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Abstract: Oral Squamous Cell Carcinoma is one among the most common cancer and early detection 

is the main key to avoid deaths. Automated diagnostic tools that process the histopathological im-

ages of a patient to detect abnormal oral lesions will be very much useful for the clinicians. A deep 

learning framework have been designed with an intermediate layer between feature extraction lay-

ers and classification layers for classifying the histopathological images into two categories, namely 

normal and oral squamous cell carcinoma. The intermediate layer is constructed using the proposed 

Swarm Intelligence technique called Modified Gorilla Troops Optimizer. Various optimization al-

gorithms are implemented in literature for optimal parameter identification, weights updating and 

feature selection in deep learning models, but this work focuses on usage of optimization algorithm 

as intermediate layer that transforms the extracted features into the features that are more suitable 

for classification. Three datasets totally comprising 2784 normal and 3632 oral squamous cell carci-

noma subjects are considered in this work. Three popular CNN architectures namely InceptionV2, 

MobileNetV3, and EfficientNetB3 are investigated as feature extraction layers. Two fully connected 

Neural Network layers along with batch normalization and dropout are used as classification layers. 

Among the investigated feature extraction models, MobileNetV3 performs well in all the three da-

tasets with the highest accuracy of 0.89. Usage of the proposed Modified Gorilla Troops Optimizer 

as an intermediate layer boosts this accuracy to 0.95.  

Keywords: oral cancer; histopathologic images; CNN; deep learning framework; swarm  

intelligence; gorilla troops optimizer 

 

1. Introduction 

Any neighbour tissue impairment due to uncontrolled cell growth and its invasion is called as 

Cancer. Oral cancer is ranked sixth most prevailing cancer globally and it falls under the broad cate-

gory of head and neck cancer. Oral cancer results in malignant cancer cell growth in lips and various 

parts of oral cavity. Worldwide, it is ranked as the fifteenth most common reason for death among 

various types of cancer. Out of one lakh people, minimum four people are affected by this disease 

across the globe [1,2]. Approximately, seventy-seven new cases and fifty-two thousand deaths are 

registered every year in India and one-fourth of the global oral cancer occurs in India [3].  

Most common types of oral cancer include Oral Squamous Cell Carcinoma (OSCC), Verrucous 

carcinoma, Minor salivary gland carcinomas, Lymphoma, and Mucosal melanoma. Among them, 

OSCC is a predominant type of oral cancer which contributes around 84% – 97% of oral cancer [4]. 

The major risk factors that lead to development of OSCC includes tobacco usage, frequent chewing 
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of betel quid, alcohol intake, oral infection, and genetic disorders [5]. Detection of OSCC at early stage 

is very crucial to avoid deaths since the five-year survival rate of humans with early-stage OSCC is 

around 85% while it is only around 40% with advanced stage [6,7]. Hence early detection is the key 

to reduce the mortality rate and so there is a huge demand for diagnostic tools that identifies the 

OSCC at earlier stages of malignancy.  

Apart from physical examination, major diagnostic tools used for identification of oral cancer 

includes techniques such as endoscope biopsy, liquid biopsy, vital staining technique, ultrasound 

imaging, Magnetic Resonance Imaging (MRI), Computed Tomography (CT) imaging, Raman spec-

troscopy, Gene/DNA array-based biomarker detection, enzyme assays-based biomarker detection, 

and histopathological examination [4]. Among these techniques, histopathologic examination is 

mainly preferred since it can be used to detect both malignant and benign tumours by identifying the 

changes in histopathological and molecular levels. Histological assays can be used to reveal the grad-

ual growth of malignant cells in oral cavity beginning from elementary dysplasia to tumours with 

high invasive nature. It is helpful in analysing the cells proliferation, growth of abnormalities, cyto-

plasmic-level and cellular-level atypia, changes at the surface of epithelium, and deep tissue-level 

cytoarchitecture [8]. Usually, abnormalities in microscopic and clinical levels arise only after the ab-

normalities in molecular and genetic levels. Histopathological examination is good in capturing these 

molecular level changes and so preferred for early detection [9].  

