
unsuccessful search time decreases exponentially from O(log n) to O(log log n). The average search
time, however, could at worst double as shown in the simulation results. Most of the results presented
in this article can be improved, by a constant factor though, by increasing the number of hashing
choices per key. For example, Theorems 5 and 6 can be easily generalized for open addressing hashing
schemes that use d ≥ 2 linear probe sequences. Similarly, all the two-way linear probing algorithms we
design here can be generalized to d-way linear probing schemes. The maximum unsuccessful search
time will, then, be at most d C logd log n + O(d), where C is a constant depending on α. This means
that the best worst-case performance is when d = 3 where the minimum of d/ log d is attained. The
average search time, on the other hand, could triple.

The performance of these algorithms can be further improved by using Vöcking’s scheme
LEFTMC(n, m, d), explained in Section 2, with d ≥ 2 hashing choices. The maximum unsuccessful
search time, in this case, is at most C log log n/ log φd +O(d), for some constant C depending on α. This
is minimized when d = o(log log n), but we know that it can not get better than C log2 log n + O(d),
because limd→∞ φd = 2.

5. Simulation Results

We simulate all linear probing algorithms we discussed in this article with the FCFS

replacement strategy: the classical linear probing algorithm CLASSICLINEAR, the locally linear
algorithm LOCALLYLINEAR, and the two-way linear probing algorithms SHORTSEQ, SMALLCLUSTER,
WALKFIRST, and DECIDEFIRST. For each value of n ∈

{

28, 212, 216, 220, 222
}

, and constant α ∈ {0.4, 0.9},
we simulate each algorithm 1000 times divided into 10 iterations (experiments). Each iteration consists
of 100 simulations of the same algorithm where we insert ⌊ αn ⌋ keys into a hash table with n cells. In
each simulation we compute the average and the maximum successful search and insert times. For
each iteration (100 simulations), we compute the average of the average values and and the average
of the maximum values computed during the 100 simulations for the successful search and insert
times. The overall results are finally averaged over the 10 iterations and recorded in the next Tables.
Similarly, the average maximum cluster size is computed for each algorithm as it can be used to bound
the maximum unsuccessful search time, as mentioned earlier. Notice that in the case of the algorithms
CLASSICLINEAR and SHORTSEQ, the successful search time is the same as the insertion time.

Tables 1 and 2 contain the simulation results of the algorithms CLASSICLINEAR, SHORTSEQ, and
SMALLCLUSTER. With the exception of the average insertion time of SMALLCLUSTER Algorithm, which
is slightly bigger than CLASSICLINEAR Algorithm, it is evident that the average and the worst-case
performances of SMALLCLUSTER and SHORTSEQ are better than CLASSICLINEAR. Algorithm
SMALLCLUSTER seems to have the best worst-case performance among the three algorithms. This is
not a total surprise to us, because the algorithm considers more information (relative to the other two)
before it makes its decision of where to insert the keys. It is also clear that there is a nonlinear increase,
as a function of n, in the difference between the performances of these algorithms. This may suggest
that the worst-case performances of algorithms SHORTSEQ and SMALLCLUSTER are roughly of the
order of log n.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

20 of 28

Table 1. The average and the maximum successful search and insert times averaged over 10 iterations
each consisting of 100 simulations of the algorithms. The best successful search time is shown in
boldface and the best insert time is shown in italic.

n α

CLASSICLINEAR SHORTSEQ SMALLCLUSTER SMALLCLUSTER

Insert/Search Time Insert/Search Time Search Time Insert Time

Avg Max Avg Max Avg Max Avg Max

28 0.4 1.33 5.75 1.28 4.57 1.28 4.69 1.50 9.96
0.9 4.38 68.15 2.86 39.72 3.05 35.69 6.63 71.84

212 0.4 1.33 10.66 1.28 7.35 1.29 7.49 1.52 14.29
0.9 5.39 275.91 2.90 78.21 3.07 66.03 6.91 118.34

216 0.4 1.33 16.90 1.28 10.30 1.29 10.14 1.52 18.05
0.9 5.49 581.70 2.89 120.32 3.07 94.58 6.92 155.36

220 0.4 1.33 23.64 1.28 13.24 1.29 13.03 1.52 21.41
0.9 5.50 956.02 2.89 164.54 3.07 122.65 6.92 189.22

222 0.4 1.33 26.94 1.28 14.94 1.29 14.44 1.52 23.33
0.9 5.50 1157.34 2.89 188.02 3.07 136.62 6.93 205.91

