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Abstract: In this paper we compare the effects of forecasting demand using individual (disaggregated)

components versus first aggregating the components either fully or into several clusters. Demand

streams are assumed to follow autoregressive moving average (ARMA) processes. Using individual

demand streams will always lead to a superior forecast compared to any aggregates, however we

show that if several aggregated clusters are formed in a structured manner then these subaggregated

clusters will lead to a forecast with minimal increase in mean-squared forecast error. We show

this result based on theoretical MSFE obtained directly from the models generating the clusters

as well as estimated MSFE obtained directly from simulated demand observations. We suggest a

pivot-algorithm, that we call Pivot Clustering, to create these clusters. We also provide theoretical

results to investigate sub-aggregation, including for special cases such as, aggregating demand

generated by MA(1) models and aggregating demand generated by ARMA models with similar or

same parameters.

Keywords: forecasting aggregate demand; clustering time series; pivot clustering; ARMA model;

order-up-to policy

1. Introduction

Modern-day technologies not only permit firms to accurately track their point of sales data and

lost sales (purchases not made by customers due to a lack of inventory) data but also gather more

granular data. These data streams deluge firms with information which either can be aggregated for

planning purposes or considered in its entirety or follow an in-between approach. In this paper we

analyze a model in which a retailer is faced with exactly the same choices and provide guidelines for

combining the data for the purpose of forecasting demand.

Consider a retailer who has access to its individual customer’s demand streams. Assume that

each of these demand streams follow an ARMA model having possibly contemporaneously correlated

shock sequences. The primary contribution of this research is to quantify to what extent such a

retailer would benefit from forecasting each of the individual streams as opposed to the aggregate.

In general, retailers forecast their aggregate demand stream since historically the retailer may only

have accurate aggregate demand information and the forecasting of the individual customer demand

streams is often thought of as being cumbersome and time consuming. We demonstrate that a retailer

observing multiple demand streams generated by ARMA models can drastically reduce its mean

squared forecasting error (MSFE) by forecasting the individual demand streams as opposed to just the

aggregate demand stream as noted in [1].

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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Although the retailer’s MSFE is never lower when forecasting using aggregated demand

compared to the individual demand streams1, there are cases when the individual streams do not

reduce the MSFE. The primary situation where this occurs, as is discussed in the paper, is when various

models generating the demand streams have identical ARMA parameter values. For the in-between

case, our results demonstrate that the retailer’s MSFE under aggregate forecasting can be greatly

reduced if the retailer forecasts various clusters of aggregated demand streams. We show by example

that clustering continues to perform well in the event that ARMA models are estimated for non-ARMA

data (see Figure 9).

In other words, retailers can make use of data mining and other clustering approaches in order

to generate clusters of similar customers and their demand streams. We show that such clustering

methods significantly enhance forecast accuracy. This is related to the study of telephone data in [2]

where the authors concluded that subaggregated data can be effective for improving forecast accuracy

compared to aggregate data. They also note that data is often aggregated to the level that forecasts

are required. We describe here ways in which subaggregated clusters can be selected to minimize

forecast error. Several examples are mentioned in [3] in the context of assigning demand allocation to

different facilities.

Many researchers and practitioners focus on the need to determine clusters of similarly situated

customers in order to create and provide customized and/or personalized products. This type of

clustering is generally performed on specific characteristics that customers possess (see for example, [4]

and the references within). On the other hand, our focus is on forecasting demand for a product by a

firm’s customers, recognizing that these customers may have different preferences and hence differing

demand. As we describe below, from the demand forecasting perspective, the information contained

within the individual demand streams provides the optimal forecast (in terms of minimizing the MSFE

and hence inventory related costs) for product demand. Nonetheless, there has been research on the

use of clustering methods within a forecasting environment when customer demand data is high

dimensional (see for example, [5]).

As opposed to generating clusters based upon customer preferences and customer demographics,

we explain how clusters can be generated explicitly from the individual time series structure of the

individual demand streams or customers. Even though, it is always optimal from a forecasting

perspective to use the individual streams, clusters of similar customer streams may be very helpful to

the firm for other reasons as described above. Future empirical work would be necessary to investigate

to what extent and in what contexts, clusters generated based upon time series structure of the demand

streams correlate to clusters based upon other customer preferences. In such a case where there

exists such a relationship, firms could use clustering for simplifying their demand forecasting while

identifying groups of customers to receive personalized products.

The purpose of this paper is to demonstrate that clustering based upon time series structure can

be utilized within demand forecasting that is superior to forecasting aggregate demand and nearly as

good as forecasting the individual demand streams. The structure of our paper is as follows. In the

next section, we describe the demand framework and supply chain setting of our research problem, as

well as the way that theoretical MSFE computations are determined for the various forecasts (using

aggregated demand processes) included herein. In Section 3, we illustrate (through example) that there

exists a particular set of subaggregated clusters which results in an MSFE that is close to the MSFE

obtained from using disaggregated streams and much lower than the MSFE obtained from the fully

aggregated sequence. In Section 4, we describe how to cluster demand streams generated by ARMA

models using Pivot Clustering and how this compares to other clustering methods. In Section 5, we

describe an objective function that can be minimized to obtain an optimal assignment of streams to

clusters in terms of MSFE reduction. Finally, we obtain theoretical results on how demand streams

1 (This hold for the theoretical case when model coefficients are known and need not be estimated).
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produced by MA(1) models can be clustered in the most efficient way possible to reduce the resulting

subaggregated MSFE in Section 6.

2. Model Framework

We consider a retailer with possibly many large customers. In general, retailers forecast their

aggregate demand stream since the forecasting of the individual customer demand streams is often

thought of as being cumbersome and time consuming. We demonstrate that a retailer observing

multiple streams of demand generated by ARMA models can drastically reduce its MSFE by forecasting

the individual demand streams or aggregated clusters of similar demand streams. We limit the focus

of this paper on ARMA models that describe stationary demand in order to keep the exposition as

clear as possible. If we were to consider ARIMA (or Seasonal ARIMA) models then differencing (or

seasonal differencing) would need to be carried out on the data to apply the methodology discussed

here. We further note that even simple ARMA(1,1) models appearing in Section 4 can have coefficients

that produce seasonal patterns in demand realizations.

Hence, consider a retailer that observes multiple demand streams for a single product

{X1,t}, {X2,t}, . . . , {XN,t}. Each demand stream {Xk} is assumed to be generated by an ARMA model

with respect to a sequence of shocks {ǫk,t} given by

Φk(B)Xk,t = Θk(B)ǫk,t (1)

where Φk(z) = 1 + Φk,1z + . . . + Φk,pk
zpk and Θk(z) = 1 + Θk,1z + . . . + Θk,qk

zqk , such that{Xk,t} is

invertible and causal with respect to {ǫk,t} (see Brockwell and Davis, page 77 for a definition and

discussion about causality and invertibility). We denote the variance of each shock sequence σ2
k = E[ǫ2

k ].

Furthermore we note that the shock sequences are potentially contemporaneously correlated with

σij = E[ǫi,tǫj,t]. In general, this set up guarantees that the shocks ǫk,t are the retailer’s Wold shocks

(see [6] pp 187-188 for a description of a Wold decomposition of a time series) and that the MSFE of

one-step-ahead leadtime demand (when using the disaggregated (individual) streams) is the sum of

the elements in the covariance matrix Σǫ where Σij = σij such that σ2
k = σkk (see Equation (7).

The focus of this paper is evaluating the difference in one-step-ahead MSFEs at time t when the

forecast of leadtime demand, given by
ℓ+1

∑
i=1

(X1,t+i +X2,t+i + . . .+XN,t+i), is based on the different series

described below where Ck,τ = X
Ck
1,τ + . . . + X

Ck
nCk

,τ . Studying one-step-ahead MSFEs is mathematically

simpler than those for general leadtimes since the former does not depend on model parameters.

Disaggregated (individual) sequences {X1,τ}t
τ=−∞, {X2,τ}t

τ=−∞, . . . , {XN,τ}t
τ=−∞

Subaggregated (clustered) sequences {C1,τ}t
τ=−∞, {C2,τ}t

τ=−∞, . . . , {Cn,τ}t
τ=−∞

Aggregated (full) sequence {Dτ = X1,τ + X2,τ + . . . + XN,τ}t
τ=−∞

Our problem is related to the one posed by [7] where a two-stage supply chain was considered

with the retailer observing two demand streams. The focus of that paper was in evaluating information

sharing between the retailer and supplier in a situation where the retailer forecasts each demand

stream separately. Here we show the benefit to the retailer2 in determining the separate forecasts,

while considering the existence of (possibly) more than two demand streams. Kohn [1] was the first to

identify conditions under which using the individual demand streams leads to a better forecast than

using the aggregated sequence, however he did not determine the MSFE in the two cases. The same

conditions can be used to show that if streams are subaggregated into clusters where optimal clusters

are always used, then the MSFE of the forecast decreases as the number of clusters increases. Our

2 The situation is really identical for any player in the supply chain that might be observing multiple demand streams, where
information sharing does not take place
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aim is to determine the optimal cluster assignment based on a predetermined choice of the number of

clusters. The number of clusters can be based on the level of detailed data available to a firm or based

on the tradeoff from lowering MSFE and increasing the complexity of the model when increasing the

amount of clusters used.

