

Article

Not peer-reviewed version

Improvement of the Genome Editing Tools Based on 5FC/5FU Counter Selection in *Clostridium acetobutylicum*

Eglantine Boudignon , Céline Foulquier , [Philippe Soucaille](#) *

Posted Date: 6 October 2023

doi: 10.20944/preprints202310.0324.v1

Keywords: *Clostridium acetobutylicum*; genome edition; 5FU; PyrR

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Improvement of the Genome Editing Tools Based on 5FC/5FU Counter Selection in *Clostridium acetobutylicum*

Eglantine Boudignon ^{1,2,3}, Céline Foulquier ^{1,2,3} and Philippe Soucaille ^{1,2,3,4,*}

¹ TBI, INSA, Université de Toulouse, 31400 Toulouse, France; eglantine.boudignon@insa-toulouse.fr (E.B.); céline.foulquier@insa-toulouse.fr (C.F.)

² Institut National de Recherche pour l'Agriculture, l'alimentation et l'environnement (INRAe), UMR 792, 31077 Toulouse, France

³ Centre National de la Recherche Scientifique (CNRS), UMR 5504, 31400 Toulouse, France

⁴ BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, University Park, Nottingham NG7 2RD, UK

* Correspondence: philippe.soucaille@insa-toulouse.fr

Abstract: Several genetic tools have been developed for *Clostridium acetobutylicum* utilizing 5-fluorouracil (5FU) or 5-fluorocytosine (5FC) resistance as a selection method. A method based on the integration, by single crossing-over, of a suicide plasmid (pCat-*upp*) followed by selection for the second crossing-over using a counter-selectable marker (the *upp* gene and 5FU resistance) was recently developed for genome editing in *C. acetobutylicum*. This method allows the modification of the genome without any marker or scar left in a strain of *C. acetobutylicum* that is Δ *upp*. Unfortunately, 5FU has strong mutagenic properties inducing mutations in the strain's genome. After numerous applications of the pCat-*upp*/5FU system for genome modification in *C. acetobutylicum*, the bacteria became completely resistant to 5FU in the presence of the *upp* gene, resulting in failure in the selection for the second crossing-over. It was found that the potential repressor of the pyrimidine operon, PyrR, was mutated at position A115, leading to the 5FU resistance of the strain. We developed two plasmids, one overexpressing the native *pyrR* gene and a suicide plasmid carrying a non-mutated and optimized *pyrR* gene (*pyrR**) and *upp*, which allowed us to restore the 5FU sensitivity of the strain. We also improved the pCat-*upp*/5FU system by reducing the concentration of 5FU from 1mM to 5 μ M using a define synthetic medium.

Keywords: *Clostridium acetobutylicum*; genome edition; 5FU; PyrR

1. Introduction

In recent years, solventogenic Clostridia have garnered significant attention in the post-genomic era, primarily owing to the comprehensive sequencing and annotation of their genomes [1,2]. This wealth of genomic information has provided valuable insights into the metabolism of these industrially important strains, thereby catalyzing new approaches to genetic analysis, functional genomics, and metabolic engineering for the development of industrial strains geared towards biofuel and bulk chemical production.

To facilitate these endeavors, various reverse genetic tools have been devised for solventogenic Clostridia. These tools include markerless gene inactivation systems, employing methods such as homologous recombination with non-replicative [3–5] and replicative plasmids [6–9], as well as the insertion of group II introns [10,11]. For all homologous recombination-based methods involving two crossing-over, the use of a counterselection technique is imperative. This may involve employing CRISPR-Cas9 [12,13] or a counterselectable marker, which have been constructed using the codon-optimized *mazF* toxin gene from *Escherichia coli* (under the control of a lactose-inducible promoter) [7], the *pyrE* [8] gene (encoding an orotate phosphoribosyltransferase, leading to 5-fluoroorotate (5-

FOA) toxicity), the *upp* gene (encoding an uracil phosphoribosyltransferase, leading to 5-fluorouracil (5-FU) toxicity) [5,9], or the *codA* gene [4] (encoding a cytosine deaminase that converts 5-Fluorocytosine to 5-FU, which is further transformed into a toxic compound by the product of the *upp* gene).

It is worth noting that while strategies relying on 5FC/5FU selection are highly effective, they should be employed cautiously. 5FU is a well-known anticancer drug recognized for its mutagenic properties in human cancers [14]. These mutagenic attributes have been demonstrated in various organisms, including *Caenorhabditis elegans*, *E. coli*, or *Mycobacterium tuberculosis* [15–17].

In our study, we will demonstrate that a mutation impairs the 5FU counterselection method. Upon identification of this issue, we endeavored to enhance the 5FU counterselection method for genome editing in *C. acetobutylicum*. This improvement involved the development of a corrective and preventive suicide plasmid, inspired by Foulquier et al. [5], featuring the introduction of a synthetic codon-optimized *pyrR* gene, referred to as *pyrR**. Additionally, we created a corrective replicative plasmid, building upon the work of Raynaud et al. [18], which incorporated the native *pyrR* gene. These two plasmids effectively circumvented the unanticipated 5FU resistance observed in *C. acetobutylicum*, substantially improving our team's previously described method by also reducing the concentration of 5FU required by a factor of 200 (from 1 mM to 5 μ M) using a synthetic define medium.

2. Materials and Methods

2.1. Bacterial strains, plasmids and oligonucleotides

The bacterial strains and plasmids used in this study are referenced in **Table 1**. The oligonucleotides used for PCR amplification were synthesized and provided by Eurogentec are listed in **Table 2**.

Table 1. Bacterial strains and plasmids used in this study.

Strain or plasmid	Relevant characteristics	Source or reference
Bacterial strains		
<i>E. coli</i>		
TOP10		Invitrogen
<i>C. acetobutylicum</i>		
<i>CAB1060</i>	Δ CAC1502 Δ upp Δ ptb Δ buk Δ ctfAB Δ ldhA Δ rexA Δ thlA::atoB Δ hbd::hbd1	[19]
Δ cac1502	Δ CA_C1502	[9]
Δ cac1502 Δ upp Δ cac3535	Δ CA_C1502 Δ CA_C2879 Δ CA_3535	[9]
Δ cac1502 Δ upp Δ cac3535 <i>pyrR</i> ^{mut}	Δ CA_C1502 Δ CA_C2879 Δ CA_3535 CA_C2113 g.344C>T	This study
Δ cac1502 Δ upp Δ cac3535 <i>pyrR</i> ^{mut} Δ ldh::sadh <i>hydG</i>	Δ CA_C1502 Δ CA_C2879 Δ CA_3535 CA_C2113 g.344C>T Δ CA_C0227:: CIBE_3470 <i>HydG</i> (Accession: P25981.3)	This study
Plasmid		
pCat- <i>upp</i>	<i>Cm</i> ^R , <i>upp</i> , <i>colE1</i> origin	[5]
pCat- <i>upp</i> - <i>pyrR</i> ^{mut}	<i>Cm</i> ^R , <i>upp</i> , <i>pyrR</i> edition cassette for <i>C. acetobutylicum</i>	This study
pCat- <i>upp</i> - Δ ldh	<i>Cm</i> ^R , <i>upp</i> , <i>ldh</i> deletion cassette for <i>C. acetobutylicum</i>	[20]
pCat- <i>upp</i> - <i>pyrR</i> [*]	<i>Cm</i> ^R <i>upp</i> <i>pyrR</i> [*]	This study

pCat-upp-pyrR*-Δldh	<i>Cm</i> ^R , upp pyrR*, <i>ldh</i> deletion cassette for <i>C. acetobutylicum</i>	This study
pCat-upp-pyrR*-Δldh::sadh-hydG	<i>Cm</i> ^R , upp pyrR*, <i>ldh</i> substitution cassette for <i>sadh</i> <i>hydG</i> for <i>C. acetobutylicum</i>	This study
pSOS95	<i>Ap</i> ^R , <i>MLS</i> ^R , acetone operon, <i>repL</i> gene, <i>colE1</i> origin	[18] This study
pSOS95-pyrR	<i>Ap</i> ^R , <i>MLS</i> ^R , <i>pyrR</i> , <i>repL</i> gene, <i>colE1</i> origin	

Table 2. Oligonucleotides used for PCR amplification.