Table 2. The average maximum cluster size and the average cluster size over 100 simulations of the
algorithms. The best performances are drawn in boldface.

n α

CLASSICLINEAR SHORTSEQ SMALLCLUSTER

Avg Max Avg Max Avg Max

28 0.4 2.02 8.32 1.76 6.05 1.76 5.90

0.9 15.10 87.63 12.27 50.19 12.26 43.84

212 0.4 2.03 14.95 1.75 9.48 1.75 9.05

0.9 15.17 337.22 12.35 106.24 12.34 78.75

216 0.4 2.02 22.54 1.75 12.76 1.75 12.08

0.9 15.16 678.12 12.36 155.26 12.36 107.18

220 0.4 2.02 29.92 1.75 16.05 1.75 15.22

0.9 15.17 1091.03 12.35 203.16 12.35 136.19

222 0.4 2.02 33.81 1.75 17.74 1.75 16.65

0.9 15.17 1309.04 12.35 226.44 12.35 150.23

The simulation data of algorithms LOCALLYLINEAR, WALKFIRST, and DECIDEFIRST are presented
in Tables 3, 4 and 5. These algorithms are simulated with blocks of size

⌊

(1 − α)−1 log2 log n
⌋

. The
purpose of this is to show that, practically, the additive and the multiplicative constants appearing
in the definitions of the block sizes stated in Theorems 8, 9 and 10 can be chosen to be small. The
hash table is partitioned into equal-sized blocks, except possibly the last one. The average and the
maximum values of the successful search time, inset time, and cluster size (averaged over 10 iterations
each consisting of 100 simulations of the algorithms) are recorded in the tables below where the best
performances are drawn in boldface.

Results show that LOCALLYLINEAR Algorithm has the best performance; whereas algorithm
WALKFIRST appears to perform better than DECIDEFIRST. Indeed, the sizes of the cluster produced by
algorithm WALKFIRST appears to be very close to that of LOCALLYLINEAR Algorithm. This supports
the conjecture that Theorem 10 is, in fact, true for any constant load factor α ∈ (0, 1), and the maximum
unsuccessful search time of WALKFIRST is at most 4(1 − α)−1 log2 log n + O(1), w.h.p. The average
maximum cluster size of algorithm DECIDEFIRST seems to be close to the other ones when α is
small; but it almost doubles when α is large. This may suggest that the multiplicative constant in the
maximum unsuccessful search time established in Theorem 9 could be improved.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

21 of 28

Table 3. The average and the maximum successful search time averaged over 10 iterations each
consisting of 100 simulations of the algorithms. The best performances are drawn in boldface.

n α

LOCALLYLINEAR WALKFIRST DECIDEFIRST

Avg Max Avg Max Avg Max

28 0.4 1.73 4.73 1.78 5.32 1.75 5.26
0.9 4.76 36.23 4.76 43.98 5.06 59.69

212 0.4 1.74 6.25 1.80 7.86 1.78 7.88
0.9 4.76 47.66 4.80 67.04 4.94 108.97

216 0.4 1.76 7.93 1.80 9.84 1.78 10.08
0.9 4.78 56.40 4.89 89.77 5.18 137.51

220 0.4 1.76 8.42 1.81 12.08 1.79 12.39
0.9 4.77 65.07 4.98 108.24 5.26 162.04

222 0.4 1.76 9.18 1.81 12.88 1.79 13.37
0.9 4.80 71.69 5.04 118.06 5.32 181.46

Table 4. The average and the maximum insert time averaged over 10 iterations each consisting of 100
simulations of the algorithms. The best performances are drawn in boldface.

n α

LOCALLYLINEAR WALKFIRST DECIDEFIRST

Avg Max Avg Max Avg Max

28 0.4 1.14 2.78 2.52 6.05 1.15 3.30
0.9 2.89 22.60 6.19 48.00 3.19 42.64

212 0.4 1.14 3.38 2.53 8.48 1.17 5.19
0.9 2.91 27.22 6.28 69.30 3.16 84.52

216 0.4 1.15 4.08 2.53 10.40 1.17 6.56
0.9 2.84 31.21 6.43 91.21 3.17 106.09

220 0.4 1.15 4.64 2.54 12.58 1.18 8.16
0.9 2.89 35.21 6.54 109.71 3.22 117.42

222 0.4 1.15 4.99 2.54 13.41 1.18 8.83
0.9 2.91 38.75 6.61 119.07 3.26 132.83

Table 5. The average and the maximum cluster sizes averaged over 10 iterations each consisting of 100
simulations of the algorithms. The best performances are drawn in boldface.

