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Abstract: Background: Proteins targeted by the Ubiquitin Proteasome System (UPS) are identified for
degradation by the proteasome, which has been implicated in the development of neurodegenerative diseases.
Major histocompatibility complex (MHC) molecules present peptides broken down by the proteasome and are
involved in neuronal plasticity, regulating synapse number and axon regeneration in the central or peripheral
nervous system during development and in brain diseases. The mechanisms governing these effects are mostly
unknown, but evidence from different compartments of the cerebral cortex indicates the presence of immune-
like MHC receptors in the central nervous system. Methods: We have used human induced pluripotent stem
cells (iPSC) differentiated to neural stem cells and then to motor neurons as a developmental model to better
understand the structure of the proteasome in developing motor neurons. We perform a proteomic analysis of
starting human skin fibroblasts, their matching iPSC, differentiated neural stem cells and motor neurons that
highlighted significant differences in the constitutive proteasome and immunoproteasome subunits during
development towards motor neurons from iPSC. Results: Proteomic analysis showed that the catalytic
proteasome subunits expressed in fibroblasts differ to those in neural stem cells and motor neurons. Western
blot analysis confirmed the proteomic data, particularly the decreased expression of Beta5i (PSMB8) subunit
immunoproteasome in iPSC compared to HFF and increased Beta 5 (PSMB5) in iPSC compared to HFF. The
immunoproteasome subunit beta 5i expression is higher in MN than NSC. Conclusion: The constitutive
proteasome subunits are upregulated in iPSC from HFF and the immunoproteasome subunit beta 5i expression
is higher in MN than NSC suggesting an immunoproteasome phenotype in MN. The immunoproteasome may
have implications on motor neuron development and neurodevelopmental diseases that warrants further
investigation.

Keywords: proteomics; induced pluripotent stem cells; differentiation; neural stem cells; motor
neurons; 26S proteasome; proteasome

1. Introduction

The discovery of the method to make human induced pluripotent stem cells (iPSC) by Yamanaka
in 2007 created the opportunity to model human disease and development at a new level (1).
However, successful and accurate disease modeling as well as application of human iPSC for human
disease is hampered by genetic quality. There have been many improvements of the original cell
reprogramming protocol including the use of non-viral methods such as synthetic mRNA
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transfection for delivery of reprogramming factors to cells (2). Also, replacing c-Myc reprogramming
factor with Cyclin D1 that repairs DNA breaks that occur during the reprogramming process to
significantly improve genetical stability of iPSC and neural stem cells (NSC) (3). The use of these
advanced iPSC and NSC will result in more accurate conclusions when applying as a human disease
model in vitro (3).

The peptide products of the proteasome digestion are the source of peptides presented by the
major histocompatibility class I molecules (MHC-I) on cells that can be detected by CD8 T
lymphocytes. Thus, the expression of different types of proteasome in different cells will likely
change the immunopeptidomes bound to MHC-I on the cell surface. The MHC-I, which presents
peptides broken down by the proteosome, has been implicated in neuronal plasticity, regulating
synaptic density and axonal regeneration in the central and peripheral nervous system during
development and in brain diseases (4-5). The mechanisms governing these effects are largely
unknown.

The most abundant proteasome in the cell is the 265 proteasome, which is composed by a
catalytic core, the 20S proteasome bound at the ends to a regulatory complex called 19S proteasome.
Proteins targeted by the Ubiquitin Proteasome System (UPS) are identified for degradation by the
proteasome. The 20S proteasome has a barrel shape with 7 stacking heptameric rings. The outer rings
are structural and are composed by 7 a subunits. The 2 inner rings are composed by 3 subunits, 3 of
them have catalytic functions: (31, 2 and 5. Most cells principally express this constitutive or
standard proteasome (CP). In addition, other regulatory complexes can replace the 19S complex. In
the presence of IFN-v, these subunits can be replaced by others called (31i, f2i and 85i, forming the
immunoproteasome (IP). (6). The assembly of this structure is highly regulated (7). Therefore, an IP
structure indicates that the cell is experiencing an inflammatory response.

Dysfunction of the UPS system has been implicated in neurodegenerative diseases such as
amyotrophic lateral sclerosis (ALS) in motor neurons (MN) (8, 9, 10, 11, 12, 13). Mutations in the key
UPS regulator UBA1 can cause the juvenile motor neuron disease, spinal muscular atrophy (SMA)
(14, 15). In addition, spinal MN appear to present a higher susceptibility than other cell types to UPS
stress (16).