Analysis of histopathological images through visual inspection is usually subjective in nature 

and prone to errors sometimes. Computerized diagnostic tools will be very helpful to assist the clini-

cian in the decision-making process to reduce such errors. Various Machine Learning (ML) tech-

niques are used nowadays in variety of fields. Particularly in healthcare field, the implementation of 

ML algorithms is increasing day by day. Accuracy and robustness are the key concerns in such 

healthcare related decision-making tools. Fortunately, nowadays Deep Learning (DL) models are 

available for solving these issues. Deep learning is a sub-field in machine learning where the Artificial 

Neural Network (ANN) models with many numbers hidden layers are trained with large set of train-

ing images and labels; labels of new unseen images will be predicted using the trained model. The 

main advantage of deep learning is the non-requirement of hand-crafted feature engineering com-

pared to traditional supervised classifiers such as Support Vector Machine (SVM), K-Nearest Neigh-

bour (KNN), Decision Trees (DT), etc where domain experts are required to identify the appropriate 

features and Region of Interest (RoI) [10,11].  

Convolutional Neural Network (CNN) is a popular deep learning technique where convolution 

operation is involved in multiple ANN layers. Various CNN architectures are developed, and they 

are very efficient in different image classification tasks [12,13]. Popular CNN architectures include 

ResNet, EffiecientNet, InceptionNet, MobileNet, etc. The main advantage of these architectures is 

their ability to work well on a classification task even if most of their weights are pre-trained on 

another classification task. This concept is known as transfer learning and works very well for two 

similar and unique classification tasks. Two main advantages of transfer learning are reduction in 

training time and competence to work well on small datasets [14,15].  

To improve the accuracy of such deep learning models, various techniques are used such as fine-

tuning, feature selection, regularization, optimal parameter selection, optimization, etc. On the other 

hand, various population-based Swarm Intelligence (SI) optimization algorithms are widely used for 

optimal parameter identification, weights updating and feature selection in deep learning models for 

enhancing the accuracy. SI algorithms are meta-heuristic iterative algorithm that are usually inspired 

by the characteristic and nature of Swarm of animals. These algorithms are preferred in many appli-

cations mainly due to their minimalism, derivation free design and ability to avoid local optima [16]. 

Some of the popular SI algorithms include Particle Swarm Optimization (PSO), Ant Colony Optimi-

zation, Grey Wolf Optimizer, Dragonfly Optimization, Elephant Herding Optimization, Gorilla 

Troops Optimizer (GTO), etc. 

This work primarily focuses on classifying the histopathological images into two categories: 

Normal and OSCC. Histopathological image features are extracted using pre-trained weights of 

transfer learning based popular CNN models namely InceptionV2, MobileNetV3, and 
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EfficientNetB3. Then Modified Gorilla Troops Optimizer (MGTO) is used as an intermediate layer in 

between feature extraction and classification layers. Two fully connected ANN layers along with 

batch normalization and dropout are used as classification layers.  

The key contributions of this research work are listed below: 

1. Proposal of novel deep learning framework that includes a swarm intelligence-based optimiza-

tion algorithm as an intermediate layer in deep learning model.  

2. Development of MGTO through appropriate modifications that enhances the classification ac-

curacy.  

3. Comparative analysis of popular deep learning models with and without the proposed inter-

mediate layer in terms of various classification metrics and training time.  

The remaining paper is organized as follows: Section 2 deals with the related works and section 

3 is related to background of various transfer learning models used and original GTO. Fourth section 

deals with the methodology used in this research work and fifth section presents the implementation 

procedure for proposed MGTO as an intermediate layer. Results are presented and discussed in the 

sixth section. Last section summarizes the conclusion and future work.  

2. Related work 

Various techniques based on machine learning and deep learning are proposed in the literature 

to diagnose oral cancer by analysing the medical images. Early publication related to oral cancer di-

agnosis mainly revolves around feature extraction and traditional supervised classifiers [17-20]. For 

example, [21] considered features based on texture discrimination using higher order spectra, laws 

texture energy, and local binary pattern and fed these features to supervised classifiers such as DT, 

Gaussian Mixture Mode, KNN, Sugeno Fuzzy Classifier, and Radial Basis Probabilistic Neural Net-

work. Similarly, [22] proposed textural changes detection using features extracted from digital im-

ages of oral lesions through grey level cooccurrence matrix and grey level run length matrix. They 

used back propagation-based ANN for classification. Particularly for OSCC diagnosis, [23,24] pro-

posed texture, shape and colour feature extraction from histopathological images and classification 

through DT, SVM, and Logistic Regression.  

Usage of deep learning models in medical image analysis is increasing rapidly particularly from 

the last decade onwards. Various deep learning models are developed and tested for oral cancer di-

agnosis that involves both binary and multi-class classification. [25] investigated customized AlexNet 

to detect OSCC from histopathological images. [26] investigated DenseNet121 model on oral biopsy 

images to detect OSCC and found that it performs better than Regions with CNN (R-CNN) model.  