n α

LOCALLYLINEAR WALKFIRST DECIDEFIRST

Avg Max Avg Max Avg Max

28 0.4 1.57 4.34 1.65 4.70 1.63 4.81
0.9 12.18 33.35 12.54 34.40 13.48 47.76

212 0.4 1.62 6.06 1.68 6.32 1.68 6.82
0.9 12.42 48.76 12.78 51.80 13.45 94.98

216 0.4 1.62 7.14 1.68 7.31 1.68 8.92
0.9 12.66 59.61 12.98 62.24 13.53 125.40

220 0.4 1.65 8.25 1.71 8.50 1.71 10.76
0.9 12.83 67.23 13.11 69.45 13.62 145.30

222 0.4 1.62 8.90 1.71 8.95 1.71 11.46
0.9 12.72 65.58 13.19 73.22 13.66 164.45

Comparing the simulation data from all tables, one can see that the best average performance
is achieved by the algorithms LOCALLYLINEAR and SHORTSEQ. Notice that SHORTSEQ Algorithm
achieves the best average successful search time when α = 0.9. The best (average and maximum)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

22 of 28

insertion time is achieved by the algorithm LOCALLYLINEAR. On the other hand, algorithms
WALKFIRST and LOCALLYLINEAR are superior to the others in worst-case performance. It is worth
noting that surprisingly, the worst-case successful search time of algorithm SMALLCLUSTER is very
close to the one achieved by WALKFIRST and better than that of DECIDEFIRST, although, it appears
that the difference becomes larger, as n increases.

Author Contributions: Conceptualization and methodology, L.D. and E.M.; validation and formal analysis, K.D.,
L.D. and E.M.; writing—original draft preparation, E.M.; writing—review and editing, K.D., L.D.; supervision
and project administration, L.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NSERC Grant A3456.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

For completeness, we prove the lemmas used in the proof of Theorem 10.

Lemma 4. Let D denote the event that the number of blocks in WALKFIRST(n, m) with load of at least ξ, after

termination, is at most n/(aβ3ξ), for some constant a > 0. For k ∈ [[m]], let Ak be the event that after the

insertion of k keys, none of the blocks is fully loaded. Then for any positive integers h, w and k ≥ h + ξ, and a

non-negative integer b ≤ w, we have

sup
Wk(h)∈Wk(h,w,b)

P {Wk(h) occurs | Ak−1 ∩ D} ≤ 4wβw+b−1
3

(aξ)w−b+1nw+b−1
.

Proof. Notice first that given Ak−1, the probability that any fixed key in the set [[k]] chooses a certain
block is at most 2β3/n. Let Wk(h) ∈ Wk(h, w, b) be a fixed witness tree. We compute the probability
that Wk(h) occurs given that Ak−1 is true, by looking at each node in BFS order. Suppose that we are at
an internal node, say u, in Wk(h). We would like to find the conditional probability that a certain child
of node u is exactly as indicated in the witness tree, given that Ak−1 is true, and everything is revealed
except those nodes that precede u in the BFS order. This depends on the type of the child. If the child is
white or black, the conditional probability is not more than 2β3/n. This is because each key refers to
the unique block that contains it, and moreover, the initial hashing cells of all keys are independent.
Multiplying just these conditional probabilities yields (2β3/n)w+b−1, as there are w + b − 1 edges
in the witness tree that have a white or black nodes as their lower endpoint. On the other hand, if
the child is a block node, the conditional probability is at most 2/(aξ). This is because a block node
corresponds to a block with load of at least ξ, and there are at most n/(aβ3ξ) such blocks each of which
is chosen with probability of at most 2β3/n. Since there are w − b + 1 block nodes, the result follows
plainly by multiplying all the conditional probabilities.

To prove Lemma 5, we need to recall the following binomial tail inequality [69]: for p ∈ (0, 1),
and any positive integers r, and t ≥ ηrp, for some η > 1, we have

P {binomial(r, p) ≥ t} ≤
(

ϕ

(

t

rp

))t

≤ (ϕ(η))t ,

where ϕ(x) = x−1e1−1/x, which is decreasing on (1, ∞). Notice that ϕ(x) < 1, for any x > 1, because
1/x = (1 − z) < e−z = e1/x−1, for some z ∈ (0, 1).