Primer name	5'-3' Oligonucleotide Sequence
PSC 39	GCATGCTCTTGTAGGTGATCCTT
PSC 40	TGTTTACTGAATCCTCTTCATCTATTCC
PSC 46	AAAAAAAGGCGCCCTACAACCTCATAAATGTTACTGAATCCTC
PSC 51	CAGAGTATTAAAGCAAAAACATCGTAGAAAT
PSC 52	TTATTGTACCGAATAATCTATCTCCAGC
PSC 58	AAAAAAAGGATCCTTATACTGGAGGTGAGTGTATGAATTAAAAG
PSC 61	CCATGGTTTACTGGAGGTGAGTGTATGAATCTAAAGCTAAGATTCTTGATGA
PSC 62	TAAGGC
PSC 72	AAACACCGTATTCTACGATGTTTGCTAAATACTCTGCCATGGCTATAGCTC ATATATGTTAACACTATCCTCTTC
PSC 75	TCTTGGAGATGCTGGAGATAGATTATTCGGTACAAAATAACCATGGTTACTG GAGGTGAGTG
PSC 76	TTAATAGGATCCGAACCCATCAAATAAGAGTCATATGG
PSC 104	TATTAAGGATCCAGTCCTGCCAAC
PSC 105	AAATATAAATGAGCACGTTAACATCATTAAACATAGATAATTAAATAGTAAAAGG AGGAACATATTTATGAAAGGTTTG
PSC 106	GGCAAAAGTTTATAAACATGGTACTGGTTATATTATTTATGACTTTATT ATTTATCACCTCTGCAACCACAGC
PSC 107	TAGAGAAATTTAAAGATTCTAAAGCCCTTAACCTCATGTGAAAAGTTGT TAAAATATAAATGAGCACGTTAACATTTAA
PSB 384	TCCACCCCTGGAGTTAGGTCTTTACCAGGCCTGAATACCCATGTTATAGGG CAAAAGTTTATAAACATGGGTACT
PSB 385	GGGAAAGGTTTAAGAGCGGCG CAACAATTGTCTCCGGTTCAAGGG

2.2. Growth Conditions

E. coli strains were grown in Luria-Bertani (LB) medium. *C. acetobutylicum* strains were maintained as spores in synthetic medium (SM) at - 20°C as previously described or, for non-sporulating strains, directly in degassed and sterile serum bottles at - 80°C [21–23]. Spores were activated by heat shock at 80°C for 15 min. Strains were grown under anaerobic conditions at 37 °C in Clostridial Growth Medium (CGM) supplemented each time with 30 gL⁻¹ of glucose [24] or in CGM supplemented with 20 gL⁻¹ MES hydrate (Sigma Aldrich), synthetic medium (SM) or in SM supplemented with 20 gL⁻¹ MES hydrate or in Reinforced Clostridial Medium (RCM) (Millipore). The pH of CGM was adjusted at 6.0 or 5.2 with hydrochloric acid. The pH of RCM was adjusted at 5.8 with hydrochloric acid. The SM used for *C. acetobutylicum* growth contained per liter of deionized water: Glucose, 30 g; KH₂PO₄, 0.50 g; K₂HPO₄, 0.50 g; MgSO₄·7H₂O, 0.22 g; acetic acid, 2.3 mL; FeSO₄·7H₂O 10 mg; para amino benzoic acid, 8 mg; biotin, 0.08 mg; nickel (II) chloride, 3 mg; zinc chloride, 60 mg; nitriloacetic acid, 0.2 g. The pH of the medium was adjusted to 6.0 with ammonia. For solid media preparation, 1.5 % agar was added to liquid media. The media were supplemented

as needed with the appropriate antibiotic at the following concentrations: for *C. acetobutylicum*, erythromycin (Ery) at 40 µg/mL, clarithromycin (Clari) at 40 µg/mL, and thiamphenicol (Tm) at 10 µg/mL; for *E. coli*, carbenicillin (Cb) at 100 µg/mL and chloramphenicol (Cm) at 30 µg/mL. Stocks of 5-Fluorouracil (5FU) and uracil (Sigma Aldrich) were prepared at 0.1 M in dimethyl sulfoxide (DMSO) and stored at - 20°C.

2.3. DNA manipulation

Genomic DNA was extracted from *C. acetobutylicum* strains using GenEluteTM Bacterial Genomic DNA Kits (Sigma-Aldrich). Plasmids DNA were extracted from *E. coli* using NucleoSpin® Plasmid or NucleoBond® Xtra Midi kits (Macherey-Nagel). Phusion DNA Polymerase (New England Biolabs (NEB)) was used to generate PCR products according to the supplier's standard protocols. OneTaq® 2X Master Mix with Standard Buffer (NEB) was used to screen colonies by PCR according to the supplier's standard protocols. Restriction enzymes, antartic phosphatase, T4 DNA ligase (NEB) were used according to the manufacturer's instructions. DNA fragments were purified from agarose gel using Zymoclean™ Large Fragment DNA Recovery Kit (Zymo Research). DNA PCR fragments were purified using NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel). Plasmid DNA and DNA PCR fragments were sequenced using sanger method (Eurofins Genomics).

2.4. Design of *pyrR**

The nucleotide sequence of *pyrR* gene (CA_C2113) was codon optimized to create a synthetic *pyrR* gene, named *pyrR**, with low identity to the wildtype *pyrR*, in which some codons have been replaced by other codons with closed frequency in *C. acetobutylicum* using <https://gcua.schoedl.de/>. The synthetic gene was then synthesized (Geneart, ThermoFisher Scientific).

Table 3. Nucleotide sequence of wild-type *pyrR* gene and *pyrR**gene.

Gene name	Nucleotide sequence
wild-type <i>pyrR</i>	ATGAATTAAAAGCAAAGATTTAGATGATAAGCCTATGCAAACGGACTTGACCAGAAAT AGCACATGAAATTATAGAAAAGAATAAAGGTATAGATGATATAGTACTAGTAGGAATA AAGAGAAGAGGAGTTCCAATAGCCGATAGAATAGCGGATATAATTGAAGAAATAGAA GGAAGTAAGGTTAACGCTAGGAAAAGTAGATATAACCTTATATAGAGACGATTGTCTAC GGTAAGTTCTCAACCAATAGTAAAAGATGAGGAAGTATATGAAGATGTAAAGGATAAG GTAGTAATACTTGTGATGACGTTTATATACAGGAAGAACATGCAGAGCAGCCATAGA AGCTATTATGCATAGAGGAAGACCAAAGATGATACAGCTGCAGTTGATAGATAGGG GACATAGAGAACTTCCTATAAGGGCAGATTATGTTGGAAAAAAATGTACCTACATCAA AAAGTAATTGATATCGGTAATGTTAAAGGAATAGATGAAGAGGATTCACTAAACATT ATGAGTTGTAG
synthetic <i>pyrR</i> (<i>pyrR</i> *)	ATGAATCTAAAGCTAAGATTCTTGATGATAAGGCAATGCAAAGGACACTAACAGAA TAGCTCATGAAATAATAGAAAAGAATAAAGGAATAGATGATATAGTTGGTTGGAAT AAAGAGAAGAGGAGTACCTATAGCGGATAGAATAGCCGATATAATAGAAGAAATAGA AGGATCAAAGGTAAAGTTGGAAAAGTTGATATAACCTTATAGAGACGATCTATCA ACCGTTCAAGTCAACCTATAGTTAAAGATGAGGAAGTTATGAAGATGTTAAGGATAAA GGTTGTTATATTAGTTGATGACGTACTTATAGTGAAGAAGCTGCAGAGCTGCGATAGA AGCAATAATGCATAGAGGAAGACCTAAGATGATACAGTTAGCTGTACTAATAGATAGG GGACATAGAGAACTACCAATAAGGGCTGATTATGTTGGAAAAAAATGTTCCAACTAGTA

AATCAGAATTGATATCCGTAATGTAACAGAATAGATGAAGAGGATAGTGTAAACAT
ATATGAGCTATAG

2.5. Construction of *pCat-upp-pyrR^{mut}*

This plasmid was constructed, based on the *pCat-upp* described by Foulquier *et al.* [5] by introducing the *pyrR^{mut}* gene containing the mutation *g.344C>T* encoding the PyrR A115V protein found in our mutant strain. The mutant *pyrR* gene was PCR amplified from total DNA from *CAB1060* as template using the PSC 75 and PSC 76 primers containing *BamHI* restriction sites. The PCR fragment and the *pCat-upp* were digested by *BamHI*. The plasmid was dephosphorylated with antarctic phosphatase and the PCR fragment and the plasmid were purified. The PCR fragment was cloned by ligation into the plasmid to obtain *pCat-upp-pyrR^{mut}*.