In this paper we extend the results of [7] by providing formulas for computing MSFEs under the

possibility of more than two streams and a general leadtime in the situation where a player’s (retailer’s)

forecast can only be based on their Wold shocks. We also describe how a retailer would forecast its

demand by identifying clusters of similar demand streams and then forecasting each cluster after it is

aggregated. We provide a pivot algorithm, which we call Pivot Clustering, for identifying a locally

optimal assignment of streams into a fixed number of clusters. The algorithm will often find the best

possible assignment. We also describe a fast clustering algorithm which results in a globally optimal

assignment when demand streams are generated by independent MA(1) models. Our results show

that after the algorithms are carried out, much of the benefit of forecasting individual streams can be

obtained by forecasting the aggregated clusters.

2.1. Forecasting Using the Disaggregated (Individual) Sequences {X1,τ}t
τ=−∞, . . . , {Xn,τ}t

τ=−∞

In this section we are interested in forecasting
ℓ+1

∑
i=1

(X1,t+i + X2,t+i + . . .+ XN,t+i) when the forecast

is based on the diaggregated individual sequences as discussed in the previous section. The forecasting

contained here is a textbook multivariate time-series result along with the propagation described in [8]

as seen in (5). Thus we consider processes {Xk,t}, . . . , {XN,t} such that Xk,t generated by ARMA

models given by

Φk(B)Xk,t = Θk(B)ǫk,t (2)

with σjk = E[ǫj,tǫk,t].

In this case the disaggregated MSFE given by

MSFEind = E

[( N

∑
k=1

ℓ+1

∑
i=1

Xk,t+i −
N

∑
k=1

̂ℓ+1

∑
i=1

Xk,t+i

)2]

(3)

where
̂ℓ+1

∑
i=1

Xk,t+i is the best linear forecast of leadtime demand at time t for stream {Xk,t} based on (2).

We note that

E

[(

ℓ+1

∑
i=1

Xj,t+i −
̂ℓ+1

∑
i=1

Xj,t+i

)(

ℓ+1

∑
i=1

Xk,t+i −
̂ℓ+1

∑
i=1

Xk,t+i

)]

= σjk

ℓ

∑
i=0

ωj,iωk,i (4)

such that

ωk,i =



























0 i < 0

ψk,i i = 0

ωk,i−1 + ψk,i 0 < i < ℓ+ 1

ωk,i−1 + ψk,i − ψk,i−ℓ−1 i ≥ ℓ+ 1.

(5)

with ψk,i is the ith coefficient appearing in the MA(∞) representation of {Xk,t} with respect to {ǫk,t}
(see [8] for details). That is 1 + ψk,1z + ψk,2z2 + . . . = Ψk(z) and

Xk,t = Ψk(B)ǫk,t (6)

such that Ψk(z) =
Θk(z)

Φk(z)
.
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Thus the MSFE of the best linear forecast (BLF) of leadtime demand when using the individual

sequences

{X1,τ}t
τ=−∞, {X2,τ}t

τ=−∞, . . . , {XN,τ}t
τ=−∞

is given by

MSFEind =
N

∑
k=1

N

∑
j=1

ℓ

∑
i=0

σkjωj,iωk,i. (7)

We note that the one-step-ahead (ℓ = 0) disaggregated MSFE is given by
N

∑
j=1

N

∑
k=1

σjk. Thus we can

compare (7) with (26) below to determine the reduction in MSFE when using the individual sequences

as opposed to the aggregated sequence.

2.2. ARMA Representation of a Summed Sequence {Sτ = X1,τ + . . . + Xs,τ}t
τ=−∞

In this subsection we determine the ARMA representation of a series {St} with respect to a

series of Wold shocks, where {St} is the sum of several ARMA-generated streams given by {St} =

{X1,t + X2,t + . . . + Xs,t}. Furthermore we determine the variance of the Wold shocks appearing in

this representation. This will allow us to determine the MSFE when forecasts are based on the fully

aggregated series as well as when the forecasts are based on subaggregated clusters. In order to

obtain the ARMA representation we first need to obtain the spectral density fS(λ) and the covariance

generating function GS(z) of {St}.

Proposition 1. Let {St} = {X1,t + X2,t + . . . + Xs,t}. The spectral density of {St} is given by

fS(λ) =
s

∑
i=1

fXi
(λ) +

s−1

∑
i=1

s

∑
j=i+1

(

fXiXj
(λ) + f̄XiXj

(λ)

)

(8)

where the cross-spectrum fXiXj
(λ) is defined fXi ,Xj

(λ) =
1

2π

∞

∑
r=−∞

e−iλrCXiXj
(r) with CXiXj

(r) =

E[Xi,t+rXj,t] and f̄XiXj
(λ) =

1

2π

∞

∑
r=−∞

eiλrCXiXj
(r).

Proof. We will prove this by induction. Note that when {St} = {X1,t + X2,t}, fS(λ) is given by

fS(λ) =
1

2π

∞

∑
r=−∞

e−iλrE[(X1,t+r + X2,t+r)(X1,t + X2,t)] (9)

=
1

2π

∞

∑
r=−∞

e−iλrE[X1,t+rX1,t] +
1

2π

∞

∑
r=−∞

e−iλrE[X2,t+rX2,t]

+
1

2π

∞

∑
r=−∞

e−iλrE[X1,t+rX2,t] +
1

2π

∞

∑
r=−∞

e−iλrE[X2,t+rX1,t]. (10)

Noting that
∞

∑
r=−∞

e−iλrE[X2,t+rX1,t] =
∞

∑
r=−∞

eiλrE[X2,tX1,t+r] = f̄X1X2
(λ) we see that

fS(λ) = fX1
(λ) + fX2

(λ) + fX1X2
(λ) + f̄X1X2

(λ)

which matches representation (8).

Now suppose (8) holds for {Sn,t} = {X1,t + . . . + Xn,t} processes. Thus

fSn
(λ) =

n

∑
i=1

fXi
(λ) +

n−1

∑
i=1

n

∑
j=i+1

(

fXiXj
(λ) + f̄XiXj

(λ)

)

(11)
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Consider {Sn+1} = {Sn,t + Xn+1,t}. Since {Sn,t} follows and ARMA model, we observe that

fSn+1
(λ) = fSn

(λ) + fXn+1
(λ) + fSn ,Xn+1

(λ) + f̄Sn ,Xn+1
(λ) (12)

Note that starting with the definition of fSn ,Xn+1
(λ),

fSn ,Xn+1
(λ) =

1

2π

∞

∑
r=−∞

e−iλrE[Sn,tXn+1,t+r] (13)

=
1

2π

∞

∑
r=−∞

e−iλrE[X1,tXn+1,t+r + . . . + Xn,tXn+1,t+r] (14)

=
1

2π

∞

∑
r=−∞

e−iλrE[X1,tXn+1,t+r] + . . . +
1

2π

∞

∑
r=−∞

e−iλrE[Xn,tXn+1,t+r] (15)

= fX1Xn+1
(λ) + . . . + fXnXn+1

(λ) (16)

Similarly,

f̄Sn ,Xn+1
(λ) = f̄X1Xn+1

(λ) + . . . + f̄XnXn+1
(λ)

Thus from (12),

fSn+1
(λ) = fSn

(λ) + fXn+1
(λ) + fX1Xn+1

(λ) + . . .

+ fXnXn+1
(λ) + f̄X1Xn+1

(λ) + . . . + f̄XnXn+1
(λ) (17)

or equivalently

fSn+1
(λ) =

n

∑
i=1

fXi
(λ) +

n−1

∑
i=1

n

∑
j=i+1

(

fXiXj
(λ) + f̄XiXj

(λ)

)

+ fXn+1
(λ) + fX1Xn+1

(λ) + . . .

+ fXnXn+1
(λ) + f̄X1Xn+1

(λ) + . . . + f̄XnXn+1
(λ)

which can be simply written as

fSn+1
(λ) =

n+1

∑
i=1

fXi
+

n

∑
i=1

n+1

∑
j=i+1

(

fXiXj
(λ) + f̄XiXj

(λ)

)

(18)

and the result is proved. �

Now consider the covariance generating function GS(z) =
∞

∑
j=−∞

E[StSt−j]z
j of {St}. Here we use

the equivalence GS(e
−iλ) = 2π fS(λ) and note the following:

fXi
(λ) =

σ2
i

2π

|Θi(e
−iλ)|2

|Φi(e−iλ)|2 (19)

fXiXj
(λ) =

σij

2π

Θi(e
−iλ)

Φi(e−iλ)

Θj(e
iλ)

Φj(eiλ)
(20)

f̄XiXj
(λ) =

σij

2π

Θi(e
iλ)

Φi(eiλ)

Θj(e
−iλ)

Φj(e−iλ)
(21)

Thus from Proposition 1 we observe that

GS(z) =
s

∑
i=1

σ2
i

Θi(z)Θi(z
−1)

Φi(z)Φi(z−1)
+

s−1

∑
i=1

s

∑
j=i+1

(

σij
Θi(z)

Φi(z)

Θj(z
−1)

Φj(z−1)
+ σij

Θi(z
−1)

Φi(z−1)

Θj(z)

Φj(z)

)

(22)
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As described in Theorem 5 of [7], the covariance generating function GS(z) can be factorized as the

ratio
O(z)P(z)

Q(z)
where O(z), P(z) and Q(z) are Laurent polynomials, with O(z) having all its roots on

the unit circle and P(z) and Q(z) having no roots on the unit circle. This result follows from the fact that

each additive term in (77) is a ratio of Laurent Polynomials and the fact that for any Laurent polynomial

P(z), both P(z)P(z−1) and P(z) + P(z−1) will be Laurent polynomials. Furthermore if P1(z) and P2(z)

are Laurent polynomials then P1(z)P2(z) and P1(z) + P2(z) will be Laurent polynomials as well.

