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Abstract: Autonomous Underwater Vehicles (AUVs) are emerging as pivotal tools in underwater

applications such as seafloor exploration and the inspection of pipelines or cables. Traditional

land-based avoidance methods prove insufficient when applied to the complex underwater

environment, largely due to the unique constraints presented by marine environments and the specific

dynamics of AUVs. In this study, we introduce an improved stream function-based obstacle avoidance

algorithm specifically tailored for autonomous underwater vehicles. The proposed algorithm is based

on a stream function that is derived from the stream function. The stream function is characterized

by a radial histogram for the cost function. In addition, constraints related to the maximum path

curvature are discussed to optimize the utility of the path. Our exhaustive simulation cases validate

the robustness and adaptability of the proposed algorithm, demonstrating its ability to produce

feasible and optimized avoidance paths in a variety of scenarios.

Keywords: stream function; path planning algorithms; obstacle avoidance AUV; fluid dynamics in

path planning

1. Introduction

AUV are becoming increasingly important in underwater operations such as seafloor exploration

and the inspection of pipelines or cables. Their use not only promises cost savings, but also reduces

the risks associated with systems that require a human operator on board [18]. A major challenge in

the development of advanced autonomous systems is to create real-time path planning and obstacle

avoidance strategies that can effectively guide the vehicle through unstructured environments.

Research in recent times has seen the development of numerous strategies aimed at addressing

the intricacies of path planning. Fundamentally, path planning algorithms can be categorized into

pregenerative and reactive types [8]. The former, often known as global path planning algorithms,

determines the path prior to the mission’s commencement. Examples include the Free Space Network,

which utilizes a directed graph reflecting environmental properties [9] and the Cell Decomposition

approach, which employs an undirected graph based on subdividing the environment into distinct

predefined cellular structures [10]. Another notable technique is the Octree-based method, optimal for

three-dimensional environments, although it requires recursive subdivisions of mixed cells [11]. A

notable limitation of these global algorithms is their rigidity in adapting paths during active missions

due to their nonreal-time nature, although they excel in delivering collision-free paths.

However, reactive algorithms predominantly employ differential computational methods. The

Potential Field method, for instance, traces the gradient of artificially produced potential field lines

in an environment. However, this could lead to local minimum challenges, potentially ensnaring the

vehicle or producing suboptimal solutions [12]. Solutions such as the stream function, a variant of

the harmony function, have been proposed to counteract this [23]. This technique has witnessed its

applicability in areas like robot navigation, with instances of using hydrodynamic analysis to develop

stream functions for intricate geometries [17]. In particular, most existing research is focused on

terrestrial and aerial vehicles, leaving underwater applications relatively unexplored.
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The underwater environment presents unique challenges. Communication is hampered due to

the restrictive bandwidth in underwater channels. The domain is susceptible to currents and may

span worldwide [13]. Additionally, torpedo-like vehicles exhibit strong non-holonomic characteristics,

with path curvature constraints stemming from vehicle controllability and sonar system limitations.

The limited literature focusing on the planning of underwater-specific routes accentuates the need for

innovative algorithms tailored for these demanding conditions [14].

Recently, there has been a heightened interest in examining the path planning capabilities of

AUVs through research based on streamline principles. For example, Yongqiang et al. [4] verified

the suitability of the stream function for formation control and path planning within multi-agent

frameworks. This paradigm also extends to wireless sensor networks, where Wang et al. [5] advocated

the application of the stream function to enhance the coverage of the network. Delving deeper into

marine dynamics, To et al. [6] advanced a local motion plan for underwater vehicles, employing the

stream function to increase their maneuverability. Furthermore, Nan et al. [7] embarked on a rigorous

exploration of the path identification algorithm in conjunction with the stream function. W. Cai and et

al [1] propose a fluid mechanics-based obstacle avoidance method for AUVs in 3D IoUT, enhancing

energy efficiency and multi-obstacle avoidance through path deformation and energy models. P. Yao

and etal [2] propose an improved IIFDS-based submerged path planning method for autonomous

underwater vehicles in intricate ocean settings. The culmination of these studies underscores the

pivotal role of streamline-based methodologies in optimizing the functionality of various automated

systems.