2.6. Construction of *pCat-upp-pyrR**

This plasmid was constructed from the *pCat-upp* described by Foulquier *et al.* [5] by introducing the synthetic *pyrR** gene under the control of the thiolase promoter. The entire *pCat-upp* plasmid was amplified with PSC 51 and PSC 52 for linearization. The *pyrR** gene was PCR amplified primers using synthetic *pyrR* gene (from Geneart) as template. A first PCR was performed with PSC 61 and PSC 62 primers to amplify the *pyrR* gene with its native RBS and downstream homology arms. The first PCR fragment was then purified. A second PCR was performed on the first PCR product with PSC 72 and PSC 62 to introduce upstream homology arm. The final PCR fragment of *pyrR** was cloned into linearized *pCat-upp* plasmid by recombination using the GeneArtTM Seamless Cloning and Assembly Kit (Thermofisher Scientific).

2.7. Construction of *pCat-upp-pyrR*-Δldh*

This plasmid was constructed based on the *pCat-upp-pyrR** (this study) and the *pCat-upp-Δldh* described by Soucaille *et al.* in the patent WO 2016/042160 A1 [20]. The *pCat-upp-pyrR** plasmid was linearized by digestion with *BamHI* restriction enzyme and dephosphorylated with antarctic phosphatase. Then the *pCat-upp-Δldh* plasmid was digested with *BamHI* and the fragment containing the *ldh* homology arms was purified from agarose gel. The two fragments were then ligated using T4 DNA Ligase.

2.8. Construction of *pCat-upp-pyrR*-Δldh::sadh-hydG*

This plasmid was constructed based on the *pCat-upp-pyrR*-Δldh* plasmid (this study) by introducing an operon composed of *sadh* and *hydG* genes (GenBank: AF157307.2), with their own RBS, under the control of the *ldh* promoter. The *pCat-upp-Δldh* was digested by *StuI*, dephosphorylated and purified. *sadh* and *hydG* were amplified from a synthesized *sadh_hydG* genes (Genart, Thermofisher) as template. A first PCR was performed with PSC 104 and PSC 105 to amplify *sadh_hydG* genes and introduce the *ldh* promoter region upstream of *sadh* and the *ldh* terminator downstream of *hydG*. After purification, the first PCR product was then amplified with PSC 106 and PSC 107 to introduce upstream and downstream homology arms to recombine with the *pCat-upp-pyrR*-Δldh* plasmid. The final PCR fragment was cloned into the *pCat-upp-pyrR*-Δldh* by recombination using the GeneArtTM Seamless Cloning and Assembly Kit (Thermofisher Scientific).

2.9. Construction of *pSOS95-pyrR*

This plasmid was constructed based on the *pSOS95* plasmid described by Raynaud *et al.* [18] by introducing the native *pyrR* gene under the control of the thiolase promoter. The *pSOS95* plasmid was digested with *BamHI* and *SfI* and purified from agarose gel. The *pyrR* gene was amplified using total DNA from the strain *Δcac1502* as template. The PSC 58 and PSC 46 used for this amplification introduced the *BamHI* restriction site upstream of the *pyrR* gene RBS and the *SfI* restriction site

downstream of the *pyrR* gene. The PCR fragment was digested with *Bam*HI and *Sfo*I, purified. And cloned in the pSOS95 plasmid by ligation using T4 DNA Ligase.

2.10. Transformation protocol

Transformation of *C. acetobutylicum* was performed by electroporation according to the following protocol. From a culture of *C. acetobutylicum* in CGM at A_{620} between 1 and 2, a new serum bottle with 50 ml of CGM was inoculated at A_{620} of 0.1. When the culture reached A_{620} between 0.6 and 0.8, the culture has been placed on ice for 30 minutes and transferred under an anaerobic chamber (Jacomex) where all the following manipulations were performed. The cells were then harvested by centrifugation at 7000g for 15 minutes and washed in 10 mL of ice-cold electroporation buffer (EB) composed of 270 mM sucrose, 10 mM MES hydrate at pH 6.0. Then the pellet was resuspended in 500 μ L of EB and cells were transferred into a sterile electrotransformation vessel (0.40 cm electrode gap \times 1.00 cm) with 5-100 μ g plasmid DNA. A 1.8 kV discharge was applied to the suspension from a 25 μ F capacitor and a 400 Ω resistance in parallel using the Gene Pulser (Bio-Rad Laboratories, Richmond, CA). Cells were transferred directly to 10 mL of warm CGM and incubated for 6 hours at 37°C before plating on RCM supplemented with the required antibiotics.

2.11. Microbiological enumeration on solid media

C. acetobutylicum was cultivated in CGM until reaching an A_{620} of 0.55. Subsequently, the culture was transferred to an anaerobic chamber, and 100 μ L of various dilutions (10⁻¹ to 10⁻⁶) of the culture were plated onto CGM MES or SM MES agar supplemented with the necessary antibiotics, ranging from 0 μ M to 200 μ M for 5FU and from 0 μ M to 50 μ M for uracil. Following incubation at 37 °C for a period of 1 to 4 days, the resulting colonies were counted.

2.12. 5FU selection protocol

C. acetobutylicum was cultivated in CGM until reaching an A_{620} of 0.55. The spreading protocol was the same as described in subsection 2.11. After isolation, 50 colonies were picked and plated on a fresh plate with the same concentration of 5FU. The plates were incubated at 37 °C from 1 to 2 days. The colonies were then picked and patched onto plates with and without thiamphenicol to determine the percentage of double crossing-over. Colonies showing a double crossover phenotype were screened by PCR to verify that genome editing occurred.

2.13. Locus verification in *C. acetobutylicum* after metabolic engineering

After the genome edition of *C. acetobutylicum*, the different loci were checked by PCR amplification. In order to check for the insertion of point mutations, the genome was amplified by PCR and the PCR fragment obtained was sent for sequencing.

Primers name	Function
PSC 39 – PSC 40	<i>pyrR</i> gene sequencing
PSB 384 – PSB 385	<i>ldh</i> locus verification

2.14. Analytical procedures

Culture growth was monitored by measuring optical density over time using a spectrophotometer at A_{620} . Glucose, acetate, butyrate, acetone, isopropanol, ethanol and butanol concentrations were measured using High Performance Liquid Chromatography (HPLC) analysis (Agilent 1200 series, Massy, France). The separations were performed on a Biorad Aminex HPX-87H column (300 mm \times 7.8 mm), and detection was achieved using either a refractive index measurement or a UV absorbance measurement (210 nm). The operating conditions were as follows: temperature, 14 °C; mobile phase, H₂SO₄ (0.5 mM); and flow rate, 0.5 ml/min.

3. Results

3.1. Identification of the 5FU resistance of the strain

The strain *CAB1060*, as detailed by Nguyen et al. [19], was developed through the utilization of the *upp*/5FU counterselection method. This genome editing method, initially described by Croux et al. [8] and originally employing a replicative plasmid, was subsequently adapted into a suicide plasmid format, as outlined by Foulquier et al. [5].

After several genome modifications and the use of 5FU as a counter selection marker, the strain became no longer sensitive to 5FU even at a concentration of 1 mM and its entire genome was sequenced. Many random mutations were found including one that particularly caught our attention, the mutation *g.344C>T* located in the *pyrR* gene that introduced a A115V mutation in the PyrR protein. PyrR is a potential repressor of the pyrimidine operon and it has been shown in other organisms that mutations in the *pyrR* gene or a complete deletion of the *pyrR* gene can lead to 5FU resistance [16,17,25]. The hypothesis put forward was that the mutated protein no longer performed its regulatory function and the pyrimidine operon was overexpressed. This could result in overproduction of UMP, which protect bacteria from the toxic effects of 5FUMP. Based on these data, we hypothesized that the observed mutation could be responsible of 5FU resistance in the strain.

3.2. Evaluation of the 5FU sensitivity of *C. acetobutylicum* strain (non mutated in the *pyrR* gene)

The viability of the *C. acetobutylicum* *Δcac1502* strain was evaluated both on rich medium (CGM MES) and on synthetic medium (SM MES) in the presence of various concentrations of 5FU (**Table 4**). In the absence of 5FU, no significant differences could be observed between the two media. On the otherhand, the 5FU sensitivity of the strain was much higher when spread on SM MES (**Table 4**) compared to rich media.