We can now use the factorization provided in [9] and described in [7] to obtain the ARMA

representation of {St} with respect to the Wold shocks {ǫt} (appearing in its Wold representation). It

should be noted that Remark 1 is simply a restatement of Theorem 5 of [7] with the slight addition of

determining the polynomials appearing in the ARMA representation of the aggregate sequence {St}.

Remark 1. {St} can be represented with respect to shocks {ǫt} using the ARMA model

Φ(B)St = Θ(B)ǫt (23)

where Θ(z) =
m

∏
i=1

(1 − aiz) where {ai} are the roots of O(z)P(z) on or inside the unit circle and Φ(z) =

n

∏
i=1

(1 − biz) where {bi} are the roots of Q(z) inside the unit circle. Furthermore

σ2
ǫ = E[ǫ2

t ] =
pm ∏

m
j=1(−1/aj)

qn ∏
n
j=1(−1/bj)

(24)

where pm is the coefficient of zm in P(z) and qn is the coefficient of zn in Q(z).

2.3. Forecasting Using the Fully Aggregated Sequence {Dτ}t
τ=−∞ For A General Leadtime

We note that Remark 1 can be used to obtain the ARMA representation of {Dt} with respect

to its Wold shocks {ǫt} as well as σ2
ǫ = E[ǫ2

t ]. We can therefore use Lemma 1 of [8] and its proof to

determine the BLF of

(

ℓ+1

∑
k=1

Dt+k

)

and its MSFE when forecasting using the infinite past of {Dt} up to

time t, namely {Dτ}t
τ=−∞. That is, if we consider the MA(∞) representation of {Dt} with respect to

{ǫt} given by

Dt = Ψ(B)ǫt (25)

where Ψ(z) = 1 + Ψ1z + Ψ2z2 + . . ., then the MSFE of the BLF when using {Dτ}t
τ=−∞ is

MSFEagg = σ2
ǫ

ℓ

∑
i=0

ω2
i (26)

where

ωi =



























0 i < 0

ψi i = 0

ωi−1 + ψi 0 < i < ℓ+ 1

ωi−1 + ψi − ψi−ℓ−1 i ≥ ℓ+ 1.

(27)

We note that Ψ(z) =
Θ(z)

Φ(z)
.
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2.4. Forecasting Using Subaggregated Sequences

In this section we use the results in the previous section to create a forecast and compute its MSFE

when some of the individual streams are subaggregated. That is, for k ∈ 1 . . . n, let cluster Ck consist of

nCk
streams such that {Ck,t = X

Ck
1,t + . . . + X

Ck
nCk

,t}. We are interested in the forecast and MSFE based on

{C1,τ}t
τ=−∞, . . . , {Cn,τ}t

τ=−∞.

Section 2.2 describes how we can obtain the ARMA representation and variance of the Wold

shocks appearing in the Wold representation for each sequence {Ck,t}. This can then be used to create

a forecast from each subaggregated sequence, the sum of which can be taken as the forecast for Dt+ℓ+1.

The one-step ahead MSFE of this forecast is the sum of the entries of the covariance matrix of the Wold

shocks appearing in the Wold representation of {C1,t, . . . , Cn,t}. Equation (7) describes how we can

also use the covariance matrix of the shocks of {C1,t, . . . , Cn,t} to obtain the MSFE for multi-step ahead

forecasts. The remainder of this section will focus on obtaining this covariance matrix.

Without loss of generality, consider two subaggregated series {C1,t = X1,t + . . . + Xa,t} and

{C2,t = Xa+1,t + . . . + Xb,t} with ARMA representations

φ⋆
1 (B)C1,t = θ⋆1 (B)ǫ⋆1,t (28)

φ⋆
2 (B)C2,t = θ⋆2 (B)ǫ⋆2,t (29)

where {ǫ⋆1,t} and {ǫ⋆2,t} are the shocks appearing in the Wold representation of {C1,t} and {C2,t}
respectively. We note that the variances of {ǫ⋆1,t} and {ǫ⋆2,t} can be obtained using Remark 1. To obtain

the covariance σ⋆
12 = E[ǫ⋆1,tǫ

⋆
2,t] consider the following.

We can rewrite the ARMA representations above as

ǫ⋆1,t =
φ⋆

1 (B)

θ⋆1 (B)
C1,t (30)

ǫ⋆2,t =
φ⋆

2 (B)

θ⋆2 (B)
C2,t (31)

The ARMA representations of {X1,t}, . . . , {Xb,t} can also be rewritten as

X1,t =
Θ1(B)

Φ1(B)
ǫ1,t . . . Xb,t =

Θb(B)

Φb(B)
ǫb,t (32)

Based on the definition of C1,t = X1,t + . . . + Xa,t and C2,t = Xa+1,t + . . . + Xb,t we observe that

ǫ⋆1,t =
φ⋆

1 (B)

θ⋆1 (B)

[

Θ1(B)

Φ1(B)
ǫ1,t + . . . +

Θa(B)

Φa(B)
ǫa,t

]

(33)

ǫ⋆2,t =
φ⋆

2 (B)

θ⋆2 (B)

[

Θa+1(B)

Φa+1(B)
ǫa+1,t + . . . +

Θb(B)

Φb(B)
ǫb,t

]

(34)

To obtain E[ǫ⋆1,tǫ
⋆
2,t] we need to compute the expectation of the the product of the right-hand-sides of

these two equations. Thus we need to consider the sum of terms such as

E

[

φ⋆
1 (B)

θ⋆1 (B)

Θi(B)

Φi(B)
ǫi,t

φ⋆
2 (B)

θ⋆2 (B)

Θj(B)

Φj(B)
ǫj,t

]

. (35)

Note that we can write
φ⋆

1 (B)

θ⋆1 (B)

Θi(B)

Φi(B)
ǫi,t =

∞

∑
k=0

ψ̃i,kǫi,t−k (36)
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and
φ⋆

2 (B)

θ⋆2 (B)

Θj(B)

Φj(B)
ǫj,t =

∞

∑
k=0

ψ̃j,kǫj,t−k (37)

where ψ̃i,k and ψ̃j,k can be obtained in the same way as the MA(∞) coefficients in (27). Hence the term

in Equation (35) can be rewritten as

E

[ ∞

∑
k=0

ψ̃i,kǫi,t−k

∞

∑
k=0

ψ̃j,kǫj,t−k

]

(38)

Since the shock sequences are not correlated across time by assumption, this is equivalent to

E

[ ∞

∑
k=0

ψ̃i,kψ̃j,kǫi,t−kǫj,t−k

]

(39)

or equivalently
∞

∑
k=0

ψ̃i,kψ̃j,kσij (40)

Adding up these terms as required would yield the covariance. Hence

σ⋆
12 = E[ǫ⋆1,tǫ

⋆
2,t] =

a

∑
i=1

b

∑
j=a+1

∞

∑
k=0

ψ̃i,kψ̃j,kσij (41)

We note that this methodology can easily be extended to obtain any of the covariances in the

covariance matrix

Σ⋆
ǫ =















σ⋆
11 . . . σ⋆

1n

σ⋆
21

. . . σ⋆
2n

...
...

σ⋆
n1 . . . σ⋆

nn















(42)

We will use the previous methodology for all theoretical MSFE computations found in this paper.

In the next subsection, we provide an example describing the importance of forecasting leadtime

demand based upon the individual sequences.

2.5. Example

Consider a retailer that observes Aggregate demand {Dt = X1,t + X2,t + X3,t} where each

individual demand stream is generated by one of the following ARMA models:

X1,t = (1 − .9B)ǫ1,t (43)

X2,t = (1 + .9B)ǫ2,t (44)

X3,t = (1 + .9B)ǫ3,t (45)

where the shock covariance matrix is given by Σ =







1.6 −1.4 0.5

−1.4 1.3 −0.8

0.5 −.8 2.0







We use the results described in Sections 2.1 and 2.2 to compare the MSFE of the forecasts of

leadtime demand
ℓ+1

∑
j=1

Dt+j when using the individual sequences {X1,t}t
τ=−∞, {X2,t}t

τ=−∞, {X3,t}t
τ=−∞

versus when using the aggregate sequence {Dτ}t
τ=−∞.
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The covariance generating function of {Dt} is given by

GS(z) =
0.090z−1 + 5.631 + 0.090z

1
(46)

and the ARMA representation of {Dt} is given by

Dt = (1 + .01598704B)ǫt (47)

where σ2
ǫ = 5.629561. We can check that the ARMA representation of {Dt} and its covariance

generating function match up by noting that

GS(z) = σ2
ǫ

Θ(z)Θ(z−1)

Φ(z)Φ(z−1)
= 5.629561(1 + .01598704z)(1 + .01598704z−1) = 0.090z−1 + 5.631 + 0.090z

(48)

with Θ(z) = (1 + .01598704z) and Φ(z) = 1 being the MA and AR polynomials appearing in the

ARMA representation of {Dt} as defined in Remark 1.

