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Abstract: In this paper we compare the effects of forecasting demand using individual (disaggregated)
components versus first aggregating the components either fully or into several clusters. Demand
streams are assumed to follow autoregressive moving average (ARMA) processes. Using individual
demand streams will always lead to a superior forecast compared to any aggregates, however we
show that if several aggregated clusters are formed in a structured manner then these subaggregated
clusters will lead to a forecast with minimal increase in mean-squared forecast error. We show
this result based on theoretical MSFE obtained directly from the models generating the clusters
as well as estimated MSFE obtained directly from simulated demand observations. We suggest a
pivot-algorithm, that we call Pivot Clustering, to create these clusters. We also provide theoretical
results to investigate sub-aggregation, including for special cases such as, aggregating demand
generated by MA(1) models and aggregating demand generated by ARMA models with similar or
same parameters.

Keywords: forecasting aggregate demand; clustering time series; pivot clustering; ARMA model;
order-up-to policy

1. Introduction

Modern-day technologies not only permit firms to accurately track their point of sales data and
lost sales (purchases not made by customers due to a lack of inventory) data but also gather more
granular data. These data streams deluge firms with information which either can be aggregated for
planning purposes or considered in its entirety or follow an in-between approach. In this paper we
analyze a model in which a retailer is faced with exactly the same choices and provide guidelines for
combining the data for the purpose of forecasting demand.

Consider a retailer who has access to its individual customer’s demand streams. Assume that
each of these demand streams follow an ARMA model having possibly contemporaneously correlated
shock sequences. The primary contribution of this research is to quantify to what extent such a
retailer would benefit from forecasting each of the individual streams as opposed to the aggregate.
In general, retailers forecast their aggregate demand stream since historically the retailer may only
have accurate aggregate demand information and the forecasting of the individual customer demand
streams is often thought of as being cumbersome and time consuming. We demonstrate that a retailer
observing multiple demand streams generated by ARMA models can drastically reduce its mean
squared forecasting error (MSFE) by forecasting the individual demand streams as opposed to just the
aggregate demand stream as noted in [1].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Although the retailer’s MSFE is never lower when forecasting using aggregated demand
compared to the individual demand streams!, there are cases when the individual streams do not
reduce the MSFE. The primary situation where this occurs, as is discussed in the paper, is when various
models generating the demand streams have identical ARMA parameter values. For the in-between
case, our results demonstrate that the retailer’s MSFE under aggregate forecasting can be greatly
reduced if the retailer forecasts various clusters of aggregated demand streams. We show by example
that clustering continues to perform well in the event that ARMA models are estimated for non-ARMA
data (see Figure 9).

In other words, retailers can make use of data mining and other clustering approaches in order
to generate clusters of similar customers and their demand streams. We show that such clustering
methods significantly enhance forecast accuracy. This is related to the study of telephone data in [2]
where the authors concluded that subaggregated data can be effective for improving forecast accuracy
compared to aggregate data. They also note that data is often aggregated to the level that forecasts
are required. We describe here ways in which subaggregated clusters can be selected to minimize
forecast error. Several examples are mentioned in [3] in the context of assigning demand allocation to
different facilities.

Many researchers and practitioners focus on the need to determine clusters of similarly situated
customers in order to create and provide customized and/or personalized products. This type of
clustering is generally performed on specific characteristics that customers possess (see for example, [4]
and the references within). On the other hand, our focus is on forecasting demand for a product by a
firm’s customers, recognizing that these customers may have different preferences and hence differing
demand. As we describe below, from the demand forecasting perspective, the information contained
within the individual demand streams provides the optimal forecast (in terms of minimizing the MSFE
and hence inventory related costs) for product demand. Nonetheless, there has been research on the
use of clustering methods within a forecasting environment when customer demand data is high
dimensional (see for example, [5]).

As opposed to generating clusters based upon customer preferences and customer demographics,
we explain how clusters can be generated explicitly from the individual time series structure of the
individual demand streams or customers. Even though, it is always optimal from a forecasting
perspective to use the individual streams, clusters of similar customer streams may be very helpful to
the firm for other reasons as described above. Future empirical work would be necessary to investigate
to what extent and in what contexts, clusters generated based upon time series structure of the demand
streams correlate to clusters based upon other customer preferences. In such a case where there
exists such a relationship, firms could use clustering for simplifying their demand forecasting while
identifying groups of customers to receive personalized products.

The purpose of this paper is to demonstrate that clustering based upon time series structure can
be utilized within demand forecasting that is superior to forecasting aggregate demand and nearly as
good as forecasting the individual demand streams. The structure of our paper is as follows. In the
next section, we describe the demand framework and supply chain setting of our research problem, as
well as the way that theoretical MSFE computations are determined for the various forecasts (using
aggregated demand processes) included herein. In Section 3, we illustrate (through example) that there
exists a particular set of subaggregated clusters which results in an MSFE that is close to the MSFE
obtained from using disaggregated streams and much lower than the MSFE obtained from the fully
aggregated sequence. In Section 4, we describe how to cluster demand streams generated by ARMA
models using Pivot Clustering and how this compares to other clustering methods. In Section 5, we
describe an objective function that can be minimized to obtain an optimal assignment of streams to
clusters in terms of MSFE reduction. Finally, we obtain theoretical results on how demand streams

1 (This hold for the theoretical case when model coefficients are known and need not be estimated).
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produced by MA(1) models can be clustered in the most efficient way possible to reduce the resulting
subaggregated MSFE in Section 6.

2. Model Framework

We consider a retailer with possibly many large customers. In general, retailers forecast their
aggregate demand stream since the forecasting of the individual customer demand streams is often
thought of as being cumbersome and time consuming. We demonstrate that a retailer observing
multiple streams of demand generated by ARMA models can drastically reduce its MSFE by forecasting
the individual demand streams or aggregated clusters of similar demand streams. We limit the focus
of this paper on ARMA models that describe stationary demand in order to keep the exposition as
clear as possible. If we were to consider ARIMA (or Seasonal ARIMA) models then differencing (or
seasonal differencing) would need to be carried out on the data to apply the methodology discussed
here. We further note that even simple ARMA(1,1) models appearing in Section 4 can have coefficients
that produce seasonal patterns in demand realizations.

Hence, consider a retailer that observes multiple demand streams for a single product
{X14},{X2t}, ..., {Xn,}. Each demand stream { X} is assumed to be generated by an ARMA model
with respect to a sequence of shocks {ey;} given by

D (B) Xy = Or(B)e; 1)

where ®p(z) = 1+ Pz + ... + P, 2Pk and Ok (z) = 1+ Op 1z + ... + O, 2%, such that{X;,} is
invertible and causal with respect to {€y;} (see Brockwell and Davis, page 77 for a definition and
discussion about causality and invertibility). We denote the variance of each shock sequence 02 = E[eZ].
Furthermore we note that the shock sequences are potentially contemporaneously correlated with
oij =E [ei,te]-,t]. In general, this set up guarantees that the shocks € ; are the retailer’s Wold shocks
(see [6] pp 187-188 for a description of a Wold decomposition of a time series) and that the MSFE of
one-step-ahead leadtime demand (when using the disaggregated (individual) streams) is the sum of
the elements in the covariance matrix X, where ¥;; = 0;; such that (7]% = 0y (see Equation (7).

The focus of this paper is evaluating the difference in one-step-ahead MSFEs at time t when the
41
forecast of leadtime demand, given by Z (X1 44i+Xop+i+ ...+ XN tyi), is based on the different series

i=1
described below where C ; = ch e X,g gk'T' Studying one-step-ahead MSFEs is mathematically

simpler than those for general leadtimes since the former does not depend on model parameters.

Disaggregated (individual) sequences  {Xj1:}__ o, {Xor} o oo oo {XN1Ho o
Subaggregated (clustered) sequences  {Cy}__ o, {Cor e o {Cnr e o
Aggregated (full) sequence {De=X1:+Xor+ .+ XNt o

Our problem is related to the one posed by [7] where a two-stage supply chain was considered
with the retailer observing two demand streams. The focus of that paper was in evaluating information
sharing between the retailer and supplier in a situation where the retailer forecasts each demand
stream separately. Here we show the benefit to the retailer? in determining the separate forecasts,
while considering the existence of (possibly) more than two demand streams. Kohn [1] was the first to
identify conditions under which using the individual demand streams leads to a better forecast than
using the aggregated sequence, however he did not determine the MSFE in the two cases. The same
conditions can be used to show that if streams are subaggregated into clusters where optimal clusters
are always used, then the MSFE of the forecast decreases as the number of clusters increases. Our

2 The situation is really identical for any player in the supply chain that might be observing multiple demand streams, where

information sharing does not take place
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aim is to determine the optimal cluster assignment based on a predetermined choice of the number of
clusters. The number of clusters can be based on the level of detailed data available to a firm or based
on the tradeoff from lowering MSFE and increasing the complexity of the model when increasing the
amount of clusters used.