Table 4. Bactericidal effect of 5FU on *cac1502* on CGM MES and SM MES

5FU concentration (μM)	CGM MES (UFC/mL)	SM MES (UFC/mL)
0	2.06 ± 0.41E7	1.75 ± 0.25E7
5	1.65 ± 0.34E7	0
25	3.02 ± 0.52 E6	0
50	1.45 ± 0.28E6	0
100	0	0
200	0	0

According to Singh et al., exogenous uracil protects the bacteria from the toxicity of 5FU. This was validated in *Mycobacterium tuberculosis* in which the supplementation of uracil at 15.6 μM protected bacteria up to 25 μM 5FU [17]. On the basis of the literature, we have assumed that the yeast extract added to the rich medium contains between 25 μM and 50 μM of uracil [26]. Therefore, we tested the protective effect of uracil against 5FU in *C. acetobutylicum* by addition of uracil to the synthetic medium containing 5 μM of 5FU (**Table 5**).

As expected, we observed a protective effect of uracil but at very low concentration (5 μM) which is 5 to 10-fold lower than the expected concentration due to the addition of yeast extract. Based on these results, and in order to minimize the concentrations of 5FU used, all the following experiments were carried out in synthetic medium.

Table 5. Protective effect of uracil against 5FU in *C. acetobutylicum* *Δcac1502* strain. 0.1 ml of a 10⁻¹ dilution of a CGM culture were spread on the different SM MES plates.

Uracil concentration (μM)	Number of colonies (5 μM 5FU)
0	0
5	Layer
12.5	Layer

25	Layer
50	Layer

3.3. Construction of a *C. acetobutylicum* strain with *pyrR^{mut}* and 5FU resistance validation

First, we tried to reproduce the occurrence of the mutation *g.344C>T* in *pyrR* gene obtained in the 5FU resistant *CAB1060* strain. To test for the occurrence of mutations, we plated 2×10^8 cells of *C. acetobutylicum* strain $\Delta cac1502$ on SM MES agar plates with high concentrations of 5FU (25-50 μ M). The occurrence of mutations in the *pyrR* and in *upp* genes were analyzed. No mutation in the *upp* was observed, but many mutations appeared at different positions in the *pyrR* gene (**Table 6**). However, the original mutation found in the *pyrR* gene in the 5FU resistant *CAB1060* strain has not been obtained. To ensure that the mutation *g.344C>T* was responsible for the 5FU resistance of the *CAB1060* strain, it was decided to introduce it into the *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535$ using a pCat-*upp-pyrR^{mut}*. After the transformation with pCat-*upp-pyrR^{mut}* and the 5FU selection, the insertion of *g.344C>T* mutation in *pyrR* gene was checked by sequencing. In the *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535pyrR^{mut}$ obtained, the pCat *upp-Δldh* was then integrated at the *ldh* locus. In a strain with a WT *pyrR* gene, the *upp* gene contained in the suicide plasmid should be sufficient to get a sensitivity to 5FU of the strain. But, as shown in **Table 7**, in the strain mutated in the *pyrR* gene, most of the cells were resistant to high concentrations of 5FU. This result showed that the single *g.344C>T* mutation in *pyrR* gene was sufficient to obtain a strain resistant to 5FU and confirmed our hypothesis concerning the 5FU resistance of the *CAB1060* strain.

Table 6. Spontaneous mutations founded in PyrR after 5FU exposition

5FU concentration (μ M)	Amino acid change	Nucleotide change
25	R124G	<i>g.370A>G</i>
25	A47D	<i>g.140C>A</i>
50	R136X	T addition in aa 132
50	P45L	<i>g.134C>T</i>
50	V85X	G deletion in aa 85
50	E23K	<i>g.67G>T</i>

Table 7. Mutated *pyrR* strain viability on 5FU while maintaining a pCat-*upp*

pCat- <i>upp-Δldh</i>			
5FU concentration (μ M)	0	25	50
SM MES + Tm (UFC/mL)	9.52E7	9.14E7	8.46E7

3.4. Restoration of the 5FU sensitivity in a strain mutated in *pyrR* gene

3.4.1 Restoration of 5FU sensitivity to 5FU resistant strains by overexpressing *pyrR* gene on a replicative plasmid

This first method consists of using a replicative plasmid overexpressing a native non-mutated version of *pyrR*, to overcome the problems of 5FU selection when a strain mutated in the *pyrR* gene has already integrated a pCat-*upp*. Viability of *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535pyrR^{mut}$ with the pCat-*upp-Δldh* integrated at the *ldh* locus and the pSOS95-*pyrR* replicative plasmid was tested in the presence of erythromycin for the maintenance of the replicative plasmid overexpressing *pyrR* and/or thiamphenicol for the maintenance of the pCAT-*upp-Δldh* suicide vector. Whereas,

previously, in the presence of Tm, most of the cells were resistant to 5FU (**Table 7**), by just overexpressing a WT *pyrR* gene in the same strain, we restore its sensitivity to 5FU even at low concentrations (**Table 8**).

Table 8. Viability of $\Delta cac1502\Delta upp\Delta cac3535pyrR^{mut}$ strain with a pCat-upp plasmid and a replicative pSOS95-pyrR plasmid

		pCat-upp- Δldh + pSOS95-pyrR		
5FU concentration (μM)	0	5	10	25
SM MES + Ery (UFC/mL)	1.20E7	3.80E4	2.84E4	2.10E4
SM MES + Ery + Tm (UFC/mL)	6.28E6	0	0	0

Indeed, by overexpressing the *pyrR* gene, a selection with 5FU at a concentration of 5μM is sufficient to allow a high frequency (> 85 %) of double crossing-over in a *pyrR* mutant strain with an integrated pCat-upp in the genome. This frequency was even higher than 95 % at 10 μM of 5FU (**Table 9**). These results showed that it was possible to reverse 5FU resistance of a strain mutated in the *pyrR* gene with a pCat-upp integrated into its genome. The use of a replicative plasmid overexpressing a native *pyrR* gene allowed the excision of the suicide vector at very low 5FU concentrations.

Table 9. Viability and frequency of double crossing-over of $\Delta cac1502\Delta upp\Delta cac3535pyrR^{mut}$ strain with a pCat-upp plasmid and a replicative pSOS95-pyrR plasmid after 5FU selection

		pCat-upp- Δldh + pSOS95-pyrR		
5FU concentration (μM)	5	10	25	
Picked colonies viability (%)	86	90	84	
Picked colonies Tm sensitivity (%)	86	96	98	

3.4.2 Restoration of 5FU sensitivity to 5FU resistant strains by overexpressing a synthetic *pyrR** gene on a suicide vector

The second method to overcome the problems of 5FU selection when a strain is mutated in the *pyrR* gene consists of using a codon optimised (for low identity to the wild type gene) version of the *pyrR* gene (*pyrR**) directly on the suicide plasmid.

Viability of the *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535$ *pyrR^{mut}* with a pCat-upp-*pyrR*- Δldh* integrated at the *ldh* locus was tested in the presence or absence of Tm for the maintenance of the suicide vector and no difference in viability was observed (**Table 10**).

Whereas previously, in the strain with the pCat-upp- Δldh , most of the cells were resistant to 5FU in the presence of Tm (**Table 7**), with the same suicide plasmid but containing the *pyrR**, no colony were obtained (**Table 10**). These results validated the functionality of the synthetic *pyrR** gene and showed that a single copy of *pyrR** was sufficient to restore the sensitivity to 5FU of a resistant strain.

Table 10. Viability of $\Delta cac1502\Delta upp\Delta cac3535pyrR^{mut}$ strain with pCat-upp-*pyrR*- Δldh* plasmids

		pCat-upp- <i>pyrR*-Δldh</i>		
5FU concentration (μM)	0	25	50	
SM MES (UFC/mL)	8.80E7	4.24E4	3.88E4	

SM MES + Tm (UFC/mL)	7.60E7	0	0
-------------------------	--------	---	---

Indeed, by overexpressing the *pyrR** gene directly on the suicide vector, a selection with 5FU at a concentration of 5 μ M is sufficient to allow a high frequency (> 90 %) of double crossing-over in a *pyrR* mutant strain. This frequency was even higher than 98 % with 10 μ M of 5FU (**Table 11**). Thus, overexpressing a single copy of *pyrR** was sufficient to restore the sensitivity to 5FU of a resistant *pyrR^{mut}* strain.