Lemma 5. Let α, δ, and β3 be as defined in Theorem 10. Let N be the number of blocks with load of at least

ξ upon termination of algorithm WALKFIRST(n, m). If ξ ≥ δβ3, then P {N ≥ n/(aβ3ξ)} = o(1), for any

constant a > 0.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

23 of 28

Proof. Fix ξ ≥ δβ3. Let B denote the last block in the hash table, i.e., B consists of the cells n −
β3, . . . , n − 1. Let L be the load of B after termination. Since the loads of the blocks are identically
distributed, we have

E [N] =
n

β3
P {L ≥ ξ} .

Let S be the set of the consecutively occupied cells, after termination, that occur between the first
empty cell to the left of the block B and the cell n − β3; see Figure A1.

S

B

Figure A1. The last part of the hash table showing clusters, the last block B, and the set S.

We say that a key is born in a set of cells A if at least one of its two initial hashing cells belong to
A. For convenience, we write ν(A) to denote the number of keys that are born in A. Obviously, ν(A)

is binomial(m, 2 |A| /n). Since the cell adjacent to the left boundary of S is empty, all the keys that are
inserted in S are actually born in S. That is, if |S| = j, then ν(S) ≥ j. So, by the binomial tail inequality
given earlier, we see that

P {|S| = j} = P {[ν(S) ≥ j] ∩ [|S| = j]} ≤ P {binomial(m, 2j/n) ≥ j} ≤ cj ,

where the constant c := ϕ(1/(2α)) = 2αe1−2α < 1, because α < 1/2. Let

ℓ := logc

1 − c

ξ2 = O(log β3) .

and notice that for n large enough,

ξ ≥ δβ3 ≥ δ2m(ℓ+ β3)

(1 + ℓ/β3)2αn
≥ y

2m(ℓ+ β3)

n
,

where y = 1/2 + δ/(4α) > 1, because δ ∈ (2α, 1). Clearly, by the same property of S stated above,
L ≤ ν(S ∪ B); and hence, by the binomial tail inequality again, we conclude that for n sufficiently
large,

P {L ≥ ξ} ≤ P {[ν(S ∪ B) ≥ ξ] ∩ [|S| ≤ ℓ]}+
m

∑
j=ℓ

P {|S| = j}

≤ P {binomial(m, 2(ℓ+ β3)/n) ≥ ξ}+ cℓ

1 − c

≤ (ϕ(y))ξ +
cℓ

1 − c
≤ 1

ξ2 +
1
ξ2 =

2
ξ2 .

Thence, E [N] ≤ 2n/(β3ξ2) which implies by Markov’s inequality that

P

{

N ≥ n

aβ3ξ

}

≤ 2a

ξ
= o(1) .

Lemma 6. In any witness tree Wk(h) ∈ Wk(h, w, b), if h ≥ 2 and w ≤ 2h−η , where η ≥ 1, then the number

b of black nodes is ≥ η, i.e., I[[b≥η]∪[w>2h−η]] = 1.

Proof. Note that any witness tree has at least one block node at distance h from the root. If we have
b black nodes, the number of block nodes is at least 2h−b. Since w ≤ 2h−η , then 2h−η − b + 1 ≥

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

24 of 28

w − b + 1 ≥ 2h−b. If b = 0, then we have a contradiction. So, assume b ≥ 1. But then 2h−η ≥ 2h−b; that
is, b ≥ η.

References

1. M. Adler, P. Berenbrink, and K. Schroeder, “Analyzing an infinite parallel job allocation process," in:

Proceedings of the European Symposium on Algorithms, pp.417–428, 1998.

2. M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen, “Parallel randomized load balancing," in:

Proceedings of the 27th Annual ACM Symposium on Theory of Computing (STOC), pp. 238–247, 1995.

3. D. Aldous, “Hashing with linear probing, under non-uniform probabilities," Probab. Eng. Inform. Sci., vol. 2,

pp. 1–14, 1988.

4. O. Aichholzer, F. Aurenhammer, and G. Rote, “Optimal graph orientation with storage applications",

SFB-Report F003-51, SFB ’Optimierung und Kontrolle’, TU-Graz, Austria, 1995.

5. Y. Azar, A. Z. Broder, A. R. Karlin and E. Upfal, “Balanced allocations," SIAM Journal on Computing, vol. 29:1,

pp. 180–200, 2000.

6. G. de Balbine, Computational Analysis of the Random Components Induced by Binary Equivalence Relations, Ph.D.

Thesis, Calif. Inst. of Tech., 1969.