The CP is the most abundant proteasome present in most of the body tissues, except in lymphoid
tissues where the IP is expressed in higher amount (17). In the nervous system, IP is practically absent
in the brain and is more abundant in nerves, but in both the constitutive is the most abundant
proteasome type (17).

Here we describe the use of human iPSC cells differentiated to neural stem cells and then motor
neurons as a developmental model to better understand the structure of the proteasome in
developing motor neurons.

2. Materials and Methods

2.1. Human iPSC differentiation to motor neurons

Human iPSC clones were previously generated either by synthetic nRNA transfection methods
or retroviral methods and used for this project (3). Briefly, for synthetic nRNA made iPSC, human
foreskin fibroblasts (Millipore HFF) were reprogrammed to induced pluripotent stem cells (iPSC)
with messenger mRNA transfections and characterized for pluripotency markers (3). Motor Neurons
were differentiated from iPSC-derived Neural Stem Cells using the motor neuron induction medium
as described in Figure 1.

HFF, synthetic mRNA made iPSC and NSC were analysed by global proteomics; SP15 and CHB
fibroblasts, iPSC1 and iPSC2 (retroviral made) and MN from synthetic mRNA made iPSC included
for Western Blot validation of identified proteins (Table 1).
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Table 1. List of cells used in the study.

All Human Cells Cell List Cell type Passage | Assay

Fibroblasts HFF1 Human forskin fibroblast p2 Proteomic & Western Blot

(4 samples) HFF2 Human forskin fibroblast p3 Proteomic & Western Blot
SP15 Human skin fibroblast p4 Proteomic & Western Blot
CHB Human skin fibroblast p4 Proteomic & Western Blot

iPSC DH1 synthetic nRNA made iPSC P9 Proteomic & Western Blot

(8 samples) DH3 synthetic nRNA made iPSC P9 Proteomic & Western Blot

DH5 synthetic nRNA made iPSC pll Proteomic & Western Blot
MH1 synthetic nRNA made iPSC pll Proteomic & Western Blot
MHé6 synthetic nRNA made iPSC pl12 Proteomic & Western Blot
MH9 synthetic nRNA made iPSC pl12 Proteomic & Western Blot

iPSC1 Retroviral made iPSC p10 Western Blot
iPSC2 Retroviral made iPSC p10 Western Blot
NSC DH1 derived neural stem cells p4 Proteomic & Western Blot
(3 samples) DH3 derived neural stem cells p4 Proteomic & Western Blot
DH5 derived neural stem cells p4 Proteomic & Western Blot
Motor Neurons DH1 Derived Motor Neurons p3 Western Blot
(3 samples) DH3 Derived Motor Neurons p3 Western Blot
DH5 Derived Motor Neurons p3 Western Blot

2.2. Proteomics

Proteomics sample preparation and measurement

Protein concentration of each sample was determined by BCA assay (Pierce). 10ug of each
sample were digested by Trypsin and Lys-C endopeptidases applying a modified filter-aided sample
preparation protocol as described (Wisniewski et al. Nat Methods 2009). Samples were acidified by
trifluoroacetic acid and stored at -20°C. The samples were measured on the Q-Exactive HF mass
spectrometer online coupled to an Ultimate 3000 nano-RSLC (Thermo Scientific) in data-independent
acquisition (DIA) mode as described previously (Lepper et al. J. Proteome Res. 2018).

Quantitative MS analysis

The DIA LC-MS/MS data set was analysed using Spectronaut Pulsar (Biognosys, Schlieren,
Switzerland) as described (Lepper et al. J. Proteome Res. 2018).

Searches were performed using a human spectral meta-library which was generated analysing
data-dependent acquisition runs from a variety of human samples in Proteomics Discoverer (Version
2.1, Thermo Scientific). Proteotypic peptide and protein identifications were filtered for a false
discovery rate of <1%. Match between runs was enabled with the data filtering function set to g-value
percentile mode applying the 20% setting. Resulting peptide and protein quantifications in the
individual samples were exported and used for calculations of fold-changes and statistical values.

