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Article  

The Irreversibility of Microscopic Motions 

Huai-Yu Wang 

Department of Physics, Tsinghua University, Beijing, 100084 China; wanghuaiyu@mail.tsinghua.edu.cn 

Abstract: People have long had a problem: the equations of motion that reflect the laws of physics are 

invariance under time inversion, while there always are irreversible processes for gases compose of 

microscopic particles. This article solves this problem. The point is that we should distinguish between the 

concepts of the equation of motion and motion. We also need to distinguish between the concepts of time-

inverse motion and reverse motion. The former is anticlockwise, which is a frictional motion, while the latter 

is clockwise. For the single-particle motions in classical mechanics and in quantum mechanics, we present 

mathematical expressions for time-inversion motion and reverse motion, respectively. We demonstrate that 

single-particle motion is irreversible. The definition of the reversibility of two-particle collisions is given. 

According to the definition, the two-particle collision as a microscopic motion processes is irreversible. 

Consequently, for a gas consisting of a large number of particles colliding with each other, its movement should 

be irreversible, unless the condition of detailed balance is met. We give a physical explanation for the detailed 

balance, which does not concern the meaning of microscopic reversibility. The detailed balance means that 

after a pair of reciprocal collisions occur, the distribution function of the particles remains unchanged. 

Therefore, microscopic two-particle collision events are irreversible, but the statistical average of a large 

number of collision events makes it possible for the macroscopic process of a gas to be reversible. Conclusively, 

we clarify the microscopic mechanism of the irreversible process of gases.  

Keywords: motion; equation of motion; irreversibility of motion; time-inverse motion; reverse motion;  

two-particle collision; detailed balance 

 

I. INTRODUCTION 

A. The paradox of irreversibility 

The motion of individual microscopic particles follows the laws of physics. The laws of physics 

are embodied in equations of motion, which are expressed as differential equations with derivative 

with respect to time. It is believed that the equations of motion are time-reversible.  

A macroscopic gas is made up of a large number of microscopic particles. Since the equation of 

motion that every microscopic particle follows is time-reversible, people take it for granted that 

macroscopic processes should be reversible either. But in fact, we always see that irreversible 

processes happen. Therefore, people are faced with the fact that the laws of motion of microscopic 

particles are reversible in time, while the motion of macroscopic systems is irreversible [1–13]. It is 

also said that the movement of micro particles is symmetric with respect to time, but the movement 

of macro systems composed of a large number of micro particles is not [4,5]. 

This fact forms a paradox: “Classical mechanics itself is entirely symmetrical with respect to the 

two directions of time. The equations of mechanics remain unaltered when the time t is replaced by 

–t; if these equations allow any particular motion, they will therefore allow the reverse motion, in 

which the mechanical system passes through the same configurations in the reverse order. This 

symmetry must naturally be preserved in a statistics based on classical mechanics. Hence, if any 

particular process is possible which is accompanied by an increase in the entropy of a closed 

macroscopic system, the reverse process must also be possible, in which the entropy of the system 

decreases.”[14] 

We use ( , )i ip q  to represent the i-th generalized coordinate and generalized momentum. They 

follow Hamilton canonical equations: 
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Now, we make time inversion, 

t t→ − . (2)

Meanwhile, we take the following transformation, 

,i i i ip p q q→ − → . (3)

Then, under the transformation Equations (2) and (3), the forms of Equation (1) remain 

unchanged. This is the time-reversal invariance of the equations of motion, and was called “the 

principle of dynamical reversibility” [13]. This seems that the movement of each particle should be 

time-reversible. 

Consider that an isolated ideal gas is undergo a process that increases its entropy. At one 

moment, let the momentum of all molecules reverse, that is, the transformation of (2) and (3) are 

taken, then, from this moment on, each molecule still moves according to (1) in the reverse time 

direction. That is to say, the whole gas moves in the opposite time direction, i.e., it moves in the 

direction of decreasing entropy. But such a process is practically impossible. The second law of 

thermodynamics negates the possibility of such a process. This argument is known as the Loschmidt 

paradox [2,13,15,16]. The Loschmidt paradox can be stated quite simply: If all the laws of physics are 

time-reversal-symmetric, how can one prove a time-asymmetric law like the second “Law” of 

thermodynamics that states that the entropy of the Universe “tends to a maximum” [16]. 

In quantum mechanics (QM). There is the same paradox. “Time irreversibility is not a problem 

to be solved, ……Theoretically, in particular in the quantum case, realization of time irreversibility is 

difficult because the fundamental kinetic equations, including the Schrödinger equation and the 

Dirac equation, ensure that the dynamics are reversible in time.” [17] Some ones believed that the 

microreversibility can be employed to provide a way to obtain the statistical cumulants [18]. 

Someone believed there was “no conflict between reversible microscopic laws and irreversible 

macroscopic behavior”.[5] However, when he addressed this, he did not resolve the Loschmidt 

paradox. 

People admit it is a problem and have been troubled by this paradox for more than one hundred 

years. Various efforts have been devoted to eliminate this problem. These efforts are speculating 

about the cause of the irreversibility of macroscopic processes from microscopic reversibility. 

One view is that although every micro process is reversible, the statistical nature of a large 

number of micro processes can lead to the irreversibility of macro processes. For example, the law of 

motion of each micro particle is time-symmetrical, but the motion that evolves into a macroscopic gas 

is a diffusion equation which is temporally asymmetric [5]. However, it is difficult to transit from 

microscopic equations of motion to macroscopic equations, and there has been no successful solution 

so far. “There are many conceptual and technical problems encountered in going from a time-

symmetric description of the dynamics of atoms to a time-asymmetric description of the evolution of 

macroscopic systems. This involves a change from Hamiltonian (or Schrödinger) equations to 

hydrodynamical ones, e.g., the diffusion equation. The problem of reconciling the latter with the 

former became a central issue in physics during the last part of the nineteenth century.” [5] This is 

due to that “the microscopic details are usually unreachable, and a full description of the system is 

impossible.” [19] 

One view is that the irreversibility of thermodynamic processes arises because the initial state of 

thermodynamic systems is very special [3,10], such as at the initial moment the gas is confined to a 

specific region. In fact, this view is untenable. If the macroscopic gas is in another initial state, its 

motion process is still irreversible. The property that the motion of a gas is irreversible has nothing 

to do with its initial state. 

Some ones think that there do not exist real isolated systems, and there are always various 

perturbations that more or less cause molecules to deviate slightly from their intended trajectories 
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after collision. In this way, after multiple collisions, the molecule completely loses its memory. “In 

reality, it is impossible to produce a totally isolated system. There are always external perturbations 

present, such as radiation, sunspots or the variable gravitational influence of the surrounding 

matter.” Thus, “the system loses its memory of the initial state after only a small number of 

collisions.” [10] “In the forward direction, the macroscopic time development is stable with respect 

to perturbations but in the time-reversed direction, it is very unstable.” This reason could not provide 

satisfactory explanation of the paradox, and was opposed by others [9]. As a matter of fact, even 

without external perturbation, an isolated system also follows the law of entropy increase. For 

instance, in deriving the Boltzmann H theorem, no external affection is considered. 

Some people think that the walls with specific shapes and sizes have an effect on the state of a 

gas. It is well known that the irreversibility of thermodynamic processes is practically irrespective to 

the walls. 

Prigogine [20] tried to give a mechanism of irreversibility, called “cascade mechanism”. He 

thought that the variation of lower order correlations lead to higher order correlations, and the 

appearance of the higher order correlation were accompanied by a “directed flow”. That was the 

mechanism of irreversibility. But he did not explain why there was no opposite directed flow in the 

higher order correlations, or, why the higher order correlations were anisotropic. 

It was found, based on numerical simulations, that microscopic reversibility can lead to a state 

of time anisotropy. The corresponding mathematical proof is called the fluctuation theorem, [21,22] 

and the authors thought that it was the “first step toward understanding how macroscopic 

irreversibility arises from microscopically time-reversible dynamics”. They addressed that “our new 

proof of how macroscopic irreversibility arises from time reversible microscopic dynamics is valid 

for all densities” and “time reversibility of the underlying equations of motion is the key component 

to proving these theorems.”[16] 

None of the above explanations correctly explains the irreversibility of thermodynamic 

processes. These explanations give different physical reasons for one physical problem. We think that 

if there are different interpretations for a physical phenomenon, and none of them can forcefully 

overturn the others, then, none of them is correct.  

Anyhow, the problem remains, and until 2002, “there has been no real change in the situation.”[8] 

The Loschmidt’s reasoning implicitly assumes that because the equation of motion that 

microscopic particles obey is time-reversible, the motion of the microscopic particle is necessarily 

time-reversible. This is also known as micro-reversibility, and this assumption is accepted by almost 

everyone. The time reversibility of the equations of motion is confirmed by transformations (2) and 

(3). People presuppose the micro reversibility and discuss with this premise the cause of the macro 

irreversibility. However, if the micro motion is reversible itself has not been demonstrated. If the 

micro motion is irreversible, this will inevitably have some consequences. For example, the absence 

of microscopic reversibility will lead to an asymmetry in the probability currents [23]. 

In order to solve this paradox, we have to clarify the relevant physical concepts. First, we should 

distinguish concepts of the equation of motion and specific motion. We must carefully study whether 

specific microscopic movements are reversible or not. If microscopic motion is irreversible, then it is 

not surprising that macroscopic motion is irreversible, and the so-called paradox disappears 

naturally. Secondly, when talking about the reversibility of specific motion, we must distinguish 

between reverse motion and time-inverse motion. 

B. Distinguishing the concepts of reverse motion and time-inverse motion 

For the motion of an individual particle and the motion of a system, we define the concepts of 

reverse motion and time-inverse motion, respectively.  

The concepts for an individual particle is as follows. 

Let a particle be in a state A, called the original initial state. Starting from the state A, the particle moves 

clockwise, passing through a series of intermediate states, and reaches an original final state B. This process is 

called the original movement process. 
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We take the state B as a new initial state, called the second initial state. Let us consider the following two 

processes, referred to as opposite processes. 

Time-inverse movement process. Starting from the second initial state, the particle moves 

counterclockwise, in the opposite order, passing through each intermediate state in the original process, and 

returns to a final state that is just the original initial state A. Such a motion is called the time-inverse motion 

of the original process. This is a fictional movement, because in the real world, time always goes to the future.  

Reverse movement process. Starting from the second initial state, the particle moves clockwise, in the 

reverse order, passing through each intermediate state in the original process, and returns to the original initial 

state A. Such a process is called the reverse movement process of the original process.  

If the particle’s states are described by momentum, the momentum direction in the opposite processes 

should be always opposite to that in the original process. 

Suppose that one uses a camera to film the original process, and then play the video backwards. If the 

reverse process is the same as what the video playback shows, then the original process is said to be reversible. 