We note that the one-step ahead forecast then has a MSFE=5.629561 and a two-step ahead forecast

(of Dt+1 + Dt+2) has a MSFE=11.44056.

Using equation (7) and noting that ωk,0 = ψk,0 = 1 in equation (5) we can obtain the MSFE of

the forecast based on the individual demand streams. In this case the MSFE is 1.5, which is 4.129561

(73.3%) lower that the forecast error when using the aggregated series. We can likewise compute the

elements ωk,i when forecasting Dt+1 + Dt+2. In this case, ωk,0 = ψk,0 = 1 and ω1,1 = .1, ω2,1 = 1.9,

and ω3,1 = 1.9. From (7) this implies that the MSFE=7.311, which is also 4.129561 (36.1%) lower3 than

the forecast error when using the aggregated series. In the next section we demonstrate, with example,

the benefit of forecasting using subaggregated clusters (which would have been identified using a

suitable technique).

3. The Benefit of Forecasting Using Subaggregated Clusters

In this section, we consider a retailer that has ten demand streams, which aggregate into three

clusters consisting of similar streams. The models generating these streams are specifically chosen to

provide a clear separation between "good" clusters leading to low MSFE and "bad" clusters leading to

high MSFE. Intuition gleaned from Sections 6 and 7 hint that streams generated from ARMA models

with similar coefficients should be clustered together. Hence for our example we consider three groups

of models having similar sets of coefficients within each group. Later, in Section 4, we will randomly

assign coefficients to streams and still observe a sharp drop in MSFE when streams are clustered to

minimize MSFE.

Suppose the retailer observes Aggregate demand {Dt = X1,t + X2,t + . . . + X10,t} where each

individual demand stream is generated by one of the following ARMA processes:

(1 − .3B − .6B2)X1,t = (1 − .6B − .2B2)ǫ1,t (49)

(1 − .35B − .5B2)X2,t = (1 − .65B − .15B2)ǫ2,t (50)

(1 − .27B − .55B2)X3,t = (1 − .63B − .17B2)ǫ3,t (51)

(1 − .8B)X4,t = ǫ4,t (52)

(1 − .9B)X5,t = ǫ5,t (53)

(54)

3 In this case the reduction in MSFE appears the same (regardless of leadtime), however this is due to the series being
generated by MA(1) models. For higher order ARMA models, the reduction in MSFE may be dependent on leadtime.
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(1 − .75B)X6,t = ǫ6,t (55)

(1 + .77B)X7,t = (1 + .6B)ǫ7,t (56)

(1 + .68B)X8,t = (1 + .55B)ǫ8,t (57)

(1 + .73B)X9,t = (1 + .52B)ǫ9,t (58)

(1 + .7B)X10,t = (1 + .5B)ǫ10,t (59)

where the shock covariance matrix is given by

Σ =





































2 1 0.8 −0.9 −1.2 −1.5 0.8 0.9 0.95 1

1 2.1 0.7 −0.6 −0.5 −0.4 0.21 0.31 0.36 0.39

0.8 0.7 2.2 −0.5 −1.3 −1 0.4 0.8 1 1.1

−0.9 −0.6 −0.5 3 1.8 1.9 −2 −2.1 −2.2 −2.3

−1.2 −0.5 −1.3 1.8 3.2 2 −1.9 −1.8 −1.7 −1.5

−1.5 −0.4 −1 1.9 2 3.3 −2.2 −2.3 −2.4 −2.5

0.8 0.21 0.4 −2 −1.9 −2.2 5 1 1.25 1.5

0.9 0.31 0.8 −2.1 −1.8 −2.3 1 5.1 1.3 1.6

0.95 0.36 1 −2.2 −1.7 −2.4 1.25 1.3 5.7 1.8

1 0.39 1.1 −2.3 −1.5 −2.5 1.5 1.6 1.8 5.9





































(60)

Consider the three natural clusters in the above ten demand streams, namely, streams 1-3, 4-6,

and 7-10. It can be shown that indeed this grouping is optimal out of any other possible choice of three

clusters simply by looking at all possible combinations and computing their MSFEs. Our analysis of

the MA(1) case in Section 6 also points to these being the correct clusters based on the proximity of the

ARMA coefficients of the models generating the demand streams. We demonstrate that even though

the best the retailer can do in such a situation is forecast all ten streams individually, if the retailer

would correctly cluster the demand streams as mentioned, the results are similar. All MSFEs stated in

this section are obtained using the methods described in Section 2.

Specifically in this case if the retailer were to forecast the individual streams, its one-step ahead

theoretical MSFE would be 21.64. If the retailer were to consider the subaggregated processes consisting

of the correct clusters and forecast these separately then the MSFE would be 21.74. This is in stark

contrast to a MSFE of 61.39 when forecasting using the aggregate process of all ten streams. In

other words, it is sufficient to determine clusters of similar customers as opposed to forecasting each

individual stream in order to keep inventory related costs down.

To see the impact of choosing the correct clusters we consider the case that the retailer incorrectly

clusters the streams as 1-2, 3-5, and 6-10. In this case the MSFE rises to 33.4. Similarly, if the clusters

chosen are 1&4, 2&3&5, and 6-10 then the MSFE is 45.04. Assigning streams randomly to three clusters

consisting of three, two and five streams yields the following table.

Table 1. The MSFEs for various clusters of three, two and five streams.

MSFE Clusters

52.34495576 6,10,9 and 1,2 and 8,3,4,5,7
51.90912188 2,10,5 and 3,8 and 4,1,7,6,9
31.40789218 7,2,10 and 8,9 and 5,4,6,3,1
44.15962369 10,1,7 and 3,4 and 8,2,9,6,5
50.32525078 5,8,3 and 1,10 and 4,2,7,6,9
39.31100769 6,9,5 and 10,7 and 1,3,8,4,2
45.09358141 3,1,10 and 5,8 and 2,4,9,7,6
51.54828609 9,5,10 and 4,2 and 7,6,8,1,3
34.21154829 8,7,2 and 1,9 and 6,4,5,10,3
55.21445794 6,1,10 and 2,4 and 7,3,8,5,9
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We note that there could be substantial reduction in MSFE even when multiple streams are

clustered incorrectly. In the next section, we demonstrate how a retailer would be able to generate

clusters of its individual demand streams using Pivot Clustering.

4. TS Clustering Algorithms and Pivot Clustering, Empirical Evaluation

We have shown that the when the retailer forecasts using clusters of its demand streams as

opposed to the individual streams, its MSFE can vary greatly from close to the optimal value (when

forecasting using the individual streams) to close to the MSFE of a forecast based on the aggregate

of all the streams. Hence, if the retailer wishes to forecast using clusters of its demand streams, the

selection of the clusters is important. In general, a retailer might have customer related information

that could be used to generate the clusters. The benefit of generating the clusters and forecasting them

is that there could be situations where it would be cumbersome for the retailer to collect the individual

demand streams and service them individually. Forecasting clusters would therefore be a second best

option.

We propose Pivot Clustering for determining clusters which usually results in a relatively low

MSFE among all choices of streams to clusters. We consider two ways to obtain the subaggregated

MSFE based on some clustering assignment. The first is to use the individual ARMA demand models

appearing in (2) to compute the subaggregated theoretical MSFE as per Sections 2.2–2.4. We note that

if there is only one cluster then the MSFE is the one computed for a forecast based on the aggregate of

the all the streams while if the number of clusters is equal to the number of streams, the MSFE is for a

forecast based on the disaggregated (individual) sequences. We also estimate the MSFE by generating

demand realizations for each stream based on (2). Once a demand realizations are simulated for

each stream, we subaggregate the realizations based on our choice of clusters. So if some cluster is

made up of streams {Xi,t} and {Xj,t}, we say that the cluster has realization {Xi,t + Xj,t}. We then

estimate an ARMA(5,5)4 model using each cluster’s realization. Finally we use the estimated models to

obtain in-sample forecast errors and compute the covariance matrix of these forecast errors to estimate

the MSFE for a particular assignment of streams to clusters. In the analysis below we see that the

estimated MSFEs are close to theoretical ones and often lead to similar choices of clusters. Based on a

predetermined number of clusters n, Pivot Clustering works as follows.

For each stream, randomly assign it to a cluster.

For each cluster,

For each stream in the cluster,

Compute or estimate the MSFE for the current assignment along

with the resulting MSFEs if the stream was moved to each of the other clusters.

# MSFE can be either estimated based on realizations of the demand streams or

# computed using Equations (28), (29), (41) and (42).

Move each stream in the cluster to a cluster which leads to largest overall MSFE-

reduction among all choice of clusters.

In the remainder of this section we perform various simulations to assess the efficacy of Pivot

clustering. We focus on ARMA(1,1) models as these do not require too much runtime for Pivot

clustering based on theoretical MSFE and are complex enough to describe demand data such as in [10].

Additionally forecasting an aggregate of ARMA(1,1) demand sequences has been studied by [11] where

forecasts were based on exponential smoothing. The methods herein are generally applicable however

to higher-order ARMA models. From a computational standpoint, it is possible to determine theoretical

MSFE based on the aggregate of up to twenty demand streams generated by ARMA(1,1) models.