Other transfer learning models such as Inception-ResNet-V2 [27], Xception [28], ResNet101 [29] are 

also investigated for diagnosing oral cancer from medical images. Apart from the above-mentioned 

works where popular CNN architectures are investigated, some works are reported which proposes 

their own CNN model for detecting oral cancer. For example, [30] proposed HRNet model for diag-

nosing malignant lesions in oral cavities and compared it with popular ResNet50 and DenseNet169 

models. [31] developed a modified CNN model which performs well when compared to transfer 

learning-based models such as Resnet-50, VGG-16, VGG-19, and Alexnet. Similarly, [29] proposed 

their own ten-layer CNN model that outperforms the pretrained CNN models in diagnosis of OSCC 

from histopathological images. Other than CNN and its variants, capsule networks are also imple-

mented in some works to identify oral malignancy. [32] tested the performance capsule networks to 

identify OSCC from histopathological images.  

To increase the classification accuracy and robustness of deep learning models, various optimi-

zation algorithms are investigated in many applications and some of them are summarized as fol-

lows: [33] designed a hybrid optimization algorithm that mixes PSO and Al-Biruni Earth Radius Op-

timization for optimizing the design parameters of CNN and Deep Belief Network in malignant oral 

lesion identification. [34] presented segmenting psoriasis skin images using Adaptive Golden Eagle 

Optimization for finding the ideal weight and bias parameters of CNN. [35] considered Artificial Bee 
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Colony optimization algorithm for finding the optimal hyper-parameters of CNN that works as clas-

sifier for identifying the species of plant. [36] proposed optimal guidance-whale optimization algo-

rithm to select features extracted from AlexNet–ResNet50 model and supplied the selected features 

to Bi-directional long short-term memory for Land Use Land Cover classification. [37] suggested 

Modified Lion Optimization for selecting the optimal features for transfer learning-based CNN clas-

sification model to build a multimodal biometric system. In this manner, numerous optimization al-

gorithms are incorporated for finding optimal hyper-parameters, training the model, and feature se-

lection in deep learning. Comparatively only few works are reported regarding the usage of optimi-

zation algorithm as a transformation technique. For example, crow search optimization algorithm is 

used as transformation technique for improving the classification performance of weighted KNN in 

severity classification of breast cancer [38].  

From the above related works, the following points can be summarized. Compared to hand 

crafted feature extraction and traditional supervised classifiers, deep learning models perform well 

in diagnosis of OSCC. But still, they are lagging in classification accuracy and robustness. To solve 

those two concerns, optimization algorithms are widely used in various applications for improvisa-

tion of deep learning models in different ways. Hence this work attempts to use MGTO optimization 

algorithm as an intermediate layer between feature extraction and classification layers for enhancing 

the accuracy of OSCC diagnosis. 

3. Background  

3.1. CNN  

CNN [39] based deep learning models are widely used to classify images in variety of applica-

tions mainly due to their capability of recognizing the underlying pattern. Convolution operation at 

multiple layers act as the foundation for CNN and generally a typical CNN contains convolutional 

layers, pooling layers and fully connected layers. The goal of convolution layers is to extract the image 

attributes such as contours, colours, etc. Pooling layers will act as a dimensionality reduction layer 

i.e., it reduces the number of features. Max and average pooling layers are very popular when com-

pared to others. The last stage is usually built using fully connected layers called DenseNet and it is 

responsible for classification [40].     

3.2. InceptionV2  

Inception [41] model is an altered version of CNN in which inception blocks are included. These 

inception blocks refer to the processing of same input with different filter sizes before combining 

them. InceptionV2 is an advanced variant of original InceptionV1. When compared to Inception V1, 

two 3*3 convolution operations are performed in InceptionV2 instead of one 5*5 convolution opera-

tion. In addition, filter size n*n is factorized into 1*n and n*1 convolutions in Inception V2.   

3.3. MobileNetV3  

MobileNet [42] is a modified version of CNN where batch normalization and ReLU activation 

functions are used instead of single 3*3 convolution layer. In addition, one convolution operation is 

carried out for each colour channel in MobileNet while flattening of colour channels will happen in 

typical CNN. Relatively MobileNet architectures requires minimal computational power and so 

mainly preferred in mobile devices and embedded systems. Compared to MobileNetV1, bottleneck 

with residuals are implemented in MobileNetV2 while layer removal and swish non-linearity are 

incorporated in MobileNetV3.  