In this paper, we propose a two-dimensional path planning algorithm based on stream functions

tailored specifically for AUV. Many AUVs separate the control of depth from the control of the path,

making a two-dimensional path planning approach more feasible than a three-dimensional one. In

particular, FLS sensors are used for three-dimensional navigation, but they usually scan in the lateral

directions, usually providing data on the xy plane. Consequently, our study emphasizes the application

of a two-dimensional stream function. We introduce a streamline function-based technique for single

obstacle avoidance and demonstrate, mathematically, that the generated stream path can bypass

obstacles without encountering local minima. Subsequently, we define a streamline function for the

creation of paths concerning obstacles N and analyze the generated path using established theorems.

Ultimately, to validate the effectiveness of the proposed path creation technique, we performed path

planning based on the specifications of the FLS sensor implemented in the developed LIG AUV. The

performance of the generated path technique was then assessed by interfacing with the onboard

control system through simulations.

This paper presents two contributions. First, mathematical analysis of the streamline-based

obstacle avoidance algorithm has been conducted, demonstrating that the proposed technique does

not encounter a local minimum. Second, the effectiveness of the path planning algorithm has been

validated through simulations based on AUV dynamics, using obstacle detection sensors on an actual

AUV model.

The subsequent sections of this paper are structured as follows. Section II delves into preliminaries

on the stream function and its path-planning applications. Section III explicates the proposed

methodology. Section IV presents a case study accompanied by simulation results. Finally, Section V

concludes the paper.

2. Preliminaries

The study of flows of incompressible, inviscid and irrotational fluids hinges on the potential

function, a fundamental concept that allows for the formal representation of such flows. The stream

function, a broader mathematical construct, encapsulates both spatial coordinates and temporal

progression. Its existence is intrinsically tied to the principles of continuity and incompressibility that

govern fluid dynamics, with empirical observations indicating its presence even in viscous media [20].
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In the framework of infinitesimal increments, denoted as δx and δy, velocity components aligned

to the respective axes, represented as u and v, adhere to the following relation:

u = −
∂ψ

∂y
, v =

∂ψ

∂x
(2.1)

Here, the velocities u and v pertain to the x and y directions, correspondingly. The term ∇2ψ epitomizes

the vorticity of fluid flow. An irrotational flow within a domain Ω satisfies ∇2ψ = 0, rendering ψ a

harmonic function within this domain [16]. Renowned studies affirm the absence of local extremities

in harmonic functions [22], which implies a similar behavior for the stream function.

This work harnesses the representation of the stream function through complex equations. In this

context, the marriage between stream and potential functions yields the following complex equation:

Definition 2.1. Complex Potential Given φ and ψ as the velocity potential and stream function describing the

irrotational bidimensional movements of an inviscid fluid, the associated complex potential is given by:

ω = φ + iψ (2.2)

This results in the following velocity components:

∂φ

∂x
=

∂ψ

∂y
,

∂φ

∂y
= −

∂ψ

∂x
(2.3)

This relationship precisely aligns with the Cauchy-Riemann equations, signifying that ω operates as a

holomorphic function of the complex variable z = x + iy, in regions where φ and ψ are singular.

A fundamental proposition in using stream functions within path planning algorithms stems from

the inherent ability of the stream function to depict a continuous, smooth trajectory devoid of local

extremes. The crux lies in devising a complex stream function sensitive to the positional nuances of

obstacles, thereby facilitating an intricate obstacle avoidance technique in alignment with streamlines.

Upon introducing an obstacle into a flow, the incumbent boundary condition necessitates the

flow to be tangent to the obstacle’s surface. This is in tandem with the consistent nature of the stream

function on an obstacle surface, as ψ maintains uniformity along a streamline. To identify a streamline

that envelopes the specified obstacle, one must calibrate the imaginary component of the complex

potential function to be consistent.

The subsequent theorem, known as the Circle Theorem, elucidated in [19], delves into the

dynamics of the complex potential with an integrated boundary condition.

Theorem 2.2. Circle Theorem [19] Consider an irrotational, bidimensional flow of an incompressible inviscid

fluid across the z-plane devoid of rigid boundaries. If the complex potential of the flow is denoted by f (z), and all

singularities of f (z) lie beyond a distance r from a reference point b, then the introduction of a circular cylinder,

characterized by its cross-sectional circle C where |z − b| = r, alters the complex potential as:

ω = φ + iψ = f (z) + f̄

(

r2

z − b
+ b̄

)

(2.4)

Proof. A detailed proof is articulated in [19].

Here, f̄ signifies the conjugate function and b̄ is the corresponding conjugate variable in the

complex plane. The complex representation of the obstacle b is given by b = bx + byi, with bx and by

indicating the coordinates of the obstacle x and y, respectively. Analogously, the location z is given by

z = x + yi.
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The Circle Theorem proffers the capability to compose the vehicle’s stream function using

primitives situated in arbitrary locales. A quintessential primitive, especially relevant for AUV,

is the sink, denoted by fs:

fs(z) = −C ln(z) (2.5)

where C ∈ R+ denotes the strength of the associated singularity.