In this paper we extend the results of [7] by providing formulas for computing MSFEs under the
possibility of more than two streams and a general leadtime in the situation where a player’s (retailer’s)
forecast can only be based on their Wold shocks. We also describe how a retailer would forecast its
demand by identifying clusters of similar demand streams and then forecasting each cluster after it is
aggregated. We provide a pivot algorithm, which we call Pivot Clustering, for identifying a locally
optimal assignment of streams into a fixed number of clusters. The algorithm will often find the best
possible assignment. We also describe a fast clustering algorithm which results in a globally optimal
assignment when demand streams are generated by independent MA(1) models. Our results show
that after the algorithms are carried out, much of the benefit of forecasting individual streams can be
obtained by forecasting the aggregated clusters.

2.1. Forecasting Using the Disaggqregated (Individual) Sequences {X1 ¢ }r—_oor - {Xnt e _oo

(+1
In this section we are interested in forecasting Z (X144i+Xopyi+ ...+ XN t+i) when the forecast
i=1
is based on the diaggregated individual sequences as discussed in the previous section. The forecasting

contained here is a textbook multivariate time-series result along with the propagation described in [8]
as seen in (5). Thus we consider processes { Xy}, ..., {Xn;} such that X;; generated by ARMA
models given by

@y (B) Xyr = Or(B)ex )

with o = E[ejltek/t].
In this case the disaggregated MSFE given by

—

N (41 N (41 2
M = E[ (1 X X = 1. ). Xuser) | o
k=1i=1 k=1i=1
1
where Z Xk t+i is the best linear forecast of leadtime demand at time ¢ for stream { X} ;} based on (2).
i=1
We note that
(+1 1 N g4l 1 ‘
E K Y Xjri— Y, Xj,t+i> ( Y Xirri— ) Xk,t+i)] = 0k ) wjiwy, 4)
i=1 i=1 i=1 i=1 i=0
such that
0 i<0
Y i i=0
Wi = l , ®)
Wii—1+ Pr,i 0<i</l+1

W1+ Yri — Yri—e—1 120+ 1

with ¢y ; is the i" coefficient appearing in the MA(co) representation of {Xj+} with respect to {e;}
(see [8] for details). Thatis 1+ ¢y 1z + P 02° + ... = ¥i(z) and

Xt = Yi(B)ex, (6)

such that ¥y (z) =
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Thus the MSFE of the best linear forecast (BLF) of leadtime demand when using the individual

sequences
{Xl,T}fr:—ool {XZ,T}?r:—oor ey {XN,T}E[':foo
is given by
N N ¢
MSFEind = Z Z‘Tkjwj,iwk,i- (7)
k=1j=1i=0

N N
We note that the one-step-ahead (¢ = 0) disaggregated MSFE is given by Z Z k. Thus we can
j=1k=1
compare (7) with (26) below to determine the reduction in MSFE when using the individual sequences
as opposed to the aggregated sequence.

2.2. ARMA Representation of a Summed Sequence {St = X117+ ...+ Xsr tre oo

In this subsection we determine the ARMA representation of a series {S;} with respect to a
series of Wold shocks, where {S;} is the sum of several ARMA-generated streams given by {S;} =
{X1++ Xo¢ + ...+ X+ }. Furthermore we determine the variance of the Wold shocks appearing in
this representation. This will allow us to determine the MSFE when forecasts are based on the fully
aggregated series as well as when the forecasts are based on subaggregated clusters. In order to
obtain the ARMA representation we first need to obtain the spectral density fs(A) and the covariance
generating function Gs(z) of {S¢}.

Proposition 1. Let {S;} = {X1;+ Xo; + ...+ Xs}. The spectral density of {S;} is given by

:ZS:in +Z Z (fxx )+ fxix; (A )) ®)
=

i=1 j=i+1
where the cross-spectrum fXjX.(/\) is defined fX,-,X-(/\) % EiiArCXin (r) with CXin(r) _
r=—o0
E[Xi,t+er,t] and -inXj( ) i Z I)U’CXX( )
7’_ oo

Proof. We will prove this by induction. Note that when {S;} = {X1; + X2}, fs(A) is given by

1 (o]
fs) = o X e VE[(Xy s+ Xoper) (Xp + Xop)] ©)
r=—00
1 & 1
= 21 Y e VE[Xy X, t}Jr*n Z e M E[Xy 41 Xo 4]
r=—00 r=—00
1 oo —iAr 1 —iAr
T ox Y e E[Xlt+rX2t}+7n Z e "E[Xo,1+X1,4)- (10)
r=—o0 r=—o0

Noting that Z e*’)‘rE[Xz i X1 = Z ME| (X2, X1,64¢] = fx;x,(A) we see that

r=—00 r=—co

fs(A) = fx,(A) + fx,(A) + fx %, (A) + fxyx,(A)

which matches representation (8).
Now suppose (8) holds for {S;,+} = {X1:+ ...+ Xy} processes. Thus

fs,(A) = Z +Z Z <fXX )+ fxix, (A )> (11)

i=1 i=1j=i+1
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Consider {S,4+1} = {Snt + Xy 414} Since {S,,+} follows and ARMA model, we observe that

fspir (A) = fs,(A) + fx, 0 (A) + fs,, %, (A) + fs, %, (A) (12)

Note that starting with the definition of fs, x,,,(}),

1 &
fsuXp(A) = o Y e ME[S X1 ,t44] (13)
r=—00
1 &
= o1 2 e 1ME[X1,tXn+1,t+r +.t Xn,tXn+1,t+r] (14)
r=—00
1 _ 1
= 5= Z e ME[X1 Xns1 0] + -+ oy 2 ¢ M E[Xont Xpt1,047] (15)
r=-—00 r=—o00
= fX1Xn+1 (/\) +"'+anXn+l (A) (16)
Similarly,
fouxun M) = Fxix,0 (A) + o 4 x4 (A)
Thus from (12),
f5n+1 ()‘> = fSn ()‘) + an+1 (A) + fXIXn+1 (/\) +...
+ anXn+1 ()\) +fX1Xn+1 (A) + cee +anXn+1 (A) (17)

or equivalently

foun(A) =) fx,(A) + ni; il(fXIX] ) + fxix, (A ))

+ an+1 )+fX1Xn+1</\)+
T XX (A )+fxlxn+1()\>+ XX, (A)

which can be simply written as

n+l n n+l
fs,a (M) fo +Y ) (fx,x, ) + fxix, (A )) (18)
=1 i=1j=i+1
and the result is proved. [
Now consider the covariance generating function Gs(z Z E[S:S; ]}zf of {S;}. Here we use
j=—00
the equivalence Gs(e~™*) = 271f5()A) and note the following:
2 —iAy|2
o |©i(e™")]
, = ———s 1
fX,(A) 27T|q)i(€_l/\)|2 ( 9)
i ©;(e”) ©;(e™)
X = —_— 2
Frix; (M) 27t ®j(e=it) Dj(eit) (20)
- i ©;(et) Oj(e™)
x.(A) = —= —L 21
fX,X]( ) 27‘(@1-(6“\) cpj(e,l)L) ( )
Thus from Proposition 1 we observe that
S 020z | Y ( ®i(z) ©;(z"") (z71) ©j(z)
Gs(z) =Y o? ! + i / + 03— / 22
oLl me e ok TemeEn e am) @


https://doi.org/10.20944/preprints202310.0310.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2023 do0i:10.20944/preprints202310.0310.v3

7 of 28

As described in Theorem 5 of [7], the covariance generating function Gg(z) can be factorized as the
O(2)P(z)
Q(z)

the unit circle and P(z) and Q(z) having no roots on the unit circle. This result follows from the fact that
each additive term in (77) is a ratio of Laurent Polynomials and the fact that for any Laurent polynomial
P(z), both P(z)P(z~!) and P(z) + P(z!) will be Laurent polynomials. Furthermore if Py (z) and P»(z)
are Laurent polynomials then P (z)P»(z) and P; (z) + P»(z) will be Laurent polynomials as well.