7. P. Berenbrink, A. Czumaj, T. Friedetzky, and N. D. Vvedenskaya, “Infinite parallel job allocations," in:

Proceedings of the 11th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 99–108,

2000.

8. P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, “Balanced allocations: the heavily loaded case," SIAM

Journal on Computing, vol. 35 (6), pp. 1350–1385, 2006.

9. B. Bollobás, A. Z. Broder, and I. Simon, “The cost distribution of clustering in random probing," Journal of the

ACM, vol. 37 (2), pp. 224–237, 1990.

10. R. P. Brent, “Reducing the retrieval time of scatter storage techniques," Communications of the ACM, vol. 16

(2), pp. 105–109, 1973.

11. A. Z. Broder and A. Karlin, “Multilevel adaptive hashing," in: Proceedings of the 1st Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), ACM Press, pp. 43–53, 2000.

12. A. Broder and M. Mitzenmacher, “Using multiple hash functions to improve IP lookups," in: Proceedings

of 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2001), pp.

1454–1463, 2001. Full version available as Technical Report TR–03–00, Department of Computer Science,

Harvard University, Cambridge, MA, 2000.

13. P. Celis, “Robin Hood hashing," Ph.D. thesis, Computer Science Department, University of Waterloo, 1986.

Available also as Technical Report CS-86-14.

14. P. Celis, P. Larson, and J. I. Munro, “Robin Hood hashing (preliminary report)," in: Proceedings of the 26th

Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 281–288, 1985.

15. P. Chassaing and G. Louchard, “Phase transition for parking blocks, Brownian excursion and coalescence,"

Random Structures Algorithms, vol. 21 (1), pp. 76–119, 2002.

16. R. Cole, A. Frieze, B. M. Maggs, M. Mitzenmacher, A. W. Richa, R. K. Sitaraman, and E. Upfal, “On balls

and bins with deletions," in: Proceedings of the 2nd International Workshop on Randomization and Approximation

Techniques in Computer Science, LNCS 1518, Springer-Verlag, pp. 145–158, 1998.

17. R. Cole, B. M. Maggs, F. Meyer auf der Heide, M. Mitzenmacher, A. W. Richa, K. Schroeder, R. K. Sitaraman,

and B. Voecking, “Randomized protocols for low-congestion circuit routing in multistage interconnection

networks," in: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing (STOC), pp. 378–388,

1998.

18. A. Czumaj and V. Stemann, “Randomized Allocation Processes," Random Structures and Algorithms, Vol. 18

(4), pp. 297–331, 2001.

19. K. Dalal, L. Devroye. E. Malalla, and E. McLeish, “Two-way chaining with reassignment," SIAM Journal on

Computing, Vol. 35 (2), pp 327–340, 2005.

20. L. Devroye, “The expected length of the longest probe sequence for bucket searching when the distribution

is not uniform," Journal of Algorithms, vol. 6, pp. 1–9, 1985.

21. L. Devroye and P. Morin, “Cuckoo hashing: further analysis," Information Processing Letters, vol. 86, pp.

215-219, 2003.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

25 of 28

22. L. Devroye, P. Morin, and A. Viola, “On worst-case Robin Hood hashing," SIAM Journal on Computing, vol.

33, pp. 923–936, 2004.

23. M. Dietzfelbinger and F. Meyer auf der Heide, “A new universal class of hash functions and dynamic hashing

in real time," in: Proceedings of the 17th International Colloquium on Automata, Languages and Programming,

LNCS 443, Springer-Verlag, pp. 6–19, 1990.

24. M. Dietzfelbinger and F. Meyer auf der Heide, “High performance universal hashing, with applications to

shared memory simulations," in: Data Structures and Efficient Algorithms, LNCS 594, Springer-Verlag, pp.

250–269, 1992.

25. M. Dietzfelbinger and C. Weidling, “Balanced allocation and dictionaries with tightly packed constant size

bins," Theoretical Computer Science, vol. 380, pp. 47–68, 2007.

26. M. Dietzfelbinger and P. Wolfel, “Almost random graphs with simple hash functions," in: Proceedings of the

35th Annual ACM Symposium on Theory of Computing (STOC), pp. 629–638, 2003.

27. M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger, “Polynomial hash functions are reliable (extended

abstract)," in: Proceedings of the 19th International Colloquium on Automata, Languages and Programming, LNCS

623, Springer-Verlag, pp. 235–246, 1992.

28. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. Tarjan, “Dynamic

perfect hashing: upper and lower bounds," SIAM Journal on Computing, vol. 23 (4), pp. 738–761, 1994.

29. D. Dubhashi, and D. Ranjan, “Balls and bins: a study in negative dependence," Random Structures and

Algorithms, vol. 13 (2), pp. 99–124, 1998.

30. D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing in homogeneous distributed systems,"

IEEE Transactions on Software Engineering, vol. 12, pp. 662–675, 1986.

31. J. D. Esary, F. Proschan, and D. W. Walkup, “Association of random variables, with applications," Annals of

Mathematical Statistics, vol. 38, pp. 1466–1474, 1967.

32. P. Flajolet, P. V. Poblete, and A. Viola, “On the analysis of linear probing hashing," Algorithmica, vol. 22, pp.

490–515, 1998.

33. D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis, “Space efficient hash tables with worst case constant

access time," in: Proceedings of the 20th Symposium on Theoretical Aspects of Computer Science, LNCS 2607,

Springer-Verlag, pp. 271–282, 2003.

34. N. Fountoulakis and K. Panagiotou, “Sharp Load Thresholds for Cuckoo Hashing," Random Structures and

Algorithms, vol. 41 (3), pp. 306–333, 2012.

35. N. Fountoulakis, K. Panagiotou, and A. Steger, “On the Insertion Time of Cuckoo Hashing," SIAM Journal on

Computing, vol. 42, pp. 2156–2181, 2013.

36. M. Fredman, J. Komlós, and E. Szemerédi, “Storing a sparse table with O(1) worst case access time," Journal

of the ACM, vol. 31, pp. 538–544, 1984.

37. A. M. Frieze and P. Melsted, “Maximum Matchings in Random Bipartite Graphs and the Space Utilization of

Cuckoo Hash Tables," Random Structures and Algorithms, vol. 41 (3), pp. 334–364, 2012.

38. A. M. Frieze, P. Melsted, and M. Mitzenmacher, “An analysis of random-walk cuckoo hashing," SIAM Journal

on Computing, vol. 40 (2), pp. 291–308, 2011.

39. G. H. Gonnet, “Open addressing hashing with unequal-probability keys," Journal of Computer and System

Sciences, vol. 20, pp. 354–367, 1980.

40. G. H. Gonnet, “Expected length of the longest probe sequence in hash code searching," Journal of the ACM,

vol. 28, pp. 289–304, 1981.

41. G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, Addison-Wesley, Workingham,

1991.

42. G. H. Gonnet and J. I. Munro, ‘’Efficient ordering of hash tables," SIAM Journal on Computing, Vol. 8 (3), pp.

463–478, 1979.

43. L. J. Guibas, “The analysis of hashing techniques that exhibit K-ary clustering," Journal of the ACM, vol. 25

(4), pp. 544–555, 1978.

44. S. Janson, “Asymptotic distribution for the cost of linear probing hashing," Random Structures and Algorithms,

vol. 19 (3–4), pp. 438–471, 2001.

45. S. Janson, “Individual displacements for linear probing hashing with different insertion policies," Technical

Report No. 35, Department of Mathematics, Uppsala University, 2003.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

26 of 28

46. S. Janson and A. Viola, “A unified approach to linear probing hashing with buckets," Algorithmica, vol. 75 (4),

pp.724–781, 2016.

47. K. Joag-Dev and F. Proschan, “Negative association of random variables, with applications", Annals of

Statistics, vol. 11 (4), pp. 286–295, 1983.

48. N. L. Johnson and S. Kotz, Urn Models and Their Application: An Approach to Modern Discrete Probability Theory,

John Wiley, New York, 1977.

49. R. Karp, M. Luby, and F. Meyer auf der Heide, “Efficient PRAM simulation on a distributed memory

machine," Algorithmica, vol. 16, pp. 245–281, 1996.

50. D. E. Knuth, “Notes on “open" addressing," Unpublished notes, 1963. Available at

http://www.wits.ac.za/helmut/first.ps.

51. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading, Mass.,

1973.

52. D. E. Knuth, “Linear probing and graphs, average-case analysis for algorithms," Algorithmica, vol. 22 (4), pp.

561–568, 1998.

53. V. F. Kolchin, B. A. Sevast’yanov, and V. P. Chistyakov, Random Allocations, V. H. Winston & Sons, Washington,

D.C., 1978.

54. A. G. Konheim and B. Weiss, “An occupancy discipline and applications," SIAM Journal on Applied

Mathematics, vol. 14, pp. 1266–1274, 1966.