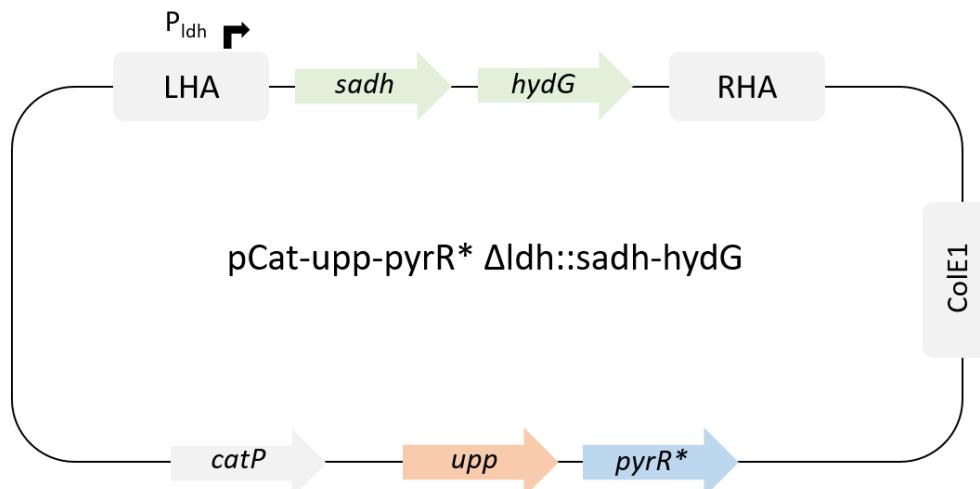
Table 11. Viability and frequency of double crossing-over of $\Delta cac1502\Delta upp\Delta cac3535pyrR^{mut}$ strain with pCat-*upp* and a pCat-*upp-pyrR** plasmids after 5 FU selection

	pCat- <i>upp-Δldh</i>					pCat- <i>upp-pyrR*-Δldh</i>				
5FU concentration (μ M)	5	10	25	50		5	10	25	50	
Picked colonies	100	98	98	76	88	96	60	52		
viability (%)										
Picked colonies	0	6	75	89	90	98	100	100		
Thiamphenicol sensitivity (%)										

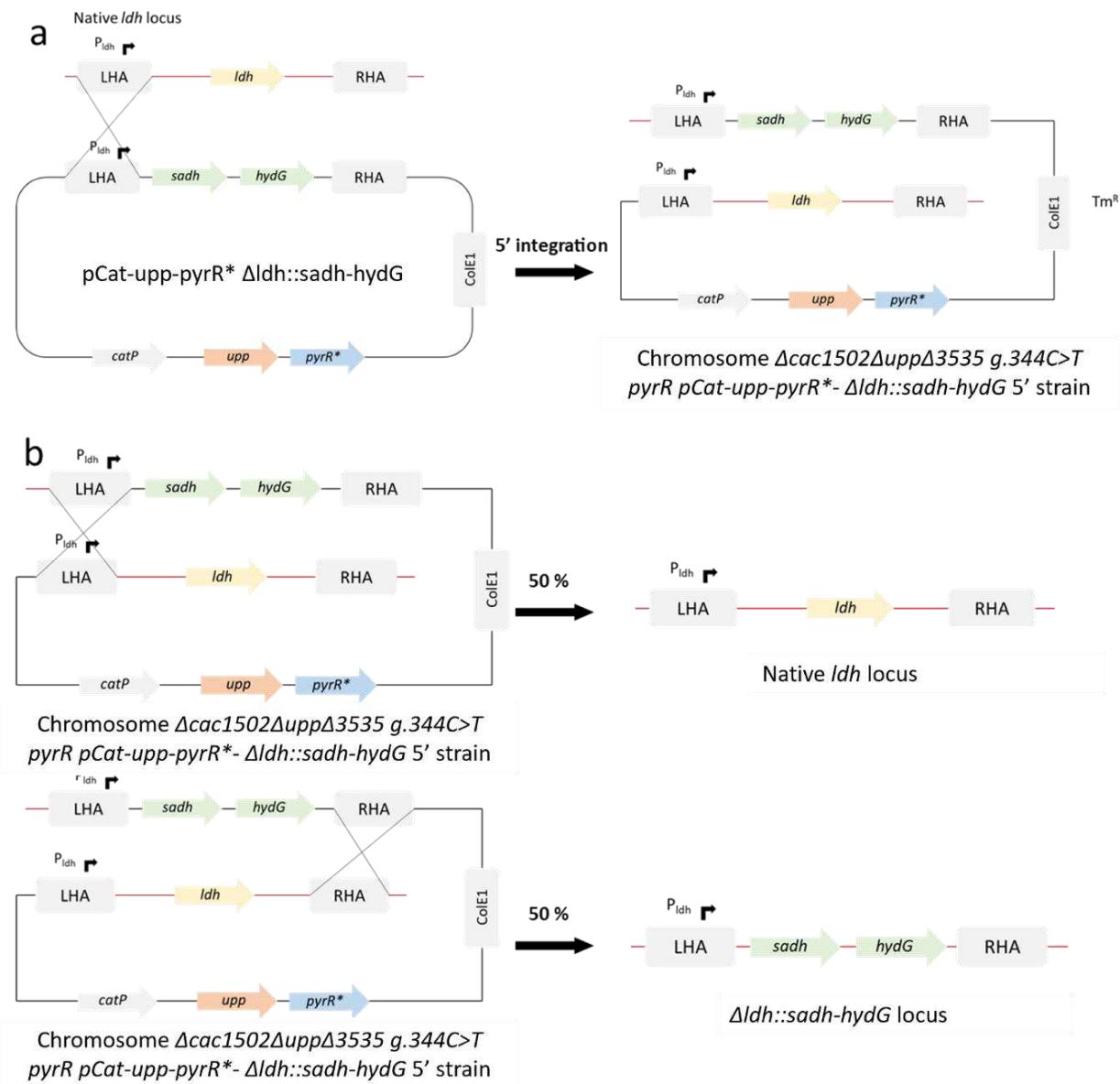
3.5. Preventive use of *pyrR**

After demonstrating the efficiency of overexpressing *pyrR* curatively in a 5FU resistant strain, we wondered if we could use the same method preventively in a strain “non-mutated” for the *pyrR* gene to avoid the development of 5FU resistance. However, we first wanted to check that the overexpression of *pyrR* did not result in a too high 5FU sensitivity. Viability of the *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535$ with a pCat-*upp-pyrR*-Δldh* integrated at the *ldh* locus plasmid was assessed at low 5FU concentrations (5 and 10 μ M) and the results showed that it was not affected (.

Table 12. In parallel, the frequency of double crossing-over, evaluated through the sensitivity to Tm, was shown to reach 100 % (**Table 12**). These results confirmed that overexpressing *pyrR* can be a method used both curatively and preventively.


Table 12. Viability and frequency of double crossing-over of $\Delta cac1502\Delta upp\Delta cac3535$ strain with the pCat-*upp-pyrR*/5 FU counter selection system*

	pCat- <i>upp-pyrR*-Δldh</i>	
5FU concentration (μ M)	5	10
Picked colonies viability (%)	98	100
Picked colonies Thiamphenicol sensitivity (%)	100	100


3.6. Insertion of *sadh* and *hydG* from *C. beijerinckii* at *ldh* locus

After validating the new *C. acetobutylicum* genome editing method using pCat-*upp-pyrR**, we wanted to test this tool to both delete and replace genes in a single step. The goal was to use the pCat-*upp-pyrR*-Δldh::sadh-hydG* suicide plasmid to delete the *ldh* gene and replace it with an operon, to produce isopropanol in the *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535pyrR^{mut}$. This operon is composed of *sadh* and *hydG* genes from *C. beijerinckii* (**Figure 1**) which encoded for a primary-secondary alcohol dehydrogenase (SADH) [27] and a putative electron transfer protein (HydG) [28] from *Clostridium beijerinckii* NRRL B593, respectively. In the **Figure 2** the different stages involved in

