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Abstract: This study aimed to delineate the longitudinal antibody responses to the Pfizer-

BioNTech COVID-19 vaccine (BNT162b2) within the Ugandan subset of the Sub-Saharan African 

(SSA) demographic, filling a significant gap in global datasets. We enrolled 48 participants, 

collecting 320 specimens over 12 months after vaccination. A validated enzyme-linked 

immunosorbent assay (ELISA) was used to quantify SARS-CoV-2-specific IgG, IgM, and IgA 

concentrations (ng/ml) and optical densities (ODs). Statistical analyses included box plots, 

diverging bar graphs, and the Wilcoxon test with Bonferroni correction. We showed a robust S-

IgG response within 14 days of the primary vaccine dose, consistent with global data. 

Remarkably, we observed no significant surge in S-IgG levels following the booster, contrasting 

trends other global populations. The S-IgM response was transient, and predominantly 

established thresholds, reflecting its typical early emergence and subsequent decline. S-IgA 

increased initially but declined six months post-vaccination, in line with the temporal dynamics 

of mucosal immunity. Eleven breakthrough infections occurred; however, all were asymptomatic, 

indicating a protective effect from the vaccination regardless of the participants' initial S-IgG 

serostatus. The Pfizer-BioNTech COVID-19 vaccine elicited strong S-IgG responses in the SSA 

demographic. However, antibody dynamics distinctly differed from global data highlight the 

significance of region-specific research and the necessity for customized vaccination strategies. 

Keywords: Pfizer-BioNTech vaccine; SSA; S-IgG Antibody dynamics; S-IgM; S-IgA; SARS-CoV-

2; Breakthrough Infections 

 

Introduction 

A global health crisis triggered by the Severe Acute Respiratory Syndrome Coronavirus 2 

(SARS-CoV-2), responsible for the COVID-19 pandemic, necessitated rapid research and the 

introduction of vaccines. Among these, the Pfizer-BioNTech COVID-19 vaccine (BNT162b2) 
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showed significant efficacy in clinical trials, mainly undertaken in Western cohorts. There remains 

a significant gap in knowledge regarding the vaccine's effectiveness in Africa, particularly within 

Sub-Saharan Africa. Given the unique genetic diversity, endemic diseases, and specific 

microenvironmental conditions present in Sub-Saharan Africa (SSA), examining the long-term 

efficacy of vaccines in this region is pivotal. These distinct factors have been substantiated to impact 

responses to various viral vaccines, highlighting the critical need to understand vaccines' sustained 

performance and implications within this specific context [1–5]. This study bridges this knowledge 

gap, examining the longitudinal serological response to the Pfizer-BioNTech vaccine within Sub-

Saharan Africa and underscoring potential disparities across diverse populations [6]. To address 

the pressing need for region-specific data from SSA, we conducted a 12-month analysis exploring 

the antibody responses to the Pfizer-BioNTech vaccine within a Ugandan cohort. This study is 

critical in formulating vaccination strategies and discerning the trajectories of long-term immunity 

in the region. By examining the correlations between baseline antibody levels, breakthrough 

infections, and subsequent antibody responses, our study aimed to offer essential insights for 

developing public health strategies appropriately tailored to meet the unique challenges and 

contexts of the region.  

Our study provides a comprehensive analysis of the one-year SARS-CoV-2-specific antibody 

dynamics (IgG, IgM, IgA) a region typically underrepresented in global vaccine research, 

illuminating seroconversion patterns and the influence of baseline serostatus on vaccine 

effectiveness, with broader implications for booster strategies and breakthrough infections. This 

research contributes pivotal insights capable of informing and refining vaccination strategies and 

public health policies throughout Africa by bridging a significant knowledge gap. The findings 

emphasize the importance of understanding diverse vaccine responses to facilitate the formulation 

of customized and pragmatic immunization strategies. 

Materials and Methods 

Study population and study design 

In this study, we collected 320 specimens from a cohort of 48 individuals who received two 

doses of the PFZ vaccine on day 0 and day 30. Participants were monitored for 12 months after 

their initial vaccination, with samples collected from March 21, 2021, to January 6, 2023. Of the 48 

participants, 45.8% (n=22) were female and 54.2% (n=26) were male. The age ranged from 19 to 49 

years, with a median of 30 years and an Interquartile Range (IQR) of 25-35.3 years. Blood samples 

were collected prior to the administration of both the first and second doses of the Pfizer-BioNTech 

COVID-19 Vaccine, BNT162b2. In addition, samples were collected on Days 14 and 28 following 

the initial dose. Approximately 30 days following the initial vaccination, a booster was 

administered, with samples subsequently collected on Days 14 and 28 and then at six, nine and 

twelve months after the first dose, as shown in Figure 1. 
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Figure 1. The Pfizer BioNTech Vaccination and Sample Collection schedule. 

