Submitted:
06 October 2023
Posted:
06 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction and PCR
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brusatte, S.L.; O’connor, J.K.; Jarvis, E.D. The Origin and Diversification of Birds. Curr. Biol. 2015, 25, R888–R898. [Google Scholar] [CrossRef]
- Griffiths, R.; Double, M.C.; Orr, K.; Dawson, R.J. A DNA test to sex most birds. Mol. Ecol. 1998, 7, 1071–1075. [Google Scholar] [CrossRef]
- Morinha, F.; Cabral, J.A.; Bastos, E. Molecular sexing of birds: A comparative review of polymerase chain reaction (PCR)-based methods. Theriogenology 2012, 78, 703–714. [Google Scholar] [CrossRef]
- Griffiths, R. Sex identification in birds. In Seminars in Avian and Exotic Pet Medicine; WB Saunders: Philadelphia, PA, USA, 2000; pp. 14–26. [Google Scholar]
- Bermúdez-Humarán, L.G.; García-García, A.; Leal-Garza, C.H.; Riojas-Valdes, V.M.; Jaramillo-Rangel, G.; Montes-de-Oca-Luna, R. Molecular sexing of monomorphic endangered Ara birds. Journal of Experimental Zoology 2002a, 292, 677–680. [Google Scholar]
- Bermúdez-Humarán, L. G.; Chávez-Zamarripa, P.; Guzmán-Velasco, A.; Leal-Garza, C. H.; Montes de Oca-Luna, R. Loss of restriction site DdeI, used for avian molecular sexing, in Oreophasis derbianus. Reproduction in domestic animals 2002b, 37, 321–323. [Google Scholar]
- Cerit, H.; Avanus, K. Sex identification in avian species using DNA typing methods. World's Poult. Sci. J. 2007, 63, 91–100. [Google Scholar] [CrossRef]
- Vučićević, M.; Stevanović, J.; Simeunović, P.; Vučićević, I.; Đelić, N.; Stanimirović, Z.; Stojić, V. Analysis of the CHD gene for sex determination of protected bird species. In Proceedings of the International symposium on hunting, “Мodern aspects of sustainable management of game population”, 2012, 24, 83–86. [Google Scholar]
- Kidd, A.H.; Kidd, R.M. Problems and Benefits of Bird Ownership. Psychol. Rep. 1998, 83, 131–138. [Google Scholar] [CrossRef]
- Meyers, N.M. Perspectives on pet bird welfare from the pet industry. J. Am. Vet. Med Assoc. 1998, 212, 1238–1242. [Google Scholar]
- Davis, C. Appreciating avian intelligence: the importance of a proper domestic environment. J. Am. Vet. Med Assoc. 1998, 212, 1220–1222. [Google Scholar]
- Graham, D.L. Pet birds: historical and modern perspectives on the keeper and the kept. J. Am. Vet. Med Assoc. 1998, 212, 1216–1219. [Google Scholar]
- Wyndham, E. Diurnal cycle, behaviour and social organization of the budgerigar Melopsittacus undulatus. Emu 1980, 80, 25–33. [Google Scholar]
- Curro, T.G. Anesthesia of pet birds. In Seminars in Avian and Exotic Pet Medicine; WB Saunders: Philadelphia, PA, USA, 1998; Volume 7, pp. 10–21. [Google Scholar]
- Forshaw, J. M. Parrots of the World. Princeton, NJ: Princeton University Press, 2010; 70.