The burden lies in having to find roots of large degree polynomials in order to determine the ARMA

4 The AR and MA degrees were chosen with the understanding that these degrees increase with the number of streams
subaggregated into a particular cluster, while trying to limit the complexity of the models being estimated.
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model and shock variance that describes the aggregated sequence. To understand the computational

requirements we check the runtimes of Pivot Clustering when determining theoretical and estimated

MSFEs. Based on a given number of streams (between 10 and 20) we carry out Pivot Clustering for

twenty different combinations of ARMA(1,1) models and plot the average of the runtimes in Figure 1

in assigning the streams to four clusters. If using estimated MSFE then many more streams can be

clustered and Pivot Clustering has faster runtimes for larger amounts of streams. Upon checking,

Pivot Clustering with estimated MSFEs for 200 streams takes approximately 20 minutes.

Figure 1. Runtimes of Pivot Clustering for Assigning Streams to Four Clusters Using Theoretical and

Estimated MSFEs. The graph contains the average runtime of Pivot clustering for each specific number

of streams being assigned to four clusters. That is, for N streams (between 10 and 20) we consider

twenty randomly assigned ARMA(1,1) models for each stream. Pivot Clustering (with theoretical and

estimated MSFE) is then used to obtain the four optimal clusters. The average runtime of Pivot is

approximately 63 seconds when twenty streams are assigned to clusters using theoretical MSFE and 40

seconds using estimated MSFE.

We can check the efficacy of Pivot Clustering through simulation. We begin by randomly assigning

coefficients to twenty ARMA(1,1) models to produce twenty demand streams as well as the covariance

matrix of the shock sequences. We make sure that each assignment results in causal and invertible

demand with respect to the shocks and that the resulting covariance matrix is positive definite. The

AR and MA coefficients and covariance matrix can be found in https://github.com/vkovtun84/Pivot-

Clustering-of-Demand-Streams under Models.csv and covarmat.csv.

After randomly assigning streams to one of four clusters we compute both the estimated and

theoretical one-step-ahead MSFEs based on this random assignment and use it to start Pivot Clustering.

We output the clusters found by Pivot as well as the MSFE of the forecast based on this set of clusters.

We iterate this procedure 50 times to study how much the MSFE improves based on Pivot Clustering

for the starting allocations. The MSFEs of the final clusters and random clusters can be found under

MSFEresults.csv in https://github.com/vkovtun84/Pivot-Clustering-of-Demand-Streams. These can

also be compared with the MSFEs of the forecast based on the individual (disaggregated) demand

streams and the forecast based on fully aggregating the streams.

For the twenty demand streams and models used, the theoretical and estimated MSFEs when

forecasting based on individual (disaggregated) streams are 102.1 and 96.2. The theoretical and

estimated MSFEs when forecasting based on the fully aggregated streams are 231.3 and 220.6. For

the 50 simulations of assigning streams to random clusters (used in the initialization step of Pivot)

the average of the theoretical and estimated MSFEs based on the subaggregated random clusters are

202.2 and 194.2. After Pivot Clustering is carried out to obtain a better set of subaggregated clusters

in each of the 50 simulations, the averages of the theoretical and estimated MSFEs are 109.4 and
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101.0. The various theoretical and estimated MSFEs for the different initializations are provided in

Figures 2 and 3. We note that regardless of the initial random assignment of streams to clusters, Pivot

Clustering leads to the clustering of streams such that the subaggregated MSFE is very low. In fact,

typically Pivot Clustering results in clusters for which the subaggregated MSFE ends up very close to

the MSFE obtained when forecasts are based on the individual (disaggregated) streams.

Figure 2. Theoretical Subaggregated MSFE for Random Initialization of Pivot. Theoretical MSFEs

are computed on the four clusters obtained by Pivot Clustering for different random initializations.

The MSFE of the initial random assignment is provided as well as the MSFE that is obtained by Pivot

Clustering. Horizontal lines are drawn to represent the MSFE based on the fully aggregated demand

sequence (top) and the MSFE based on the fully disaggregated demand sequences (bottom).

Figure 3. Estimated Subaggregated MSFE for Random Initialization of Pivot. Estimated MSFEs are

computed for different initializations of Pivot Clustering. The MSFE of the initial random assignment

is provided as well as the MSFE that is obtained by Pivot Clustering. Horizontal lines are drawn to

represent the MSFE based on the fully aggregated demand sequence (top) and the MSFE based on the

fully disaggregated demand sequences (bottom).

We can compare our results with existing time-series clustering methods. Two distance measures

that can be computed for time-series realizations are available in the TSclust package for R, namely

AR.PIC and AR.LPC.CEPS. These distances can be used to perform hierarchical clustering such as

average-linkage clustering. The final groups determined by these methods lead to MSFEs of 123.4
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and 108.8 respectively, higher than those found by Pivot starting from random assignments. We note

that the cluster assignments found by these methods can also be used in the initialization of Pivot

Clustering, potentially leading to even better clusters.

Since the previous simulations were carried out on only one set of twenty ARMA(1,1) demand

models, we should also check the efficacy of Pivot Clustering for other sets of models as well. As

such, we consider twenty simulations where within each simulation a new set of twenty demand

models is considered. We compare the estimated and theoretical MSFEs of one random assignment

of streams to four clusters with the estimated and theoretical MSFEs of the four clusters obtained by

Pivot Clustering. In each simulation we also compute the MSFEs that would be found when fully

aggregating the streams or when considering forecasts based on individual streams as well as the

MSFEs that would be found using the AR.PIC and AR.LPC.CEPS distances for hierarchical clustering

streams into four clusters. The results of these simulations are displayed in Figures 4 and 5. We note

that if forecasts are to be based on four clusters, the lowest MSFEs are obtained when clusters are

formed using Pivot Clustering. Furthermore, Pivot Clustering leads to forecasts whose MSFE is very

close to the MSFE of the forecast based on the individual streams in every simulation.

We continue with twenty simulations where in each simulation we consider a separate set of

20 streams being subaggregated into four clusters with 10 random initializations of Pivot Clustering.

The means of the various theoretical and estimated MSFEs under different clustering approaches

are displayed in Figures 6 and 7. We note again that in every set of twenty streams, the averaged

subaggregated MSFEs are very close to the disaggregated MSFEs when averaged for different initial

random assignments of streams to clusters.

Figure 4. Theoretical Subaggregated MSFE Found by Pivot for Different Sets of Streams. Theoretical

MSFEs are computed for twenty simulations using different sets of twenty streams in each simulation.

We note that using individual streams to forecasts leads to the lowest MSFE while basing the forecast

on the aggregate of the streams always leads to the highest MSFE. If subaggregated clusters are formed

from the streams, the lowest MSFEs are obtained when clusters are based on Pivot Clustering.
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Figure 5. Estimated Subaggregated MSFE Found by Pivot for Different Sets of Streams. Estimated

MSFEs are computed for twenty simulations using different sets of twenty streams in each simulation.

We note that using individual streams to forecasts leads to the lowest MSFE while basing the forecast

on the aggregate of the streams always leads to the highest MSFE. If subaggregated clusters are formed

from the streams, the lowest MSFEs are obtained when clusters are based on Pivot Clustering.

Figure 6. Theoretical Subaggregated MSFE Found by Pivot for Different Sets of Streams. Theoretical

MSFEs are computed for twenty simulations using different sets of twenty streams in each simulation

and different initial assignments of streams to clusters. When averaging the final MSFEs based on

the different initializations for each set of streams, we note that using individual streams to forecasts

leads to the lowest averaged MSFE while basing the forecast on the aggregate of the streams always

leads to the highest averaged MSFE. If subaggregated clusters are formed from the streams, the lowest

averaged MSFEs are obtained when clusters are based on Pivot Clustering.
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Figure 7. Estimated Subaggregated MSFE Found by Pivot for Different Sets of Streams. Estimated

MSFEs are computed for twenty simulations using different sets of twenty streams in each simulation

and different initial assignments of streams to clusters. When averaging the final MSFEs based on

the different initializations for each set of streams, we note that using individual streams to forecasts

leads to the lowest averaged MSFE while basing the forecast on the aggregate of the streams always

leads to the highest averaged MSFE. If subaggregated clusters are formed from the streams, the lowest

averaged MSFEs are obtained when clusters are based on Pivot Clustering.

We continue by assessing how well Pivot clustering does when compared against an exhaustive

algorithm which checks all possible assignments of streams to clusters using theoretical MSFE

calculations. To do so, we consider twenty simulations where within each simulation we randomly

generate 10 ARMA(1,1) streams5 and compute the lowest MSFE possible among all choices of streams

to 3 clusters. Furthermore we consider 10 random initializations of Pivot each time new streams are

considered. The results are displayed in Figure 8. We note in the first row of that table that for the first

simulation of twenty streams 8 out of 10 initializations of our algorithm led Pivot clustering to find

the optimal solution. Among the 2 initializations that did not lead to the optimal solution, the ratio of

optimal MSFE to the MSFE of the grouping found by pivot is 96.81%. The median was 96.81% while

the minimum ratio was 96.24%. In some instances Pivot clustering never found an optimal solution

(such as in the 6th simulation), however the average MSFE of the optimal solution was around 99.6%

of the MSFE of the groupings found by Pivot. In the worst performance of Pivot (simulation 15), the

best possible grouping led to an MSFE that was 80.27464% lower than the MSFE found by Pivot.