We can now use the factorization provided in [9] and described in [7] to obtain the ARMA
representation of {S;} with respect to the Wold shocks {€;} (appearing in its Wold representation). It
should be noted that Remark 1 is simply a restatement of Theorem 5 of [7] with the slight addition of
determining the polynomials appearing in the ARMA representation of the aggregate sequence {S;}.

ratio where O(z), P(z) and Q(z) are Laurent polynomials, with O(z) having all its roots on

Remark 1. {S;} can be represented with respect to shocks {e;} using the ARMA model

@(B)St = ®(B)et (23)

m

where ©(z) = [ [(1 — a;z) where {a;} are the roots of O(z)P(z) on or inside the unit circle and ®(z) =
i=1

n

[ [(1 — biz) where {b;} are the roots of Q(z) inside the unit circle. Furthermore
i=1
_ Pm H}'n:1(—1/‘1j)

qn H?:l(_l/bj)

(24)

where py, is the coefficient of z™ in P(z) and gy, is the coefficient of z"* in Q(z).

2.3. Forecasting Using the Fully Aggregated Sequence {D+}.___, For A General Leadtime

We note that Remark 1 can be used to obtain the ARMA representation of {D;} with respect

to its Wold shocks {e;} as well as ¢ = E[€?]. We can therefore use Lemma 1 of [8] and its proof to
(+1
determine the BLF of ( ) Dt+k> and its MSFE when forecasting using the infinite past of {D;} up to

k=1
t
T=——00"

time f, namely {D-
{€e+} given by

That is, if we consider the MA(c0) representation of { D;} with respect to

D; = ¥(B)e; (25)
where ¥(z) = 1+ Y1z + ¥2z% + .. ., then the MSFE of the BLF when using {D-}!__ is

{
MSFEagg = 0?2 E wiz (26)
i=0
where
0 i<0
) i =0
w; = ll)l ! . (27)
wi_1 +Y; 0<i</l+1
Wit Yi—pigq i>2L0+1
We note that ¥(z) = ()

D(z)”
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2.4. Forecasting Using Subaggregated Sequences

In this section we use the results in the previous section to create a forecast and compute its MSFE
when some of the individual streams are subaggregated. That is, for k € 1...n, let cluster Cy consist of
nc, streams such that {Cy; = Xf b+ Xfl g + }. We are interested in the forecast and MSFE based on

, ¥

{Cl,T}t =—00r "/ {CH,T}tT:—oo-

Section 2.2 describes how we can obtain the ARMA representation and variance of the Wold
shocks appearing in the Wold representation for each sequence {Cy ; }. This can then be used to create
a forecast from each subaggregated sequence, the sum of which can be taken as the forecast for Dy 1.
The one-step ahead MSFE of this forecast is the sum of the entries of the covariance matrix of the Wold
shocks appearing in the Wold representation of {Cy4,...,Cy+}. Equation (7) describes how we can
also use the covariance matrix of the shocks of {Cy4,...,Cy+} to obtain the MSFE for multi-step ahead
forecasts. The remainder of this section will focus on obtaining this covariance matrix.

Without loss of generality, consider two subaggregated series {C1; = Xy + ... + X4} and
{Cot = Xoq14 + ... + X3} with ARMA representations

fl’f(B)Cl,t = QT(B)GTJ (28)
$(B)Coy = GE(B)GE,t (29)

where {€7,} and {€;,} are the shocks appearing in the Wold representation of {Cy,;} and {Cy:}
respectively. We note that the variances of {€7,} and {€3,} can be obtained using Remark 1. To obtain
the covariance o7, = E[e] ;€3 ;| consider the following.

We can rewrite the ARMA representations above as

*(B

i = o C (30)
5(B

s, = g C @)

The ARMA representations of {Xj},...,{X}} can also be rewritten as

©,(B) ©y(B)
X1 = cee Xpp = 32
1,t (D] (B) el,t b,t (Db (B) eb,f ( )
Based on the definition of C1; = X1 +... + Xy and Cop = X441+ + ... + X we observe that

$7(B) {@1(B) ®,(B) }
€= €1r+...+ € 33
M 8i(B) [@1(B) ®,(B) 9

¢3(B) |:®a+1(B) ©y(B) ]

€, = — € +...+ € 34
7 03(B) [ @ea(B) ®y(B) ey

To obtain E[e7 ;€5 ,] we need to compute the expectation of the the product of the right-hand-sides of
these two equations. Thus we need to consider the sum of terms such as

¢1(B) ©(B)  ¢3(B) ©;(B)
: [6%(3) :(5)" 63 (B) <1>§<B>€”}

(35)

Note that we can write

¢7(B) ©;(B) o
. it = i k€t (36)
Gl(B) CDZ'(B)et k;ol)b k€it—k
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and (B) ©;(B)
3 iB) e
05(8) @(B) 9 = g P

(37)

where $; , and gEj,k can be obtained in the same way as the MA(c0) coefficients in (27). Hence the term
in Equation (35) can be rewritten as

(e o0
E { Y Pikeirr ) li)]',kej,tk} (38)
k=0 k=0
Since the shock sequences are not correlated across time by assumption, this is equivalent to
© ~ ~
E [ Y. ’Pz’,kllﬂj,kei,tkej,tk] (39)
k=0
or equivalently
e}
Y ik (40)
k=0
Adding up these terms as required would yield the covariance. Hence
a b o
oty = Elefies ) =), ). Vi k) k0ij (41)
i=1 j=a+1k=0

We note that this methodology can easily be extended to obtain any of the covariances in the
covariance matrix

* *
o - Oy
* ‘. *
(% -0
=] 2 (42)
* *
011 -+ UOun

We will use the previous methodology for all theoretical MSFE computations found in this paper.
In the next subsection, we provide an example describing the importance of forecasting leadtime
demand based upon the individual sequences.

2.5. Example

Consider a retailer that observes Aggregate demand {D; = Xj; + X + X3;} where each
individual demand stream is generated by one of the following ARMA models:

X1t = (1-9B)ey; (43)
X2,t = (1 + .9B)€21t (44)
X3 = (14 .9B)es; (45)

16 —-14 05
where the shock covariance matrix is givenby X = | —-1.4 13 —0.8
05 -8 20
We use the results described in Sections 2.1 and 2.2 to compare the MSFE of the forecasts of
41
leadtime demand ) Dy ; when using the individual sequences { X1}t _ o, {Xo M oo, {X3e}ie o
j=1
versus when using the aggregate sequence {Dr}.__ .
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The covariance generating function of {D;} is given by
0.090z ! 4 5.631 4 0.090z
Gs(z) = - (46)
and the ARMA representation of {D;} is given by
Dy = (1 + .01598704B)e; (47)

where 02 = 5.629561. We can check that the ARMA representation of {D;} and its covariance
generating function match up by noting that
20(2)0(z"1)

Gs(z) = UEW

= 5.629561(1 +.01598704z) (1 + .01598704z ') = 0.090z ! + 5.631 + 0.090z
(48)

with O(z) = (14 .01598704z) and ®(z) = 1 being the MA and AR polynomials appearing in the
ARMA representation of {D;} as defined in Remark 1.

We note that the one-step ahead forecast then has a MSFE=5.629561 and a two-step ahead forecast
(of D11 + Dy42) has a MSFE=11.44056.

Using equation (7) and noting that wy o = 1o = 1 in equation (5) we can obtain the MSFE of
the forecast based on the individual demand streams. In this case the MSFE is 1.5, which is 4.129561
(73.3%) lower that the forecast error when using the aggregated series. We can likewise compute the
elements wy ; when forecasting D; 1 + D;45. In this case, wy g = o = 1 and wy; = .1, wpq = 1.9,
and w31 = 1.9. From (7) this implies that the MSFE=7.311, which is also 4.129561 (36.1%) lower® than
the forecast error when using the aggregated series. In the next section we demonstrate, with example,
the benefit of forecasting using subaggregated clusters (which would have been identified using a

suitable technique).

3. The Benefit of Forecasting Using Subaggregated Clusters

In this section, we consider a retailer that has ten demand streams, which aggregate into three
clusters consisting of similar streams. The models generating these streams are specifically chosen to
provide a clear separation between "good" clusters leading to low MSFE and "bad" clusters leading to
high MSFE. Intuition gleaned from Sections 6 and 7 hint that streams generated from ARMA models
with similar coefficients should be clustered together. Hence for our example we consider three groups
of models having similar sets of coefficients within each group. Later, in Section 4, we will randomly
assign coefficients to streams and still observe a sharp drop in MSFE when streams are clustered to
minimize MSFE.