3.4. EfficientNetB3 

Unlike typical CNN, EfficientNet [43] uniformly scales all dimensions with a compound coeffi-

cient. Fixed set of scaling coefficients are used to uniformly scale the network depth, width and 
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resolution. The original EfficientNetB0 version is based on the MobileNetV2 combined with squeeze 

and excitation blocks. EffientNetB3 is developed by scaling up baseline network of previous versions.   

3.5. Gorilla Troops Optimization 

GTO is one of the iterative meta-heuristic optimization algorithms which is proposed in the year 

2021 [44]. It is based on the social activities and characteristics of Gorilla troop. Usually, each such 

troop contains one adult male gorilla which is called as silverback gorilla, substantial number of adult 

female gorillas, and their Childs. The male gorilla will lead the troop and it is responsible for control-

ling the troop activities such as identification of sources of food, solving the conflicts, and decision 

making. GTO is mathematically modelled as five-stage algorithm where three stages are responsible 

for exploration while the remaining two stages are related to exploitation. The positions of Gorillas 

are updated using the following equations: 𝑋𝑋(𝑡𝑡 + 1) =  � (𝑈𝑈𝑙𝑙 −  𝐿𝐿𝑙𝑙  ) ∗ 𝑟𝑟1 + 𝐿𝐿𝑙𝑙                                                                       𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑝𝑝
(𝑟𝑟2 − 𝐶𝐶) ∗  𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 ∗ 𝐻𝐻                                                               𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0.5𝑋𝑋(𝑡𝑡) − 𝐿𝐿 ∗ (𝐿𝐿 ∗ �𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑟𝑟(𝑡𝑡)� + 𝑟𝑟3 ∗ (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑟𝑟(𝑡𝑡)))          𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0.5  

(1) 

Here 𝑋𝑋  is the position of current Gorilla at iteration 𝑡𝑡 .  𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3  and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  are the random 

numbers in the range 0 to 1. 𝑝𝑝 is a parameter whose value will usually lie between 0 and 1. 𝑈𝑈𝑙𝑙 and 𝐿𝐿𝑙𝑙 are the upper and lower boundaries respectively. 𝑋𝑋𝑟𝑟 is a Gorilla randomly chosen at each itera-

tion. The values of C, L, and H are calculated using the equations (2), (4), and (5) respectively.   𝐶𝐶 = 𝐹𝐹 ∗  �1 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼�           (2) 𝐹𝐹 = cos(2 ∗ 𝑟𝑟4) + 1              (3) 𝐿𝐿 = 𝐶𝐶 ∗ 𝑙𝑙            (4) 𝐻𝐻 = 𝑍𝑍 ∗ 𝑋𝑋(𝑡𝑡)         (5) 
In equation (2), 𝐼𝐼𝑡𝑡𝐼𝐼𝑟𝑟 represents the current iteration and 𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑡𝑡 represents the maximum num-

ber of iterations. 𝐹𝐹 present in equation (2) is calculated using equation (3) and 𝑟𝑟4 is a random num-

ber in the range 0 to 1. Here 𝑙𝑙 is an integer randomly chosen in the range -1 to 1. In equation (5), 𝑍𝑍 

is a random number in the range -C to +C. Based on the position of Silverback, other gorillas will 

change their position while searching for food and this behaviour is represented using the equation 

(6). The 𝑀𝑀 value mentioned in equation (6) is computed using the equations (7) and (8).  𝑋𝑋(𝑡𝑡 + 1) = 𝐿𝐿 ∗ 𝑀𝑀 ∗ (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑀𝑀𝑙𝑙𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡)     (6) 𝑀𝑀 =  ��1𝑁𝑁∑ 𝑋𝑋𝑀𝑀(𝑡𝑡)𝑁𝑁𝑀𝑀=1 �𝑔𝑔�1𝑔𝑔         (7) 𝑔𝑔 =  2𝐿𝐿                (8) 
Here 𝑋𝑋𝑠𝑠𝑀𝑀𝑙𝑙𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠 is the position of Silverback Gorilla which is the Gorilla with best position when 

compared to positions of other Gorillas and N is the total number of Gorillas. Gorillas’ behaviour for 

competing to choose the adult females is represented using the equation (9).   𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑠𝑠𝑀𝑀𝑙𝑙𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠 − (𝑋𝑋𝑠𝑠𝑀𝑀𝑙𝑙𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠 ∗ 𝑄𝑄 − 𝑋𝑋(𝑡𝑡) ∗ 𝑄𝑄) ∗ 𝐴𝐴       (9) 𝑄𝑄 = 2 ∗ 𝑟𝑟5 − 1                  (10) 𝐴𝐴 =  𝛽𝛽 ∗ 𝐸𝐸                   (11) 𝐸𝐸 =  �𝑁𝑁1             𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0.5𝑁𝑁2             𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0.5  
         (12)      