- O'Malley, B. Clinical Anatomy and Physiology of Exotic Species; Elsevier Saunders: Philadelphia, PA, USA, 2005; pp. 138–142. ISBN 9780702027826. [Google Scholar]
- Ellrich, H.; Salewski, V.; Fiedler, W. Morphological sexing of passerines: not valid over larger geographical scales. J. Ornithol. 2010, 151, 449–458. [Google Scholar] [CrossRef]
- Schmitt, C.J.; Edwards, V.S. Passerine birds. Curr. Biol. 2022, 32, R1149–R1154. [Google Scholar]
- Hill, N.P. Sexual dimorphism in the Falconiformes. Auk. 1944, 61, 228–234. [Google Scholar]
- Nesje, M.; Røed, K.H. Sex identification in falcons using microsatellite DNA markers. Hereditas 2004, 132, 261–263. [Google Scholar] [CrossRef]
- Peng, S.; Broom, D.M. The sustainability of keeping birds as pets: Should any be kept? Animals (Basel). 2021, 11, 582. [Google Scholar]
- Handel, C.M.; Pajot, L.M.; Talbot, S.L.; Sage, G.K. Use of Buccal Swabs for Sampling DNA from Nestling and Adult Birds. Wildl. Soc. Bull. 2006, 34, 1094–1100. [Google Scholar] [CrossRef]
- Ito, H.; Sudo-Yamaji, A.; Abe, M.; Murase, T.; Tsubota, T. Sex Identification by Alternative Polymerase Chain Reaction Methods in Falconiformes. Zoöl. Sci. 2003, 20, 339–344. [Google Scholar] [CrossRef]
- Fridolfsson, A.-K.; Ellegren, H. A Simple and Universal Method for Molecular Sexing of Non-Ratite Birds. J. Avian Biol. 1999, 30, 116–121. [Google Scholar] [CrossRef]
- Lee, J.C.-I.; Tsai, L.-C.; Hwa, P.-Y.; Chan, C.-L.; Huang, A.; Chin, S.-C.; Wang, L.-C.; Lin, J.-T.; Linacre, A.; Hsieh, H.-M. A novel strategy for avian species and gender identification using the CHD gene. Mol. Cell. Probes 2009, 24, 27–31. [Google Scholar] [CrossRef]
- Fridolfsson, A.K.; Cheng, H.; Copeland, N.G.; Jenkins, N.A; Liu, H.C.; Raudsepp, T.; Woodage, T.; Chowdhary, B.; Halverson, J.; Ellegren, H. Evolution of the avian sex chromosomes from an ances- tral pair of autosomes. Proc Natl Acad Sci USA. 1998, 95, 8147–8152. [Google Scholar]
- O’Neill, M.; Binder, M.; Smith, C.; Andrews, J.; Reed, K.; Smith, M.; Millar, C.; Lambert, D.; Sinclair, A. ASW: a gene with conserved avian W-linkage and female specific expression in chick embry- onic gonad. Dev Genes Evol. 2000, 210, 243–249. [Google Scholar]
- Suh, A.; Kriegs, J.O.; Brosius, J.; Schmitz, J. Retroposon Insertions and the Chronology of Avian Sex Chromosome Evolution. Mol. Biol. Evol. 2011, 28, 2993–2997. [Google Scholar] [CrossRef]
- de Kloet, R.S.; de Kloet, S.R. Evolution of the spindlin gene in birds: independent cessation of the recombination of sex chromosomes at the spindlin locus in neognathous birds and tinamous, a palaeognathous avian family. Genetica 2003, 119, 333–342. [Google Scholar] [CrossRef]
- Li, W.; Xue, F.; Li, L.; Li, X.; Yue, B.; Li, J. A triple-primer PCR approach for the sex identification of endangered Phasianidae birds. Eur. J. Wildl. Res. 2012, 58, 289–294. [Google Scholar] [CrossRef]
- Kroczak, A.; Wierzbicki, H.; Urantówka, A.D. In Silico Analysis of Seven PCR Markers Developed from the CHD1, NIPBL and SPIN Genes Followed by Laboratory Testing Shows How to Reliably Determine the Sex of Musophagiformes Species. Genes 2022, 13, 932. [Google Scholar]