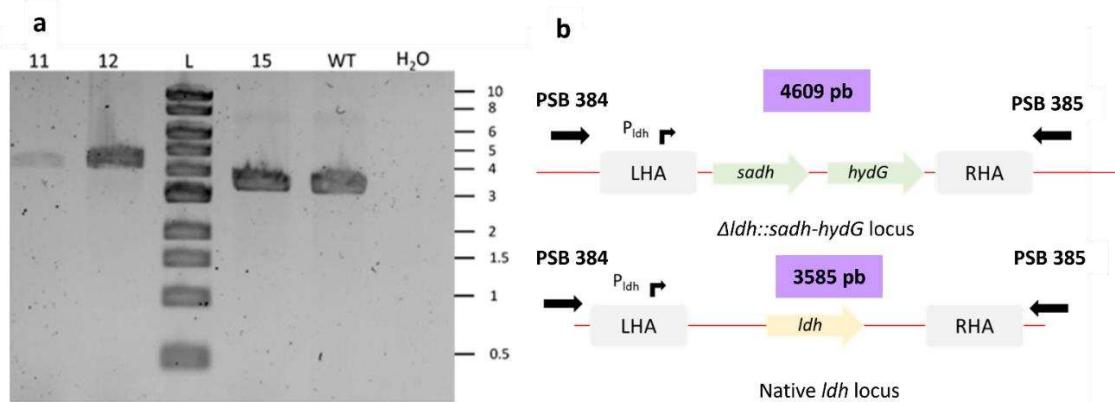

the integration of the “isopropanol operon” at the *ldh* locus are described. After integration of the suicide vector at the *ldh* locus and 5FU selection at 5 μ M, Tm sensitive colonies were selected and screened by PCR using external primers. Primers were designed outside the homology arms, to discriminate between WT revertants and mutants with the desired genotype ($\Delta cac1502\Delta upp\Delta cac3535$ *pyrR^{mut}* \rightarrow *ldh::sadh hydG*) (Figure 3). After picking and patching colonies, a second time on 5FU, we obtained 92 % of viable colonies using 5FU at 5 μ M. After selecting on Tm, all viable clones were shown to be sensitive to 5FU, i.e. 100 % excision of pCat-upp-pyrR* was achieved (Table 13). Both WT revertants and mutants with the desired genotype were obtained. In the figure 3, an example of two mutant clones (11 & 12) and one WT revertant clone (clone 15) is shown. The pCat-upp-pyrR* tool can therefore be used to delete genes and replace them with others in a single step.

Figure 1. Suicide plasmid for *ldh* replacement by *sadh* and *hydG* from *C.beijerinckii*

Figure 2. Diagram representing the replacement of *ldh* by *sadh* and *hydG* from *C. beijerinckii* by allelic ex-change in Δ cac1502 Δ upp Δ cac3535 *pyrR*^{mut}. LHA: left homology arm; RHA: right homology arm. **a** 5' integration of the suicide plasmid. The integrants are selected on thiampenicol. **b** Double crossing-over induced by 5FU that cause the excision of the suicide plasmid.

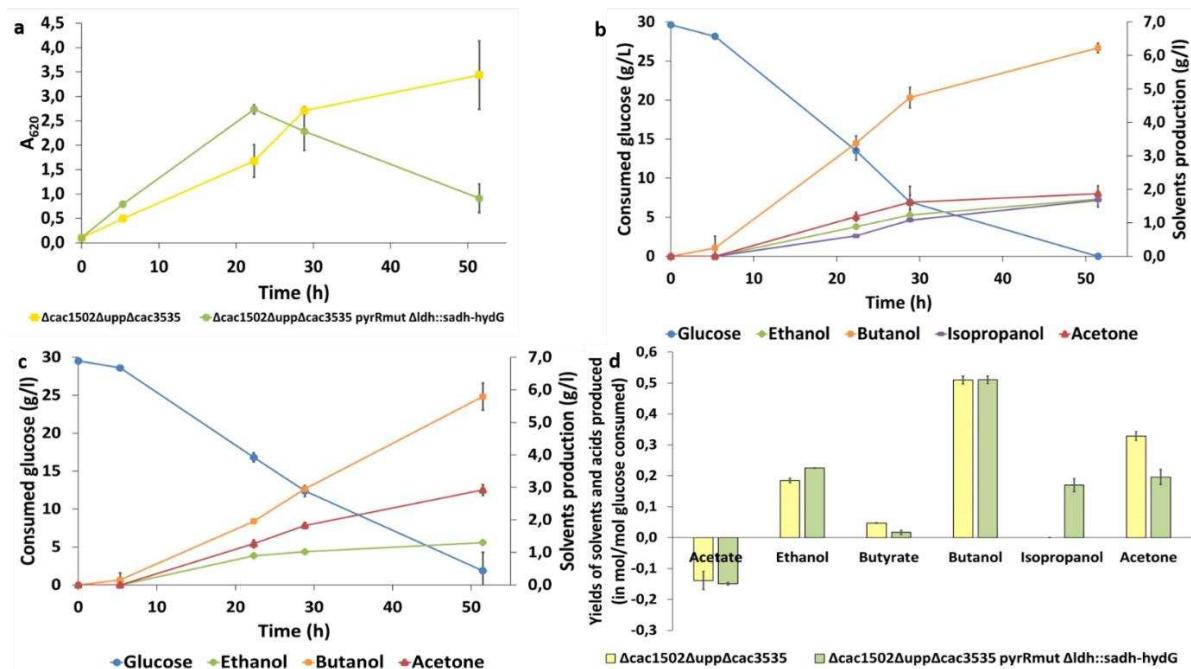
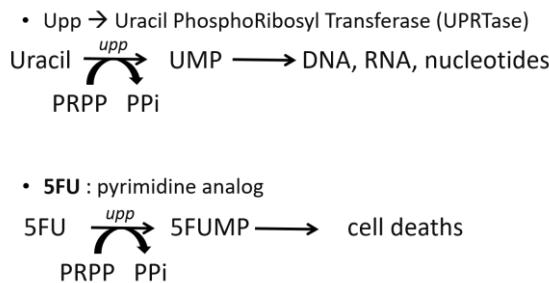


Figure 3. **a** Screening of $\Delta ldh::sadh$ $hydG$ mutant. The colonies were screened using PSB 384 and PSB 385 primers. Ladder: 1kb DNA ladder provided by New England Biolabs. **b** Schematic representation of $\Delta ldh::sadh$ $hydG$ locus and native ldh locus.

Table 13. Viability and frequency of double crossing-over of $\Delta cac1502\Delta upp\Delta cac3535pyrR^{mut}$ strain with pCat- $pyrR^*$ - $\Delta ldh::sadh$ - $hydG$ after 5FU selection.

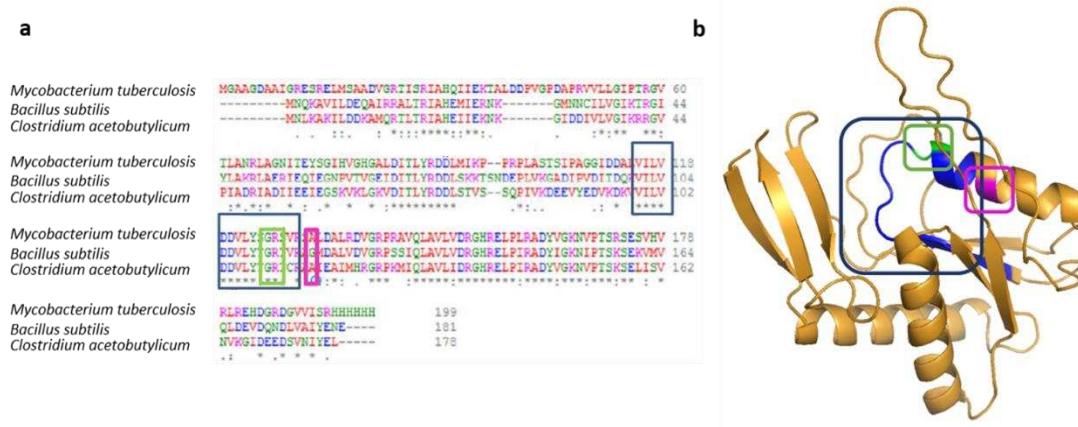
pCat- $pyrR^*$ - $\Delta ldh::sadh$ - $hydG$	
5FU concentration (μ M)	5
Picked colonies viability (%)	92
Picked colonies Thiamphenicol sensitivity (%)	100

3.7. Culture of *C. acetobutylicum* on synthetic medium for isopropanol production


Figure 4. **a** Growth profile of the *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535$ $pyrR^{mut}$ $\Delta ldh::sadh$ - $hydG$ and *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535$ on SM **b** Monitoring glucose consumption and solvents production over time of *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535$ $pyrR^{mut}$ $\Delta ldh::sadh$ - $hydG$ **c** Monitoring glucose consumption and solvents production over time of *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535$ **d** Molar yields of solvents production. All the measurements shown are mean average ($n=2$). Errors bars represent the standard deviation.