Note that when we play the video backwards, the time is playing into the future. 

Although both the opposite processes describe the motion from the second initial state to the original initial 

state, the directions of time evolution are just opposite. The two processes have different mathematical 

expressions that will be given is Section II. 

We turn to consider a macroscopic system composed of a large number of microscopic particles, 

such as a gas. The process that a macro system goes through is a macro process. The gas is in a 

macroscopic state at every macroscopic moment. We mark a macro state with a capital letter. There 

can be many micro states corresponding to a macro state. We mark a micro state with a lowercase 

Greek letter. At a certain micro moment , the gas is in a specific micro state α of a macro state A, 

denoted by Aα.  

At the initial moment, the gas is in a macroscopic original initial state A and one of the specific microscopic 

original initial states α. Starting from this original state Aα, the gas moves clockwise, passing through a series 

of intermediate states Bβ, and reaches a final state Cγ, called the microscopic original final state. This process 

is called the original process.  

We take the Cγ as a new initial state, called the second initial state. If the state Cγ is described by 

momentum of the microscopic particles, the momentum direction of every particle should be reversed to obtain 

the second initial state. We consider the following two opposite processes. 

Time-inverse movement process. Starting from the second initial state Cγ, the system moves 

counterclockwise, in the opposite order, passing through each intermediate state Bβ in the original process, and 

returns to the original initial state Aα. We can image that a video recorder films the original process and then 

play the video rewind, although the playback is actually done clockwise. Such a motion is called the time-inverse 

motion of the original process. This is a fictional movement, because in the real world, time always goes to the 

future.  

Reverse movement process. Starting from the second initial state, the system moves clockwise, in the 

reverse order, passing through each intermediate macro state B in the original process, and returns to the macro 

original initial state A. Such a motion process is called the reverse movement process of the original process. If 

the reverse process can be realized, the original process is said to be reversible, otherwise it is irreversible. 

In the reverse process, merely the intermediate macro states in the original process are retrieved in the 

opposite order without the requirement of the details of the micro states. This kind of reversibility, without 

resorting to microscopic details, is called reversibility in the macroscopic sense. In the time-inverse process and 

reverse process, the macro state at every macro moment should be same but the micro state can be different. 

The reason why we make this distinction between the time-inversion process and the reverse process of a 

macroscopic system is that when people talk about the inverse process of a macro system, they actually mean 

the reverse process defined here, not the time-inversion process. The features of the reverse process are that it is 

clockwise and that merely the macroscopic states in the original process are required to retrieve in the opposite 

order, with no requirement the details of micro state. Some examples are given as follows. 

An original process is that an ice cube dissolves in a cup of boiling water. Its imagined reverse 

process is impossible. “It is impossible to prepare a cup of lukewarm water in such a way that, one 

hour later, it will turn into an ice cube floating in boiling water.” [24] First, the imagined reverse 
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process is clockwise. Second, the imagined reverse process is not required to retrieve every 

intermediate micro state in the original process. It is merely required that every intermediate macro 

state is retrieved in the opposite order of the original process. 

Evaporation and condensation are a pair of processes reverse to each other. “Since evaporation 

and condensation are in general thermodynamically reversible phenomena, the mechanism of 

evaporation must be the exact reverse of that of condensation, even down to the smallest detail.” [25] 

Both the evaporation and condensation processes are in progress clockwise, and in the sense of macro 

states instead of micro states, they are mutually reversible processes. One of the processes does not 

mean a time-inverse process of the other. 

People talk about the ideal perpetual motion machine of the second kind. This kind of perpetual motion 

machine is required to do a reversible cycle that is repeated over and over again. In each cycle there must be a 

reverse process which goes clockwise. Such a fictional machine always works clockwise. Moreover, people do 

not care the details of microscopic states in each cycle. 

The envisaged Poincaré recurrences [7,10,26,27] are also clockwise processes.  

Spin echo is also a clockwise process. It is regarded as the reverse process of the precession of a 

spin system [28–30]. 

There was a gedanken experiment [30]. The original process was that a system evolved clockwise 

starting from the moment 0t =  until t T= . Then, at the moment t T= , the system started doing 

a reverse process until 2t T= . Therefore, this reverse process was also carried out clockwise. 

It the introduction of [16], when “the fundamental property of time reversible dynamics” was 

mentioned, time was supposed to go from 0 to t, and then to 2t. Time went clockwise throughout. 

Although the authors discussed reverse process, they did not take time inversion. 

When computer numerical simulations of colliding particle systems are carried out, the reverse 

processes go in clockwise direction [10,32–34]. 

Any actually observable process is clockwise. The time-inverse processes are fictitious. 

However, people sometimes confuse reverse motion with time-inverse motion, equating the two kinds of 

motion. That is to regard a clockwise reverse process as an anticlockwise process. Here are some examples. 

Figure 4 in [3] envisaged an original motion and its reverse motion. The panels A-B in Figure4 “show 

athletes on a racetrack. At the first gunshot, they start running”, which was the original process. Then, “at the 

second, they reverse and run back, ending up again in a line.” The reverse process was shown by Figure 4D-F, 

going clockwise. But the author wrote the caption of the figure by “Reversing time”. 

In Figure 2.4 of [9], the author took time inversion t t→ −  at the moment t T= . Nevertheless, 

the system went on to the moment 2t T= . That is to say, after time was inversed, time still went 

clockwise just as the original process. 

In Ref. [10], the manipulation of → −v v  was called time reversal, but after the manipulation, the 

system actually still evolved clockwise, as shown by Figure 10.6 there. 

The confusion between clockwise and counterclockwise processes probably comes from the following 

thinking. If an original process of entropy increase is assumed to reverse, the assumed reverse process is 

necessarily accompanied by entropy decrease. People equate decreasing entropy with time inversion. 

Let us review Loschmidt’s reasoning. First, Loschmidt treated the differential equation (1) that particles’ 

motion should obey as particles’ motion, confusing the concepts of equation of motion and motion. Second, the 

Loschmidt’s starting point was the time reversal of the equation of motion (1). That he did the transformation 

(2) meant to discuss the time-inverse motion. But in reality, time always points to the future. So, he confused 

time-inverse motion with reverse motion. What Loschmidt actually wanted to see was an increase in entropy 

as the gas moved clockwise, since he knew that it was impossible to reverse time in reality. What he expected 

was that the system would still move clockwise, but he could see the effect of reversing time. We will argue in 

subsection III.B that the outcome he envisaged is impossible. 

The definition of reversible process of a particle’s motion above only involves the motion itself, and does 

not involve its surrounding environment. When a particle undergoes an original process, its surroundings may 

also change, say, from an original initial state X to Y. Then, at the end of the reverse process, the external 

environment should return from the Y state to the original initial state X, that is, all external influences brought 

by the original process are eliminated. If the influence on the surroundings cannot be eliminated, then the 
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process is still irreversible. The same condition applies to a system. So, the conditions for an original process 

carried out by a system to be reversible are that after the reverse process of the system, not only must the system 

itself return to the original initial state, but the surroundings must also return to their original initial state. 

We will see in section II that the motion of an individual particle is irreversible. For a classical particle, its 

reverse motion at least needs us to prepare the initial state. Thus, the surroundings are unable to retrieve the 

initial state of the original process. For a quantum particle, the motion itself is irreversible. 

For macroscopic matter such as gases, we should focus on the collision between particles 

C. Collision systems 

A macroscopic system is made up of a large number of microscopic particles. We roughly divide macro 

systems into two categories. The first category, called collision systems, is that the molecules composing the 

macro system collide with each other, such as ideal gases. Any system that does not belong to the first category 

is called a non-collisional system. 

Non-collision systems are characterized by finite interactions between the particles that make 

up the system. The change in momentum caused by interactions between particles is continuous. The 

spatial coordinates of each particle can also change continuously. Hence, the Liouville equation 

applies to this category of systems. We give some examples of non-collisional systems. Harmonic and 

nonharmonic coupling systems are non-collision ones [35−42]. Spin systems [28−30] and spin glass 

[43,44] also belong to this category.  

Another example is a system of one-dimensional identical particles [2,26,45], although collisions 

between the particles can occur. “Since the collisions between the molecules are elastic and the 

particles indistinguishable, we can allow the colliding molecules to move as if they passed through 

one another without collision.”[45] In the Liouville equation of this system, the term with derivative 

of momentum does not appear. Thus, the momentum distribution does not change with time. 

Nevertheless, the spatial distribution of the particles can vary, tending to be uniformly distributed 

with time going. This system has essentially the same kinematic characteristics as a collision-free 

system. Indeed, in discussing the variation of the particle distribution of this system, collisions 

between particles were not taken into account [2]. Therefore, it is also classified as a collision-free 

system. 

In general, because the non-collision systems satisfy the Liouville equation, their processes may 

be reversible, and it is possible to estimate the Poincaré recurrence time [26]. It is likely that the non-

collision systems are not ergodic. 

We will investigate the collision systems made up of a large number of molecules that frequently 

collide with each other. Such a system is called a gas. We mean the real molecules such as H, CO and 

so on, not hard ball model or any other ideal model. Only isolated systems are concerned. For the 

sake of simplicity, we make the following assumptions. The dimension of a gas is very much larger 

than that of a molecule in the gas, so that every molecule moves as if it is in an infinitely large space 

and we do not consider the boundary conditions of its motion. We also assume the case of one-

component ideal gases composed of identical particles. Only elastic oscillations between particles are 

considered, regardless of the internal degrees of freedom of the particles. The gas is thin enough such 

that only two-particle collisions occur. 

The macroscopic processes of a gas are generally irreversible except its quasi-static processes. 

The microscopic mechanism of the macroscopic motion of a gas must be hidden behind the collisions 

between particles. Therefore, it is necessary to take a closer look at the two-particle collision and its 

effects. 

Some consequences of collisions between particles were investigated [46]. In a gas, the change 

of a particle’s momentum is discontinuous due to its collision with other particles. As a result, in the 

phase space, the trajectory of a phase point is not continuous, and the phase function of the gas is not 

smooth. Due to this reason, one is actually unable to define a density current for the phase points. 

Consequently, the Liouville equation does not apply. All discussions based on the Liouville equation 

and on smooth phase functions are problematic. For example, the BBKGY method [7,27,47−57] 

deriving the Boltzmann equation from the Liouville equation is incorrect. The proof of Poincaré 
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recurrence theorem assumes that the phase function is smooth [27], so that the proof procedure is 

incorrect. We do not negate the Boltzmann equation and Poincaré recurrence theorem themselves. 

Boltzmann himself has obtained the Boltzmann equation in his own way [58], without the need of 

the BBKGY method. Poincaré recurrence theorem itself may be correct, but a rigorous proof is still 

desirable. 

The present work is going to more closely examine the collision process itself. One more 

consequence of a collision between particles is the collision causes a sudden change in momentum, 

which provides randomness to the final state after the collision. As a result, the microscopic process 

of collisions between particles is irreversible. 