Binding antibody ELISA to detect SARS-CoV-2-specific IgG, IgM, and IgA levels.  

We used a validated enzyme-linked immunosorbent assay (ELISA) to quantify the presence 

and levels of specific SARS-CoV-2 antibodies, targeting both spike and nucleoprotein antigens in 

the specimens, quantifying IgG, IgM, and IgA concentrations in ng/ml through detected optical 

densities at 450 nm. The established cut-off values for antibody positivity within this population 

were: S-directed IgG (0.432), IgM (0.459), and IgA (0.226); and N-directed IgG (0.454), IgM (0.229), 

and IgA (0.225). Further details on the ELISA protocol and cut-off criteria can be found in our 

previous publication [7].  

Statistical methods  

We used box plots to visually represent medians, means, and quartiles for our statistical 

analysis. Diverging bar graphs were used to show the percentage of seroconversion at each follow-

up time point. We applied the Wilcoxon test for pairwise comparisons to determine significant 

differences in antibody responses across time points, with a Bonferroni correction to adjust for 

multiple testing. Given the missing data/samples across time points, we opted for unpaired tests. 

A threshold of p > 0.05 was deemed non-significant (ns). Significance levels were as follows: * for 

p <= 0.05, ** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001. 

Results 

Post-vaccination Trends Showed a Robust S-IgG Response, with No significant Booster Dose 

Effect, Sub-optimal S-IgM, and Time-Limited S-IgA Elevation 

We first examined the temporal dynamics of antibodies targeting the Spike protein, starting 

with the baseline S-IgG antibody responses at Day 0 (D0) and then examining their median values 

at subsequent time points. Of the 48 participants in the study, 43 had available baseline S-IgG data. 

These individuals were stratified based on their S-IgG seropositivity at baseline: those with levels 

at or above the S-IgG cutoff were designated as S-IgG+ (shown in red), while those below the 

threshold were labelled as S-IgG- (represented in blue), as illustrated in Figure 2. A marked rise in 

S-IgG antibody responses from day 0 (D0) to 14 days post-priming dose was evident for both S-

IgG positive (S-IgG+) and negative (S-IgG-) groups, with the increase being more pronounced for 

the S-IgG- group (Figure 2A and 2B). Notably, while the initial immune response at D0 differed 

significantly between the two groups, with S-IgG+ participants displaying higher responses, the 

post-vaccination S-IgG antibody distributions became indistinguishable at subsequent intervals. 
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After 14 days post-priming, the concentrations of S-IgG antibodies remained relatively comparable 

between both groups. Notably, there was no discernible enhancement in immune responses after 

the booster dose administration. 

 

Figure 2. Individual profile graphs categorised by baseline S-IgG seropositivity. 

On the other hand, S-IgM antibody responses remained low throughout, with most 

participants registering responses below the cutoff. No distinction was observed in S-IgM antibody 

levels between S-IgG+ and S-IgG- participants at any point, as depicted in Figures 2C and 2D. In 

contrast, S-IgA antibodies surged exponentially within the first 14 days post-priming. This trend 

persisted until the sixth month post-priming before a noticeable decline, as shown in Figures 2E 

and 2F. Notably, there were no significant variations in S-IgA responses between S-IgG+ and S-

IgG- participants at any given time, suggesting equivalent S-IgA immune responses across the 

timeframes evaluated. 

These data highlight a robust S-IgG response post-vaccination, a suboptimal S-IgM response, 

and a consistent S-IgA response that eventually declines after six months. The findings offer 

valuable insights into the antibody profile following vaccination and supports the importance of 

monitoring these responses over time. 

Rapid and Sustained Seroconversion of S-IgG and S-IgA Following Primary Vaccination, but 

Transient S-IgM Seropositivity 
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Using predefined cutoffs of 0.432 for S-IgG, 0.459 for S-IgM, and 0.226 for S-IgA [7], 

participants were categorised based on their S-IgG positivity as positive or negative at the initial 

time point. This classification provided the count (and percentages) of participants exhibiting 

positive or negative results for any antibodies at the respective time points. All 320 samples 

contributed to this classification, with the sample distribution for each time point depicted in 

Figure 1. At the beginning of the study (Day 0), 47% of the participants were without S-IgG 

antibodies. By Day 14 post-primary vaccination, all participants exhibited S-IgG positivity, which 

remained above 80% for the study duration, Figure 3A. Initially (Day 0), 21% of the participants 

demonstrated the presence of S-IgM antibodies, which increased to 53% by D14PP. Nevertheless, 

as depicted in Figure 3B, most participants experienced a decline in antibody responses after 

reaching a peak, dropping to 27% six months post-primary dose, and showing a total absence of S-

IgM seropositivity nine months after the primary vaccination. The percentage of S-IgA-positive 

participants rose from 21% on Day 0 to 71% fourteen days post-prime, as illustrated in Figure 3C. 