5 We reduced the number of streams and clusters here due to the fact that an exhaustive algorithm requires O(kN) iterative
steps to check all possible cluster assignments where k is the number of clusters and N is the number of streams. We note
that Pivot clustering has a complexity of O(kN) in the event that each stream is only allowed to change clusters once.
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Figure 8. Twenty simulations are carried out where within each simulation we select a new set of

ARMA(1,1) coefficients for each of 10 streams. The streams are then clustered using Pivot clustering

using theoretical MSFE based on 10 different starting groups. We also obtain the optimal (minimum

MSFE) clustering assignment based on an exhaustive search of all possible assignments of streams to

clusters. Each row corresponds to a new simulation. The three columns contain the mean, median and

minimum ratios of global optimal MSFE to the MSFE obtained by Pivot for the different initializations

in the event that Pivot clustering did not find the optimal solution.

Finally, we consider the robustness of the Pivot algorithm to cases where the data generation

process is not ARMA. To do so we perform ten simulations where in each simulation we simulate

twenty demand stream realizations such that stream Xk follows an ARFIMA(0, dk, 0) model given by

(1 − B)dk Xk,t = ǫk,t (61)

where −.4 < dk < .4 and Cov(ǫk,t, ǫj,t) may be nonzero. Each realization, consisting of 1500 time

periods is used to fit an ARMA(5,5) model to compute an estimated one-step-ahead MSFE for the

disaggregated series (appearing as a blue dot in Figure 9). Summing the realizations together to fit

an ARMA(5,5) model yields an estimated MSFE for the aggregated series (appearing as a black dot

in Figure 9). Finally the Pivot algorithm is carried out using five different random initializations of

assigning streams to one of four clusters. The MSFEs for the subaggregated random clusters and Pivot

clusters appear as red and green dots in Figure 9. We note that in the subaggregated case the number

of ARMA models that needs to be estimated is equal to the number of clusters.

As before, we note that Pivot clustering provides a sharp reduction in MSFE compared to random

cluster assignments as well as compared to the aggregated case. We also observe that when fitting

ARMA models to non-ARMA data it is possible for Pivot clustering to yield clusters which lead to a

subaggregated MSFE that is lower than the MSFE using the individual (disaggregated) series. The

exact cause of this is unclear, however it is possible it has to do with the extra number of misspecified

ARMA models that are fit in the disaggregated case.
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Figure 9. Estimated MSFEs when using aggregated, disaggregated, and subaggregated series to

forecast one-step-ahead demand for series that are not generated using an ARMA process. A total

of 10 simulations is performed where within each simulation twenty separate demand realizations

are generated according to the ARFIMA(0, d, 0) model with a different d for each realization such that

the shocks appearing in the ARFIMA model are contemporaneously correlated. Pivot clustering is

carried out for 5 random initialization of assigning the streams to one of four clusters. We compute the

estimated MSFEs for the disaggregated series (blue), aggregated series (black), subaggregated clusters

generated using random assignment (red) and subaggregated clusters generated using the result of

Pivot clustering. We note the supremacy of Pivot clustering in all ten simulations.

5. Clustering Demand Streams Through Minimizing An Objective Function Based on
Subaggregated MSFE

In this section we describe how to determine the optimal assignment of streams to clusters by

identifying and minimizing an objective function which computes the overall MSFE given a particular

assignment of streams to clusters. We begin by assuming that the desired number of clusters is known

to be n. For α ∈ 1, 2, . . . n, let subaggregated cluster series {Cα,t} = {X1,ty1,α + . . . + XN,tyN,α}, where

yi,α = 1 if stream {Xi,t} is in cluster {Cα,t} and 0 otherwise, have the ARMA representation

φ⋆
α(B)Cα,t = θ⋆α(B)ǫ⋆α,t. (62)

For α ∈ 1, 2, . . . n, the shocks ǫ⋆α,t have covariance matrix Σ⋆
ǫ given in equation (42). We define the

number of demand streams in cluster {Cα,t} to be nCα
=

N

∑
i=0

yi,α > 0 for all α ∈ 1, 2, . . . n. Furthermore

if yi,α = 1 then yi,β = 0 for all α 6= β ∈ 1, 2, . . . n. For each of nCα
streams {XCα

i,t } in cluster {Cα,t} we

adapt the notation of its ARMA representation to be

Φi,α(B)XCα
i,t = Θi,α(B)ǫα,i,t. (63)

Lemma 1. An optimal set of clusters can be found by minimizing the subaggregated MSFE given by

MSFEsubagg =
n

∑
α=1

n

∑
β=1

ℓ

∑
l=0

ω⋆
β,lω

⋆
α,l ·

nCα

∑
i=1

nCβ

∑
j=1

∞

∑
k=0

ψ̃α,i,kψ̃β,j,kσij (64)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.0310.v3

https://doi.org/10.20944/preprints202310.0310.v3


20 of 28

where ψ̃α,i,k and ψ̃β,j,k are obtained from the equivalence

φ⋆
α(z)

θ⋆α(z)

Θi,α(z)

Φi,α(z)
≡

∞

∑
k=0

ψ̃α,i,kzk (65)

and
φ⋆

β(z)

θ⋆β(z)

Θj,β(z)

Φj,β(z)
≡

∞

∑
k=0

ψ̃β,j,kzk. (66)

where the key terms are defined in the proof below.

Alternatively, the objective can be stated as finding the optimal set of {y1, . . . , yN} such that we minimize

MSFEsubagg =
n

∑
α=1

n

∑
β=1

ℓ

∑
l=0

ω⋆
β,lω

⋆
α,l ·

N

∑
i=1

N

∑
j=1

∞

∑
k=0

yi,αyj,βψ̃α,i,kψ̃β,j,kσij (67)

where ω⋆
α,l and ψ⋆

α,l in equation (70) are obtained through the equivalence

θ⋆α(z)

φ⋆
α(z)

=
∞

∑
l=0

ψ⋆
α,lz

l (68)

where again the key terms are defined in subsequent proof.

Proof

From equation (7) we note that a forecast based on the clusters would have MSFE given by

MSFEsubagg =
n

∑
α=1

n

∑
β=1

ℓ

∑
l=0

σ⋆
αβω⋆

β,lω
⋆
α,l (69)

where

ω⋆
α,l =



























0 i < 0

ψ⋆
α,l l = 0

ω⋆
α,l−1 + ψ⋆

α,l 0 < l < ℓ+ 1

ωα,l−1 + ψ⋆
α,l − ψ⋆

α,l−ℓ−1 l ≥ ℓ+ 1.

(70)

where ψ⋆
α,l is the lth coefficient appearing in the MA(∞) representation of {Cα,t} with respect to {ǫ⋆α,t}.

From equation (41) we note that for any two subaggregated clusters {Cα,t} and {Cβ,t} consisting of

nCα
and nCβ

streams respectively, the corresponding shock series {ǫ⋆α,t} and {ǫ⋆β,t}, the covariance

E[ǫ⋆α,tǫ
⋆
β,t] is expressed by

σ⋆
αβ =

nCα

∑
i=1

nCβ

∑
j=1

∞

∑
k=0

ψ̃α,i,kψ̃β,j,kσij. (71)

Therefore the objective is to assign streams to clusters such that we minimize the MSFE

MSFEsubagg =
n

∑
α=1

n

∑
β=1

ℓ

∑
l=0

ω⋆
β,lω

⋆
α,l ·

nCα

∑
i=1

nCβ

∑
j=1

∞

∑
k=0

ψ̃α,i,kψ̃β,j,kσij (72)

where ψ̃α,i,k and ψ̃β,j,k are obtained from the equivalence

φ⋆
α(z)

θ⋆α(z)

Θi,α(z)

Φi,α(z)
≡

∞

∑
k=0

ψ̃α,i,kzk (73)
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and
φ⋆

β(z)

θ⋆β(z)

Θj,β(z)

Φj,β(z)
≡

∞

∑
k=0

ψ̃β,j,kzk. (74)

Alternatively, we can say that we are finding the optimal set of {y1, . . . , yN} such that we minimize

MSFEsubagg =
n

∑
α=1

n

∑
β=1

ℓ

∑
l=0

ω⋆
β,lω

⋆
α,l ·

N

∑
i=1

N

∑
j=1

∞

∑
k=0

yi,αyj,βψ̃α,i,kψ̃β,j,kσij (75)

where ω⋆
α,l and ψ⋆

α,l in equation (70) are obtained through the equivalence

θ⋆α(z)

φ⋆
α(z)

=
∞

∑
l=0

ψ⋆
α,lz

l (76)

with θ⋆α(z) and φ⋆
α(z) found using Remark 1 where Laurent polynomials O(z), P(z) and Q(z) are

obtained from the covariance generating function GCα
(z) given by

GCα
(z) =

N

∑
i=1

yi,ασ2
i

Θi(z)Θi(z
−1)

Φi(z)Φi(z−1)

+
N−1

∑
i=1

N

∑
j=i+1

yi,αyj,α

(

σij
Θi(z)

Φi(z)

Θj(z
−1)

Φj(z−1)
+ σij

Θi(z
−1)

Φi(z−1)

Θj(z)

Φj(z)

)

. (77)

�

We note that it is impossible to offer an explicit solution because of the dependence of coefficients

ω⋆
β,l , ω⋆

α,l , ψ̃α,i,k and ψ̃β,j,k on the selection of clusters. In the next section we consider a much simpler

case of demand streams being generated by MA(1) models which leads to a much simpler objective

function. This allows us to find several theoretical results, culminating in the fact that optimal clusters

can be found in this case by identifying streams having the closest MA coefficients with one another.