Suppose the retailer observes Aggregate demand {D; = Xy, + Xo; + ... + Xq0,} where each
individual demand stream is generated by one of the following ARMA processes:

(1-3B—.6B)X;; = (1—.6B— 2Bey; (49)
(1—.35B—5B%)Xp; = (1—.65B—.15B%)ey; (50)
(1—.27B— 55B*)X3; = (1—.63B—.17B%)es; (51)
(1-8B)Xyr = €44 (52)
(1-9B)Xsr = e5; (53)

(54)

3 In this case the reduction in MSFE appears the same (regardless of leadtime), however this is due to the series being

generated by MA(1) models. For higher order ARMA models, the reduction in MSFE may be dependent on leadtime.
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(1—-.75B)Xe; = e€qr (55)
(1+.77B)X7; = (14 .6B)ey; (56)
(14 .68B)Xg; = (1+.55B)eg; (57)
(1+.73B)Xg; = (1+ .52B)eq; (58)
(14+.7B)X10y = (1+.5B)eqq; (59)

where the shock covariance matrix is given by

2 1 08 —-09 -12 -15 038 09 095 1
1 21 07 -06 —-05 -04 021 031 036 0.39
08 07 22 =05 -13 -1 0.4 0.8 1 1.1
-09 —-06 —-05 3 1.8 1.9 -2 =21 -22 -23
5 _ -12 -05 -13 18 32 2 -19 -18 -17 -15 (60)
-15 —-04 -1 1.9 2 33 -—-22 -23 -24 -25
08 021 04 -2 -19 -22 5 1 125 15
09 031 08 -21 -18 -23 1 5.1 1.3 1.6
095 0.36 1 -22 -17 -24 125 13 57 1.8

1 039 11 -23 —-15 -25 15 1.6 1.8 59

Consider the three natural clusters in the above ten demand streams, namely, streams 1-3, 4-6,
and 7-10. It can be shown that indeed this grouping is optimal out of any other possible choice of three
clusters simply by looking at all possible combinations and computing their MSFEs. Our analysis of
the MA(1) case in Section 6 also points to these being the correct clusters based on the proximity of the
ARMA coefficients of the models generating the demand streams. We demonstrate that even though
the best the retailer can do in such a situation is forecast all ten streams individually, if the retailer
would correctly cluster the demand streams as mentioned, the results are similar. All MSFEs stated in
this section are obtained using the methods described in Section 2.

Specifically in this case if the retailer were to forecast the individual streams, its one-step ahead
theoretical MSFE would be 21.64. If the retailer were to consider the subaggregated processes consisting
of the correct clusters and forecast these separately then the MSFE would be 21.74. This is in stark
contrast to a MSFE of 61.39 when forecasting using the aggregate process of all ten streams. In
other words, it is sufficient to determine clusters of similar customers as opposed to forecasting each
individual stream in order to keep inventory related costs down.

To see the impact of choosing the correct clusters we consider the case that the retailer incorrectly
clusters the streams as 1-2, 3-5, and 6-10. In this case the MSEFE rises to 33.4. Similarly, if the clusters
chosen are 1&4, 2&3&5, and 6-10 then the MSFE is 45.04. Assigning streams randomly to three clusters
consisting of three, two and five streams yields the following table.

Table 1. The MSFEs for various clusters of three, two and five streams.

MSFE Clusters

52.34495576 6,109 and 1,2 and 8,3/4,5,7
51.90912188 2,10,5and 3,8 and 4,1,7,6,9
31.40789218 7,2,10 and 8,9 and 5,4,6,3,1
4415962369 10,1,7 and 3,4 and 8,2,9,6,5
50.32525078 5,8,3 and 1,10 and 4,2,7,6,9
39.31100769  6,9,5 and 10,7 and 1,3,8,4,2
45.09358141 3,1,10 and 5,8 and 2,4,9,7,6
51.54828609 9,5,10 and 4,2 and 7,6,8,1,3
34.21154829 8,72 and 1,9 and 6,4,5,10,3
55.21445794 6,1,10 and 2,4 and 7,3,8,5,9
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We note that there could be substantial reduction in MSFE even when multiple streams are
clustered incorrectly. In the next section, we demonstrate how a retailer would be able to generate
clusters of its individual demand streams using Pivot Clustering.

4. TS Clustering Algorithms and Pivot Clustering, Empirical Evaluation

We have shown that the when the retailer forecasts using clusters of its demand streams as
opposed to the individual streams, its MSFE can vary greatly from close to the optimal value (when
forecasting using the individual streams) to close to the MSFE of a forecast based on the aggregate
of all the streams. Hence, if the retailer wishes to forecast using clusters of its demand streams, the
selection of the clusters is important. In general, a retailer might have customer related information
that could be used to generate the clusters. The benefit of generating the clusters and forecasting them
is that there could be situations where it would be cumbersome for the retailer to collect the individual
demand streams and service them individually. Forecasting clusters would therefore be a second best
option.

We propose Pivot Clustering for determining clusters which usually results in a relatively low
MSFE among all choices of streams to clusters. We consider two ways to obtain the subaggregated
MSEFE based on some clustering assignment. The first is to use the individual ARMA demand models
appearing in (2) to compute the subaggregated theoretical MSFE as per Sections 2.2-2.4. We note that
if there is only one cluster then the MSFE is the one computed for a forecast based on the aggregate of
the all the streams while if the number of clusters is equal to the number of streams, the MSFE is for a
forecast based on the disaggregated (individual) sequences. We also estimate the MSFE by generating
demand realizations for each stream based on (2). Once a demand realizations are simulated for
each stream, we subaggregate the realizations based on our choice of clusters. So if some cluster is
made up of streams {X;;} and {X;;}, we say that the cluster has realization {X;; + X;;}. We then
estimate an ARMA(5,5)* model using each cluster’s realization. Finally we use the estimated models to
obtain in-sample forecast errors and compute the covariance matrix of these forecast errors to estimate
the MSEFE for a particular assignment of streams to clusters. In the analysis below we see that the
estimated MSFEs are close to theoretical ones and often lead to similar choices of clusters. Based on a
predetermined number of clusters n, Pivot Clustering works as follows.

For each stream, randomly assign it to a cluster.

For each cluster,

For each stream in the cluster,
Compute or estimate the MSFE for the current assignment along
with the resulting MSFEs if the stream was moved to each of the other clusters.
# MSFE can be either estimated based on realizations of the demand streams or
# computed using Equations (28), (29), (41) and (42).

Move each stream in the cluster to a cluster which leads to largest overall MSFE-

reduction among all choice of clusters.

In the remainder of this section we perform various simulations to assess the efficacy of Pivot
clustering. We focus on ARMA(1,1) models as these do not require too much runtime for Pivot
clustering based on theoretical MSFE and are complex enough to describe demand data such as in [10].
Additionally forecasting an aggregate of ARMA(1,1) demand sequences has been studied by [11] where
forecasts were based on exponential smoothing. The methods herein are generally applicable however
to higher-order ARMA models. From a computational standpoint, it is possible to determine theoretical
MSEFE based on the aggregate of up to twenty demand streams generated by ARMA(1,1) models.
The burden lies in having to find roots of large degree polynomials in order to determine the ARMA

4 The AR and MA degrees were chosen with the understanding that these degrees increase with the number of streams

subaggregated into a particular cluster, while trying to limit the complexity of the models being estimated.
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model and shock variance that describes the aggregated sequence. To understand the computational
requirements we check the runtimes of Pivot Clustering when determining theoretical and estimated
MSEFEs. Based on a given number of streams (between 10 and 20) we carry out Pivot Clustering for
twenty different combinations of ARMA(1,1) models and plot the average of the runtimes in Figure 1
in assigning the streams to four clusters. If using estimated MSFE then many more streams can be
clustered and Pivot Clustering has faster runtimes for larger amounts of streams. Upon checking,
Pivot Clustering with estimated MSFEs for 200 streams takes approximately 20 minutes.

Runtime of Pivot Clustering Based on Theoretical and Estimated MSFE

Seconds
.