To validate the functionality of the “isopropanol operon”, the *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535$ $pyrR^{mut}$ $\Delta ldh::sadh$ - $hydG$ and the control strain, without isopropanol production pathway, were then cultured in synthetic media in serum bottles at an initial pH of 6.0. After 52 hours of culture, solvents and acids productions and final product yields were evaluated. The strain $\Delta cac1502\Delta upp\Delta cac3535$ $pyrR^{mut}$ $\Delta ldh::sadh$ - $hydG$ had a growth rate of 0.15 h^{-1} during the first 25 h of cultures and reached an A_{620} maximum of 2.5 and then entered the lysis phase after 25 h of culture (Figure 4 a). The strain $\Delta cac1502\Delta upp\Delta cac3535$, on the other hand, had a growth rate of 0.13 h^{-1} during the first 25 h of cultures, reached an A_{620} maximum of 2.9 and had not entered the lysis phase after 50 h of culture (Figure 4 a). Concerning isopropanol, its production was only detected in the *C. acetobutylicum* strain $\Delta cac1502\Delta upp\Delta cac3535$ $pyrR^{mut}$ $\Delta ldh::sadh$ - $hydG$. As expected, final molar yields showed that the isopropanol production observed is associated to a decreased acetone production in comparison to the control strain (acetone production is 1.7-fold-time higher in the control strain) (Figure 4 d). The isopropanol/acetone molar ratio was 0.87 in $\Delta cac1502\Delta upp\Delta cac3535$ $pyrR^{mut}$ $\Delta ldh::sadh$ - $hydG$ strain. This strain also had higher acetate consumption, lower butyrate

production and slightly higher ethanol production (**Figure 4 d**). The insertion of the “isopropanol operon” with the new pCat-upp-pyrR*/5FU system has been confirmed by the production of isopropanol in the strain $\Delta cac1502\Delta upp\Delta cac3535\text{ pyrR}^{\text{mut}}\Delta ldh::sadh-hydG$.


4. Discussion

In the present study, we have shown that overexposure of *C. acetobutylicum* to 5FU can make it resistant to this drug. Spontaneous mutations are induced in the bacterial chromosome, notably in the *pyrR* gene. As described in other publications, the *pyrR* gene encodes for PyrR, the repressor of the pyrimidine operon [16,17,25]. The presence of a mutation in this protein can lead to the cessation of its function, resulting in an overproduction of UMP. This overproduction of UMP can protect against the harmful effects of 5FUMP, a molecule that is toxic to bacteria. We observed the appearance of a mutation in the PyrR protein of *C. acetobutylicum* that completely avoids selection of the double crossing-over step when using the pCatupp/5FU system. The principle of the *upp*/5FU system was based on the use of a strain in which the *upp* gene has been deleted and the use of 5FU as a counter selection agent. The *upp* gene encoding for an uracil phosphoribosyl transferase (UPRTase) that could convert uracil to UMP and 5FU to 5FUMP. 5FUMP is a molecule that prevents cells from producing intermediates needed for DNA synthesis, thereby causing cell death (**Figure 5**) [17].

Figure 5. Metabolism of 5FU. PRPP, phosphoribosyl pyrophosphatase; PPi, pyrophosphatase; UMP, uridine monophosphate; 5FU, 5-fluorouracile; 5FUMP, 5-fluorouridine monophosphate.

When the A115V PyrR mutation was discovered in *C. acetobutylicum*, we compared it with other mutations in homologous proteins already described in the literature. A conserved protein sequence required in PRPP binding can be found in many species. Ghode and Singh described the G125V and R126C mutations in *M. tuberculosis* as being in this conserved zone [16,17]. According to Ghode, a mutation in this region could block the production of 5FUMP. As A115V PyrR mutation is situated close to this site, it could be one of the reasons why our strain is resistant to 5FU (**Figure 6**). In addition, *pyrR* encodes the regulatory protein of the pyrimidine operon. According to Ghode and Fields [16,29], mutations in PyrR of *M. tuberculosis* or *M. smegmatis*, or when PyrR is completely deleted in *B. subtilis* the protein no longer performs its regulatory function and the pyrimidine operon is overexpressed [25]. This results in overproduction of UMP, which protects the bacteria from the toxic effects of 5FUMP.

Figure 6. **a** Multiple sequences alignment of PyrR. **b** Cartoon diagram of PyrR protein of *C.acetobutylicum* predicted by Alpha-fold [30,31]. The blue boxes show the amino acids implied in PRPP binding. The green boxes highlight G125 and R126 sites described by Ghod and Singh [16,17]. The pink boxes represent the A115 position, where *C.acetobutylicum* was mutated.

To overcome this problem, we had to revise the protocol previously described by our team. First, we realized that the composition of the medium plays an important role in the resistance of the strain to 5FU. It is preferable to use a synthetic medium that is not supplemented with uracil. In fact, the yeast extract present in CGM brings uracil into the medium and thus protects against the toxic effect of 5FUMP. This hypothesis was tested by adding low concentrations of uracil to the synthetic medium. Bacterial growth was no longer affected by the presence of 5FU in the medium. After optimizing the medium for 5FU selection, we constructed two plasmids to restore the sensitivity of the strain to 5FU. The first plasmid is a replicative plasmid overexpressing a native version of *pyrR*. It is used to overcome the problems of 5FU selection when a strain mutated in the *pyrR* gene has already integrated a pCat-*upp*. The second plasmid is a pCat-*upp* containing a codon optimised version of the *pyrR* gene, called *pyrR**. The 5FU selection problem for genome editing is directly bypassed by this method. With both of these strategies, the concentration of 5FU could be reduced from 1 mM to 5 μ M, thus minimizing the risk of spontaneous mutation. Both the use of *pyrR** and the use of the SM medium will be beneficial for all the counterselection methods involving *upp* and 5FU, as well as those utilizing *codA* and 5FC [4].

Once the new protocol was established, we demonstrated that it was possible to both delete and insert genes of interest in *C. acetobutylicum* Δ *cac1502* Δ *upp* Δ *cac3535* *pyrR^{mut}* strain in a single step using the pCat-*upp*-*pyrR**/5FU system. An isopropanol production pathway from *C. beijerinckii* was inserted at the *ldh* of *C. acetobutylicum* Δ *cac1502* Δ *upp* Δ *cac3535* *pyrR^{mut}* Δ *ldh::sadh-hydG* strain using this technique. We decided to insert the *sadh* and *hydG* genes from *C. beijerinckii* NRRL 593 following a publication by Dusséaux et al. [27]. SADH is an NADPH-dependent primary-secondary alcohol dehydrogenase that catalyzes acetone reduction and HydG is a putative electron transfer protein [28,32]. *hydG* was introduced into the *C. acetobutylicum* Δ *cac1502* Δ *upp* Δ *cac3535* *pyrR^{mut}* strain genome at the same time as *sadh*, since these two genes are located in the same operon in *C. beijerinckii* NRRL 593. It was assumed that the HydG activity would have a positive effect on the SADH activity, allowing the strain to obtain a better isopropanol production [28]. The final production of our *C. acetobutylicum* Δ *cac1502* Δ *upp* Δ *cac3535* *pyrR^{mut}* Δ *ldh::sadh-hydG* strain is lower than the one obtained by Dusséaux (up to 4.7 g.L⁻¹ of isopropanol produced in a culture of 30 h) with a lower molar ratio of isopropanol/acetone [27]. This can be explained by the fact that in this strain both gene were overexpressed in a multi copy replicative plasmid and under the control of the *ptb* promoter, which is a stronger promoter than the *ldh* promoter [33]. The strain had also been grown in pH-regulated batch cultures, whereas we grew our strain in serum bottles without pH regulation. Better results would probably be obtained if the “isopropanol operon” was introduced at the *ptb* locus and if the pH of the culture was controlled.

Author Contributions: Conceptualization, C.F. and P.S.; methodology, E.B.; validation, C.F. and P.S.; resources, P.S.; data curation, C.F.; writing—original draft preparation, E.B and C.F.; writing—review and editing, C.F. and P.S.; supervision, P.S and C.F.; project administration, P.S.; funding acquisition, P.S. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by ANR-19-COBI-0009 as part of the EraCoBioTech project, SynConsort4Butanol grant agreement number 722361.

Data Availability Statement: Not applicable.

Acknowledgments: In this section, you can acknowledge any support given which is not covered by the author contribution or funding sections. This may include administrative and technical support, or donations in kind (e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflict of interest.