55. P. Larson, “Analysis of uniform hashing," Journal of the ACM, vol. 30 (4), pp. 805–819, 1983.

56. E. Lehman and R. Panigrahy, “3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit," in: Proceedings of the

17th Annual European Symposium, pp. 671–681, 2009.

57. G. S. Lueker and M. Molodowitch, “More analysis of double hashing," Combinatorica, vol. 13 (1), pp. 83–96,

1993.

58. J. A. T. Madison, “Fast lookup in hash tables with direct rehashing," The Computer Journal, vol. 23 (2), pp.

188–189, 1980.

59. E. Malalla, Two-way Hashing with Separate Chaining and Linear Probing, Ph.D. thesis, School of Computer

Science, McGill University, 2004.

60. E. G. Mallach, “Scatter storage techniques: a uniform viewpoint and a method for reducing retrieval times,"

The Computer Journal, vol. 20 (2), pp. 137–140, 1977.

61. H. Mendelson and U. Yechiali, “A new approach to the analysis of linear probing schemes," Journal of the

ACM, vol. 27 (3), pp. 474–483, 1980.

62. F. Meyer auf der Heide, C. Scheideler, and V. Stemann, “Exploiting storage redundancy to speed up

randomized shared memory simulations," in: Theoretical Computer Science, Series A, Vol. 162 (2), pp. 245–281,

1996.

63. M. D. Mitzenmacher, The Power of Two Choices in Randomized Load Balancing, Ph.D. thesis, Computer Science

Department, University of California at Berkeley, 1996.

64. M. Mitzenmacher, “Studying balanced allocations with differential equations," Combinatorics, Probability, and

Computing, vol. 8, pp. 473–482, 1999.

65. M. Mitzenmacher and B. Vöcking, “The asymptotics of Selecting the shortest of two, improved," in:

Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing, pp. 326–327, 1998.

66. M. D. Mitzenmacher, A. Richa, and R. Sitaraman, “The power of two random choices: A survey of the

techniques and results," in: Handbook of Randomized Computing, (P. Pardalos, S. Rajasekaran, and J. Rolim,

eds.), pp. 255–305, 2000.

67. R. Morris, “Scatter storage techniques," Communications of the ACM, vol. 11 (1), pp. 38–44, 1968.

68. J. I. Munro and P. Celis, “Techniques for collision resolution in hash tables with open addressing," in:

Proceedings of 1986 Fall Joint Computer Conference, pp. 601–610, 1999.

69. M. Okamoto, “Some inequalities relating to the partial sum of binomial probabilities," Annals of Mathematical

Statistics, vol. 10, pp. 29–35, 1958.

70. A. Östlin and R. Pagh, “Uniform hashing in constant time and linear space," in: Proceedings of the 35th Annual

ACM Symposium on Theory of Computing (STOC), pp. 622–628, 2003.

71. R. Pagh, “Hash and displace: Efficient evaluation of minimal perfect hash functions," in: Proceedings of the

6th International Workshop on Algorithms and Data Structures, LNCS 1663, Springer-Verlag, pp. 49–54, 1999.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

27 of 28

72. R. Pagh, “On the cell probe complexity of membership and perfect hashing," in: Proceedings of 33rd Annual

ACM Symposium on Theory of Computing (STOC), pp. 425–432, 2001.

73. A. Pagh, R. Pagh, and M. Ružić, “Linear probing with 5-wise independence," SIAM Review, vol. 53 (3), pp.

547–558, 2011.

74. R. Pagh and F. F. Rodler, “Cuckoo hashing," in: Proceedings of the European Symposium on Algorithms, LNCS

2161, Springer-Verlag, pp. 121–133, 2001.

75. W. W. Peterson, “Addressing for random-access storage," IBM Journal of Research and Development, vol. 1 (2),

pp. 130–146, 1957.

76. G. C. Pflug and H. W. Kessler, “Linear probing with a nonuniform address distribution," Journal of the ACM,

vol. 34 (2), pp. 397–410, 1987.

77. B. Pittel, “Linear probing: The probable largest search time grows logarithmically with the number of

records," Journal of Algorithms, vol. 8, pp. 236–249, 1987.

78. P. V. Poblete and J. I. Munro, “Last-Come-First-Served hashing," Journal of Algorithms, vol. 10, pp. 228–248,

1989.