. ®  Theoretical MSFE
. ©  Estimated MSFE

Number of Streams

Figure 1. Runtimes of Pivot Clustering for Assigning Streams to Four Clusters Using Theoretical and
Estimated MSFEs. The graph contains the average runtime of Pivot clustering for each specific number
of streams being assigned to four clusters. That is, for N streams (between 10 and 20) we consider
twenty randomly assigned ARMA(1,1) models for each stream. Pivot Clustering (with theoretical and
estimated MSFE) is then used to obtain the four optimal clusters. The average runtime of Pivot is
approximately 63 seconds when twenty streams are assigned to clusters using theoretical MSFE and 40
seconds using estimated MSFE.

We can check the efficacy of Pivot Clustering through simulation. We begin by randomly assigning
coefficients to twenty ARMA(1,1) models to produce twenty demand streams as well as the covariance
matrix of the shock sequences. We make sure that each assignment results in causal and invertible
demand with respect to the shocks and that the resulting covariance matrix is positive definite. The
AR and MA coefficients and covariance matrix can be found in https://github.com/vkovtun84/Pivot-
Clustering-of-Demand-Streams under Models.csv and covarmat.csv.

After randomly assigning streams to one of four clusters we compute both the estimated and
theoretical one-step-ahead MSFEs based on this random assignment and use it to start Pivot Clustering.
We output the clusters found by Pivot as well as the MSFE of the forecast based on this set of clusters.
We iterate this procedure 50 times to study how much the MSFE improves based on Pivot Clustering
for the starting allocations. The MSFEs of the final clusters and random clusters can be found under
MSFEresults.csv in https:/ /github.com /vkovtun84 /Pivot-Clustering-of-Demand-Streams. These can
also be compared with the MSFEs of the forecast based on the individual (disaggregated) demand
streams and the forecast based on fully aggregating the streams.

For the twenty demand streams and models used, the theoretical and estimated MSFEs when
forecasting based on individual (disaggregated) streams are 102.1 and 96.2. The theoretical and
estimated MSFEs when forecasting based on the fully aggregated streams are 231.3 and 220.6. For
the 50 simulations of assigning streams to random clusters (used in the initialization step of Pivot)
the average of the theoretical and estimated MSFEs based on the subaggregated random clusters are
202.2 and 194.2. After Pivot Clustering is carried out to obtain a better set of subaggregated clusters
in each of the 50 simulations, the averages of the theoretical and estimated MSFEs are 109.4 and


https://github.com/vkovtun84/Pivot-Clustering-of-Demand-Streams
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101.0. The various theoretical and estimated MSFEs for the different initializations are provided in
Figures 2 and 3. We note that regardless of the initial random assignment of streams to clusters, Pivot
Clustering leads to the clustering of streams such that the subaggregated MSFE is very low. In fact,
typically Pivot Clustering results in clusters for which the subaggregated MSFE ends up very close to
the MSFE obtained when forecasts are based on the individual (disaggregated) streams.

Subaggregated Theoretical MSFEs using Pivot and Random Assignment

250

200
|
.
.
.
.
.
.

. + Random
® Pivot

Theoretical MSFE
150
|
.

100
1

T T T T T T
0 10 20 30 40 50

Simulation

Figure 2. Theoretical Subaggregated MSFE for Random Initialization of Pivot. Theoretical MSFEs
are computed on the four clusters obtained by Pivot Clustering for different random initializations.
The MSFE of the initial random assignment is provided as well as the MSFE that is obtained by Pivot
Clustering. Horizontal lines are drawn to represent the MSFE based on the fully aggregated demand
sequence (top) and the MSFE based on the fully disaggregated demand sequences (bottom).

Subaggregated Estimated MSFEs using Pivot and Random Assignment
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Figure 3. Estimated Subaggregated MSFE for Random Initialization of Pivot. Estimated MSFEs are
computed for different initializations of Pivot Clustering. The MSFE of the initial random assignment
is provided as well as the MSFE that is obtained by Pivot Clustering. Horizontal lines are drawn to
represent the MSFE based on the fully aggregated demand sequence (top) and the MSFE based on the
fully disaggregated demand sequences (bottom).

We can compare our results with existing time-series clustering methods. Two distance measures
that can be computed for time-series realizations are available in the TSclust package for R, namely
AR.PIC and AR.LPC.CEPS. These distances can be used to perform hierarchical clustering such as
average-linkage clustering. The final groups determined by these methods lead to MSFEs of 123.4
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and 108.8 respectively, higher than those found by Pivot starting from random assignments. We note
that the cluster assignments found by these methods can also be used in the initialization of Pivot
Clustering, potentially leading to even better clusters.

Since the previous simulations were carried out on only one set of twenty ARMA(1,1) demand
models, we should also check the efficacy of Pivot Clustering for other sets of models as well. As
such, we consider twenty simulations where within each simulation a new set of twenty demand
models is considered. We compare the estimated and theoretical MSFEs of one random assignment
of streams to four clusters with the estimated and theoretical MSFEs of the four clusters obtained by
Pivot Clustering. In each simulation we also compute the MSFEs that would be found when fully
aggregating the streams or when considering forecasts based on individual streams as well as the
MSFEs that would be found using the AR.PIC and AR.LPC.CEPS distances for hierarchical clustering
streams into four clusters. The results of these simulations are displayed in Figures 4 and 5. We note
that if forecasts are to be based on four clusters, the lowest MSFEs are obtained when clusters are
formed using Pivot Clustering. Furthermore, Pivot Clustering leads to forecasts whose MSFE is very
close to the MSFE of the forecast based on the individual streams in every simulation.

We continue with twenty simulations where in each simulation we consider a separate set of
20 streams being subaggregated into four clusters with 10 random initializations of Pivot Clustering.
The means of the various theoretical and estimated MSFEs under different clustering approaches
are displayed in Figures 6 and 7. We note again that in every set of twenty streams, the averaged
subaggregated MSFEs are very close to the disaggregated MSFEs when averaged for different initial
random assignments of streams to clusters.

TWENTY DIFFERENT SIMULATIONS OF TWENTY ARMA(1,1) STREAMS
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Figure 4. Theoretical Subaggregated MSFE Found by Pivot for Different Sets of Streams. Theoretical
MSFEs are computed for twenty simulations using different sets of twenty streams in each simulation.
We note that using individual streams to forecasts leads to the lowest MSFE while basing the forecast
on the aggregate of the streams always leads to the highest MSFE. If subaggregated clusters are formed
from the streams, the lowest MSFEs are obtained when clusters are based on Pivot Clustering.
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TWENTY DIFFERENT SIMULATIONS OF TWENTY ARMA(1,1) STREAMS
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Figure 5. Estimated Subaggregated MSFE Found by Pivot for Different Sets of Streams. Estimated
MSFEs are computed for twenty simulations using different sets of twenty streams in each simulation.
We note that using individual streams to forecasts leads to the lowest MSFE while basing the forecast
on the aggregate of the streams always leads to the highest MSFE. If subaggregated clusters are formed
from the streams, the lowest MSFEs are obtained when clusters are based on Pivot Clustering.

TWENTY DIFFERENT SIMULATIONS OF TWENTY ARMA(1,1) STREAMS
with 10 Random Initializations
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Figure 6. Theoretical Subaggregated MSFE Found by Pivot for Different Sets of Streams. Theoretical
MSEFEs are computed for twenty simulations using different sets of twenty streams in each simulation
and different initial assignments of streams to clusters. When averaging the final MSFEs based on
the different initializations for each set of streams, we note that using individual streams to forecasts
leads to the lowest averaged MSFE while basing the forecast on the aggregate of the streams always
leads to the highest averaged MSFE. If subaggregated clusters are formed from the streams, the lowest
averaged MSFEs are obtained when clusters are based on Pivot Clustering.
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TWENTY DIFFERENT SIMULATIONS OF TWENTY ARMA(1,1) STREAMS
with 10 Random Initializations
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Figure 7. Estimated Subaggregated MSFE Found by Pivot for Different Sets of Streams. Estimated
MSEFEs are computed for twenty simulations using different sets of twenty streams in each simulation
and different initial assignments of streams to clusters. When averaging the final MSFEs based on
the different initializations for each set of streams, we note that using individual streams to forecasts
leads to the lowest averaged MSFE while basing the forecast on the aggregate of the streams always
leads to the highest averaged MSEFE. If subaggregated clusters are formed from the streams, the lowest
averaged MSFEs are obtained when clusters are based on Pivot Clustering.