In the above equations, 𝑟𝑟5 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are the random numbers in the range 0 to 1 while 𝛽𝛽 is a 

parameter whose value is crucial in deciding the updated positions of Gorillas. 𝑁𝑁1 is a random num-

ber in the range decided by the problem dimension while 𝑁𝑁2 is a random number that follows nor-

mal distribution in the range [0,1]. Initially, equation (1) will be used to update all the Gorilla’s posi-

tion. Then Silverback Gorilla will be found in that iteration. After that, other Gorillas position will be 

updated based on Silverback Gorilla’s position. If the value of |𝐶𝐶| ≥ 1, then the position of Gorillas 

is updated using equation (6) otherwise they will be updated using equation (9).  
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3.6. Particle Swarm Optimization 

PSO [45] is one of the popular and efficient swarm intelligence-based optimization algorithm. 

PSO is inspired from the characteristics exhibited by bird flocks while searching for food. Usually, 

the population will be initialized randomly and updated in each iteration based on the fitness func-

tion. The velocity of each particle is mathematically modelled and updated using equation (13).  𝑣𝑣𝑀𝑀(𝑡𝑡 + 1) = 𝑤𝑤 ∗ 𝑣𝑣𝑀𝑀(𝑡𝑡) +  𝑐𝑐1 ∗ 𝑟𝑟1 ∗ �𝑝𝑝𝑀𝑀(𝑡𝑡) − 𝑀𝑀𝑀𝑀(𝑡𝑡)� + 𝑐𝑐2 ∗ 𝑟𝑟2 ∗ �𝑔𝑔𝑔𝑔𝐼𝐼𝑔𝑔𝑡𝑡 −  𝑀𝑀𝑀𝑀(𝑡𝑡)�    (13) 

Here, 𝑣𝑣𝑀𝑀(𝑡𝑡) stands for velocity of ith particle in iteration t; Three crucial parameters PSO are w, 

c1, and c2; The position of ith particle in iteration t is represented as 𝑀𝑀𝑀𝑀(𝑡𝑡); 𝑝𝑝𝑀𝑀(𝑡𝑡) and 𝑔𝑔𝑔𝑔𝐼𝐼𝑔𝑔𝑡𝑡 represents 

the personal best and global best particle positions respectively. 𝑟𝑟1 and 𝑟𝑟2 are the random number 

in the range 0 to 1. The position of each particle is updated based old position and new velocity as 

represented in equation (14).  𝑀𝑀𝑀𝑀(𝑡𝑡 + 1) =  𝑀𝑀𝑀𝑀(𝑡𝑡) + 𝑣𝑣𝑀𝑀(𝑡𝑡 + 1)      (14) 

Personal best and global best will be computed in each iteration using the equations (15) and 

(16) respectively.  𝑝𝑝𝑀𝑀(𝑡𝑡 + 1) =  �𝑝𝑝𝑀𝑀(𝑡𝑡)           𝑀𝑀𝑖𝑖 𝑖𝑖�𝑀𝑀𝑀𝑀(𝑡𝑡 + 1)� ≥ 𝑖𝑖�𝑝𝑝𝑀𝑀(𝑡𝑡)�𝑀𝑀𝑀𝑀(𝑡𝑡 + 1)   𝑀𝑀𝑖𝑖 𝑖𝑖�𝑀𝑀𝑀𝑀(𝑡𝑡 + 1)� < 𝑖𝑖�𝑝𝑝𝑀𝑀(𝑡𝑡)�  (15) 𝑔𝑔𝑔𝑔𝐼𝐼𝑔𝑔𝑡𝑡 ∈  {𝑝𝑝0(𝑡𝑡),𝑝𝑝1(𝑡𝑡), … . ,𝑝𝑝𝑚𝑚(𝑡𝑡) }                         (16) 

 = 𝑚𝑚𝑀𝑀𝑟𝑟 �𝑖𝑖�𝑝𝑝0(𝑡𝑡)�,𝑖𝑖�𝑝𝑝1(𝑡𝑡)�, … , 𝑖𝑖( 𝑝𝑝𝑚𝑚(𝑡𝑡)) �                     

Here, 𝑖𝑖 represents the fitness function which is crucial in deciding the performance of PSO. 