2.3. Immunofluorescence

Motor neurons grown in chamber slides (ThermoFisher, #177437) were fixed with 4%
paraformaldehyde in PBS for 20 min, permeabilized with 0,2% Triton X-100 in PBS and blocked in
6% donkey serum for 1 hour. Then, cells were incubated with primary and secondary antibodies.
Primary antibodies and dilutions used: anti-Tujl (Biolegend, MMS-435P-100, 1:500), anti-Olig2 (R&D
systems, AF2418), anti-Nestin (Biolegend, 841801, 1:200) and anti-Sox2 (CalBiochem, sc1002, 1:100).
Secondary antibodies used were all Alexa Fluor Series from Invitrogen (dilution 1:200). Nuclei were
stained with 4’,6-diamidino-2-phenylindole (DAPI, Roche, 10236276001) and then cover glasses
(VWR, ECN631-1575) were mounted on top with Fluoromount-G (Invitrogen, #00-4958-02). Images
were taken using a Leica SP5 confocal microscope and were processed using Fiji software.
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2.4. Real Time PCR

Total mRNA was isolated using Ambion RNA purification columns kit (#12183018), and 500ng
were used to synthesize Cdna using the SensiFAST Cdna synthesis kit (Bioline, BIO65053). One
microliter of the reaction was used to quantify gene expression by quantitative PCR as previously
described (Aasen et al, 2008). Primers sequences used were Hgapdh Fw: 5'-
GCACCGTCAAGGCTGAGAAC -3, Hgapdh Rv: 5- AGGGATCTCGCTCCTGGAA -3’, hChat Fw:
5- AACGAGGACGAGCGTTTG -3’, hChat Rv: 5'- TCAATCATGTCCAGCGAGTC -3, hHoxB4 Fw:
5- GTCGTCTACCCCTGGATGC -3, hHoxB4 Rv: 5'- TTCCTTCTCCAGCTCCAAGA -3’, hNkx6.1
Fw: 5- ATTCGTTGGGGATGACAGAG -3, hNkx6.1 Rv: 5- CCGAGTCCTGCTTCTTCTTG -3,
hPeripherin Fw: 5- AGACCATTGAGACCCGGAAT -3 and hPeripherin Rv: 5'-
GGCCTAGGGCAGAGTCAAG -3'. Relative quantification was determined according to the AACT
method.

2.5. Karyotype analysis

To stain chromosome G bands, methanol: acetic acid (3:1) fixed cells were dyed with Wright:
Sorensen buffer (1:3). Twenty metaphases were assessed per sample and chromosomes were
classified using Ikaros software.

2.6. Electrophysiology

For whole-cell patch-clamp experiments, iPSC-derived motor neurons grown in round cover
glasses were kept at room temperature in HEPES-based ACSF composed of 135 Mm NaCl, 2 Mm
KCl, 2 Mm CaCl2, 1 Mm MgSO4, 10 Mm HEPES, 10 Mm D-glucose; Ph 7.35; 300-310 mOsm/L.
Sodium and potassium currents were measured using whole-cell patch-clamp electrophysiology
recordings. In several cells, sodium currents were inhibited by tetrodotoxin (TTX). MN firing action
potentials were also recorded.

2.7. Western blot

Cell pellets were resuspended in 200ul of Lysis Buffer (LB: 50Mm Tris-HCl Ph 7.4, 150Mm NaCl,
1% Triton X-100, Protease Inhibitor cocktail (complete™ Tablets Mini, Roche)) and homogenized
using 30g syringe needles and then, incubated for 1h on ice. All the samples were then centrifuged
(13000 g, 10 min, 4 °C) and the supernatants were taken, quantified and stored at -20 °C. The protein
concentration of the cell lysates was calculated using the BCA quantification kit (Pierce™ BCA
Protein Assay Kit (Thermo Scientific™)) in a colorimetric plate reader (Victor3™ Plate Reader
(PerkinElmer ™)). About 10 ug of protein samples were separated by electrophoresis under
denaturing conditions (SDS-PAGE) in a 14% polyacrylamide gels. Proteins were transferred to
polyvinylidene membranes (Immun-Blot® PVDF Membrane (BioRad ™) previously activated 5 min
with methanol for a maximum of 45 min at 100 V. Membranes were subsequently incubated in
blocking solution (BS: PBS, 0.1% Tween 20, 5% skimmed milk powder) for 1h with gentle shaking.
Then, membranes were washed 3 times with T-PBS (PBS, 0.1% Tween 20) for 5 min with shaking then
incubated with the antibody primary at a 1/1000 dilution in T-PBS. Membranes were incubated
overnight under shaking conditions at 4°C. After 3 washes with T-PBS, the secondary antibodies were
added at a concentration of 1/10000 diluted in T -PBS and membranes were incubated for 1h under
shaking conditions at room temperature. Finally, membranes were washed 4 times with T-PBS for 5
min under shaking conditions. Finally, the detection reagent was applied (1: 1 Clarity Western ECL
kit Blotting Substrate (BioRad™)) and proteins were detected by chemiluminescence using the
Molecular Imager ® VersaDoc ™ (BioRad ™) and QuantityOne software. Fiji software (Image]) was
used for the densitometry analysis.