In Section II, we consider whether single-particle motion is reversible. To this end, the 

mathematical expressions for time-inverse motion and reverse motion are presented. The conclusion 

is that the motion of individual particles is essentially irreversible. Section III studies the 

irreversibility of the two-particle collision processes. We demonstrate that individual microscopic 

collision events are irreversible. Consequently, macro processes are generally irreversible. 

Nevertheless, when the number of particles in a gas is large enough to meet the condition of detailed 

balance, the quasi-static processes of a gas can be reversible. Section IV is our conclusion. 

II. THE IRREVERSIBILITY OF INDIVIDUAL PARTICLE’S MOTION 

We first distinguish between two concepts: the equation of motion that a particle obeys and the 

specific motion of the particle. The mathematical expressions corresponding to these two concepts 

are presented. We have a basic point of view: One physical concept should have a corresponding 

mathematical expression, and theoretical conclusion should be drawn from rigorous mathematical 

derivation. Two different concepts are of different mathematical expressions. Physical discussion 

cannot be clear without explicit mathematical expression and derivations. 

First, the case of classical mechanics is studied. In classical mechanics, a particle can be any object 

that can be described by a massive point with no geometric size. It can be a micro particle, such as a 

molecule, or a macro object. Then, the case of quantum mechanics is studied. 

A. Distinguishing equation of motion and specific motion 

As mentioned in Introduction, people imply that the time reversibility of the equations of motion 

necessarily leads to the time reversibility of the motion of individual micro particles. That is to say, 

the motion of each particle can be carried out anticlockwise, since the form of the equation of motion 

that the particle obeys remain unchanged under time inversion. 

An equation of motion expresses a physical law that the movement of particles must follow. The 

physical laws determine how the physical quantities of a particle, such as the coordinates, 

momentum, etc., vary with time. Equations of motion usually appear as differential equations. In 

classical mechanics, the most fundamental one is Newton’s second law. It takes the form of 

d 0
dt

− =p F .  (4)

This equation determines how a particle’s moment should vary with time when it is subject to a 

force F. Equation (4) is also the first equation in (1). 

We assume that there is no friction in the force F. This equation of motion is considered to be 

reversible in time or symmetrical with respect to time [7,9,16], i.e., under the transformation of (2) 

and (3), the form of (4) remains unchanged. 

When we talk about the motion of a particle, we mean its specific motion process, or simply 

referred to as motion. In classical mechanics, it refers to the specific expression that shows that with 

time going, how a particle’s physical quantities such as spatial coordinates, velocity, momentum, and 

energy, actually vary.  

Suppose that the variation of a particle’s momentum with time is known as 
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( )t=p p . (5)

At any moment, the magnitude and direction of the momentum are explicitly known. Let time 

be inversed, t t→ − . Then, if the momentum expressed by Equation (5) satisfies ( ) ( )t t− − =p p , 

we say that this motion is of time-reversal invariance, otherwise it is not. 

Thus, we distinguish between the equation of motion and specific motion. Regarding the change 

in momentum of classical particles, the mathematical expression of the equation of motion is (4), 

while that of a specific motion is (5). A specific motion process can be illustrated by a picture. For 

instance, with the specific expression (5), a schematic diagram of momentum over time can be drawn. 

Figure 1 below is a schematic diagram for two-particle oscillations. The differential equation (4) 

cannot be represented graphically. What we actually see is the specific motion of the particle, the 

process represented by (5). Although the specific expression (5) certainly follows the laws of physics, 

it cannot be directly seen from (4) itself. 

 

Figure 1. The sketches of the collisions of two free particles. (i) In classical mechanics, a particle with 

a momentum is represented by a line segment with an arrow. (a) The momenta of the particles before 

the collision are 1 2( , )p p  and after the collision are 1 2( , )′ ′p p , respectively. The original collision 

process is denoted as 1 2 1 2( , ) ( , )′ ′→p p p p . (b) The time-inverse collision of (a), 

1 2 1 2( , ) ( , )′ ′− − → − −p p p p . (c) The reverse collision of (a), 1 2 1 2( , ) ( , )′ ′− − → − −p p p p . (d) The 

reciprocal collision of (a), 1 2 1 2( , ) ( , )′ ′ →p p p p . (ii) In QM, a plane wave with a momentum is 
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represented by a line segment with an arrow. (a) The scattering of two free particles having plane 

waves with momenta 1 2( , )p p . After the scattering, the two particles transit to the two plane waves 

with momenta 1 2( , )′ ′p p . The original transition process is denoted as 1 2 1 2( , ) ( , )′ ′→p p p p . (b), 

(c), and (d) are respectively the time-inverse, reverse, and reciprocal transition processes of (a). The 

denotations of the (b), (c), and (d) are the same as those in the case of classical mechanics. Processes 

(b) and (c) look the same but the former is anticlockwise and the latter is clockwise. (a) and (d) are 

clockwise processes. 

It is generally implicitly assumed that if the equation of motion (4) is time-reversible, then 

necessarily (5) is also temporally reversible. “The equations of classical mechanics are invariant under 

time reversal. Intuitively, this says that if a film of a sequence of events is run backward, what is seen 

on the screen appears to be physically possible.”[9] This is equating (4) and (5), which reflects that 

the two concepts, the equation of motion and the motion of particles, are confused. 

The irreversibility of movement is occasionally mentioned. It was mentioned [1,2] that the 

irreversibility of single particle motion in an infinitely large system was trivial irreversibility. 

However, there was no conceptual distinction between motion and equations of motion. 

Let a differential equation be integrated in some way so as to obtain the expression of the 

physical quantity with time. Such a relation is called the general solution of a differential equation. 

For example, the indefinite integral solution of Equation (4) results in a general solution: 

( ) d ( )t t t C′ ′= +p F . (6)

The process of finding a general solution is a purely mathematical operation without adding any 

physical factors. 

So, does Equation (6) describe the specific motion of the particle? Or, is it equivalent to Equation 

(5)? The answer is no. this is because there is a pending constant in Equation (6), the value of which 

can only be determined by initial conditions. To set this constant is to add physical factors. 

Physically, any specific motion of any particle has a starting point in time. From the Big Bang 

model, we know that our universe has a time beginning. Therefore, any movement that actually 

occurs in the universe has a starting point in time. Movement without a starting point of time does 

not exist. Few literature notices that specific motion should have initial conditions [6]. 

Hereafter, the initial time is denoted as 0t . When we mentioned time inversion above, we took 

t t→ − , which defaulted 0 0t = . As 0 0t ≠ , time inversion should expressed as 

0 0( )t t t t− → − − . 

Mathematically, differential equations with derivative with respect to time are always solved 

under certain initial conditions. For example, the initial condition required to solve Equation (4) is 

0 0 0 0( ) , 0t t t t+ + += = = +p p . (7)

A solution of the equation of motion that meets certain initial conditions is what describes the 

specific motion, so that is called a specific solution. For example, the specific solution of Equation (4) 

satisfying the initial condition (7) is 

0
0( ) d ( )

t

t
t t t′ ′= +p F p . (8)

In Equation (8), the initial condition has already been used, i.e., the pending constant has been 

determined. Thus, Equation (8) clearly describes the specific process of movement, which is just 

Equation (5) that is required. 

Above, we have tacitly assumed that time evolves clockwise from the initial moment 0t . So, we 

talk about the movement in the time range 
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0t t> . (9)

The possible characteristics of the motion can be analyzed from the general solution of the 

equation of motion (6). For example, for a celestial body subject to gravitational action, there is a 

relationship between its radial and angular coordinates. The relationship may be elliptical, parabolic, 

or hyperbolic. When making such a qualitative analysis, the initial condition is not necessary, so that 

is usually ignored. But the qualitative analysis does not provide a specific orbit, because there is a 

coefficient called eccentricity to be determined by the initial condition. Therefore, analyzing the 

specific movement process needs the initial condition. 

It is seen there are actually two elements for describing the motion of a particle: the differential 

equation (4) and the initial conditions and (7). The physical law (4) itself has only differential 

equations with no initial conditions. 

Under different initial conditions, a differential equation may have different specific solutions, 

i.e., the details of the motion under different conditions may be different, reflecting different specific 

movement processes. These processes obey the same physical law. For example, imagine an object 

moving closer to the Earth from a distance. When approaching the Earth to a certain extent, it may 

fall to, may rotate around, and may move away from, the Earth. These three movements are different, 

and which one is achieved depends on the initial conditions of the motion of this object. However, 

these three possible specific motions follow the same physical law: objects move according to 

Newton’s second law (4) under the gravitational pull of the Earth. 

Therefore, we make it clear that equations of motion (4) cannot be equated with specific motion 

(5). The temporal inversion of Equation (4) does not determine the temporal inversion of the specific 

motion (5).  

Only a specific solution (8) that meets the initial conditions describes a specific motion. So, is 

equation (8) temporally inverted or reversible? It seems not easy to give the answer directly from (8) 

itself. We do a further analysis below. 

B. The equation of time-retarded motion of a particle 

When we talk about the equation of motion (4), we are not clear whether time t points to the past 

or to the future. “The equations of motion in physics are by themselves insufficient to predict what 

goes on in the Universe. Those equations must be supplemented with the axiom of causality.” [16] 

The so-called axiom of causality means “Only the past influences the present. The future will, in turn, 

be influenced by the present. The future cannot influence the present.” [16] There is a close connection 

between the assumption of causality and the second law of thermodynamics [59]. 

That we talked about the initial conditions above referred to that time goes clockwise. 

If a motion is carried out with time going to the future (past), i.e., in the clockwise (anticlockwise) 

direction, it is called time-retarded (time-advanced) motion, or in short, retarded (advanced) motion. 

The function that describes the retarded (advanced) movement is called retarded (advanced) 

function.  

People always talk about the retarded motion if there is no additional word. For example, we 

have implicitly assumed that Equation (8) described a retarded motion in the time range (9). 

However, the solution (8) itself does not explicitly indicate that this is a retarded motion without the 

supplement of (9), 

A physical concept should have its corresponding mathematical expression. The mathematical 

expression reflecting the time-retarded motion is the time step function 0( )t tθ − . There have been 

few people, when they discussed the scattering theory and path integral in QM, noticed this point 

[60−63]. We established the differential equations satisfied by the time-retarded function and time-

advanced function [64,65]. Here, we follow the same idea to establish the differential equations 

satisfied by the retarded and advanced functions corresponding to Equation (4). 
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To explicitly label a retarded motion, we attach a superscript R to the momentum, 
R
p  which 

is called a retarded solution. We think that the differential equation satisfied by the retarded solution 
R
p  is 

R 0
0 0

( )d ( ) ( )
d

t t
t t t

t t

θ
θ

∂ −
− − =

∂
p F p . (10)

Usually, the derivative of the step function is written as the Dirac delta function, 

0
0

( ) ( )t t
t t

t

θ
δ

∂ −
= −

∂
. We stress [64−67] that the rigorous result should be as follows: 

0
0 0

( ) ( ) ( )t t
t t t t

t

θ
δ ηθ

∂ −
= − − −

∂
, 0η +→ . (11)

The term with an infinitesimal η should not be discarded. It is because an infinitesimal term 

cannot be ignored compared to 0. The Dirac delta function itself is invariant with respect to the change 

of its argument’s sign. Since the time step function 0( )t tθ −  reflects time delay, this information 

should be retained after derivative with respect to of time. The term with the infinitesimal in Equation 

(11) reflects the delay in time. A careful discussion of (11) can be found in the appendix of Ref. [64]. 