3.7. Elephant Herding Optimization 

Elephant Herding Optimization (EHO) [46] is inspired by the behaviour of elephants. Like PSO 

and GTO, EHO also comes under the category of swarm intelligence meta-heuristic algorithm. The 

position of elephant is updated using equation (17).  𝑀𝑀𝑀𝑀𝑛𝑛𝐼𝐼𝑛𝑛 =  𝑀𝑀𝑀𝑀𝑜𝑜𝑙𝑙𝑜𝑜 +  𝛼𝛼 �𝑀𝑀𝑠𝑠𝐼𝐼𝑠𝑠𝐼𝐼 −  𝑀𝑀𝑀𝑀𝑜𝑜𝑙𝑙𝑜𝑜� ∗ 𝑟𝑟𝑟𝑟𝑟𝑟            (17)                                        

Here 𝑀𝑀𝑀𝑀𝑛𝑛𝐼𝐼𝑛𝑛 and 𝑀𝑀𝑀𝑀𝑜𝑜𝑙𝑙𝑜𝑜 are the new and old positions of ith elephant. 𝑀𝑀𝑠𝑠𝐼𝐼𝑠𝑠𝐼𝐼 is the best elephant po-

sition found using equation (18). 𝑀𝑀𝑠𝑠𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝑟𝑟 in equation (18) is computed using equation (19). In addition 

to updating the best elephant position, worst elephant position 𝑀𝑀𝑛𝑛𝑜𝑜𝑟𝑟𝑠𝑠𝐼𝐼 is also updated using equation 

(20).  𝑀𝑀𝑠𝑠𝐼𝐼𝑠𝑠𝐼𝐼 =  𝛽𝛽 ∗  𝑀𝑀𝑠𝑠𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝑟𝑟 n                                          (18)  𝑀𝑀𝑠𝑠𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝑟𝑟 =  
1𝑛𝑛 ∗  ∑ 𝑀𝑀𝑀𝑀                                                                                             𝑛𝑛𝑀𝑀=1 (19)    𝑀𝑀𝑛𝑛𝑜𝑜𝑟𝑟𝑠𝑠𝐼𝐼 =  𝑀𝑀𝑚𝑚𝑀𝑀𝑛𝑛 +  (𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀 −  𝑀𝑀𝑚𝑚𝑀𝑀𝑛𝑛 + 1) ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                       (20) 𝛼𝛼 and 𝛽𝛽 are the EHO parameters; 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a random number in the range [0,1]; n is the number 

of elephants. 𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑚𝑚𝑀𝑀𝑛𝑛 are the maximum and minimum boundaries for elephant positions.  

4. Materials and Methods 

Three publicly available datasets totally comprising 2784 normal and 3632 oral squamous cell 

carcinoma subjects are considered in this work. First dataset is obtained from Kaggle [45], and it con-

tain oral histopathological images in both 100x and 400x zoom levels. First dataset contains totally 

5192 images and out of them 2494 images belong to Normal class and 2698 belongs to OSCC class.  

Second and third datasets are obtained from the online repository built by Tabassum Yesmin Rahman 

et al. [46]. Oral histopathological images with zoom levels of 100x and 400x are present in second and 

third datasets respectively. 89 normal images and 439 OSCC images are available in the second da-

taset while 201 normal images and 495 OSCC images are available in the third dataset. Some of the 

sample oral histopathological images belonging to normal and OSCC classes are shown in Figure 1 

& Figure 2 respectively.  
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Figure 1. Sample oral histopathological images belonging to Normal class. 

 

Figure 2. Sample oral histopathological images belonging to OSCC class. 

The typical procedure for implementing the oral cancer detection using transfer learning-based 

feature extraction is shown in Figure 3. Histopathological oral images from the three datasets are fed 

to the feature extraction layers discretely and resultant classification performance metrics are also 

computed individually. Features are extracted using the transfer learning approach where the 

weights are pre-trained for another similar dataset. Three popular CNN architectures namely Incep-

tionV2, MobileNetV3, and EfficientNetB3 are investigated in this work for feature extraction. Weights 

that are pre-trained for popular ImageNet dataset is considered in all the three architectures. The 

extracted features are then divided into training, validation, and test feature sets using stratified shuf-

fle split approach in the 70:15:15 ratio respectively. Stratified shuffle split is considered since it ran-

domly selects the samples according to the class ratio in the original dataset. In other words, stratified 

shuffle split ensures the ratio of each class in all the three resultant sets as same as shown in Table 1. 