The antibodies used for western blot analysis were: anti-g1 (PSMB9) goat monoclonal IgG2a
antibody (Santa Cruz Biotechnology™); anti-31i (PSMB6) polyclonal rabbit IgG antibody (Santa Cruz
Biotechnology™); anti-32 (PSMB7) mouse monoclonal IgG1 antibody (Santa Cruz Biotechnology™);
anti-p2i (PSMB10) mouse monoclonal IgG2b antibody (Santa Cruz Biotechnology™); anti-(35
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(PSMB5) mouse monoclonal IgG2a antibody (Santa Cruz Biotechnology™); anti-(35i (PSMB8) mouse
monoclonal IgG1 antibody (Santa Cruz Biotechnology™); MCP21 mouse polyclonal antibody (anti-
a2 subunit); aVinculin (MA5-11690) mouse monoclonal IgG antibody (Invitrogen™); ECL aMouse
IgG, Horseradish Peroxidase-Linked whole antibody from sheep (GE Healthcare™); Precision
ProteinTM StrepTactin-HRP Conjugate 5,000x (BioRad™); ECL aRabbit IgG, Horseradish
Peroxidase-Linked whole antibody from donkey (GE Healthcare™); aSheep/Goat-Inmunoglobulins
Peroxidase (AP360) (The Binding Site LTD™).

3. Results

3.1. Human iPSC differentiation to motor neurons

Synthetic mRNA generated iPSC clones were successfully differentiated to motor neurons (MN)
during 50 days with a defined protocol with good morphology based on phase contrast photos
(Figure 1). Karyotype of MN revealed no major genetic integrity chromosome aberrations (Figure 1c).
RT-PCR characterization captured upregulation of specific MN maturation markers such as Chat,
HoxB4, Nkx6.1 and Peripherin at different time points of differentiation (Figure 1d), and
immunofluorescence confirmed positive protein expression of TUJ1, NESTIN, SOX2 and OLIG2
(Figure 2), indicative of the successful MN maturation achieved. No significant differences were
found between lines. Next, we assessed MN functional activity by patch-clamp electrophysiological
recordings (Figure 3). Neurons demonstrated generation of action potentials (APs) upon electrical
stimulation (Figure 3a and 3b).

DAPI / TUJ1 / OLIG2 DAPI / NESTIN / SOX2 DAPI / TUJ1 / OLIG2 DAPI / NESTIN / SOX2

Clone#1 Clone#1 Clone#4 o - ~Cloné#4 ;
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>
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Figure 1. Protocol to generate motor neurons from human iPSC and characterisation.
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Figure 2. Characterisation by immuno-staining protein markers of motor neurons demonstrates high
efficiency of differentiation.
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Figure 3. Electrophsiology characterisation demonstrates functional motor neurons.
3.2. Result of proteomic analysis of HFF, iPSC and NSC

3.2.1. Analysis of HFF vs iPSC.

A total of 2192 proteins were identified, and 1600 proteins found to be differentially regulated
upon formation of iPSC from HFF. A total of 600 proteins were down regulated (Suppl. Figure 1, 2
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and Figure 4a) mainly involved in biological processed such as cell proliferation, RNA splicing,
protein synthesis, cell signaling, sumo, ubiquitination (ligases, de-ubi), HAT1, HDAC,
Methyltransferases, HSP, Hifla, metabolic changes, RNA polymerase Il-related (Suppl. Figure 1:
Excel table of proteomics).