Given that the sink is positioned at the origin and an obstacle is situated at (bx, by), the complex

potential, by invoking Theorem 2.2, becomes:

ω = −C ln(z)− C ln

(

r2

z − b
+ b̄

)

(2.6)

The ensuing stream function, derived from the imaginary component of equation (2.6), is expressed as:

ψ(z) = ψa(z) + ψb(z) = −C tan−1
( y

x

)

+ C tan−1







r2(y−by)

(x−bx)2+(y−by)2 + by

r2(x−bx)
(x−bx)2+(y−by)2 + bx






(2.7)

In the above relation, ψa and ψb denote the stream function components for the sink and the obstacle,

respectively.

3. Stream Function Based Obstacle Avoidance Path Planing for Autonomous Underwater Vehicle

3.1. Design of a new stream function for path planning

In the context of this study, we introduce an innovative path-planning technique for AUVs within

a two-dimensional plane. Path planning inherently involves three pivotal coordinates: the starting

position, the obstacle location, and the goal position. In particular, the stream function expressed in

Equation (2.7) omits details related to the destination location, with the starting point anchored at the

origin. Consequently, our aim is to derive a novel stream function that encapsulates the target location.

Drawing parallels with the conventional stream function, where the sink primitive represents the

start position, we utilize the source primitive to symbolize the goal location. We extend the complex

potential function (2.6) to encompass this additional dimension, as:

ω = −C ln(z − a) + C ln(z − c)− C ln

(

r2

z − b
+ b̄

)

(3.1)

Here, a = ax + ayi and c = cx + cyi denote the coordinates of the starting and goal points, respectively.

The resultant stream function is thus computed as:

ψ(z) = ψa(z) + ψc(z) + ψb(z)

= −C tan−1

(

y − ay

x − ax

)

+ C tan−1

(

y − cy

x − cx

)

+ C tan−1







r2(y−by)

(x−bx)2+(y−by)2 + by

r2(x−bx)
(x−bx)2+(y−by)2 + bx






(3.2)

Here, ψc(z) represents the stream function component for the goal point.
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Assumption 3.1. For the purposes of this paper, we operate under the assumption that all obstacles reside

between the start and goal positions, thus satisfying:

1) {bx, by, cx, cy} ∈ R+

2)
√

(∆bx)2 + (∆by)2 + r + ra <

√

(∆cx)2 + (∆cy)2
(3.3)

Where ∆bx = bx − ax, ∆by = by − ay, ∆cx = cx − ax, and ∆cx = cx − ax.

A crucial challenge in the practical deployment of AUVs is related to the measurement

methodologies employed. Typically, AUVs harness sonar sensors to identify obstacles. The acoustic

signals emitted from these sensors undergo various signal and image processing transformations

before manifesting themselves as images. Although a detailed discussion on image processing or the

enhancement of sonar performance lies beyond the scope of this work, it is imperative to consider the

implications of these pre-processing steps through certain assumptions:

1. Every obstacle within the search area is identified post pre-processing.
2. The discerned data include only the position and magnitude of the obstacles.
3. The preprocessing procedures are sufficiently rapid to facilitate real-time operations.

Sonar sensors typically employ a fan-shaped area for their search capabilities. This is pictorially

represented in Figure 1, where the normalized search domain of the sonar is depicted. The fan-shaped

zone can be quantitatively characterized by its search range, ls and search angle, θ. Consequently, the

waypoint for an avoidance path can be deduced as:

x(k + 1) = x(k) + lm cos θh (3.4)

y(k + 1) = y(k) + lm sin θh (3.5)

where lm represents the movement step and θh is the heading angle. This transformation allows the

coordinate elements in the waypoint determination problem to transition from (x, y) to (lm, θh). The

primary objective in this study is to determine the optimal heading angle θh to ensure that the waypoint

(x, y) resides in C f , given that the movement step lm is intrinsically influenced by the vehicle’s speed.