This upward trend persisted until six months post-primary vaccination, at which point it began to 

decline, eventually stabilising at 41% by 12 months post-primary vaccination. 

 

Figure 3. Frequencies of Spike-directed seroconversion. 

The use of box plots and an unpaired Wilcoxon test highlighted significant dynamics in 

antibody responses to the S-antigen over time. Specifically, we observed a marked increase in S-

IgG antibody OD values and concentrations from day 0 to day 14 post-prime, with high levels 

persisting until day 28 post-boost. On day 0, the OD values were 0.464 (IQR 0.250, 0.793), and 

concentrations were 40.986 BAU/ml (IQR 20.314, 113.864). By day 14 post-prime, these had 

increased to 1.247 (IQR 0.850, 1.474) and 534.576 BAU/ml (IQR 204.062, 1257.831). Elevated levels 

persisted until day 28 post-boost, with OD values at 1.330 (IQR 1.147, 1.489) and concentrations at 

642.461 BAU/ml (IQR 341.770, 993.056). However, a notable decline in S-IgG OD levels was evident 

from six months post-prime to twelve months post-prime, summarised in Table 1. Notably, the 

decline in S-IgG antibody concentrations was not statistically significant, as they remained stable 

throughout the follow-up period, Figures 4A and 4B. In contrast, we observed relatively modest S-

IgM antibody responses, which substantially reduced after six months post-priming (Figures 4C 

and 4D). Concurrently, a significant increase in S-IgA antibody levels was observed on day 14 

following the initial dose, and these elevated S-IgA levels persisted until month nine post-prime, 

where a significant decline in S-IgA OD responses was evident (Figures 4E and 4F). These findings 

offer valuable insights into the temporal dynamics of the Pfizer vaccine-induced antibody 
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responses against the S-antigen, shedding light on potential correlates of immunity and providing 

guidance for future vaccination strategies. 

 

Figure 4. Comparing Spike-directed antibody responses using boxplots. 

Post-Vaccination Longitudinal Analysis Unveiled Breakthrough Infections with no Significant 

Difference by Baseline S-IgG Serostatus 

Through a pairwise analysis of antibody OD levels (Figure 5A) and concentrations (Figure 

5B), we constructed heatmaps to represent the median fold changes in Spike antibody responses 

between consecutive time points. Increased responses were visually highlighted in red, while 

reduced responses were indicated in green. The data indicates pronounced fold increases in S-IgG 

and S-IgA antibody responses compared to D0, although changes between adjacent time points 

remained marginal. Additionally, subtle variations in S-IgM between pairwise time points were 

noted. 

A distinct rise in N-IgG antibody levels after a completed vaccination regimen was indicative 

of an infection. Participants manifesting this surge, 14 days following their complete vaccine 

dosage, were classified as breakthrough cases. An 11-fold escalation in N-IgG levels signified a 

confirmed infection. Six months after full vaccination, a noticeable rise in infected participants was 

observed. In total, 11 individuals were identified as breakthrough: seven became infected six 

months post vaccination, two at nine months, and two at a year post prime. When stratified by 

baseline S-IgG status, five participants were previously S-IgG positive, five were S-IgG negative, 

and one remained unclassified due to the absence of initial S-IgG data, Figure 5C. 
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Figure 5. Fold changes in Spike-directed Antibody Levels and Frequency of Breakthrough 

Infections Post-Vaccination. 

The Early Rise in S-IgG Antibody Responses in Seronegative Participants Subsequently 

Aligned with Seropositive Counterparts Throughout the Subsequent Study Duration 

At the study's onset (D0), of the 48 participants, 23 tested positive for S-IgG, 20 tested negative, 

and five lacked baseline specimens. Notably, there was a significant decline in S-IgG OD antibody 

responses at 12 months post-prime relative to 9 months, as illustrated in Figures 6A and 6B. Modest 

levels of S-IgM were observed in these participants (Figures 6C and 6D), with a marked rise in S-

IgA antibodies from D0 to D14PP, persisting until M9PP before a significant decline (Figures 6E 

and 6F). 