Interestingly, a variation of several UPS proteins was observed. First, we found a strong
downregulation of PSME1 (PA28alpha) and PSME2 (PA28beta) upon iPSC differentiation. These are
IFNvy-induced proteins that compose a regulatory complex (PA28) that can replace the 19S regulatory
complex at the ends of the 20S proteasome to form the immuno-proteasome (IP). In contrast, a
significant upregulation of PSME3 (PA28-gamma) and PSMG1 proteins were observed in iPSC.
PSME3 protein has been implicated in cancer by inhibiting c-Myc degradation and is also is a target
gene of NF-«kB during bacterial infections. The PSMG1 protein enables molecular adaptor activity in
chaperone-mediated protein complex assembly located in the golgi apparatus, endoplasmic
reticulum, and nucleoplasm. Although fibroblasts mainly express CP, the proteomics analysis
showed that immunosubunits ($1i (PSMB9), $2i (PSMB10) and (35i (PSMB8) were detected in lower
amounts in iPSC in comparison with fibroblasts. The opposite was observed for CP subunits (31
(PSMB6), 32 (PSMB?) and (35 (PSMB5) (Figure 5 ). Thus, IFNy-induced catalytic or regulatory
subunits were downregulated in iPSC regarding fibroblasts. Downregulation of these proteins,
which are antigen processing related factors, may affect antigen processing, what can produce a
change in the HLA-I peptide repertoire presented to CD8 T lymphocytes.

3.2.2. Analysis of iPSC and NSC.

A total of 800 proteins were found with a total of 314 proteins that were down regulated (Suppl
Fig 1 Excel file). We found 1.8-fold upregulation of PSMF1, and downregulation of PSMD1, PSMD6
and PSMC6 proteins in NSC compared to HFF (Figure 4b). Although it was not statistically
significant, a trend in which IP subunits were increased and CP decreased in NSC in comparison with
iPSC was observed. In addition, PSMF1, a subunit of the Proteasome inhibitor PI31 was statistically
increased (Figure 6). This protein inhibits the activation of the 20S proteasome by PA28.
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Figure 4. Proteomic analysis: Volcano plots for significant (p < 0.05) proteins up or down regulated
between iPSC/HFF and NSC/HFF.
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Figure 5. Proteomic analysis: (A) Volcano plot analysis of proteasomal proteins identified in a
proteomic screen of parental human foreskin fibroblasts (HFF) compared to iPSC - derived from these
cells taking into account only significantly regulated proteins (p<0.05) identified with at least 2
peptides. (B) Diagram showing proteasome subunits for the constitutive (CP) and immune-related
proteasome (IP).

3.3. Validation of constitutive and immunoproteasome findings

First, we validated the proteomics data by western blot that the CP subunits (81 (PSMB6), 32
(PSMB?) and (35 (PSMB5) confirming they are upregulated in iPSC compared to the starting HFF
(Suppl Fig 3).

To evaluate the expression levels of CP or IP subunits in fibroblasts, neural stem cells (NSC) and
motor neurons (MN), western blot experiments were performed. As expected, the abundance of the
CP subunits was high in all cell types, being more expressed in NSC and MN than in fibroblasts,
demonstrating that CP subunits (31 (PSMB6), 32 (PSMB7) and 35 (PSMB5) expression is higher in
iPSC, NSC and MN than HFF (Suppl Fig 3 and Figure 6). On the other hand, IP subunits were present
in a lower amount in all cell types. In fact, f1i and (32i could not be detected in fibroblast cells, NSC
or MN, and they were only detected in DKB cells, a lymphoblastoid cell line used as control of IP
expression. The (35i subunit was detected in fibroblasts, NSC and MN in comparison with DKB cells.
The expression level of the 35i subunit was higher in fibroblasts than in NSC or MN. We observe a
trend that IP subunits are increased in MN compared to NSC, while CP are decreased, suggesting an
IP structural phenotype in MN cells (Figure 6).

Thus, the data indicate that the undifferentiation of fibroblasts to iPSC reduces the abundance
of IP which is progressively recovered during differentiation to MN.
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Figure 6. Western Blot Validation for Beta5 (PSMB5) and Beta5i (PSMBS).