Reference

1. Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, et al. Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium *Clostridium acetobutylicum*. *J Bacteriol.* 2001;183: 4823–4838. doi:10.1128/JB.183.16.4823-4838.2001
2. Poehlein A, Solano JDM, Flitsch SK, Krabben P, Winzer K, Reid SJ, et al. Microbial solvent formation revisited by comparative genome analysis. *Biotechnol Biofuels.* 2017;10: 58. doi:10.1186/s13068-017-0742-z
3. Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN. Genetic manipulation of acid formation pathways by gene inactivation in *Clostridium acetobutylicum* ATCC 824. *Microbiology.* 1996;142: 2079–2086. doi:10.1099/13500872-142-8-2079
4. Huang C-N, Liebl W, Ehrenreich A. Restriction-deficient mutants and marker-less genomic modification for metabolic engineering of the solvent producer *Clostridium saccharobutylicum*. *Biotechnol Biofuels.* 2018;11: 264. doi:10.1186/s13068-018-1260-3
5. Foulquier C, Huang C-N, Nguyen N-P-T, Thiel A, Wilding-Steel T, Soula J, et al. An efficient method for markerless mutant generation by allelic exchange in *Clostridium acetobutylicum* and *Clostridium saccharobutylicum* using suicide vectors. *Biotechnology for Biofuels.* 2019;12: 31. doi:10.1186/s13068-019-1364-4
6. Harris LM, Welker NE, Papoutsakis ET. Northern, Morphological, and Fermentation Analysis of *spo0A* Inactivation and Overexpression in *Clostridium acetobutylicum* ATCC 824. *J Bacteriol.* 2002;184: 3586–3597. doi:10.1128/JB.184.13.3586-3597.2002
7. Al-Hinai MA, Fast AG, Papoutsakis ET. Novel System for Efficient Isolation of *Clostridium* Double-Crossover Allelic Exchange Mutants Enabling Markerless Chromosomal Gene Deletions and DNA Integration. *Appl Environ Microbiol.* 2012;78: 8112–8121. doi:10.1128/AEM.02214-12
8. Heap JT, Ehsaan M, Cooksley CM, Ng Y-K, Cartman ST, Winzer K, et al. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. *Nucleic Acids Research.* 2012;40: e59–e59. doi:10.1093/nar/gkr1321
9. Croux C, Nguyen N-P-T, Lee J, Raynaud C, Saint-Prix F, Gonzalez-Pajuelo M, et al. Construction of a restriction-less, marker-less mutant useful for functional genomic and metabolic engineering of the biofuel producer *Clostridium acetobutylicum*. *Biotechnol Biofuels.* 2016;9: 23. doi:10.1186/s13068-016-0432-2
10. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP. The ClosTron: A universal gene knock-out system for the genus *Clostridium*. *Journal of Microbiological Methods.* 2007;70: 452–464. doi:10.1016/j.mimet.2007.05.021
11. Shao L, Hu S, Yang Y, Gu Y, Chen J, Yang Y, et al. Targeted gene disruption by use of a group II intron (targetron) vector in *Clostridium acetobutylicum*. *Cell Res.* 2007;17: 963–965. doi:10.1038/cr.2007.91
12. Li Q, Chen J, Minton NP, Zhang Y, Wen Z, Liu J, et al. CRISPR-based genome editing and expression control systems in *Clostridium acetobutylicum* and *Clostridium beijerinckii*. *Biotechnology Journal.* 2016;11: 961–972. doi:10.1002/biot.201600053
13. Wilding-Steele T, Ramette Q, Jacottin P, Soucaille P. Improved CRISPR/Cas9 Tools for the Rapid Metabolic Engineering of *Clostridium acetobutylicum*. *IJMS.* 2021;22: 3704. doi:10.3390/ijms22073704
14. Christensen S, Van der Roest B, Besselink N, Janssen R, Boymans S, Martens JWM, et al. 5-Fluorouracil treatment induces characteristic T>G mutations in human cancer. *Nat Commun.* 2019;10: 4571. doi:10.1038/s41467-019-12594-8
15. Rosener B, Sayin S, Oluoch PO, García González AP, Mori H, Walhout AJ, et al. Evolved bacterial resistance against fluoropyrimidines can lower chemotherapy impact in the *Caenorhabditis elegans* host. *eLife.* 2020;9: e59831. doi:10.7554/eLife.59831

16. Ghode P, Ramachandran S, Bifani P, Sivaraman J. Structure and mapping of spontaneous mutational sites of PyrR from *Mycobacterium tuberculosis*. *Biochemical and Biophysical Research Communications*. 2016;471: 409–415. doi:10.1016/j.bbrc.2016.02.071
17. Singh V, Brecik M, Mukherjee R, Evans JC, Svetlíková Z, Blaško J, et al. The Complex Mechanism of Antimycobacterial Action of 5-Fluorouracil. *Chemistry & Biology*. 2015;22: 63–75. doi:10.1016/j.chembiol.2014.11.006
18. Raynaud C, Sarçabal P, Meynial-Salles I, Croux C, Soucaille P. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of *Clostridium butyricum*. *Proc Natl Acad Sci USA*. 2003;100: 5010–5015. doi:10.1073/pnas.0734105100
19. Nguyen N-P-T, Raynaud C, Meynial-Salles I, Soucaille P. Reviving the Weizmann process for commercial n-butanol production. *Nat Commun*. 2018;9: 3682. doi:10.1038/s41467-018-05661-z
20. Soucaille P, Nguyen N-P-T, Percheron B, Croux C, Meynial-Salles I. Clostridium acetobutylicum strains unable to produce hydrogen and useful for the continuous production of chemicals and fuels. Institut National des Sciences Appliquées; WO 2016/42160 A1, 2016. pp. 33–34.
21. Monot F, Martin J-R, Pettdemange H, Gay R. Acetone and Butanol Production by *Clostridium acetobutylicum* in a Synthetic Medium. *Appl Environ Microbiol*. 1982;44: 1318–1324. doi:10.1128/aem.44.6.1318-1324.1982
22. Pegin S, Goma G, Delorme P, Soucaille P. Metabolic flexibility of *Clostridiumacetobutylicum* in response to methyl viologen addition. *Applied Microbial and Cell Physiology*. 1994;42: 611–616.
23. Vasconcelos I, Girbal L, Soucaille P. Regulation of Carbon and Electron Flow in *Clostridium acetobutylicum* Grown in Chemostat Culture at Neutral pH on Mixtures of Glucose and Glycerol. *Journal of Bacteriology*. 1994;176: 1443–1450.
24. Wiesenborn DP, Rudolph FB, Papoutsakis ET. Thiolase from *Clostridium acetobutylicum* ATCC 824 and Its Role in the Synthesis of Acids and Solvents. *Appl Environ Microbiol*. 1988;54: 2717–2722. doi:10.1128/aem.54.11.2717-2722.1988
25. Cho H-S, Ghim S-Y. Characterization of a PyrR-deficient Mutant of *Bacillus subtilis* by a Proteomic Approach.
26. Vieira E, Brandão T, Ferreira IMPLVO. Evaluation of Brewer's Spent Yeast To Produce Flavor Enhancer Nucleotides: Influence of Serial Repitching. *J Agric Food Chem*. 2013;61: 8724–8729. doi:10.1021/jf4021619
27. Dusséaux S, Croux C, Soucaille P, Meynial-Salles I. Metabolic engineering of *Clostridium acetobutylicum* ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. *Metabolic Engineering*. 2013;18: 1–8. doi:10.1016/j.ymben.2013.03.003
28. Jang Y-S, Malaviya A, Lee J, Im JA, Lee SY, Lee J, et al. Metabolic engineering of *Clostridium acetobutylicum* for the enhanced production of isopropanol-butanol-ethanol fuel mixture. *Biotechnol Progress*. 2013;29: 1083–1088. doi:10.1002/btpr.1733
29. Fields CJ, Switzer RL. Regulation of pyr gene expression in *Mycobacterium smegmatis* by PyrR-dependent translational repression. *J Bacteriol*. 2007;189: 6236–6245. doi:10.1128/JB.00803-07
30. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. *Nucleic Acids Research*. 2022;50: D439–D444. doi:10.1093/nar/gkab1061
31. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. *Nature*. 2021;596: 583–589. doi:10.1038/s41586-021-03819-2
32. Ismaiel AA, Zhu CX, Colby GD, Chen JS. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of *Clostridium beijerinckii*. *J Bacteriol*. 1993;175: 5097–5105. doi:10.1128/jb.175.16.5097-5105.1993
33. Girbal L, Mortier-Barrière I, Raynaud F, Rouanet C, Croux C, Soucaille P. Development of a Sensitive Gene Expression Reporter System and an Inducible Promoter-Repressor System for *Clostridium acetobutylicum*. *Applied and Environmental Microbiology*. 2003;69: 4985–4988. doi:10.1128/AEM.69.8.4985-4988.2003

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.