Among the 20 participants initially lacking S-IgG antibodies, we observed a significant 

increase in S-IgG antibodies from the day of vaccination to two weeks post-vaccination, sustained 

until a month after the booster, with a notable decline in OD levels by the sixth month, but 

consistent antibody concentrations across all study time points without any significant rise post-

boost, as shown in Figures 7A and 7B. Participants with a baseline seronegative status showed 

reduced S-IgM antibody levels (Figures 7C and 7D). However, S-IgA responses rose from D0 to 

D14 after the initial vaccination and stabilized (Figures 7E and 7F). In our findings, baseline 

seronegative participants showed a comparable IgG antibody trajectory to their seropositive 

counterparts, except that the latter group did not exhibit a post-prime boost in antibody 

concentrations. This pattern did not change when breakthrough participants were excluded from 

the analysis, Supplementary Figure 3. 
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Figure 6. Boxplots comparing Spike-directed Antibody Responses Among Individuals with 

Baseline S-IgG Antibodies. 

Limited Early Presence of N-Directed Antibody Responses but Significant Increase by 12 

Months Post-Prime in Pfizer-BioNTech COVID-19-Vaccinated Individuals 

Within the N-directed antibody response context, participants, irrespective of their baseline 

S-IgG status, exhibited low N-directed IgG responses, illustrated in Supplementary Figures 1A and 

1B. Initially, only a minimal proportion were N-IgG seropositive at baseline; however, this 

markedly increased to 62% at 12 months post-prime (M12PP), as depicted in Supplementary Figure 

1C. Moreover, the presence of low levels of N-IgM was a consistent observation among both S-

IgG+ and S-IgG- participants, as demonstrated in Figures 1D and 1E. The percentage of participants 

testing positive for S-IgM decreased from 51% at baseline to 24% on Day 28 post-boost (D28PB) 

before experiencing a rise to 57% six months following the initial dose (Supplementary Figure 1F). 

This rise could be attributed to subsequent breakthrough infections. We consistently observed low 

levels of N-directed N-IgG and N-IgM antibodies throughout the study, as depicted in 

Supplementary Figures 2A-2D. The analysis revealed no statistically significant variations in these 

levels over time. 

Discussion 

In the global response to the SARS-CoV-2 pandemic, the Pfizer-BioNTech COVID-19 Vaccine 

(BNT162b2) played a pivotal role, demonstrating notable efficacy in diverse populations 

worldwide. However, until now, there is a striking lack of data regarding its performance within 

the African demographic, particularly SSA. This gap is particularly significant considering the 
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distinct and extensive genetic diversity [8–10], environmental, and epidemiological activation 

microenvironment prevalent within African populations [1,11], that do influence vaccine-induced 

immune responses [6,12]. Our study provides critical insights into the dynamics of longitudinal 

antibody responses post-Pfizer-BioNTech COVID-19 vaccination within the SSA demographic, 

presenting findings that align with and differ from international datasets. The significant and 

persistent S-IgG response observed within 14 days after the initial dose is consistent with global 

data, underscoring the vaccine's potential to induce potent immunity across a wide range of 

demographics [13]. This robust response was sustained throughout, regardless of participants' 

baseline S-IgG serostatus. While the lack of a pronounced increase in S-IgG levels post-booster in 

our cohort aligns with some populations [14], it contrasts with many others [15,16], highlighting 

differential immune dynamics that merit further investigation. Numerous factors might account 

for these disparities: genetic divergences, unique HLA patterns in the African populace affecting 

antigen processing [8], protective advantages from earlier SARS-CoV-2 exposure  [17], and a 

consistently low booster response in those with prior exposure, as noted in studies on other viruses 

[18]. Further research is warranted to elucidate this. The transient and subdued S-IgM response 

observed post-vaccination, largely falling below established thresholds, reflects its customary early 

emergence and subsequent decline as memory responses develop. The limited detection of this 

isotype post-vaccination is consistent with the induction of a mature memory response, as 

previously observed in natural infections in this population [19] and others [20,21]. S-IgA, vital for 

mucosal defence against SARS-CoV-2 [22], showed a significant trend: an initial increase followed 

by a decline six months after the primary vaccination, highlighting the need for ongoing 

surveillance to ensure lasting protective immunity. Our analysis showed a comparable frequency 

of breakthrough infections between participants with baseline S-IgG positive and those with 

baseline S-IgG negative serostatus; the differences were not statistically significant. Regardless of 

their baseline serostatus, all individuals experiencing breakthrough infections remained 

asymptomatic, highlighting the potential protective benefits of vaccination [23]. These data also 

align with the concept of "hybrid immunity," suggesting that a synergistic effect of natural 

immunity and vaccination might enhance overall protection. In our study, we examined the 

longitudinal profiles of the Pfizer vaccine within the SSA context, specifically focusing on the 

Ugandan demographic. While many of our findings mirrored global trends, the unique antibody 

dynamics we identified underscore the significance of tailored, region-specific research. Such 

findings reinforce the necessity of understanding regional distinctions to effectively shape and 

implement vaccination strategies and public health policies in diverse settings. 