A

U


V



h
θ


s
θ


)
,
(
 0
0
 y
x


s
θ


Figure 1. Normalized searching area of sonar represented as a fan-shaped region.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 October 2023                   doi:10.20944/preprints202310.0386.v1

https://doi.org/10.20944/preprints202310.0386.v1


6 of 14

The previously discussed stream function serves as a pivotal determinant of the optimal heading

angle. The challenge of determining the heading angle can be mathematically articulated as identifying

θopt:

θopt = arg min
θ

fcost(θ) (3.6)

Here, fcost is a cost function assigned to evaluate the suitability of each heading angle. An exemplary

cost function employing the stream function is:

f = ‖ψ(x0 + lm cos θh + i(y0 + lm sin θh)‖
2 (3.7)

where (x0, y0) signifies the boundary coordinate of the sonar’s fan-shaped searching zone. This cost

function produces the absolute value of the stream function, rendering θopt as the angle corresponding

to the stream function’s minimum value.

To enhance robustness, we propose a histogram-based approach, specifically a radial histogram,

for the cost function:

fcost =
ls

∑
l=1

θh+θs

∑
θt=θh−θs

θt+θc

∑
θ=θt−θc

‖ψ(x0 + l cos θ + i(y0 + l sin θ)‖2 , ∀b ∈ O (3.8)

In this equation, θc represents the radial cluster size, an essential parameter dictating the robustness of

the cost function.

3.2. Design of avoidance path planning for single obstacle

Given a scenario in which a single obstacle lies between the starting point (A) and the goal point

(B), a multi-waypoint avoidance path can be determined using radial histogram analysis combined

with the flow function methodology.

However, employing the stream function presented in equation (2.7) directly as a radial histogram

cost function is problematic. The root of the challenge lies in the fact that the cost function outputs the

optimal angle that nullifies the stream function’s value. To enhance the radial histogram’s efficacy, we

modify the stream function as:

ψs(z) = |ψa(z) + ψc(z)|+ |g(ψb(z))| (3.9)

where the function g is defined as:

g(ψb(z)) =

{

ψ0(z) if (x − bx)2 + (y − by)2 ≥ r2

ρ0 otherwise
(3.10)

Here, ρ0 denotes the minimum bias value of the obstacle’s stream function.

Theorem 3.2. Consider an AUV with a maximum radius ra. Let an obstacle of radius r be positioned at

(bx, by) ∈ R+. Let A and B represent the start and goal points with coordinates (ax, ay) and (cx, cy) respectively.

The path avoids obstacles if the following conditions hold:

ρ0 > 4lsθcθs‖ψmax‖
2 (3.11)

√

(∆cx)2 + (∆cy)2 >

√

(∆bx)2 + (∆by)2 + r + ra (3.12)
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Here, ψmax symbolizes the peak value of the stream function ψs(z) outside the obstacle zone. The waypoints for a

collision-free path are given by:

x(k + 1) = x(k) + lm cos θh, x(0) = ax (3.13)

y(k + 1) = y(k) + lm sin θh, y(0) = ay (3.14)

where θh is as defined below:

θh = min
θ

[

ls

∑
l=1

θh+θs

∑
θt=θh−θs

θt+θc

∑
θ=θt−θc

‖ψs(x0 + l cos θ + i(y0 + l sin θ))‖2

]

, ∀b ∈ O (3.15)

Proof. We need to prove two suppositions. The first thing is that there is no collision, and the second

thing is that the path starting at A should end at B. Let the cost function fcost at (x, y) 6∈ O has

θh+θs

∑
θt=θh−θs

θt+θc

∑
θ=θt−θc

‖ψm(x0 + l cos θ + i(y0 + l sin θ))‖2 (3.16)

<

θh+θs

∑
θt=θh−θs

θt+θc

∑
θ=θt−θc

‖ψmax‖
2 (3.17)

< 4lsθcθs‖ψmax‖
2 (3.18)

If ρ0 has 2lsθc‖ψmax‖2,the following relationship is always satisfied,

fcost(z1) < fcost(z2), z1 6∈ O, z2 ∈ O (3.19)

so, there is no the point (x0 + cos(θh), y0 + sin(θh)) in obstacle region. It means that there is no collision

in the obstacle avoidance path. The first proof is done. Let us consider two stream functions in (3.9)

such as ψa(z) + ψc(s) = −C tan−1(m1) + C tan−1(m2) where m1 and m2 are tangents defined as

m1 =
y − ay

x − ax
, m2 =

y − cy

x − cx
(3.20)

Similar to above, obstacle stream function can be rewritten as

ψb(z) = tan−1

(

r̂
y + (1/r̂ − 1)by

x + (1/r̂ − 1)bx

)

(3.21)

where r̂ = r2/{(x − bx)2 + (y − by)2}.Then equation (3.9) is,

ψm(z) = | − C tan−1(m1) + C tan−1(m2)| (3.22)