6. MA(1) Streams

In this section we consider the case that the demand streams being considered are independent

MA(1). As we demonstrate below this leads to a simpler objective function. We will use this fact to

show how we can use non-linear optimization to assign clusters to streams and to come up with an

efficient way to cluster independent MA(1) streams based on segmenting the coefficient space into

intervals. The focus on MA(1) streams here allows us to observe that streams with their MA coefficients

close to each other should be clustered together. At the end of the section, we provide a lemma on

aggregating streams produced by models having identical ARMA coefficients.

Lemma 2. Suppose {X1,t}, {X2,t}, . . . , {XN,t} are MA(1) with MA coefficients θ1, θ2, . . . , θN . Optimal

clusters can be found by assigning yjk as an indicator variable for stream Xj being in cluster Ck such that we

minimize
n

∑
k=1

√

(bk + 2ak)(bk − 2ak) (78)

where

bk =
N

∑
j=1

σ2
j (1 + θ2

j )yjk (79)

and

ak =
N

∑
j=1

σ2
j θjyjk. (80)
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Alternatively, the objective function (78) can be written as

n

∑
k=1

√

√

√

√

N

∑
j=1

N

∑
i=1

σ2
j σ2

i (1 + θj)2(1 − θi)2yjkyik. (81)

Proof uppose {X1,t}, {X2,t}, . . . , {XN,t} are MA(1) with MA coefficients θ1, θ2, . . . , θN . Suppose

cluster Cα,t consists of streams {X1,t}, . . . , {Xα,t}. The covariance generating function of Cα,t simplifies

to

GCα
(z) = σ2

1 (1 + θ1z)(1 + θ1z−1) + . . . + σ2
α(1 + θαz)(1 + θαz−1). (82)

In order to determine the variance of the shocks of Cα,t we need to find the roots of equation (82). Note

that it can be rewritten as

(

σ2
1 θ1 + . . . + σ2

α θα

)

z−1 +

(

σ2
1 (1 + θ2

1) + . . . + σ2
α(1 + θ2

α)

)

+

(

σ2
1 θ1 + . . . + σ2

α θα

)

z. (83)

We can find the roots of equation (83) using the quadratic formula
−b ±

√
b2 − 4a2

2a
where

a = σ2
1 θ1 + . . . + σ2

α θα =
α

∑
j=1

σ2
j θj (84)

b = σ2
1 (1 + θ2

1) + . . . + σ2
α(1 + θ2

α) =
α

∑
j=1

σ2
j (1 + θ2

j ) (85)

We note that one roots r1 will be outside the unit circle and from Remark 1 that the variance of the

shocks of Cα,t is equal to −ar1. Since b > 0, the variance is then given by

σ2
α =

b +
√

(b + 2a)(b − 2a)

2
(86)

Thus if we are subaggregating into n clusters, the MSFE is given by

MSFEsubagg =
1

2

( n

∑
k=1

bk +
n

∑
k=1

√

(bk + 2ak)(bk − 2ak)

)

(87)

Since
n

∑
k=1

bk will be the same regardless of choice of clusters, we are minimizing the objective function

given by
n

∑
k=1

√

(bk + 2ak)(bk − 2ak) (88)

where

bk =
N

∑
j=1

σ2
j (1 + θ2

j )yjk (89)

and

ak =
N

∑
j=1

σ2
j θjyjk (90)

where yjk is an indicator variable for stream Xj being in cluster Ck.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.0310.v3

https://doi.org/10.20944/preprints202310.0310.v3


23 of 28

Noting that

(bk + 2ak) =
N

∑
j=1

σ2
j (1 + θj)

2yjk (91)

(bk − 2ak) =
N

∑
j=1

σ2
j (1 − θj)

2yjk (92)

The objective function can also be rewritten as

n

∑
k=1

√

√

√

√

N

∑
j=1

N

∑
i=1

σ2
j σ2

i (1 + θj)2(1 − θi)2yjkyik. (93)

�

We have results (not shown here) where we use equation (93) in a non-linear optimization

algorithm to come up with clusters. When using 10 streams with 3 clusters, the approach actually

leads to a globally optimal solution almost every time.

We note that equation (93) can also be rewritten as

n

∑
k=1

√

∑
Xi ,Xj∈Ck

σ2
j σ2

i (1 + θj)2(1 − θi)2. (94)

where the inner sum is taken over all pairs of streams in each cluster, including pairs of streams with

themselves.

If stream Xp is moved from cluster k to cluster κ then the change in the objective function is

√

σ2
p(1 + θp)2 ∑

Xi∈Cκ

σ2
i (1 − θi)2 + σ2

p(1 − θp)2 ∑
Xi∈Cκ

σ2
i (1 + θi)2

−
√

σ2
p(1 + θp)2 ∑

Xi∈Ck

σ2
i (1 − θi)2 + σ2

p(1 − θp)2 ∑
Xi∈Ck

σ2
i (1 + θi)2 (95)

which provides an alternative way to cluster streams by identifying and moving the stream from one

cluster to another which yields the largest drop in the objective function.

6.1. Aggregate of Two MA(1) Streams

In this subsection we consider two MA(1) streams whose variance of shocks is unitary. We

demonstrate that the MA coefficient6 of their aggregate process is always between the two MA

coefficients of the individual streams. Furthermore we show that as the two coefficients of the two

MA(1) streams are moved further apart from each other the variance of the shocks appearing in the

Aggregated process increases. These two facts imply that if we are studying N individual MA(1)

streams (with unit shock variance) and would like to cluster them into n clusters then the globally

optimal clustering assignment will cluster the streams along intervals. That is, the assignment will

have split the clusters into groups of streams whose MA coefficients are next to each other in a

sorted arrangement. This implies that an efficient algorithm for obtaining a globally optimal cluster

assignment consists of arranging the MA coefficients in increasing order and checking all possible

"interval" clusters, without worrying that if two streams are clustered together, another stream with an

6 The aggregate of two MA(1) streams is always MA(1)
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MA coefficient between the two is assigned to a different cluster. This algorithm would need to check

(N
n ) possible cluster assignments to find the globally optimal arrangement.

Theorem 1. Consider two streams whose ARMA representations are given by

X1,t = (1 + θ1B)ǫ1,t

X2,t = (1 + θ2B)ǫ2,t

with var(ǫ1,t) = var(ǫ2,t) = 1 and σ12 = 0 and θ1 < θ2. Note that θ1 and θ2 are allowed to equal 0.

The Aggregated process {X1,t + X2,t} is described by the MA(1) model

X1,t + X2,t = (1 + θB)ǫt

such that θ1 < θ < θ2.

Proof. Note that the covariance generating function of the aggregate process is

GS(z) = (θ1 + θ2)z
−1 + (2 + θ2

1 + θ2
2) + (θ1 + θ2)z. (96)

As long as7 θ1 6= −θ2, this polynomial has roots a1 and 1/a1. Suppose a1 is inside the unit circle, then

according to Remark 1, θ = −a1 and var(ǫt) = σ2
ǫ = −(θ1 + θ2)(1/a1).

We can note that the Laurent polynomial in Equation (96) has roots given by

−(2 + θ2
1 + θ2

2)±
√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2

2(θ1 + θ2)
(97)

This implies that

a1 =
−(2 + θ2

1 + θ2
2) +

√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2

2(θ1 + θ2)
(98)

and

θ =
(2 + θ2

1 + θ2
2)−

√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2

2(θ1 + θ2)
(99)

In the remainder of this section we will prove that

θ1 <

(2 + θ2
1 + θ2

2)−
√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2

2(θ1 + θ2)
< θ2 (100)

Suppose first that θ1 + θ2 > 0.

Then we can rewrite equation (100) as

2θ2
1 + 2θ2θ1 < (2 + θ2

1 + θ2
2)−

√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2 < 2θ2

2 + 2θ2θ1 (101)

or equivalently,

θ2
1 − θ2

2 + 2θ2θ1 − 2 < −
√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2 < θ2

2 − θ2
1 + 2θ1θ2 − 2 (102)

7 If θ1 = −θ2, then θ = 0 and the result still holds.
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or

θ2
1 − θ2

2 − 2θ2θ1 + 2 <

√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2 < θ2

2 − θ2
1 − 2θ1θ2 + 2 (103)

Noting that the left and right-hand sides of the inequality are always larger than zero, (103) holds if

and only if the following inequality holds as well

(θ2
1 − θ2

2 − 2θ2θ1 + 2)2
< (2 + θ2

1 + θ2
2)

2 − 4(θ1 + θ2)
2
< (θ2

2 − θ2
1 − 2θ1θ2 + 2)2. (104)

Labeling the three sides of this inequality as A < B < C, we observe that

A = θ4
1 − θ2

1θ2
2 − 2θ3

1θ2 + 2θ2
1 − θ2

1θ2
2 + θ4

2 + 2θ3
2θ1 − 2θ2

2

− 2θ3
1θ2 + 2θ3

2θ1 + 4θ2
1θ2

2 − 4θ2θ1 + 2θ2
1 − 2θ2

2 − 4θ2θ1 + 4

B = 4 + 2θ2
1 + 2θ2

2 + 2θ2
1 + θ4

1 + θ2
1θ2

2 + 2θ2
2 + θ2

1θ2
2 + θ4

2 − 4(θ2
1 + 2θ1θ2 + θ2

2)

C = θ4
2 − θ2

2θ2
1 − 2θ3

2θ1 + 2θ2
2 − θ2

2θ2
1 + θ4

1 + 2θ3
1θ2 − 2θ2

1

− 2θ3
2θ1 + 2θ3

1θ2 + 4θ2
2θ2

1 − 4θ1θ2 + 2θ2
2 − 2θ2

1 − 4θ1θ2 + 4

(105)

Removing equivalent terms and combining like terms, we observe

2θ2
1θ2

2 − 4θ3
1θ2 + 4θ2

1 + 4θ3
2θ1 − 4θ2

2 − 8θ1θ2

< 2θ2
1θ2

2 − 8θ1θ2

< θ2
2θ2

1 − 4θ3
2θ1 + 4θ2

2 + 4θ3
1θ2 − 4θ2

1 − 8θ2θ1

which can be rewritten as

− 4θ3
1θ2 + 4θ2

1 + 4θ1θ3
2 − 4θ2

2 < 0 < −4θ1θ3
2 + 4θ2

2 + 4θ3
1θ2 − 4θ2

1 . (106)

Noting that the left and right-hand sides of this inequality are additive inverses, we see that this

inequality holds8 and therefore inequality (100) holds.