We continue by assessing how well Pivot clustering does when compared against an exhaustive
algorithm which checks all possible assignments of streams to clusters using theoretical MSFE
calculations. To do so, we consider twenty simulations where within each simulation we randomly
generate 10 ARMA(1,1) streams® and compute the lowest MSFE possible among all choices of streams
to 3 clusters. Furthermore we consider 10 random initializations of Pivot each time new streams are
considered. The results are displayed in Figure 8. We note in the first row of that table that for the first
simulation of twenty streams 8 out of 10 initializations of our algorithm led Pivot clustering to find
the optimal solution. Among the 2 initializations that did not lead to the optimal solution, the ratio of
optimal MSFE to the MSFE of the grouping found by pivot is 96.81%. The median was 96.81% while
the minimum ratio was 96.24%. In some instances Pivot clustering never found an optimal solution
(such as in the 6th simulation), however the average MSFE of the optimal solution was around 99.6%
of the MSFE of the groupings found by Pivot. In the worst performance of Pivot (simulation 15), the
best possible grouping led to an MSFE that was 80.27464% lower than the MSFE found by Pivot.

5 We reduced the number of streams and clusters here due to the fact that an exhaustive algorithm requires O(kV) iterative

steps to check all possible cluster assignments where k is the number of clusters and N is the number of streams. We note
that Pivot clustering has a complexity of O(kN) in the event that each stream is only allowed to change clusters once.


https://doi.org/10.20944/preprints202310.0310.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2023 do0i:10.20944/preprints202310.0310.v3

18 of 28

Median

Average Minimum
MSFE- MSFE- MSFE-

q ratio of -
ratio of Global ratio of
Global - Global to
to Pivot Pivot

Pivot
1 0.9680980 0.9680980 09624471
2 0.9774253 0.9766947 0.9748456
3 0.9894150  0.9889658 0.9845720
4 0.9865045 0.9865045 0.9865045
0.9483923 0.9479285 0.9284019

0.9958996  0.9963039 0.9951501

5
6
7 09721170 0.9809985 0.9435306
8 09932963  0.9932963 0.9932963
9

09171564 0.8920174 0.8%20174
10 0.9809083  0.9809083 0.9809083
1" 09762665  0.9860908 09310058
12 0.9902159  0.9893665 0.9864302
13 0.9877489  0.9877489 0.9877489
14 0.9889892  0.9991079 0.9687519
15 0.8416751 0.8481041 0.8027464
16 09567759  0.9567759 09315470
17 0.9915780  0.9951949 0.9784939
18 0.9941697  0.9964960 0.5802119
19 0.9919982  0.9948097 0.9694630

20 0.9945567  0.9945567 0.9945567

Figure 8. Twenty simulations are carried out where within each simulation we select a new set of
ARMA(1,1) coefficients for each of 10 streams. The streams are then clustered using Pivot clustering
using theoretical MSFE based on 10 different starting groups. We also obtain the optimal (minimum
MSFE) clustering assignment based on an exhaustive search of all possible assignments of streams to
clusters. Each row corresponds to a new simulation. The three columns contain the mean, median and
minimum ratios of global optimal MSFE to the MSFE obtained by Pivot for the different initializations
in the event that Pivot clustering did not find the optimal solution.

Finally, we consider the robustness of the Pivot algorithm to cases where the data generation
process is not ARMA. To do so we perform ten simulations where in each simulation we simulate
twenty demand stream realizations such that stream Xj follows an ARFIMA(0, di, 0) model given by

(1—B)"Xys = exy (61)

where —4 < di < .4 and Cov(eyy, e]',t) may be nonzero. Each realization, consisting of 1500 time
periods is used to fit an ARMA(5,5) model to compute an estimated one-step-ahead MSFE for the
disaggregated series (appearing as a blue dot in Figure 9). Summing the realizations together to fit
an ARMA(5,5) model yields an estimated MSFE for the aggregated series (appearing as a black dot
in Figure 9). Finally the Pivot algorithm is carried out using five different random initializations of
assigning streams to one of four clusters. The MSFEs for the subaggregated random clusters and Pivot
clusters appear as red and green dots in Figure 9. We note that in the subaggregated case the number
of ARMA models that needs to be estimated is equal to the number of clusters.

As before, we note that Pivot clustering provides a sharp reduction in MSFE compared to random
cluster assignments as well as compared to the aggregated case. We also observe that when fitting
ARMA models to non-ARMA data it is possible for Pivot clustering to yield clusters which lead to a
subaggregated MSFE that is lower than the MSFE using the individual (disaggregated) series. The
exact cause of this is unclear, however it is possible it has to do with the extra number of misspecified
ARMA models that are fit in the disaggregated case.
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Figure 9. Estimated MSFEs when using aggregated, disaggregated, and subaggregated series to
forecast one-step-ahead demand for series that are not generated using an ARMA process. A total
of 10 simulations is performed where within each simulation twenty separate demand realizations
are generated according to the ARFIMA(0, d,0) model with a different d for each realization such that
the shocks appearing in the ARFIMA model are contemporaneously correlated. Pivot clustering is
carried out for 5 random initialization of assigning the streams to one of four clusters. We compute the
estimated MSFEs for the disaggregated series (blue), aggregated series (black), subaggregated clusters
generated using random assignment (red) and subaggregated clusters generated using the result of
Pivot clustering. We note the supremacy of Pivot clustering in all ten simulations.

5. Clustering Demand Streams Through Minimizing An Objective Function Based on
Subaggregated MSFE

In this section we describe how to determine the optimal assignment of streams to clusters by
identifying and minimizing an objective function which computes the overall MSFE given a particular
assignment of streams to clusters. We begin by assuming that the desired number of clusters is known
tobe n. Forw € 1,2,...n, let subaggregated cluster series {Cy} = {X1y14 + - .. + XN YN« }, Where
Vin = 1if stream {X;;} is in cluster {C,} and 0 otherwise, have the ARMA representation

(P;(B)Ctx,t = 93(3)6;,16- (62)

Fora € 1,2,...n, the shocks e;,t have covariance matrix £} given in equation (42). We define the
N

number of demand streams in cluster {C,+} to be nc, = Z Vi > O0foralla € 1,2,...n. Furthermore
i=0

ify; = 1theny;g =0foralla # B € 1,2,...n. For each of nc, streams {cht“} in cluster {Cq ¢} we
adapt the notation of its ARMA representation to be

i (B)Xif = Opa(B)ewiy. (63)
Lemma 1. An optimal set of clusters can be found by minimizing the subaggregated MSFE given by
ney ncﬁ 00

n n
MSFEsubagg =Y Y ). Wh Wy Yo ) ) PuiktPp k0 (64)

a=1p=11=0 i=1j=1k=0
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where Py ; . and Py ; . are obtained from the equivalence
(Pa (Z) Z k
rx(z> ; Z Z 1Ptxzkz (65)
and (2)
Pp\2) Oip(z) _ ok
d = Kzt (66)
1) @) T

where the key terms are defined in the proof below.
Alternatively, the objective can be stated as finding the optimal set of {y,...,yn} such that we minimize

n n [(
MSFEsubagg = Z Z Z“’ﬁl Wl Z Z Z]/z a!/]ﬁlPazk‘/’ﬁ,],k‘Tl] (67)
a=1p=11=0

i=1j=1k=0

where wy, ; and gy | in equation (70) are obtained through the equivalence

Z
‘Puc Z IZ lpzx 1 (68)

where again the key terms are defined in subsequent proof.