79. P. V. Poblete, A. Viola, and J. I. Munro, “Analyzing the LCFS linear probing hashing algorithm with the help

of Maple," Maple Technical Newletter vol. 4 (1), pp. 8–13, 1997.

80. M. Raab and A. Steger, ““Balls and bins" – a simple and tight analysis," in: Proceedings of the 2nd Workshop on

Randomization and Approximation Techniques in Computer Science, LNCS 1518, Springer-Verlag, pp. 159–170,

1998.

81. S. Richter, V. Alvarez, and J. Dittrich, “A seven-dimensional analysis of hashing methods and its implications

on query processing," in: Porceedings of the VLDB Endowment, vol. 9 (3), pp. 96–107, 2015.

82. R. L. Rivest, “Optimal arrangement of keys in a hash table," Journal of the ACM, vol. 25 (2), pp. 200–209, 1978.

83. T. Schickinger and A. Steger, “Simplified witness tree arguments," in: Proceedings of the 27th Annual Conference

on Current Trends in Theory and Practice of Informatics, LNCS 1963, Springer-Verlag, pp. 71–87, 2000.

84. J. P. Schmidt and A. Siegel, “Double hashing is computable and randomizable with universal hash functions,"

submitted. A full version is available as Technical Report TR1995-686, Computer Science Department, New

York University, 1995.

85. A. Siegel, “On universal classes of extremely random constant time hash functions and their time-space

tradeoff," Technical Report TR1995-684, Computer Science Department, New York University, 1995. A

previous version appeared under the title “On universal classes of fast high performance hash functions,

their time-space tradeoff and their applications," in: Proceedings of the 30th Annual IEEE Symposium on

Foundations of Computer Science (FOCS), pp. 20–25, 1989.

86. A. Siegel and J. P. Schmidt, “Closed hashing is computable and optimally randomizable with universal

hash functions," submitted. A full version is available as Technical Report TR1995-687, Computer Science

Department, New York University, 1995.

87. V. Stemann, “Parallel balanced allocations", in: Proceedings of the 8th Annual ACM Symposium on Parallel

Algorithms and Architectures (SPAA), pp. 261–269, 1996.

88. M. Thorup and Y. Zhang, “Tabulation-based 5-independent hashing with applications to linear probing and

second moment estimation," SIAM Journal on Computing, vol. 41 (2), pp. 293–331, 2012.

89. J. D. Ullman, “A note on the efficiency of hashing functions," Journal of the ACM, vol. 19 (3), pp. 569–575,

1972.

90. A. Viola, “Exact distributions of individual displacements in linear probing hashing," ACM Transactions on

Algorithms, vol. 1 (2), pp. 214–242, 2005.

91. A. Viola and P. V. Poblete, “The analysis of linear probing hashing with buckets", Algorithmica, vol. 21, pp.

37–71, 1998.

92. J. S. Vitter and P. Flajolet, “Average-case analysis of algorithms and data structures," in: Handbook of

Theoretical Computer Science, Volume A: Algorithms and Complexity, ed. J. van Leeuwen, pp. 431–524, MIT

Press, Amsterdam, 1990.

93. B. Vöcking, “How asymmetry helps load balancing," Journal of the ACM, vol. 50 (4), pp. 568–589, 2003.

94. B. Vöcking, “Symmetric vs. asymmetric multiple-choice algorithms," in: Proceedings of the 2nd ARACNE

Workshop, Aarhus, pp. 7–15, 2001.

95. S. Walzer, “Load thresholds for cuckoo hashing with overlapping blocks," in: Proceedings of the 45th

International Colloquium on Automata, Languages, and Programming, pp. 102:1–102:10, 2018.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

28 of 28

96. J. Wu and L. Kobbelt, “Fast mesh decimation by multiple-choice techniques," in: Proceedings of Vision,

Modeling, and Visualization, pp. 241–248, 2002.

97. A. C. Yao, “Uniform hashing is optimal," Journal of the ACM, vol. 32 (3), pp. 687–693, 1985.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2023 doi:10.20944/preprints202310.0408.v1

https://doi.org/10.20944/preprints202310.0408.v1

	Introduction
	History and Motivation
	Our Contribution

	The Multiple-choice Paradigm
	Life is not Always Good!
	Universal Lower Bound
	Algorithms that Behave Poorly

	Hashing with Blocking
	Two-way Locally-Linear Probing
	Two-way Pre-linear Probing: algorithm DECIDEFIRST
	Two-way Post-linear Probing: algorithm WALKFIRST

	Simulation Results
	Appendix A
	References