- Turcu, M.-C.; Paștiu, A.I.; Bel, L.V.; Pusta, D.L. A Comparison of Feathers and Oral Swab Samples as DNA Sources for Molecular Sexing in Companion Birds. Animals 2023, 13, 525. [Google Scholar] [CrossRef]
- Newton, C.R.; Graham, A.; Heptinstall, L.E.; Powell, S.J.; Summers, C.; Kalsheker, N.; Smith, J.C.; Markham, A. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989, 17, 2503–2516. [Google Scholar] [CrossRef]
- Han, J.-I.; Kim, J.-H.; Kim, S.; Park, S.-R.; Na, K.-J. A Simple and Improved DNA Test for Avian Sex Determination. Ornithology 2009, 126, 779–783. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Němec, P.; Albrecht, T.; Lymberakis, P.; Kratochvíl, L.; Rovatsos, M. Long-term stability of sex chromosome gene content allows accurate qPCR-based molecular sexing across birds. Mol Ecol Resour. 2021, 21, 2013–2021. [Google Scholar]
- Kroczak, A.; Wołoszyńska, M.; Wierzbicki, H.; Kurkowski, M.; Grabowski, K.A.; Piasecki, T.; Galosi, L.; Urantówka, A.D. New Bird Sexing Strategy Developed in the Order Psittaciformes Involves Multiple Markers to Avoid Sex Misidentification: Debunked Myth of the Universal DNA Marker. Genes 2021, 12, 878. [Google Scholar] [CrossRef]
- Peng, S.; Broom, D.M. The sustainability of keeping birds as pets: Should any be kept? Animals (Basel). 2021, 11, 582. [Google Scholar]



| Order | Species | No* | Oral swabs | Feathers | Blood |
|---|---|---|---|---|---|
| Falconiformes | Falco subbuteo | 1 | 1 | 1 | 1 |
| Accipitriformes | Buteo buteo | 3 | 3 | 3 | 3 |
| Galliformes | Phasianus colchicus | 2 | 2 | 2 | - |
| Anseriformes | Cygnus cygnus | 5 | 5 | 5 | 3 |
| Passeriformes | Taeniopygia castanotis | 2 | 2 | 2 | - |
| Chloebia gouldiae | 2 | 2 | 2 | - | |
| Carduelis cucullata | 2 | 2 | 2 | - | |
| Carduelis carduelis major | 2 | 2 | 2 | - | |
| Serinus canaria forma domestica | 2 | 2 | 2 | - | |
| Psittaciformes | Ara macao | 4 | 4 | 4 | 3 |
| Psittacus erithacus | 4 | 4 | 4 | 2 | |
| Cacatua alba | 1 | 1 | 1 | 1 | |
| Psittacula krameri | 2 | 2 | 2 | 1 | |
| Psephotus haematonotus | 2 | 2 | 2 | - | |
| Nymphicus hollandicus | 3 | 3 | 3 | - | |
| Agapornis fischeri | 4 | 4 | 4 | - | |
| Melopsittacus undulatus | 2 | 2 | 2 | - | |
| TOTAL | 43 | 43 | 43 | 14 |
| Order | Species | No* | Males | Females |
|---|---|---|---|---|
| Falconiformes | Falco subbuteo | 1 | - | 1 |
| Accipitriformes | Buteo buteo | 3 | 1 | 2 |
| Galliformes | Phasianus colchicus | 2 | 2 | - |
| Anseriformes | Cygnus cygnus | 5 | 3 | 2 |
| Passeriformes | Taeniopygia castanotis | 2 | 1 | 1 |
| Chloebia gouldiae | 2 | 1 | 1 | |
| Carduelis cucullata | 2 | 1 | 1 | |
| Carduelis carduelis major | 2 | 1 | 1 | |
| Serinus canaria forma domestica | 2 | 1 | 1 | |
| Psittaciformes | Ara macao | 4 | 4 | - |
| Psittacus erithacus | 4 | 1 | 3 | |
| Cacatua alba | 1 | 1 | - | |
| Psittacula krameri | 2 | 1 | 1 | |
| Psephotus haematonotus | 2 | 1 | 1 | |
| Nymphicus hollandicus | 3 | 2 | 1 | |
| Agapornis fischeri | 4 | 2 | 2 | |
| Melopsittacus undulatus | 2 | 1 | 1 | |
| TOTAL | 43 | 24 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