+

∣

∣

∣

∣

g(tan−1

(

r̂
y + (1/r̂ − 1)by

x + (1/r̂ − 1)bx

)

)

∣

∣

∣

∣

(3.23)

The avoidance path is determined by the selecting optimum angle which has minimum value of mean

square sum of (3.32). The minimum value of (3.23) is mainly determined by the values of ψa(z) + ψc(z).

which has a minimum value when C tan−1(m1) = C tan−1(m2). It means that ψa(z) + ψc(z) has

minimum at (x, y) satisfying,

y =
cy − ay

cx − ax
x + ay −

cy − ay

cx − ax
ax. (3.24)
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Equation (3.24) includes the starting point and goal point. Additionally, all streamlines should converge

to (ax, ay) and (bx, by) because ψa and ψc represent the primitives of the sink and source. Therefore,

the second supposition is verified.

In terms of computational efficiency, it’s pertinent to note that the cost to pinpoint the optimal

angle θh scales with 2θc × ls. This implies that the computational overhead is dependent on both the

sonar range and the robustness of the chosen path.

3.3. Path Planning Design for Multiple Obstacle Avoidance in Underwater Environments

In underwater environments, AUVs frequently encounter multiple obstacles during mission

execution. The stream function-based path planning method, delineated in Theorem 3.2, efficiently

handles single obstacle scenarios. By integrating additional stream functions, the approach preserves

its properties. Similarly, the representation for multiple obstacles can be deduced as an aggregation of

individual obstacle functions.

Theorem 3.3. Consider an AUV with a maximum radius of ra. Let its starting point be A = (ax, ay) ∈ R+

and the goal point be B = (cx, cy) ∈ R+. Assuming there are n obstacles in the underwater environment, and

the k-th obstacle b(k) is situated at (bkx, bky) ∈ R+ with a radius rk. The obstacle avoidance path remains

collision-free if the following conditions are met:

ρ0 > 4nlsθcθs‖ψmax‖
2 (3.25)

√

(∆cx)2 + (∆cy)2 >

√

(∆bkx)2 + (∆bky)2 + rmax + ra, ∀(bkx, bky) ∈ O (3.26)

The obstacle avoidance path waypoints can then be calculated as:

x(k + 1) = x(k) + lm cos θh, x(0) = ax (3.27)

y(k + 1) = y(k) + lm sin θh, y(0) = ay (3.28)

where,

rmax = max(rk), (3.29)

∆bkx = bkx − ax, (3.30)

∆bky = bky − ay, (3.31)

θh = arg min
θ

[

ls

∑
l=1

θh+θs

∑
θt=θh−θs

θt+θc

∑
θ=θt−θc

‖ψm(x0 + l cos θ + i(y0 + l sin θ))‖2

]

, (3.32)

ψm(z) = n|ψa(z) + ψc(z)|+
n

∑
k=1

|g(ψb(z))|, ∀b(k) ∈ O. (3.33)

Proof. The proof strategy is analogous to that of Theorem 3.2. The difference lies in the collision-free

condition (3.11) being updated to (3.25) due to a n-fold increase in the maximum value of ψn(z). For a

cost function fcost at a point (x, y) 6∈ O, we have:

ls

∑
l=1

θh+θs

∑
θt=θh−θs

θt+θc

∑
θ=θt−θc

‖ψm(x0 + l cos θ + i(y0 + l sin θ)‖2 (3.34)

< l
θh+θs

∑
θt=θh−θs

θt+θc

∑
θ=θt−θc

‖ψmax‖
2 (3.35)

< 4nlsθcθs‖ψmax‖
2 (3.36)
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If ρ0 exceeds 4nlsθcθs‖ψmax‖2, it always satisfies:

fcost(z1) < fcost(z2), z1 6∈ O, z2 ∈ O (3.37)

This ensures a collision-free obstacle avoidance path.

4. Simulation Results and Analysis

The proposed streamline-based path planning technique is versatile, with two primary modes of

application. First, a global path-planning approach facilitates the generation of obstacle avoidance

trajectories in maritime environments teeming with impediments. The salient advantage of paths

generated using this technique is their foundation on streamline principles, making them conducive

for AUVs to follow with ease. Second, this technique can also be harnessed for local path planning,

specifically to create trajectories between waypoints, designed to evade obstacles.