Equation (10) also indicates that the force F acts at time 0t t> . Since only the motion in the time 

range 0t t>  is described, the retarded solution ought to have a time delay factor 0( )t tθ − . We 

explicitly separate this factor: 

R
0( ) ( ) ( )t t t tθ= −p p . (12)

Equation (12) is substituted into (10). 

0
0 0

( )d( )( ( ) ) ( ( ))
d

t t
t t t t

t t

θ
θ

∂ −
− − = −

∂
p F p p . (13)

We let both sides of this equation be zero. That the left hand side is zero leads to Equations (4) 

and (9), and that the right hand side is zero gives the initial condition (7). 

Equation (10) is called the equation of retarded motion. It contains both the equation of motion 

(4) and the initial condition (7). This form of Equation (10) is helpful to clearly recognize the physical 

meaning of retarded motion. It should be noted that Equation (8) satisfies equation (4) and the initial 

condition (7). Nevertheless, what really describes specific movements should be (12), for the time step 

function factor should not be ignored. 

Combination of Equations (8) and (12) results in the solution of (10) to be 

0

R
0 0( ) ( )( d )

t

t
t t t tθ ′= − +p F p .  (14)

This form of the solution makes us clearly discuss the reverse process of a specific motion, while 

Equation (4) itself does not. 

Since there is a term of infinitesimal in Equation (11), the right side of Equation (10) is not 

invariant under inversion 0 0( )t t t t− → − − . Therefore, the Equation (10) describing retarded 

motion does not guarantee that motion has invariance under time inversion.  

In Introduction we mentioned that a distinction should be made between the concepts of time-

inverse motion and reverse motion. Now, we write out the mathematical expressions for these two 

concepts. 

C. The time-advance motion of a particle 
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The time-retarded motion above describes the motion in the time range Equation (9) starting 

from the initial moment 0t . Correspondingly, the time-advanced motion describes the motion, 

starting from the initial moment 0t , in the time range 

0t t< . (15)

That is to say, the motion goes anticlockwise starting from 0t . 

The time-advance motion and aforementioned time-inverse motion have the same physical 

meaning, both being counterclockwise and describing the same physical processes. However, they 

are two concepts after all, and the corresponding mathematical expression should be different. We 

present the mathematical expressions. 

Usually, when people discuss the time-inversion invariance of the equation of motion, they did 

inversion Equation (2). Then, after the transformations Equations (2) and (3), the equation of motion 

(4) remains unchanged. The time t after the transformation still points to the future, with defaults 

0t =  as the initial moment. Such an approach is not conducive to discussing counterclockwise 

movement.  

We do not take the time inversion (2). The equation of motion describing the anticlockwise 

motion of a particle is, 

0
d 0;
d

t t
t

− − = <p F . (16)

Here, the momentum is transformed according to Equation (3). Since we do not take the time 

inversion (2), the time t in Equation (16) varies anticlockwise. The initial moment is set as 0t . The 

form of Eq, (16) is convenient for discussing the anticlockwise motion. 

Now, we are at the stage to describe the time-advanced motion in a way similar to that for time-

retarded motion described above. We add a superscript A to momentum, 
A
p which is called time-

advanced momentum. It obeys the following differential equation: 

A 0
0 0

( )d ( ) ( )
d

t t
t t t

t t

θ
θ

∂ −
+ − =

∂
p F p . (17)

Naturally, the solution should have the form of 

A
0( ) ( ) ( )t t t tθ= −p p . (18)

This is substituted into Equation (17) and the resultant is 

0
0 0

( )d( )( ( ) ) ( ( ))
d

t t
t t t t

t t

θ
θ

∂ −
− + = −

∂
p F p p . (19)

We let both side be zero. That the left hand side is zero results in Equation (16), and that the right 

hand side is zero leads to initial condition 

0 0 0 0( ) , 0t t t t− − += = = −p p . (20)

The specific solution satisfying both Equation (16) and the initial condition (20) is 

0
0( ) d ( )

t

t
t t t′ ′= − +p F p . (21)
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The equation of advanced motion (17) contains both Equation (16) and the initial condition (20). 

It is useful for us to discuss counterclockwise movement. We regard the time-inverse motion and 

counterclockwise motion as synonym. 

Let us examine that a particle first moves clockwise for a period of time and then moves 

counterclockwise.  

When the particle moves clockwise, its momentum varies according to Equation (14). At the 

moment 1t , its momentum becomes R
1 1( )t =p p , 

1

0
1 1 0 0( )( d )

t

t
t t tθ ′= − +p F p . (22)

After the moment 1t , the article moves anticlockwise, and the initial condition should be 

1 1( )t = −p p . By Equations (18) and (21), the advanced momentum varies with time as follows: 

1

A
1 1( ) ( )( d )

t

t
t t t tθ ′= − − −p F p . (23)

We substitute Equation (22) into (23) and use 1 1 0 1( ) ( ) ( )t t t t t tθ θ θ− − = −  to obtain 

0

A
1 0( ) ( )( d )

t

t
t t t tθ ′= − − +p F p . (24)

Comparing Equations (24) and (21), we know that in the time period 0 1t t t≤ ≤ , the 

anticlockwise motion of the particle is strictly the inverse of the clockwise motion. In particular, the 

momentum at the “final moment 0t ” of the counterclockwise motion (24) is just the negative sign of 

the momentum of the “initial moment 0t ” of the clockwise motion (21). The condition is that the 

force F is the same at the same moment in the clockwise and counterclockwise time frames. 

Therefore, if the initial condition 1−p  of the advanced motion can be prepared, and the 

integrand F is finite and the integral can be done, this time-advanced process can be achieved, and 

the particle’s momentum can reach 0− p . An important postulation is that time can be inversed. 

D. The reverse motion of a particle 

Let us examine the reverse motion of the movement process (14). This means that at the moment 

1t , the particle takes minus sign of (22), 1−p , and then moves clockwise. We want to see if it moves 

in reverse order through each intermediate state of (14), and finally reaches the minus sign of its 

initial momentum, 0− p . This reverse motion is a time-retarded one. 

The initial condition of the reverse motion is 1 1( )t = −p p . Starting from the moment 1t , the 

particle moves in the way of 

1

1 1 0

R
1 1 1 0( )( d ) ( )( d d )

t t t

t t t
t t t t t t tθ θ′ ′ ′= − − = − − −  p F p F F p . (25)

The first integration in Equation (25) is divided into two parts, 
1 1

1 1 0

2

2
d d d
t t t t

t t t t
t t t

−

−
′ ′ ′= +   . 

Suppose that within the time period 1 1 02t t t t≤ ≤ − , the force F meets the relationship 

1( ) (2 )t t t= −F F , 1 1 02t t t t≤ ≤ − . (26)

Then, we have 
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1

1 12
d d 0
t t

t t t
t t

−
′ ′− = F F . (27)

It follows that 

1

0

2R
1 0( )( d )

t t

t
t t tθ

−
′= − − +p F p . (28)

In this time period, the momentum changes strictly in reverse order over the time period 

0 1t t t≤ ≤ . In particular, R
1 0 0(2 ) ( )t t t− = −p p , which is the minus sign of the original initial 

momentum 0( )tp . 

Thus, the condition that motion (14) is reversible is that the initial condition (22) can be prepared, 

and the force F satisfies the condition (26) and can be integrated over time. 

For example, the earth-moon is regarded as an isolated two-body system, in which the earth is 

considered to be static and the moon rotates around the earth by the gravitational pull. Gravity meets 

the condition (26). If at a moment the momentum of the moon is reversed, the subsequent motion is 

the reverse motion. There is a premise that the initial condition of reverse motion can be realized. In 

fact, we know that the initial conditions of reversing the moon’s momentum is unattainable. So, in 

reality, this reverse motion is impossible to achieve. The conclusion is that the motion of the moon 

around the earth is irreversible. 

In general, when discussing an original process (14), there is no restriction on its initial condition. 

We always discuss a particle’s motion when the initial condition (7) has been achieved. 

By contrast, if we talk about a reverse motion of a known original motion process, its initial 

condition is not arbitrary, but is determined by the final state of the original motion and needs to be 

prepared by us. If the initial condition cannot be prepared, the original motion is irreversible. For 

example, an original motion is that, in a vacuum, a bullet is fired from the muzzle of a gun and reaches 

the target. No one can achieve the its reverse motion. 

If, after the occurrence of the original process (14), there is a probability that the initial condition 

of the reverse process can be realized but the probability is less than 1, we think that the original 

motion process is still irreversible. 

Even if we can prepare an initial condition, the surroundings are inevitably influenced in the 

course of the preparation. That is to say, the environment cannot return to the original initial state. In 

this case, we think that the original motion is still irreversible. 

It is seen that the conditions for the reversibility of the motion of a particle are quite harsh. We 

can conclude that in classical mechanics, the motion of a particle is basically irreversible. 

E. The motion of a particle in quantum mechanics is irreversible 

In QM, the motion of microscopic particles with the property of wave-particle duality is 

described. The fundamental equations of motion, as well as the physical quantities, are different from 

those in classical mechanics. However, the idea of analyzing the time-inverse motion and reverse 

motion of a particle is consistent with that for classical mechanics presented above. 

A fundamental physical quantity in QM is wave function ( , )tψ r . By the wave function, it is 

possible to calculate the expectations of some other physical quantities, such as particle density 

distributed in space, current density of particles, momentum, kinetic energy, energy, density of states, 

and so on. 

The fundamental equations in QM are differential equations to solve wave functions, mainly the 

Schrödinger equation and Dirac equation. They have the following form. 

(i ) ( , ) 0H t
t

ψ
∂

− =
∂
 r .  (29)
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It the literature, the time inversion (2) is taken in (29), and subsequently, in the transformed 

equation, the time again points to the future and the solution becomes 
* ( , )tψ r , the complex 

conjugate of the ( , )tψ r  [68]. Here, we do not take the time inversion (2), but simply retain Equation 

(29) unchanged, keeping in mind that the time therein can go anticlockwise. So, Equation (29) is the 

equation of motion for both the time-retarded and time-advanced motions. 