This approach of data splitting is very crucial in imbalanced datasets. Then the classification layers 

are trained using training and validation feature sets where the ideal weights of neural networks for 

classifying the oral histopathological images are found.  

Two fully connected Neural Network layers along with batch normalization and dropout are 

used as classification layers as shown in Figure 4. Finally, the trained classification layers with ideal 

weights are used to classify the test feature set as Normal or OSCC class. In Figure 4, the functional 

layer depicts the transfer learning based pre-trained model while the remaining layers are used for 

classification. The specifications of classification layer considered in this research work is presented 

in Table 2. For comparison purposes, the classification layer is unaltered for all the datasets and dif-

ferent feature extraction layers. Specifications related to number of epochs and batch size during 

training, optimizer, early stopping and reduction of learning rate on plateau are also mentioned in 

Table 2. Based on the transfer model used for feature extraction layer, the number of trainable pa-

rameters of complete deep learning model will vary as shown in Table 3. The number of features 

extracted per input image by the three different feature extraction layers are also shown in Table 3.  
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Table 1. Stratified shuffle data split on three datasets. 

Dataset Class 
Total number of 

samples 

Number of train-

ing samples 

Number of valida-

tion samples 

Number of 

test samples 

First 
Normal 2494 1746 374 374 

OSCC 2698 1890 404 404 

Second 
Normal 89 63 13 13 

OSCC 439 307 66 66 

Third 
Normal 201 141 30 30 

OSCC 495 347 74 74 

 

Figure 3. Typical approach for OSCC detection using Transfer learning-based feature extraction. 

 

Figure 4. Typical deep learning architecture with functional layer depicting the transfer learning 

model for feature extraction and remaining layers depicting the classification layers. 

Table 2. Specifications of classification layer and techniques used. 

Classification layers 

& techniques used 
Specifications 

Batch Normalization momentum= 0.99, epsilon= 0.001 

Dense 

units = 256, kernel regularizer = L2 regularizer with coefficient l = 0.016, activ-

ity regularizer = L1 regularizer with coefficient l = 0.006, bias regularizer = L1 

regularizer with coefficient l = 0.006, activation= ReLu 

Dropout drop rate= 0.45 

Dense units = 2, activation= SoftMax 
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Training 
epochs = 100, batch size = 128, stratified shuffle split: training - 70%, testing - 

15%, validation -15% 

Optimizer 
Adamax with learning rate= 0.001, loss= sparse categorical cross-entropy, 

metrics=accuracy 

Early stopping  
patience = 5, minimum delta = 0, monitor = validation loss, restore best 

weights = True, mode = minimum  

Reduce learning rate 

on Plateau 
monitor = validation loss, factor = 0.2, patience = 4, mode = minimum 

Table 3. Specifications of Feature extraction layer. 

Feature extraction Layers Total number of parameters Number of Trainable parameters 

Number of 

features 

extracted 

Mobilenet V3 25,91,554 3,31,010 1280 

Efficientnet B3 1,11,83,665 3,97,058 1536 

InceptionV2 5,47,36,866 3,97,058 1536 

The proposed approach for OSCC detection is presented in Figures 5 and 6. An intermediate 

layer based on MGTO is included in the proposed method when compared to Figure 3 and Figure 4. 

Like classification layer, the newly introduced intermediate layer also needs to be trained where it 

will learn the ideal values for its parameters related to the MGTO algorithm. Hence it will be trained 

with original training and validation feature sets. Then all the three original feature sets will be sup-

plied as input to the trained MGTO layer where the features sets are transformed to produce another 

three transformed sets namely training, testing, and validation. The size of the input and output fea-

ture sets remains same. Then the transformed sets are considered for classification layers for detecting 

the class of oral histopathological image. This research work is carried out in a system with following 

configurations: i9 processor with 32GB RAM and NVIDIA RTX A2000 12GB GPU.  
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Figure 5. Overview of Proposed Approach for OSCC Detection. 

 

Figure 6. Proposed deep learning architecture where MGTO is used as intermediate layer between 

feature extraction (functional) layer and classification layer. . 