4. Discussion

Proteomics and western blot data validation in iPSC and MN: The western blot data validated the
proteomics analysis and consistently demonstrated that the CP subunits were higher expressed in
NSC and MN than in fibroblasts, demonstrating that CP subunits 31 (PSMB6), 32 (PSMB7) and (5
(PSMBS5) expression is higher in iPSC, NSC and MN than HFF (Suppl Fig 3 and Figure 6). The data
agrees with previous results that showed a reduction of IP subunits in iPSC (18). On the other hand,
IP subunits were present in a lower amount in all cell types. In fact, 1i and $2i could not be detected
in fibroblast cells, NSC or MN, and they were only detected in DKB cells (data not shown).The [35i
subunit was detected in fibroblasts, NSC and MN in comparison with DKB cells. The expression level
of the 35i subunit was higher in fibroblasts than in NSC or MN (Figure 5i). We observe a trend that
IP subunits are increased in MN compared to NSC, while CP are decreased, suggesting an IP
structural phenotype in MN cells (Figure 6). Therefore, our data suggest that the catalytic activity and
specificity of the proteasomes are associated with MN development. The fact that catalytic
proteasome subunits expressed in fibroblasts differ from NSC and MN, indicates that the HLA-I
immunopeptidomes presented on the cell surface will likely differ, as CP and IP present different
protein cleavage specificities.

The role of the UPS and MHC: The important role of the UPS in pluripotent stem cell survival and
motor neuron differentiation has been reported previously (18). This work demonstrated that iPSC
are very sensitive to the proteasome inhibitor MG132, and MN were more resilient that iPSC, but
more sensitive than fibroblasts. In addition, different mutations in the UPS are related with the
development of neurodegenerative diseases, highlighting further the importance in neuron survival
and health (9; 10; 11; 12; 13; 14; 15).

MHCI expression in disease: One of the roles of the UPS is to produce small peptides to be
presented by MHC-I. Our data suggests that this might be different between patients and
transplanted MN because of the structural change of the proteasome. Recent evidence from
independent laboratories have reported expression of immune-like MHCI receptors in the central
nervous system (4,5). This work provides some insight into the mechanism of the role of Major
histocompatibility complex class I proteins in brain development and plasticity (4,5). The expression
of MHC-I molecules and the immunoproteasome is highly increased in spinal motor neurons of
transgenic mice carrying the mutant SOSicea during the progression of the disease (19). Thus, in
future studies it may be relevant to evaluate the role of the immunoproteasome in neurologic
disorders using iPSC-derived MN.

MHC peptides technique: The MHC-presented small peptide repertoire, also referred as
immunopeptidome, cannot be determined from mRNA or protein abundance. The technique used to
characterize the immunopeptidome uses mass spectrometry analyses of peptides eluted from MHC
complex isolation. However, mass spectrometry is not always sufficient to define the full repertoire
of small peptides loaded onto MHC molecules. Moreover, the proinflammatory environment of
spinal cord and the dysregulated protein metabolism of motor neurons in ALS may promote the
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activation of the IP and the membrane presentation of antigenic peptides recognized as non-self by
CD8+ T cells, which then activates a cytotoxic autoimmune response (21).

Misfolded proteins in neuronal disease: The role of misfolded proteins in motor neurons is one of
the main neuropathological hallmarks of ALS and is regarded as the prime cause of motor neuron
degeneration. Misfolded proteins that cannot be degraded by the constitutive proteasome are
directed toward the INF-y activated IP (22). Moreover, apart from misfolded proteins, peripheral
interaction of motor neurons with cytotoxic CD8+ T cells may be the direct cause of motor axon injury
in SOD1G93A mice. However, how MHCI is triggered in ALS motor neuron remains to be defined.
Misfolded proteins in the motor neurons may trigger the inflammation through the release of danger-
associated molecular pattern molecules (DAMPs), including ROS, HMGB1, and HSPs, which activate
glial and immune cells to produce inflammatory cytokines including IFN-y (22). IFN-y may then
induce upregulation of the IP in the motor neurons. Recent work highlights a non-detrimental role
of MHCI activation in ALS motor neurons and instead hypothesize a protective role (23).

In conclusion, the data reveals a decrease in immunoproteasome associated proteins in NSC and
MN derived from iPSC suggesting that the HLA-I immunopeptidomes presented on the cell surface
will differ that could have implications in disease modeling and transplant of iPSC-derived MN in
the future. Further work is warranted to describe the different small peptide repertoire presented by
MHCI in healthy and diseased MN derived from iPSC.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Figure S1: EXCEL Proteomic data. Figure S2: Heatmap. Figure S3: Western blot
of iPSC and HFF for Beta 1,2 and 5 subunits of the CP.
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