Proof
From equation (7) we note that a forecast based on the clusters would have MSFE given by

Mr\

n n
MSFEsubagg =Y ) a;‘ﬁwg,lw;,l (69)
a=1p=11=0
where

0 i<0

* I=0
wrp = Y (70)

’ Wy TPy 0<l<t+1

wa,l_] + l/];ll - ll];,l—f—l Z Z g + 1

where %, is the I'" coefficient appearing in the MA(co) representation of {C} with respect to {€} ,}.
From eqﬁation (41) we note that for any two subaggregated clusters {Cy} and {Cg,} consisting of
nc, and nc, streams respectively, the corresponding shock series {€; ,} and {ey,}, the covariance
E[e7 s€5,] is expressed by

ney Cﬁ 00

zxﬁ = Z Z Z lpalklpﬁ,],kal] (71)

i=1j=1k=0

Therefore the objective is to assign streams to clusters such that we minimize the MSFE

n n { ney "Cp o
MSFEsubagg = Y ) ng,lw;,l Yy P,k P, ki (72)
a=1p=11=0 i=1j=1k=0

where ¢, ;  and Ii]ﬁ’j,k are obtained from the equivalence

* O, o
DL(Z)) ', (i) = kZO lplx,i,kzk (73)

i (2) Pial(z)

=

>
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and (2)
95(2) ©,(2)

ik (74)

HE(Z) ],5( leﬁ]
Alternatively, we can say that we are finding the optimal set of {y, ..., yn} such that we minimize

n n ¢ N N o ~ _
MSFEsubagg =) | ), Y wp war- ) Y Y YialljpPaikPp,jkoij (75)
a=1p=11=0 i=1j=1k=0

where w} | and ¢} | in equation (70) are obtained through the equivalence

Z
¢a Z IZ lpzx 1 (76)

with 0% (z) and ¢}(z) found using Remark 1 where Laurent polynomials O(z), P(z) and Q(z) are
obtained from the covariance generating function G, (z) given by

Ge,(z) = Z}/zrx W

1 N Qi(z 1) ©(z
n Z Z Vialja (‘T’f@E; E ;+m,®g ;q);EZ;). (77)

O

We note that it is impossible to offer an explicit solution because of the dependence of coefficients
“)E,lf wy p, Pk and lﬁﬁ,]-,k on the selection of clusters. In the next section we consider a much simpler
case of demand streams being generated by MA(1) models which leads to a much simpler objective
function. This allows us to find several theoretical results, culminating in the fact that optimal clusters
can be found in this case by identifying streams having the closest MA coefficients with one another.

6. MA(1) Streams

In this section we consider the case that the demand streams being considered are independent
MA(1). As we demonstrate below this leads to a simpler objective function. We will use this fact to
show how we can use non-linear optimization to assign clusters to streams and to come up with an
efficient way to cluster independent MA(1) streams based on segmenting the coefficient space into
intervals. The focus on MA(1) streams here allows us to observe that streams with their MA coefficients
close to each other should be clustered together. At the end of the section, we provide a lemma on
aggregating streams produced by models having identical ARMA coefficients.

Lemma 2. Suppose {X1:},{Xos}, ..., {Xn+} are MA(1) with MA coefficients 61,0, ...,0n. Optimal
clusters can be found by assigning y ;i as an indicator variable for stream X being in cluster Cy such that we

minimize ;

) \/(bk + 2ay) (b — 2ay) (78)

k=1
where

N 2 2
=) o7 (1+6])yi (79)
j=1

and

N
a =Y 07Oy (80)
j=1
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Alternatively, the objective function (78) can be written as

)n J )3 2 o7 (1+6)2(1 = 6,2y (81)

j=1i=1

Proof uppose { X1}, {Xo+},...,{Xn+} are MA(1) with MA coefficients 61,65, ...,60y. Suppose
cluster Cy t consists of streams {Xj},...,{ Xt} The covariance generating function of C, ¢ simplifies
to

Ge,(z) = 07 (14 012) (1401271 + ...+ 02 (14 0,2) (1 4 0,27 1). (82)

In order to determine the variance of the shocks of C,; we need to find the roots of equation (82). Note
that it can be rewritten as

<<71291 +...+(7,,%9,X)z_1 + ((712(1 +62) +...+02(1 +9§)) + (of@l +...+U§9,X>z. (83)

b Vb2 — 442
We can find the roots of equation (83) using the quadratic formula W where
43
a = of0+...+ 0560, =) 070; (84)
j=1
o
b = f(1+67)+...+oz(1+63) =) o7 (1+67) (85)

j=1

We note that one roots r; will be outside the unit circle and from Remark 1 that the variance of the
shocks of C,  is equal to —ar;. Since b > 0, the variance is then given by

» b+ /(b+2a)(b—2a)

oy = 5 (86)

Thus if we are subaggregating into n clusters, the MSFE is given by

1/ & n
MSFEsubugg =3 < Z by + Z \/(bk + 2a;) (b — Zak)) (87)
k=1 k=1

n
Since ) _ by will be the same regardless of choice of clusters, we are minimizing the objective function

k=1
given by
n
Z /(0 +2a0) (b — 24 (88)
where
S 2
=) o7 (1+67)yi (89)
j=1
and
N
ay = Z 0’]29]]/]]( (90)
j=1

where yji is an indicator variable for stream X; being in cluster Cy.
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Noting that
S 2
(bx+2ar) = ) 07 (1+6)yp (91)
j:1
(b —2a) = ZU (1-6,)%yj (92)

The objective function can also be rewritten as

n

> Z Z o7 (1+6,)2(1 = 6;)2yjtyi- (93)

k=1 \ j=1i=1

O

We have results (not shown here) where we use equation (93) in a non-linear optimization
algorithm to come up with clusters. When using 10 streams with 3 clusters, the approach actually
leads to a globally optimal solution almost every time.

We note that equation (93) can also be rewritten as

f\/ ) 0?7 (146;)2(1—6;)2. (94)
k=1

Xi,XjGCk

where the inner sum is taken over all pairs of streams in each cluster, including pairs of streams with
themselves.
If stream X, is moved from cluster k to cluster x then the change in the objective function is

\/ 2(14+0,)2 Y 02(1-6)%+03(1—0,)2 Y 0?(1+6,)?

X;eCy X;eCx
. \/ag<1+e,,)2 Y 21-0)2+02(1-0,2 Y o2(1+6,) (95)
X;eCr X;eCy

which provides an alternative way to cluster streams by identifying and moving the stream from one
cluster to another which yields the largest drop in the objective function.

6.1. Aggregate of Two MA(1) Streams

In this subsection we consider two MA(1) streams whose variance of shocks is unitary. We
demonstrate that the MA coefficient® of their aggregate process is always between the two MA
coefficients of the individual streams. Furthermore we show that as the two coefficients of the two
MA(1) streams are moved further apart from each other the variance of the shocks appearing in the
Aggregated process increases. These two facts imply that if we are studying N individual MA(1)
streams (with unit shock variance) and would like to cluster them into 7 clusters then the globally
optimal clustering assignment will cluster the streams along intervals. That is, the assignment will
have split the clusters into groups of streams whose MA coefficients are next to each other in a
sorted arrangement. This implies that an efficient algorithm for obtaining a globally optimal cluster
assignment consists of arranging the MA coefficients in increasing order and checking all possible
"interval" clusters, without worrying that if two streams are clustered together, another stream with an

6 The aggregate of two MA(1) streams is always MA(1)
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MA coefficient between the two is assigned to a different cluster. This algorithm would need to check
N . . . .
(;,) possible cluster assignments to find the globally optimal arrangement.
Theorem 1. Consider two streams whose ARMA representations are given by
X1 = (1 + 913)61,,}

Xop = (1+62B)er

with var(ey ;) = var(ey) = 1and 015 = 0and 61 < 0. Note that 01 and 0, are allowed to equal 0.
The Aggregated process { X1 + Xo,} is described by the MA(1) model

X1t + Xor = (14+6B)et
such that 61 < 6 < 0.
Proof. Note that the covariance generating function of the aggregate process is
Gs(z) = (01 +62)z L + (2 4+ 602 +62) + (61 + 62)z. (96)
As long as” 61 # —0,, this polynomial has roots a; and 1/a;. Suppose a; is inside the unit circle, then

according to Remark 1,0 = —a; and var(e;) = 02 = — (61 + 62)(1/ay).
We can note that the Laurent polynomial in Equation (96) has roots given by

—(2+ 0 +63) £ /(2 + 6+ 622 —4(61 +0,)

97
2(61 +62) 7
This implies that
—(2+62+63) + \/(2+9%+9§)2—4(91+92)2 o8
e 2(61 + 62) %)
and
) (2+9§+9§)—\/(2+9%+9§)2—4(91+92)2 %
a 2(61 +62) )
In the remainder of this section we will prove that
(2+63+63) — \/(2+ 67 + 03)2 — 4(6 + 6,)2
b1 < <6, (100)
2(61 + 62)
Suppose first that 6; 4 6, > 0.
Then we can rewrite equation (100) as
207 420,01 < (2+ 63 +63) — \/(2 + 02 +63)2 — 461 + 62)2 < 203 + 26,0, (101)
or equivalently,
02 — 02 420,60, —2 < —\/(2 + 62 4+ 03)2 — 461 + 62)2 < 03 — 67 + 26,0, — 2 (102)

7 If6; = —0,, then 8 = 0 and the result still holds.
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or

02 — 63 — 20,0, +2 < \/(2+ 02 +03)2 — 4(61 + 62)2 < 03 — 0 — 2616, +2 (103)