The dependence of the wave function on time describes specific motion. 

( , )tψ ψ= r  (30)

The differential equation (29) tells us the fundamental law that a particle’s motion must obey. 

From Equation (29) itself one is unable to see the specific motion described by Equation (30). 

People think that since the equation of motion (29) has time inversion invariance, then the 

specific motion (30) of a particle should have either. 

We stress that the equation of motion (29) and concrete motion (30) are two different concepts. 

Equation (29) indeed remains unchanged under time inversion, but this does not guarantee that the 

motion process described in (30) is reversible. 

In order to solve a specific motion from Equation (29), an initial condition is required. 

0 0( , ) ( , )t t tψ ψ+ += =r r . (31)

Combination of Equations (29) and (31) results in the expression of the specific motion [64,65]: 

0
0

i( , ) exp( d ( )) ( , )
t

t
t t H t tψ ψ′ ′= − r r


. (32)

The initial condition has been employed in the solution. Because Equation (29) is homogeneous 

one, the initial condition provides a factor in (29), instead of an additional term as that in Equation 

(8). 

If the Hamiltonian H has a complete set of eigenfunctions { ( , )}n tϕ r , the solution of Equation 

(29) can be written as the superposition of this complete set. 

( , ) ( , )n n

n

t c tψ ϕ=r r . (33)

For example, the Hamiltonian of a free particle is 

2
2

2
H

m
= − ∇


.  (34)

Its complete set of eigenfunctions and corresponding energies are 

2 2
i( ( ) / )

3/ 2
1( , ) e , ( )

(2π) 2
E tt E

m
ϕ − − ⋅= =k k r

k

k
r k

 
. (35)

Equation (33) is the general solution of (29). From the general solution, one can analyze what 

features the wave function may have, but the real specific movement cannot be certain yet, unless the 

initial condition is known. When the expansion coefficient in (33) is determined by the initial 

conditions, (33) becomes a specific solution. 

Thus, describing a specific motion of a particle requires two elements: the differential equation 

(29) and the initial conditions (31). 

A differential equation can have different solutions subject to different initial conditions. Each 

specific motion has its own details. For the Hamiltonian (34) of a free particle, if the initial condition 

is a plane wave, the specific solution is either a single plane wave; If the initial condition is a wave 

packet, the particular solution is a traveling while collapsing wave packet. 

Solution (29) does not clearly indicate that this is a retarded or advanced movement. Usually, it 

is always defaulted that this is a retarded motion. 
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Now, we explicitly discuss retarded motion, i.e., the motion in time range 0t t>  after the initial 

moment 0t . We add a superscript R to the wave function, 
R ( , )tψ r , to mark that this is a time-

retarded wave function. The equation of motion satisfied by the 
R ( , )tψ r  is 

R 0
0

( )(i ) ( , ) i ( , )t t
H t t

t t

θ
ψ ψ

∂ −∂
− =

∂ ∂
r r  . (36)

Since 
R ( , )tψ r  is a time-retarded wave function, it is written in the form of 

R
0( , ) ( ) ( , )t t t tψ θ ψ= −r r . (37)

The factor 0( )t tθ −  unambiguously indicates that time evolves toward the future [60−63].  

After Equation (37) is substituted into (36), we achieve 

0
0 0

( )( )(i ) ( , ) i [ ( , ) ( , )]t t
t t H t t t

t t

θ
θ ψ ψ ψ

∂ −∂
− − = −

∂ ∂
r r r  . (38)

We let both sides be zero. That the left hand side is zero leads to Equations (29) and (9) and that 

the right hand side is zero results in the initial condition (31). Thus, Equation (36) contains both the 

equation of motion and the initial condition. 

It follows from the combination of Equations (32) and (37) that 

0

R
0 0

i( , ) ( ) exp( d ( )) ( , )
t

t
t t t t H t tψ θ ψ′ ′= − − r r


. (39)

Note that the specific solution (32) satisfies the differential equation (29) and the initial condition 

(31). However, the solution that really describes the retarded movement should be (39). 

With the preparation above, we are ready to respectively discuss the time-inverse motion and 

reverse motion. 

The time-advanced wave function 
A ( , )tψ r  obeys the following equation. 

A 0
0

( )(i ) ( , ) i ( , )t t
H t t

t t

θ
ψ ψ

∂ −∂
− =

∂ ∂
r r  . (40)

In the expression of the 
A ( , )tψ r , there should be a time-advance factor. 

A
0( , ) ( ) ( , )t t t tψ θ ψ= −r r . (40)

Substitution of (41) into (40) leads to 

0
0 0

( )( )(i ) ( , ) i [ ( , ) ( , )]t t
t t H t t t

t t

θ
θ ψ ψ ψ

∂ −∂
− − = −

∂ ∂
r r r  . (42)

We let both sides be zero. That the left hand side equal to zero results in the equation that the 

( , )tψ r  satisfies: 

0(i ) ( , ) 0;H t t t
t

ψ
∂

− = <
∂

r . (43)

The equation is the same as (29) but applies to past time. That the right hand side of (42) equals 

zero gives the initial condition 

0 0( , ) ( , )t t tψ ψ− −= =r r .  (44)

Obviously, the solution of Equation (40) is 
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0

A
0 0

i( , ) ( ) exp( d ( )) ( , )
t

t
t t t t H t tψ θ ψ′ ′= − − r r


.  (45)

We first let a particle move clockwise starting from the moment 0t . According to Equation (39), 

at 1t , the wave function is 

1

0

R
1 1 0 0

i( , ) ( ) exp( d ( )) ( , )
t

t
t t t t H t tψ θ ψ′ ′= − − r r


. (46)

At this moment, we let the particle do time-inverse motion with the initial condition 

R
1 1( , ) ( , )t tψ ψ=r r . (47)

Then, in the time period 0 1t t t≤ ≤ , the advanced wave function is 

1

0

A R
1 1

R
1 1 0 0

i( , ) ( ) exp( d ( )) ( , )

i( ) ( )exp( d ( )) ( , ) ( , ).

t

t

t

t

t t t t H t t

t t t t t H t t t

ψ θ ψ

θ θ ψ ψ

′ ′= − −

′ ′= − − − =





r r

r r





 (48)

We have used Equation (46). This shows that if the condition (47) is met, the wave function varies 

rigorously in the reversed order of the original motion. We mention again that the time-advanced 

motion is a fictional motion. 

Now, we consider the reverse motion which is clockwise starting from the moment 1t . In 

Equation (39) the initial time is taken as 1t , and the initial condition is (46). Then, in the time range 

1 1 02t t t t≤ ≤ − , 

1

1

1 0

R R
1 1

1 1 0 0

i( , ) ( )exp( d ( )) ( , )

i i( ) ( )exp( d ( ))exp( d ( )) ( , ).

t

t

t t

t t

t t t t H t t

t t t t t H t t H t t

ψ θ ψ

θ θ ψ

′ ′= − −

′ ′ ′ ′= − − − −



 

r r

r



 

 (49)

The second integration is divided into two parts: 
1 1 1

0 1 0

2

2
d d d

t t t t

t t t t
t t t

−

−
′ ′ ′= +   . The 

Hamiltonians in different time are assumed commutable. For a reversible motion, we expect that 

1

0

2R R
1 0 1

i( , ) ( ) exp( d ( )) ( , ) ( , 2 )
t t

t
t t t t H t t t tψ θ ψ ψ

−
′ ′= − − = −r r r


. (50)

This requires that 

1

1 12
d ( ) d ( ) 0
t t

t t t
t H t t H t

−
′ ′ ′ ′+ =  , (51)

i.e., 

1( ) (2 )H t H t t= − − .. (52)

This means that from 1t , the Hamiltonian has to change its sign. A Hamiltonian is kinetic energy 

plus potential energy. If a Hamiltonian changes its sign, it will become another system. Hence, 

Equation (52) is unattainable, and Equation (50) is either. 
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Let us see a simplest example, the case of a free particle moving as a plane wave. The 

Hamiltonian is (34), independent of time. Suppose that the initial condition is one of the planes (35). 

That is to say, at moment 0t , the wave function is 

0i( ( ) / )
0 3/ 2

1( , ) e
(2π)

E t
tϕ − − ⋅= k k r

k r


. (53)

At 0t t> , the wave function is 

2
R 2

0 0 0

i( ( ) / )
0 3/ 2

( , ) ( )exp[i( ) ] ( , )
2

1( ) e .
(2π)

E t

t t t t t t
m

t t

ϕ θ ϕ

θ − − ⋅

= − − ∇

= −

k k

k k r

k
r r





 (54)

Especially, the wave function at time 1t  is 

1i( ( ) / )R
1 3/ 2

1( , ) e
(2π)

E ttϕ − − ⋅= k k r

k r


.  (55)

We let the particle do reverse motion from the moment 1t . At this time, its wave vector is 

reversed. The initial condition of the reverse motion is 

1i( ( ) / )
1 3/ 2

1( , ) e
(2π)

E t
tϕ − + ⋅= k k r

k r


. (56)

If the original motion is reversible, in the time period 1 1 02t t t t≤ ≤ − , the wave function should 

have a relationship 

R R
1( , ) ( , 2 )t t tϕ ϕ−= −k kr r . (57)

The wave function on the right hand side is that within the time period 0 1t t t≤ ≤ , but the wave 

vector has a minus sign. However, by the initial condition (56), the wave function after the time 1t  

is 

2
R 2 R

1 1 1

i( ( ) / )
1 3/ 2

( , ) ( ) exp[i( ) ] ( , )
2

1( ) e .
(2π)

E t

t t t t t t
m

t t

ϕ θ ϕ

θ − + ⋅

= − − ∇

= −

k k

k k r

k
r r





 (58)

Comparison of (58) and (54) demonstrates that (57) is not satisfied. 

The conclusion is that in QM, the motion of particles is irreversible. 

Hereafter, we discuss reverse motion which is clockwise. The time-inverse motion is purely 

fictional and will not be discussed anymore. 

 

III. THE IRREVERSIBILITY OF TWO-PARTICLE COLLISION PROCESSES 

We consider an ideal gas composed of a large number of molecules which collide with each other 

frequently. This is a collision system. We will only concern two-particle elastic collisions. Because of 

the collisions, energy and momentum transfer between molecules, which causes the rapid change of 

the microscopic state of the gas and moreover the change of the macroscopic state. So, examining 
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whether the two-particle collision process is reversible is important. If it is reversible, the motion of 

the gas is either, otherwise the motion of the gas is not guaranteed to be reversible. 

The collision is instant so that we actually do not know the details of the changes of the 

molecules’ physical quantities during the collision [46]. The state of the two particles before the 

collision is called initial state, and that after the collision called final state. For a hard-sphere system, 

the dynamics is completely deterministic because the after-collision momenta are uniquely 

determined by the collision rule [34,35]. Even in this case, the momenta of the molecules before and 

after collisions are discontinuous.  