Several critical implications emerge in our study examining the longitudinal profiles of the 

Pfizer vaccine in SSA. We observed a robust S-IgG antibody response post-vaccination, consistent 

with global trends [14,24], underscoring the vaccine's ability to induce potent adaptive immunity 

in the African cohort. Post-vaccination antibody peaks were higher than those following infection; 

however, the subsequent trajectory aligned with hybrid immunity, most of the time. The transient 

nature of the S-IgM response, mirroring findings from other populations, suggests the typical 

transient nature of these antibodies post-vaccination rather than vaccine inefficacy. Notably, the 

early surge and subsequent decline of S-IgA antibodies at six months offers insights into the 

temporal dynamics of mucosal immunity [14,25], which plays a crucial role against respiratory 

pathogens like SARS-CoV-2 [26,27]. Our analysis of breakthrough infections in participants devoid 

of symptoms, underscored the potential protectiveness of the elicited immunity [28,29]. 

Furthermore, the lack of a pronounced surge in S-IgG antibodies post-second dose in our 

cohort contrasts with other populations [16], hinting at unique genetic or environmental 

determinants in SSA that might influence the vaccine's response. The limited surge in antibody 

response after the second dose might indicate a potentially altered prime-boost strategy for the 
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Ugandan population. Perhaps a longer interval between doses, as shown in mice studies, might 

yield a different outcome [30]. This difference necessitates deeper evaluation into genetic 

predispositions, especially considering the HLA diversity in Africans and its potential impact on 

adaptive vaccine responses.  

While this study provides insights into the antibody dynamics post-Pfizer vaccination among 

the Ugandan subset of the SSA population, it is not without limitations. First, the participant 

sample size of 48 might only partially capture the diverse and heterogeneous SSA demographic  

[31–33]. Furthermore, we primarily focused on binding antibody responses, omitting the 

evaluation of antibody functionality [34]. The significance of T-cell-mediated immunity [35,36],  

crucial for sustained viral defense, was also not examined in our study. Furthermore, while the 12-

month period provides a thorough overview, it may not capture the intricacies of long-term 

immune memory or potential changes in immunity that arise later. Furthermore, considering the 

continuous emergence of new SARS-CoV-2 variants, a definitive assessment of the vaccine's 

performance against these novel strains in this setting is yet to be established. Considering our 

findings, we recommend comprehensive studies across varied African demographics. Given the 

unique genetic diversity and environmental and health challenges faced in the African setting, it is 

crucial to conduct region-specific studies. Such research should focus on understanding the 

efficacy of booster doses across various age groups and health statuses, especially in individuals 

with co-existing endemic infections such as malaria or HIV. Moreover, studies should also evaluate 

the durability of vaccine-induced immunity in the African population, considering local disease 

prevalence and potential interactions with other prevalent infections. Understanding these factors 

can offer insights into optimizing vaccination strategies tailored to the African context. There is a 

need to investigate T-cell responses post-vaccination for a holistic understanding of vaccine-

induced immunity. The observed dynamics in both baseline seropositive and seronegative 

individuals suggest the potential necessity for periodic booster doses. Future studies should also 

consider the relationship between genetic factors, vaccine response, and breakthrough infections 

in this population. Evaluating the vaccine in relation to prevalent SARS-CoV-2 strains in SSA and 

the effects of prior natural infections could guide optimal vaccination strategies. 

In conclusion, this study highlighted the antibody responses to the Pfizer-BioNTech COVID-

19 vaccine in SSA, a demographic previously underrepresented in global datasets. We observed a 

strong S-IgG response, with notable differences in S-IgM and S-IgA dynamics and responses 

relative to baseline S-IgG serostatus. Notably, a post-boost surge was absent, emphasizing the need 

for customized vaccination plans for areas with unique environmental and genetic profiles, like 

SSA. Region-centric studies are vital to ensure that vaccination strategies resonate with diverse 

serological and genetic contexts, enhancing their effectiveness. 
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