Noting that the left and right-hand sides of the inequality are always larger than zero, (103) holds if
and only if the following inequality holds as well

(03 — 03 — 20,01 +2)% < (2467 +637)% — 4(6; + 62)% < (03 — 07 — 2610, +2)°. (104)

Labeling the three sides of this inequality as A < B < C, we observe that

A = 0} 0363 — 2030, + 207 — 0363 + 05 + 2636, — 203
— 2030, + 26307 + 46203 — 46,0, + 267 — 203 — 46,0, + 4
B = 4426242034203+ 0} + 6263 + 2603 4 0303 + 05 — 4(6% + 20,6, + 63)

— 04— 0302 — 2030, + 203 — 6367 + 0% + 2036, — 207
— 2630 + 2630, + 465607 — 4010, + 203 — 207 — 46,0, + 4

(105)
Removing equivalent terms and combining like terms, we observe
20303 — 4030, + 467 + 4630, — 403 — 86,6,
< 20703 — 8616,
< 03607 — 46030, + 463 + 4630, — 467 — 86,6,
which can be rewritten as
— 4636, + 4607 1+ 46,605 — 465 < 0 < —46,05 + 467 + 4630, — 463, (106)

Noting that the left and right-hand sides of this inequality are additive inverses, we see that this
inequality holds® and therefore inequality (100) holds.

Finally, if 6; + 0, < 0 in (100) then the direction of the inequalities is reversed in (101) and a
similar sequence of steps would lead us to observe

— 4030, + 407 + 46103 — 465 > 0 > —40,65 + 403 + 4650, — 467 (107)
and by the same argument we see that (100) holds and the theorem is proved. L.
Theorem 2. Consider two streams whose ARMA representations are given by
Xip = (1+61B)er,

Xot = (1+62B)e

with 012 = (722 = land oqp = 0and 6, < 6. Note that 61 and 0y may be 0.

As the distance between 6, and 6, increases, var(e;) = o2 increases.

8  The given direction of the inequalities must hold, otherwise 6; > 6, in (100)
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Proof
From Equation (96) we see that the root 1/a; of Gg(z), which is outside the unit circle, is given by

—(2+62+63) — \/(2+ 63 +63)2 — 4(6, + 6,2

108
20617 62) aew
Since 02 = — (61 + 62) /a1, we have
(2463 +63) + 1/ (2+ 67 +03)2 — 4(6) + 6,)2
= (109)
2
To show that this is increasing in 6, consider the derivative of the above with respect to 6,:
2 02(2+ 67 +63) —2(6; 40
%sz—k 2(2+ 01 +6) —2(61 1 62) (110)
2 V(@463 +63)2— 401 +0)2.
We need to show that (110) is larger than zero, thus consider
2 02(2 465 +63) —2(61 + 6
2%292+ 2(2+ 6] +03) —2(61 1 6>) <0 (111)
2 \(@+ 6+ 63)2 — 40+ 6)?
or equivalently
0,(2+ 6% +63) —2(0; +6,) > —92\/(2 + 02 +03)2 — 4(6; + 6,)2 (112)
which simplifies to
2(61 +62) — 62(2+ 63 +63) < 02/ (2+ 62 + 63)2 — 4(6; + 6,)2 (113)
or
201 — 6267 — 63 < 621/ (2+ 62 + 63)2 — 4(61 + 0)?. (114)
We will refer to the left and right hand sides of the inequality in (114) as LHS and RHS. Note that
squaring both yields
LHS? = 407 — 4030, — 46,05 + 6163 1+ 26265 + 65
RHS? = 403 +40202% + 0763 + 26265 + 05 — 40265 — 86,65 (115)
Note that furthermore
LHS? — RHS? = 467 — 465 — 4630, + 46,03 = 4(1 — 016,) (67 — 63) (116)

Suppose first that 6; < 6, = 0. Note that (114) reduces to 26; < 0, which holds, and therefore
(111) holds as well.
Next suppose that 0 = §; < 6. Note that (114) reduces to

— 03 < 0r\/(2+63)2 — 463 (117)

which holds as well since the left-hand side is negative in this case.

In the remainder of the proof we assume that 6; # 0 and 6, # 0. Consider the case that |6;] > |6;].
Note that this implies that 6,>0 (since 6, > 01) and that (116) is less than zero. Thus in this case
LHS? < RHS? and LHS < RHS in (114). Therefore (111) holds in this case as well.
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Now suppose that |61 > |6,| and that 8, > 0. The former implies that LHS?> — RHS? > 0 and the
latter implies that RHS > 0. Therefore LHS < 0 and therefore LHS < RHS. Therefore (111) holds in
this case as well.

Finally suppose that |61 > |0,| and that 6, < 0. The former again implies that LHS> — RHS? > 0
while the latter implies that RHS < 0. Therefore LHS < RHS and (111) holds in all cases. [1.

7. Demand Streams Produced by Identical ARMA models

Note that Theorem 1 and Theorem 2 imply that the prescribed algorithm at the top of the previous
subsection always leads to an optimal solution. The following lemma establishes that in the event that
two streams are generated by the same ARMA model, the aggregate will also follow the same ARMA
model. Therefore, we can greatly reduce the dimensionality of the number of streams that need to be
assigned to clusters by first aggregating demand streams from equivalent models.

Lemma 3. Consider two sequences { X ;} and { Xy} that have the same ARMA representation with respect
to Wold shock sequences {€1} and {es} given by

®*(B)X1y = O*(B)eyy (118)
®*(B)Xyy = OF(B)eys (119)

such that the variance of the shock sequences are o7 and o3 with covariance oy.
The aggregate {Sy = X1 ¢ + Xo} also has the same ARMA representation with respect to its Wold shocks

{€e+} given by
®*(B)S; = ©*(B)e; (120)

such that the variance of {e;} is given by 0% + 05 + 2075.
Proof. From Remark 1 we note that the ARMA representation of {S;} is given by

®(B)S; = O(B)e (121)

m
such that ©(z) = [ [(1 — a;z) where {a;} are the roots of O(z)P(z) on or inside the unit circle and
i=1
n
®(z) = [ [(1 — bjz) where {b;} are the roots of Q(z) inside the unit circle with O(z),P(z) and Q(z) are
i=1
obtained from the covariance generating function Gs(z) given by

0*(z)@*(z71) 0*(z)@*(z7 1)
_ 2 2
GS (Z) - (01 + 0'2) P (Z)CD* (271) + 2013 P+ (Z)CI)* (Zil> (122)
as per (77). This can further be simplified as
* * (—1
Gs(2) = (02 + 02+ 201) 2 (2)07(z" ) (123)

*(z)P*(z71)

and therefore ®(z) = ®*(z) and O(z) = ©*(z) and the result is proved. [J

Lemma 3 shows us that if we have n demand sequences Xj 4, ..., Xy t, generated by models with
the same ARMA coefficients with respect to their Wold shocks, their aggregate will have the same
ARMA coefficients. Therefore if the customer base of a firm is comprised of many demand streams
having the same ARMA representation, it is possible to greatly reduce the number of streams that
need to be considered for clustering by first aggregating these equivalent streams.
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8. Extensions and Other Questions

In this paper we compare theoretical MSFEs of a firm forecasting its leadtime demand based on
disaggregated (individual) demand streams and subaggregated clusters formed from those streams.
We highlight examples that illustrate that the MSFE based on subaggregates need not be much larger
than the MSFE based on the disaggregated streams as long as those clusters are well-formed. We
propose a Pivot algorithm to form clusters which minimize the MSFE among all cluster assignments.
We end with some theoretical results when the demand streams are generated by MA(1). Here we
show that clusters resulting in the lowest MSFE are formed by grouping streams by the proximity of
their MA coefficient.

The MA(1) case hints that in a general ARMA case, "best" clusters would be formed based on
proximity of the ARMA coefficients between models generating the various streams (or equivalently
based on the proximity of roots of the AR and MA polynomials). Alternatively, best cluster
assignments may result from grouping streams with most similar coefficients appearing in the MA(co)
representation. Future work can be done to establish the best approach.

Our current theoretical approach based on general ARMA models is limited in that root-finding
algorithms are unstable once the degree of a polynomial gets too large. In our study, this begins to
occur when we consider the aggregate of around twenty streams with at least one AR coefficient. It is
possible to greatly reduce the dimensionality however by first aggregating demand streams that are
produced by identical or nearly-identical ARMA models. This is another direction for future research.
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