Figure 1a is the schematic of the original process of two-particle collision. The two particles 

before the collision are called incident particles, the momenta of which are respectively 1p  and 2p

. After the collision they are called outgoing particles, the momenta of which are respectively 1′p  

and 2′p . The conservation of the total kinetic energy and total momentum is expressed as follows. 

2 2 2 2
1 2 1 2

1 1 1 1
2 2 2 2m m m m

′ ′+ = +p p p p . (59a)

1 2 1 2′ ′+ = +p p p p . (59b)

Equations (59) are not differential equations, but they directly describe the motion of the two-

particle collision. They are actually the solutions of equation of motion with given initial condition. 

The initial conditions are that the momenta 1p  and 2p  before the collision are known. 

We write out Equation (59) referring to the original process Figure 1a. In Equations (59), the left 

(right) hand side represent the initial (final) state. We write from left to right. Once Equations (59) are 

put down, we can also write them from the right to left, i.e., to regard the right hand side as initial 

state and left hand side final state. Then, in this view, there can be three processes, as shown in Figure 

1b–d. They are called the time-inverse process, the reverse process, and the reciprocal process of the 

original process Figure 1a, respectively. For Figure 1b,c, Equation (59b) has minus signs on both sides, 

so all the minus signs can be dropped. Figure 1d is obtained by exchanging the initial and final states 

of Figure 1a, so that is called the reciprocal process. 

Note that our definitions for the processes in Figure 1 may differ from those in the literature. In 

the literature, Figure 1b is named as reverse collision [7,27] or time reverse collision [9]; Figure 1c is 

called inverse collision [69] or reverse collision [13,70]; Figure 1d is called opposite collision [58], 

restituting collision [69], inverse collision [7,9,11,13,27,52,70–72]. Since the time-inverse collision is 

purely fictitious, we will not discuss Figure 1b below. 

A. Two-particle collision in classical mechanics 

We first propose a definition of the reversibility of the collision process in Figure 1a. If the 

collision Figure 1a occurs, the reverse collision Figure 1c necessarily also occurs, that is, the 

probability of the occurrence of the reverse process Figure 1c is 1, then we say that the original 

collision Figure 1a is reversible; If the probability is less than 1, then the original collision is said to be 

irreversible. Let us analyze whether the probability of the reverse process occurring is equal to 1. 

In one-dimensional space, Equation (59) contains two equations. The 1p  and 2p  of the 

incident particles are known. From (59), the two momenta of the final state can be uniquely solved. 

Therefore, the final state is uniquely determined. In particular, since the particles are identical, the 

solution is 1 2 2 1,p p p p′ ′= = , i.e., the two particles simply exchange their momenta. This case is as if 

no collision occurs, which was treated in [26,45]. That is why we classified one-dimensional identical 

particle systems as collision-free systems in subsection I.C. 

In two-dimensional space, each momentum has two components, so Equation (59) contains three 

equations. There are four momentum components 1 2 2 2( , ), ( , )x y x yp p p p′ ′ ′ ′   to be solved. Therefore, 
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there is an uncertain quantity in the final state, e.g., the angle θ between 1′p  and 2′p  can vary in 

the range of 0~2π. 

In three-dimensional space, each momentum has three components, so Equation (59) contains 

four equations. There are six momentum components 1 1 1 2 2 2( , , ), ( , , )x y z x y zp p p p p p′ ′ ′ ′ ′ ′  to be solved. 

Thus, there are two uncertain quantities of the two outgoing particles, e.g., the angles ( , )θ ϕ  

between 1′p  and 2′p  can vary in the range of 4π solid angles. Therefore, the momenta of the 

outgoing particles have a distribution [73]. 

We consider the case of three-dimensional space. In Figure 1a, only a pair of specific outgoing 

momenta 1′p  and 2′p  are plotted. The probability of the occurrence of this pair 1′p  and 2′p  is 

denoted as 12a . It must be that 12 1a < , because there are other outgoing 1′p  and 2′p  pairs, as 

long as they meet Equation (59). 

The reciprocal collision of Figure 1a is the exchange of 1 2( , )p p  and 1 2( , )′ ′p p  as in Figure 1d, 

that is to say, the initial state is 1 2( , )′ ′p p  and the final state 1 2( , )p p , the occurrence probability of 

Figure 1d is denoted as 21a . By classical mechanics, it is demonstrated that 21 12a a=  [52]. One may 

believe [50] that the 21 12a a=  reflects “principle of dynamic reversibility”. This recognition is not 

right, because the reverse collision is not involved in proving 21 12a a= . 

Now, assume that the collision process Figure 1a takes place. We examine if its reverse collision 

necessarily occurs, or the occurrence probability of Figure 1c is 1. In Figure 1c, the momentum of the 

incident particles are 1′− p  and 2′− p , and only a specific pair of outgoing momenta 1− p  and 2− p  

is plotted. In fact, there can be whatever pairs of outgoing  1− p  and 2− p  as long as they meet 

Equation (59). Therefore, the occurrence probability of the specific collision in Figure 1c is certainly 

less than 1. By definition, the original collision in Figure 1a is irreversible. Similarly, the collision 

process in Figure 1c is also irreversible. It is concluded that in two-dimensional and three-

dimensional space, the two-particle collision is irreversible. 

Since individual microscopic collision events are irreversible, why can a frictionless quasi-static 

process of a macroscopic system composed of a large number of microscopic particles colliding with 

each other be reversible? 

At every moment of a frictionless quasi-static process, the gas is in equilibrium state. Therefore, 

let us first review the concept of equilibrium. The definition of equilibrium is: “A macroscopic state 

which does not tend to change in time, except for random fluctuation.” [32] When a system is in 

equilibrium, its macro parameters, such as volume, temperature, pressure, ect., do not change with 

time. If a macroscopic parameter such as pressure can be measured with an instrument, the measured 

value does not change with time. An equilibrium state is a macro state. There can be a huge number 

of micro states corresponding to this one macro state. In an equilibrium state, micro state changes 

vary rapidly. The change is caused by the collisions between molecules. The molecules’ momenta 

follow Maxwell-Boltzmann distribution. The reason that the micro states changes while the macro 

state does not is that the distribution remains unchanged.  

That the frequent collisions between molecules do not change the distribution is determined by 

the principle of detailed balance. 

B. Detailed balance 

From Boltzmann’s H theorem [51], it can be shown that detailed balance is the sufficient and 

necessary conditions for a gas to reach equilibrium [15,52,72,74]. Here, we review the principle of 

detailed balance.  

For the two-molecule collision in Figure 1a, the mathematical expression of the detailed balance 

is 

1 2 1 2( ) ( ) ( ) ( )f f f f′ ′=p p p p .  (60)
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The ( )f p  is the momentum distribution function of the gas. In equilibrium, it is the Maxwell-

Boltzmann distribution. 

We inspect the physical meaning of Equation (60). It reveals that for the two particles 

participating the collision, the product of the distribution of the initial state is equal to that of the final 

state. In Equation (60), the left hand side equals to the right hand side. On the other hand, the right 

hand side also equals to the left hand side. That is, not only the collision 1 2 1 2( , ) ( , )′ ′→p p p p in 

Figure 1a, but also its reciprocal collision 1 2 1 2( , ) ( , )′ ′ →p p p p  shown by Figure 1d, satisfies 

Equation (60). 

The detailed balance tells us that a pair of collisions reciprocal to each other retains the 

distribution function unchanged. Suppose that in an equilibrium gas there are four molecules. The 

momenta of molecules 1 and 2 are 1p  and 2p , and those of 3 and 4 are 1′p  and 2′p , respectively. 

Let molecules 1 and 2 collide as in Figure 1a, 1 2 1 2( , ) ( , )′ ′→p p p p . After the collision, two extra 1′p  

and 2′p  molecules are generated and two 1p  and 2p  molecules are reduced. As a result, the 

distribution function of the gas may deviate from the equilibrium one. If, meanwhile, another 

collision between molecules 3 and 4 takes place as in Figure 1d, 1 2 1 2( , ) ( , )′ ′ →p p p p , then, the extra 

1′p  and 2′p  are reduced and the reduced 1p  and 2p  are restored. This retrieves the equilibrium 

distribution.  

It is seen that the occurrence of a pair of reciprocal collisions can keep the distribution function 

unchanged and this unchanged distribution is an equilibrium one. Conversely, if a gas is in 

equilibrium, when a collision of Figure 1a takes place, there must also a reciprocal collision of Figure 

1d, although this pair of reciprocal collisions changes the microscopic state of the gas. Someone [50] 

thought that the detailed balance was a sufficient but not necessary condition for equilibrium, but it 

has been proved that the detailed balance was a sufficient and necessary condition [7,52]. 

As a comparison, we consider a pair of reverse collisions Figure 1a,c. Assume that there are four 

molecules. The momenta of molecules 1 and 2 are 1p  and 2p , and those of 3 and 4 are 1′− p  and 

2′− p , respectively. Let molecules 1 and 2 collide as in Figure 1(a), 1 2 1 2( , ) ( , )′ ′→p p p p , and 1 and 2 

collide as in Figure 1c, 1 2 1 2( , ) ( , )′ ′− − → − −p p p p . After this pair of collisions, four molecules, 1′p , 

2′p , 1− p ,  and 2− p  are produced, and other four, 1p , 2p , 1′− p , and 2′− p  are reduced. 

Apparently, the momentum distribution function changes. Therefore, a pair of reverse collisions 

cannot retain the distribution unchanged. 

For the detailed balance, we address the following points. Before doing so, we remind the 

distinguish between macro and micro infinitesimals in time and space [46]. The macro (micro) 

infinitesimal in time is called macro-instant (micro-instant). Macroscopic instruments can do 

measurements during macro-instant. Spatially, a macro subregion is a very small region but it still 

belongs to a macro one. A micro region can contain merely a small number of molecules. 

(i) Detailed balance is achieved within a macro-instant.  

When a gas is in equilibrium, a pair of reciprocal collisions Figure 1a,d occur within the same 

macro-instant but not the same micro-instant. Macroscopically, the pair of 1 2 1 2( , ) ( , )′ ′→p p p p  and 

1 2 1 2( , ) ( , )′ ′ →p p p p  occur simultaneously, but microscopically, they occur sequentially. The 

system is in equilibrium at every macro-instant. 

(ii) Detailed balance is achieved in a macro region. 

A pair of reciprocal collisions occurs within a macro subsystem but not in a micro region. This 

is also what equilibrium requires. “If a closed macroscopic system is in a state such that in any 

macroscopic subsystem the macroscopic physical quantities are to a high degree of accuracy equal to 

their mean values, the system is said to be in a state of statistical equilibrium (or thermodynamic or 

thermal equilibrium).” [14] Equilibrium is reached in any macro subsystem, while in a micros region, 

detailed balance cannot be reached. 
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Based on the discussion of (i) and (ii) above, detailed balance is achieved statistically in macro 

subsystems. The equilibrium refers to that in macro subregions and at macro-instant. 