Finally, if θ1 + θ2 < 0 in (100) then the direction of the inequalities is reversed in (101) and a

similar sequence of steps would lead us to observe

− 4θ3
1θ2 + 4θ2

1 + 4θ1θ3
2 − 4θ2

2 > 0 > −4θ1θ3
2 + 4θ2

2 + 4θ3
1θ2 − 4θ2

1 (107)

and by the same argument we see that (100) holds and the theorem is proved. �.

Theorem 2. Consider two streams whose ARMA representations are given by

X1,t = (1 + θ1B)ǫ1,t

X2,t = (1 + θ2B)ǫ2,t

with σ2
1 = σ2

2 = 1 and σ12 = 0 and θ1 < θ2. Note that θ1 and θ2 may be 0.

As the distance between θ1 and θ2 increases, var(ǫt) = σ2
ǫ increases.

8 The given direction of the inequalities must hold, otherwise θ1 > θ2 in (100)
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Proof

From Equation (96) we see that the root 1/a1 of GS(z), which is outside the unit circle, is given by

−(2 + θ2
1 + θ2

2)−
√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2

2(θ1 + θ2)
. (108)

Since σ2
ǫ = −(θ1 + θ2)/a1, we have

σ2
ǫ =

(2 + θ2
1 + θ2

2) +
√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2

2
(109)

To show that this is increasing in θ2, consider the derivative of the above with respect to θ2:

∂σ2
ǫ

∂θ2
= θ2 +

θ2(2 + θ2
1 + θ2

2)− 2(θ1 + θ2)
√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2.

(110)

We need to show that (110) is larger than zero, thus consider

∂σ2
ǫ

∂θ2
= θ2 +

θ2(2 + θ2
1 + θ2

2)− 2(θ1 + θ2)
√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2

> 0 (111)

or equivalently

θ2(2 + θ2
1 + θ2

2)− 2(θ1 + θ2) > −θ2

√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2 (112)

which simplifies to

2(θ1 + θ2)− θ2(2 + θ2
1 + θ2

2) < θ2

√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2 (113)

or

2θ1 − θ2θ2
1 − θ3

2 < θ2

√

(2 + θ2
1 + θ2

2)
2 − 4(θ1 + θ2)2. (114)

We will refer to the left and right hand sides of the inequality in (114) as LHS and RHS. Note that

squaring both yields

LHS2 = 4θ2
1 − 4θ3

1θ2 − 4θ1θ3
2 + θ4

1θ2
2 + 2θ2

1θ4
2 + θ6

2

RHS2 = 4θ2
2 + 4θ2

1θ22 + θ4
1θ2

2 + 2θ2
1θ4

2 + θ6
2 − 4θ2

1θ2
2 − 8θ1θ3

2 (115)

Note that furthermore

LHS2 − RHS2 = 4θ2
1 − 4θ2

2 − 4θ3
1θ2 + 4θ1θ3

2 = 4(1 − θ1θ2)(θ
2
1 − θ2

2) (116)

Suppose first that θ1 < θ2 = 0. Note that (114) reduces to 2θ1 < 0, which holds, and therefore

(111) holds as well.

Next suppose that 0 = θ1 < θ2. Note that (114) reduces to

− θ3
2 < θ2

√

(2 + θ2
2)

2 − 4θ2
2 (117)

which holds as well since the left-hand side is negative in this case.

In the remainder of the proof we assume that θ1 6= 0 and θ2 6= 0. Consider the case that |θ2| > |θ1|.
Note that this implies that θ2>0 (since θ2 > θ1) and that (116) is less than zero. Thus in this case

LHS2 < RHS2 and LHS < RHS in (114). Therefore (111) holds in this case as well.
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Now suppose that |θ1| > |θ2| and that θ2 > 0. The former implies that LHS2 − RHS2 > 0 and the

latter implies that RHS > 0. Therefore LHS < 0 and therefore LHS < RHS. Therefore (111) holds in

this case as well.

Finally suppose that |θ1| > |θ2| and that θ2 < 0. The former again implies that LHS2 − RHS2 > 0

while the latter implies that RHS < 0. Therefore LHS < RHS and (111) holds in all cases. �.

7. Demand Streams Produced by Identical ARMA models

Note that Theorem 1 and Theorem 2 imply that the prescribed algorithm at the top of the previous

subsection always leads to an optimal solution. The following lemma establishes that in the event that

two streams are generated by the same ARMA model, the aggregate will also follow the same ARMA

model. Therefore, we can greatly reduce the dimensionality of the number of streams that need to be

assigned to clusters by first aggregating demand streams from equivalent models.

Lemma 3. Consider two sequences {X1,t} and {X2,t} that have the same ARMA representation with respect

to Wold shock sequences {ǫ1,t} and {ǫ2,t} given by

Φ⋆(B)X1,t = Θ⋆(B)ǫ1,t (118)

Φ⋆(B)X2,t = Θ⋆(B)ǫ2,t (119)

such that the variance of the shock sequences are σ2
1 and σ2

2 with covariance σ12.

The aggregate {St = X1,t + X2,t} also has the same ARMA representation with respect to its Wold shocks

{ǫt} given by

Φ⋆(B)St = Θ⋆(B)ǫt (120)

such that the variance of {ǫt} is given by σ2
1 + σ2

2 + 2σ12.

Proof. From Remark 1 we note that the ARMA representation of {St} is given by

Φ(B)St = Θ(B)ǫt (121)

such that Θ(z) =
m

∏
i=1

(1 − aiz) where {ai} are the roots of O(z)P(z) on or inside the unit circle and

Φ(z) =
n

∏
i=1

(1 − biz) where {bi} are the roots of Q(z) inside the unit circle with O(z),P(z) and Q(z) are

obtained from the covariance generating function GS(z) given by

GS(z) = (σ2
1 + σ2

2 )
Θ⋆(z)Θ⋆(z−1)

Φ⋆(z)Φ⋆(z−1)
+ 2σ12

Θ⋆(z)Θ⋆(z−1)

Φ⋆(z)Φ⋆(z−1)
(122)

as per (77). This can further be simplified as

GS(z) = (σ2
1 + σ2

2 + 2σ12)
Θ⋆(z)Θ⋆(z−1)

Φ⋆(z)Φ⋆(z−1)
(123)

and therefore Φ(z) = Φ⋆(z) and Θ(z) = Θ⋆(z) and the result is proved. �

Lemma 3 shows us that if we have n demand sequences X1,t, . . . , Xn,t, generated by models with

the same ARMA coefficients with respect to their Wold shocks, their aggregate will have the same

ARMA coefficients. Therefore if the customer base of a firm is comprised of many demand streams

having the same ARMA representation, it is possible to greatly reduce the number of streams that

need to be considered for clustering by first aggregating these equivalent streams.
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8. Extensions and Other Questions

In this paper we compare theoretical MSFEs of a firm forecasting its leadtime demand based on

disaggregated (individual) demand streams and subaggregated clusters formed from those streams.

We highlight examples that illustrate that the MSFE based on subaggregates need not be much larger

than the MSFE based on the disaggregated streams as long as those clusters are well-formed. We

propose a Pivot algorithm to form clusters which minimize the MSFE among all cluster assignments.

We end with some theoretical results when the demand streams are generated by MA(1). Here we

show that clusters resulting in the lowest MSFE are formed by grouping streams by the proximity of

their MA coefficient.

The MA(1) case hints that in a general ARMA case, "best" clusters would be formed based on

proximity of the ARMA coefficients between models generating the various streams (or equivalently

based on the proximity of roots of the AR and MA polynomials). Alternatively, best cluster

assignments may result from grouping streams with most similar coefficients appearing in the MA(∞)

representation. Future work can be done to establish the best approach.

Our current theoretical approach based on general ARMA models is limited in that root-finding

algorithms are unstable once the degree of a polynomial gets too large. In our study, this begins to

occur when we consider the aggregate of around twenty streams with at least one AR coefficient. It is

possible to greatly reduce the dimensionality however by first aggregating demand streams that are

produced by identical or nearly-identical ARMA models. This is another direction for future research.
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