In this study, the characteristics of obstacle avoidance sensors, as developed and integrated into

the LIG Nex1 AUV (Figure 3), were considered. For simulation purposes, obstacle data that mirror

real-world conditions was fed, based on these sensors. The employed multi-beam Forward Looking

Sonar (FLS) possesses the following specifications:

• Feasible operating range: 30m
• Horizontal beam width: 120◦

• Radial cluster size, θc: 5◦

Figure 2. Mock-up of LIG Nex1 AUV (FLS sonar is installed in front head in real AUV)

Figure 3. FLS of LIG Nex1 AUV

Note that the insonified region of FLS is not included in the simulation results presented. The

operational parameters for the AUV are set as a linear velocity of (1 m / s) and an angular velocity cap

of 60◦/s.
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A comprehensive performance assessment of the path generation algorithm was conducted

through simulations. These simulations were designed to both evaluate the algorithm’s efficacy

against generic obstacle patterns and test its robustness in overcoming obstacles leading to local minima.

The primary objective is to empirically validate its robustness and feasibility. For consistency, each

simulation was conducted under the assumption that the dimensions of the underwater environment

are (100m × 100m). Furthermore, the AUV is abstracted as a particle with a radius of 2 m. The

threshold bias value, ρ0, is designated as 105. This value sufficiently satisfies the condition given

by equation (3.11) in Theorem 3.2, particularly as ψmax remains below 103 across all underwater

environmental points.

Figure 4 highlights the local minimum dilemma often encountered in potential field methods.

Here, the AUV speed is set to (1 m / s) with a sonar operating range of 20m. Traditional potential-field

techniques tend to cause the AUV to stall in front of U-shaped obstacles. On the contrary, our proposed

stream function-centric approach successfully navigates these challenges, generating smooth paths for

obstacle avoidance.
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Figure 4. Illustration of the local minimum challenge in potential fields

Figures 5 and 6 represent scenarios with increased navigational complexity. The algorithm

consistently produces reliable avoidance paths in the majority of these complicated cases.
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Figure 5. AUV avoidance path in a multifaceted environment (Scenario I)
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Figure 6. AUV avoidance path in a multifaceted environment (Scenario II)

The fidelity of an AUV to adhere to the planned trajectory is crucial. Using the motion model of

the LIG Nex1 AUV equipped with an obstacle detection sonar, we analyzed the tracking performance

against the obstacles formed in the simulation. This AUV implementation incorporates a nonlinear

feedback controller. Although the AUV’s trajectory is three-dimensional, the LIG Nex1 AUV discretely

performs depth control and course control. Hence, the proposed streamline control technique was

applied exclusively to course control. Figure 7 shows the entire simulation diagram, including the

AUV model and the path planning algorithm.

Figure 7. Simulation configuration for LIG AUV model

Figure 8 delimits the trajectory comparison in response to incremental obstacle placements.

Simulations were executed with the AUV cruising at 4 knots, following waypoints spaced at 150 units.

The sonar detection range was set to 30 m, with an FOV of 120 degree. Obstacles were strategically

placed between waypoints and consequent trajectory deviations were observed. Another figure

(referenced as Figure 9) shows the variation in control output based on depth changes due to obstacle

avoidance. If a complex path is generated, the control angle is pushed to its limits, potentially resulting

in a speed reduction and increased energy consumption. However, the empirical evidence from

obstacles 1 and 2 suggests that the proposed streamline-based path planning induces no excessive

strain on the AUV’s actual control angle, thereby confirming its potential to produce trajectories that

remain within a stable control range.
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Figure 8. Comparison of simulation trajectories with various obstacle conditions

Figure 9. Comparison of control fins with various obstacle conditions
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5. Conclusions

In this study, an improved stream function-based obstacle avoidance algorithm specifically

tailored for AUVs has been introduced. Traditional land-based avoidance methods prove insufficient

when applied to the complex underwater environment, largely due to the unique constraints presented

by marine environments and the specific dynamics of AUVs. Our proposed methodology inherently

accounts for these specificities by integrating a comprehensive set of parameters pertinent to both

AUVs and their aquatic surroundings. In particular, these parameters encompass factors such as

dynamic environments, variable visibility conditions, communication latencies, the presence of

multiple AUVs, energy budget constraints, equipment malfunctions, intricate underwater terrains,

external disturbances, and varying payload dynamics. Our exhaustive simulation cases validate the

robustness and adaptability of the proposed algorithm, demonstrating its ability to produce feasible

and optimized avoidance paths across a myriad of scenarios. This reinforces the potential applicability

and relevance of our approach in real-world AUV operations.
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