Microscopically, the gas is nonequilibrium everywhere and every time. Micro states cannot be 

distinguished by instruments that measure macro parameters. 

(iii) Detailed balance is independent of reverse collisions. 

Detailed balance (60) ensures that in equilibrium, the pair of reciprocal collisions occurs, with 

no requirement of the reverse collision Figure 1c. The pair of reciprocal collisions takes place 

clockwise, irrespective to any anticlockwise process [72]. On the other hand, as mentioned above, a 

pair of reverse collisions does not guarantee the invariance of the momentum distribution function. 

Therefore, the discussing whether a macro process is reversible is not based on whether two-particle 

collisions are reversible.  

Detailed balance itself also contains 

1 2 1 2( ) ( ) ( ) ( )f f f f′ ′− − = − −p p p p . (41)

That is to say, the collision process Figure 1c and its reciprocal process also keep the momentum 

distribution unchanged in the case of equilibrium. 

We imagine a picture of the angular distribution of molecular momentum in a gas in 

equilibrium. Since the number of molecules in the gas is sufficiently large, by detailed balanced, there 

must be many reciprocal collisions, all of which have the same values of the incident and outgoing 

momenta, but in different directions. We superimpose events in one figure. Figure 2a is a 

superposition of four events of Figure 1d, where the incident and outgoing particles are represented 

by dashed and solid lines, respectively. Figure 2b roughly illustrates the superposition of a large 

number of collision events. The angle between the momenta of the two incident particles evenly 

distributes within solid angle 0~4π, and that of the outgoing particles also does so. Since the number 

of particles is large enough, both are dense enough and the angular distribution is uniform. 

Reversing the directions of the arrows for both the solid and dashed lines in Figure 2b leads to 

the schematic diagram of Equation (61). This is a superposition of schematic diagram of Figure 1c in 

all directions. This shows that for reciprocal collisions, as well as for reverse collisions, the momentum 

of the incoming and outgoing particles are uniformly distributed in all directions. This means that if 

there is a collision of Figure 1a, then there will be a reverse collision Figure 1c. 

Therefore, although the detailed balance itself does not require the reverse process of a collision 

to appear, we believe that once the detailed balance is reached, then, in the equilibrium state, the 

reverse collision process of any collision also inevitably occur. That a pair of reverse collisions, 

Figures 1a,c occur in a macro-instant should be a by-product when an equilibrium state is reached. 
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Figure 2. (a) The superposition of four Figure 1d in different directions. Incident and outgoing 

particles are represented by dashed and solid lines, respectively. (b) The superposition of a large 

number of similar collisions, which shows that in equilibrium, the momentum distribution is 

isotropic. 

We conceive a situation that slightly deviates from detailed balance.  

When Boltzmann derived the H theorem, he obtained the following inequality [13]. 

1 2
1 2 1 2

1 2

( ) ( )ln [ ( ) ( ) ( ) ( )] 0
( ) ( )
f f

f f f f
f f

′ ′− ≥
′ ′

p p
p p p p

p p
. (62)

The equal sign holds only when the detailed balance (60) is reached. Suppose that the gas is very 

close to equilibrium, such that the momentum distribution of the two particles before the collision 

belongs to the equilibrium distribution with temperature T. 

1 2
1 2

B B

( ) ( )( ) exp( ), ( ) exp( )f f
k T k T

ε ε
∝ − ∝ −

p p
p p . (63)

After the collision, the distribution belongs to that with temperature T T+ Δ . 

1 2
1 2

B B

( ) ( )( ) exp( ), ( ) exp( )
( ) ( )

f f
k T T k T T

ε ε′ ′
′ ′∝ − ∝ −

+ Δ + Δ

p p
p p , (64)

where 

T TΔ  . (42)

For an elastic collision (59), the total energy before and after the collision is denoted by ε, 

1 2 1 2( ) ( ) ( ) ( )ε ε ε ε ε′ ′= + = +p p p p . We derive from Equation (62) that 

B/

B B

1 1 1 1( )(1 exp[ ( )])e 0k T

k T T T k T T T

εε ε −− − − − ≥
+ Δ + Δ

.  (66)

No matter whether the two molecules become a hotter or cooler distribution after the collision, 

this expression is not less than zero. It is equal to zero only if 0TΔ = . This means that areas with 

slightly lower (higher) temperatures will increase (decrease) temperatures. Heat always flows from 

the hotter to the cooler area, making the temperature approach the same everywhere. 
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The isotropic distribution shown in Figure 2b is ideal only when the number of molecules in the 

gas approached infinity. In this equilibrium state the momentum distribution remains unchanged. 

Therefore, a necessary condition for achieving detailed balance is that the number of molecules 

in the gas is sufficiently large. Although the molecule number in the actual gas is as high as the order 

of magnitude of Avogadro constant, it is not really infinity after all. So, even in every macro-instant, 

it is not guaranteed that for every two-particle collision, there always occur a corresponding 

reciprocal process. As a result, the momentum distribution of the molecule may deviate from the 

equilibrium distribution. This deviation is the fluctuation. Macro physical quantities are averages 

calculated by means of the distribution function. Therefore, they fluctuate around their average 

values. Obviously, the larger the molecule number, the smaller the fluctuation.  

Now, consider a region in the gas which is macroscopically small enough, say, a submillimeter-

scale region, the particle number in this region is much smaller than that of the whole gas. If in 1 m3 

there are 
23~ 10N  particles, then in 

1610−
 m3 there are 7

1 ~ 10N  particles, such that 1N N . 

In such a small region fluctuation will be comparatively large. It is possible that the number of 

particles with momentum in a certain direction in a macro-instant is much greater than that with 

opposite momentum. If a pollen granule is positioned in this region, the molecular impact it receives 

is not isotropic, so that it suffers a net force. The pollen is subject to this force to move. This is the 

reason of Brownian motion, which reflects that in such a small area, detailed balance cannot be 

achieved. 

Brownian motion also indicates that at a macro-instant, the number of particles entering and 

leaving the region is not always equal. That is to say, the density of particle numbers in this region is 

variable with times. The molecular number density in different small regions at a micro-instant are 

not the same. The density varies around its average value. The fluctuation in a gas actually embodies 

the non-equilibrium at micro-instant. 

When the detailed balance is not achieved, the left and right side of Equation (60) are not equal. 

This mean that at least a collision of Figure 1a does not have its reciprocal collision at a macro-instant. 

Consequently, the momentum distribution function will change. The gas cannot tend to equilibrium. 

Rather, it is in a non-equilibrium state. As a result, the macroscopic state may change. 

Now consider a case that an ideal gas expands into a vacuum, shown in Figure 3. Figure 3a 

shows that the gas is confined in the left half of a box by a partition. At the initial moment, the 

partition is removed and the gas begins to expand. The border line between the gas and vacuum is 

called frontline. 

 

Figure 3. Schematic diagram of a gas expansion into vacuum. The dotted line indicates the border line 

between gas and vacuum, called frontline. (a) The gas is confine inside the left half box by a partition. 

At the initial moment, the partition is drawn and the gas starts expansion. (b) the gas expands to 3/4 

box. (c) The gas is evenly distributed in the whole box, i.e., the equilibrium state is reached. 

At the moment that the partition is just drawn, there is no particles on the right side of the 

frontline. Suppose that on the left side of the frontline, two particles moving rightward collide, as in 

Figure 1a, and after the collision, they enter the vacuum on the right side of the frontline. If a 

corresponding reciprocal collision of another two particle occurs as in Figure 1d, they also enter the 

vacuum. At this moment, since there are no particles on the right side of the frontline, there is no 

reverse collision in Figure 1c. Therefore, the molecules always enter the vacuum from the left side of 
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the frontline. There is no mechanism for particles to immediately return to the left side of the frontline. 

The frontline moves rightward. 

Assuming that at the moment in Figure 3b, the momenta of all molecules in the gas are reversed, 

will the frontline move leftward? The analysis is actually the same as that for Figure 3a. Since the 

right side of the frontline is a vacuum, the molecules on the left side of the frontline still enter the 

vacuum, and there is no a mechanism for particles return to the left of the frontline. The frontline 

continues moving rightward. This shows that Loschmidt’s reasoning does not apply. 

We next see the equilibrium state in Figure 3c. At every micro-instant, it is in a micro state. Every 

micro state in a macro state is equiprobable to appear. For a micro state in the macro state, when all 

the molecules’ momentum directions are reversed, the resultant is still a micro state in this macro 

state. When a gas evolves from a non-equilibrium state to the equilibrium state of Figure 3c, it can be 

any of these micro states. Conversely, any micro state in Figure 3c can be the one, denoted as A, that 

is achieved by reversing all the molecule momentum directions of a micro state, denoted as B, the 

latter being achieved from a non-equilibrium state. Following Loschmidt’s reasoning, we assume 

reversing all the molecular momentum in A to obtain state B, and with time going, the B will undergo 

a reverse process to go back to the original non-equilibrium state, such as Figure 1b. However, we 

know that such a process has never happened and we do not expect so. This again shows that 

Loschmidt's reasoning does not again. 

On account of that the molecule number in the gas considered is not infinite, when there is a 

collision Figure 1a, the probability that its reverse collision Figure 1c is not zero. It seems that there is 

a nonzero probability for the reverse process of the gas to happen, say, from Figure 3c to Figure 3b. 

Nevertheless, this probability is so small that it is equivalent to impossibility. In Boltzmann’s 

language, although the evolution from Figure 3b to Figure 3a or from Figure 3c to Figure3d “has a 

definite calculable (though inconceivably small) probability, which approaches zero only in the 

limiting case when the number of molecules is infinite.” The time needed is so remote that “One may 

recognize that this is practically equivalent to never. …… If a much smaller probability than this is 

not practically equivalent to impossibility, then no one can be sure that today will be followed by a 

night and then a day.” [58] 

A frictionless quasi-static process is the exhibition of a series of equilibrium states. Therefore, 

such a process is reversible. However, this reversibility does not come from the reversibility of the 

motion of individual particles, nor from the reversibility of the two-particle collision. Rather, it is the 

statistical average effect of a large number of molecules colliding each other when the detailed 

balance is reached. 

It is seen that macroscopic reversibility requires a large number of molecules in the gas. Usually, 

a gas contains molecules in the order of magnitude of the Avogadro constant, is very close to meeting 

this requirement. 

In summary, the motion of microscopic particles is irreversible. Nevertheless, when the number 

of molecules that make up the gas is very large, the macro state of the gas can be in equilibrium when 

detailed balance is reached. The equilibrium state is the statistical average effect of the motion of a 

large number of microscopic molecules. Frictionless quasi-static processes are reversible. 

C. Two-particle scattering in quantum mechanics 

We have demonstrated in subsection II.E that single-particle motion in QM is irreversible.  

We [65] rigorously derived the generalized scattering formula in QM. The state of particles 

before (after) the scattering is called the initial (final) state. For single-particle scattering, if the initial 

state is a plane waves of a free particle, 
ie ⋅p r

, after scattered by a scattering center, the final state is a 

complicated spherical wave function ( , )tψ r . This spherical wave has projected amplitudes on 

plane waves 
ie ′⋅p r

 in all directions. 

We first consider the case that the two particles are both free before scattering, and then transit 

to two new plane waves after the scattering. 
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Suppose that two free particles with momenta 1p  and 2p  collide. The initial state is the 

product of two plane waves, 1 1 2 2i ie e⋅ ⋅p r p r
. The final state 1 2( , ; )tψ r r  is complex, which can spread in 

all directions. If we intend to implement the reverse process of the scattering, we must prepare the 

1 2( , ; )tψ r r  as the initial state for the reverse process, which is apparently impossible. So, this 

scattering process of two free particles in QM is irreversible. 

Nevertheless, the 1 2( , ; )tψ r r  can be expanded by two-particle plane waves, i.e., it has project 

amplitude on every pair of plane wave 1 1 2 2i ie e′ ′⋅ ⋅p r p r
. That is to say, there is a probability for the two 

particles with momenta  1p  and 2p  to transit to two plane waves with specific momenta 1′p  

and 2′p . This probability is denoted as 1 2 1 2( , ; , )w ′ ′p p p p . In Figure 1, we use a piece of arrowed 

line to represent a plane wave with a momentum. Figure 1a is the sketch that the two 1 2( , )p p  plane 

waves transit to two new plane waves 1 2( , )′ ′p p , denoted as 1 2 1 2( , ) ( , )′ ′→p p p p . Figure 1b–d are 

respectively the time-inverse transition, reverse transition, and reciprocal transition of Figure 1a. All 

of the transitions follow the total energy conservation and total momentum conservation (59). The 

transition probability of the reciprocal process is denoted as 1 2 1 2( , ; , )w ′ ′p p p p . 

We have rigorously proved that [65] 

1 2 1 2 1 2 1 2( , ; , ) ( , ; , )w w′ ′ ′ ′=p p p p p p p p  (67)

The transition probability of the process Figure 1a, 1 2 1 2( , ) ( , )′ ′→p p p p  is the same as that of 

Figure 1d 1 2 1 2( , ) ( , )′ ′ →p p p p . This conclusion is derived from the scattering theory in QM, so that 

it is always valid, irrespective to whether a system reaches detailed balance, as well as irrelevant to 

the properties of the whole gas [75]. 

The previous discussion about the two-particle collisions and detailed balance in classical 

mechanics is entirely applicable to the case here, as long as the two-particle collision in classical 

mechanics is replaced by the scattering transition of two free particles, 1 2 1 2( , ) ( , )′ ′→p p p p , in QM. 

In particular, the detailed balance only concerns a pair of reciprocal scattering transition Figure 1a,d, 

and is irrelative to the reverse transition Figure 1c.  

If a scattering transition Figure 1a occurs, the probability of the occurrence of its reverse process 

Figure 1c is equal to 1, then, the original process Figure 1a is said reversible. However, it is actually 

that 1 2 1 2( , ; , ) 1w ′ ′ <p p p p . Similarly, the probability that the process Figure 1c happen is necessarily 

less than 1. Therefore, the process Figure 1a is irreversible. 

It was believed that [51,52] 

1 2 1 2 1 2 1 2( , ; , ) ( , ; , )w w′ ′ ′ ′= − − − −p p p p p p p p . (68)

This relationship means that the transition probabilities of the processes Figure 1a,b are the 

same. This was called detailed balance and seemed obtained from QM [76], the authors of which 

equated the time-inverse and reverse processes. We stress that in deriving scattering formulas [65], 

we always considered clockwise processes. We do not know how to include the clockwise and 

anticlockwise processes in one formulas. In Section II, it is seen that the retarded and advanced 

processes have to be studied separately. Therefore, we can prove Equation (67) but are unable to 

verify (68) by the scattering theory in QM. 

We address three points here. First, we make it clear that detailed balance (60), but not (67), is a 

content in statistical mechanics. Equation (67) is proved by the scattering theory in QM. Second, 

Equation (60) is expressed by momentum distribution function, which involves all molecules in the 

gas, while (67) only concerns two molecules, irrespective to other molecules. Third, Equation (60) 

only applies to equilibrium states, while (67) is always correct for two-particle scattering, regardless 

of whether the whole gas reaches equilibrium. 
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In Ref. [51], Equation (68) is put down first. Then, with known Maxwell-Boltzmann distribution 

for equilibrium state, it is postulated that the numbers of the collision and reverse collision in unit 

time and unit phase space volume are the same so as to achieve (60). This procedure is different from 

that used by Boltzmann, who first obtained (60) for equilibrium state, and then derive Maxwell-

Boltzmann distribution from Equation (60). 

We turn to discuss the collision between two non-free particles. That is to say, before and after 

the collision, particles may be in bound states. A non-free particle is also called a bound particle. On 

account of the identity of particles, detailed balance should be written in the following form 

[11,13,15,74]. 

(1 )(1 ) (1 )(1 ),

0,  Distinguishable particles
1,  Bosons

1,  Fermions

i j i j i j i jn n n n n n n nχ χ χ χ

χ

χ

χ

′ ′ ′ ′+ + = + +

=


= +
 = −

 (69)

In Equation (69), the 
in  is the average number of particles in the energy state 

iε . From the left 

to right hand sides, Equation (69) represents that two particles in the energy levels 
iε  and 

jε  

collide, and then transit to energy levels 
iε ′  and 

jε ′ , respectively, denoted as ( , , )i j i j′ ′→ . From 

the right to left hand side, Equation (69) refers to its reciprocal process, ( , , )i j i j′ ′ → . The transition 

probabilities of the two processes are denoted by ( , , )w i j i j′ ′→  and ( , , )w i j i j′ ′ → , 

respectively. It can be verified [65] that  

( , , ) ( , , )w i j i j w i j i j′ ′ ′ ′→ = → .  (70)

In the reciprocal courses, the total energy is conserved. 

i j i jε ε ε ε′ ′+ = + .  (71)

Please note the difference of the two bound particles’ collision and two free-particles’ collision. 

A free particle has a momentum. Its state has an index momentum. In its revers motion, its 

momentum direction is opposite to that in its original motion. This direction reversion helps us 

distinguish the reverse and reciprocal motions, e.g., Figure 1c,d. In both original and reverse motions, 

its total energy and total momentum are conserved, see Equation (59).  

A bound particle is in one of its discrete energy levels, and there is no momentum such a state 

index. Thus, a collision requires the conservation of total energy, see Equation (70), without the 

relationship of momentum conservation. In this case, there is no difference between reverse and 

reciprocal collisions. 

It may be due to the identity of the reverse and reciprocal collisions of bound particles, some 

ones believed that the collisions are reversible. We reiterate the definition of reversibility of a process: 

if after an original process ( , , )i j i j′ ′→  occurs, the occurrence probability of the reverse process 

( , , )i j i j′ ′ →  is less than 1, i.e., ( , , ) 1w i j i j′ ′ → < , then the original process is irreversible. This is 

because the particles in the state ( , )i j  can also transit to states other than states ( , )i j′ ′  by 

collision, as long as Equation (71) is meet. The conclusion is that in any case, two-particle collisions 

are irreversible. 

Messiah [77] thought that Equation (67) was a microreversibility relation. The author of Ref. [78] 

thought that Equation (67) meant the detailed balance. “This notion is based solely on the reversibility 

of the microscopic equation of motion. (Or, more technically, on the Hermitian nature of the 

scattering Hamiltonian.)” The detailed balance (69) only involves the distribution function, and has 

nothing to do with whether the equation of motion is reversible. Moreover, the two-particle scattering 

transition is irreversible. We emphasize that when deriving equation (67), we do not use the time 

inversion invariance of the microscopic equations of motion [65]. 
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For the cases of two free particle collisions, that equilibrium is reached is not due to the 

reversibility of the collision, but form detailed balance (60). Similarly, in the case of bound particle 

collisions, equilibrium is neither due to the reversibility of the collisions, but due to (69). In the case 

of quantum statistics, detailed balance can be obtained by master equation, although in a form 

superficially different from (69) [9,11,53]. By the form from master equation, it is possible to define a 

“distance” measuring the violation of detailed balance [19]. 

IV. CONCLUSION 

In this work, by careful analysis, we find that the motions of microscopic particles are 

irreversible.  

We first distinguish between the concepts of equation of motion and specific motion. These two 

concepts have different mathematical expressions. An equation of motion is just a differential 

equation that embodies the laws of motion, which can be of invariance under time inversion, but it 

does not describe any specific motion. A specific motion is a specific solution solved from the 

equation of motion after considering the initial conditions. It represents the relationship between 

physical quantities over time and can be graphically illustrated. 

We then distinguish between the concepts of time-inverse motion and reverse motion. The 

former is counterclockwise, which is a fictional movement, and the latter is clockwise. In both 

classical mechanics and quantum mechanics, we give mathematical expressions for time-inverse 

motion and reverse motion. The former is described by a time-advanced function, and the latter by a 

time-retarded function. From the mathematical derivation, we conclude that the single-particle 

motion process is irreversible. 

A system consisting of a large number of molecules frequently colliding with each other is called 

a collision system. In such a system the microscopic mechanism that plays a decisive role is two-

particle collision. 

A careful analysis of the two-particle collision was carried out. Three cases are considered: two-

particle collision in classical mechanics, the collisions of two free particles and two bound particles in 

quantum mechanics. For the cases of two free particle collisions, a distinction is made between 

reverse collision and reciprocal collision. This difference stems from the fact that there is a momentum 

index of the state of the particle. For the two bound particle collision, there is no difference between 

these two collisions, because there is no momentum index in the state of a particle. 

We have defined the reversibility for the three cases of two-particle collisions. By definition, all 

these collision processes are irreversible.  

The irreversibility of the microscopic two-particle collisions determines that, generally speaking, 

the macroscopic processes of gases are irreversible. 

However, the occurrence of large number of collisions can make a gas reach detailed balance. 

The detailed balance means that the combination of a two-particle collision and its reciprocal collision 

retain the distribution function of the gas unchanged. This is the equilibrium state. The detailed 

balancing does not have the meaning of micro-reversibility. The prerequisite for achieving the 

detailed balance is that the number of molecules in the gas is sufficiently large. 

In summary, every specific micro-process is essentially irreversible. The statistical nature of a 

large number of micro processes can lead to the reversibility of certain macro processes. Thereby, we 

explain the microscopic mechanism of why the processes of gases can be irreversible. 
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