5. Implementation of Proposed MGTO  

The equations to update the Gorilla’s position are modified based on Sine Cosine Algorithm [48] 

to increase the exploitation and exploration capabilities of GTO. In MGTO, three equations that up-

date the position of Gorillas are modified. Equations (1), (6), and (9) of GTO are modified as repre-

sented in equations (21), (22), and (23) respectively in MGTO. All other equations of GTO remain 

intact in MGTO.    𝑋𝑋(𝑡𝑡 + 1) =  � (𝑈𝑈𝑙𝑙 −  𝐿𝐿𝑙𝑙 ) ∗ 𝑟𝑟1 + 𝐿𝐿𝑙𝑙                                          𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑝𝑝
(𝑟𝑟2 − 𝐶𝐶) ∗  𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 ∗ 𝐻𝐻                                         𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0.5𝑋𝑋(𝑡𝑡) − 𝐿𝐿 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑔𝑔𝑀𝑀𝑟𝑟�𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑟𝑟(𝑡𝑡)�+ 𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑐𝑐𝑐𝑐𝑔𝑔(𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑟𝑟(𝑡𝑡)))          𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0.5  

 (21) 𝑋𝑋(𝑡𝑡 + 1) = 𝐿𝐿 ∗ 𝑀𝑀 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑔𝑔𝑀𝑀𝑟𝑟(𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑀𝑀𝑙𝑙𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡)                        (22) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 October 2023                   doi:10.20944/preprints202310.0290.v1

https://doi.org/10.20944/preprints202310.0290.v1


 

 

𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑠𝑠𝑀𝑀𝑙𝑙𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑐𝑐𝑐𝑐𝑔𝑔(𝑋𝑋𝑠𝑠𝑀𝑀𝑙𝑙𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠 ∗ 𝑄𝑄 − 𝑋𝑋(𝑡𝑡) ∗ 𝑄𝑄) ∗ 𝐴𝐴                             (23)  𝑟𝑟𝑟𝑟𝑟𝑟 in the above equations is computed using equation (24). const in equation (24) is a constant 

and it is considered as three as suggested in [48]; Crnt_ Iter represents the current iteration number 

while Max_Iter represents the maximum number of iterations. 

rad =  const−   Crnt Iter ×  � const

MaxIter�                                                                               (24) 

original GTO, the Gorilla’s population is initialized randomly. But to use MGTO as intermediate 

layer in deep learning models, the Gorilla’s population is initialized with the features extracted from 

the previous layer. Number of Gorillas will be equal to the number of features extracted. Then the 

Gorilla’s position will be updated in each iteration using MGTO equations. Fitness function is very 

crucial in optimization algorithms, and it will be selected based on the problem to be solved. To use 

MGTO for transforming the features, the fitness function based on variance metric is considered. 

Fitness of each Gorilla, F(𝑋𝑋𝑀𝑀) will depend on its own position and four nearest-neighbour Gorillas as 

shown in equation (25). 

F(𝑋𝑋𝑀𝑀)  =  Variance(𝑋𝑋𝑀𝑀−2,𝑋𝑋𝑀𝑀−1,𝑋𝑋𝑀𝑀 ,𝑋𝑋𝑀𝑀+1,𝑋𝑋𝑀𝑀+2)                                           (25) 

In MGTO, 𝑝𝑝  and 𝛽𝛽  are the parameters which mainly decides the performance along with 

Max_Iter. The ideal values of these parameters are found based on the accuracy attained during train-

ing and validation. Validation accuracy for various values of Max_Iter is plotted in Figures 7 and 11 

is found as ideal value where the validation accuracy of 0.77 is reached. While finding the optimal 

value for Max_Iter, other two parameters namely 𝑝𝑝 and 𝛽𝛽 are kept as 0.5 (median of range [0,1]). To 

find the optimal values for 𝑝𝑝 and 𝛽𝛽 parameters, Max_Iter is kept at its ideal value 11. Figure 8 de-

picts the validation accuracy for various values of 𝑝𝑝 and 𝛽𝛽 parameters. Highest validation accuracy 

of 0.95 is attained when 𝑝𝑝 = 0.3 and 𝛽𝛽 = 0.7. Finding the ideal values for the parameters of MGTO is 

termed as training and for this purpose, training and validation feature sets are used. After training, 

MGTO transform will be implemented for all the three feature sets namely training, validation, and 

test sets with the ideal parameters value of Max_Iter = 11, 𝑝𝑝 = 0.3, and 𝛽𝛽 = 0.7. Notably these are the 

ideal parameters of MGTO on first dataset when MobileNetV3 is employed as feature extraction 

layer. The ideal parametric values may change depending upon the input data given to MGTO layer. 

The ideal values for other input data will be presented in the next section. Procedure for implement-

ing the MGTO as intermediate feature transform layer for test feature set is summarized in Algorithm 

1. 

Algorithm 1: Algorithm to implement the proposed MGTO as intermediate layer in deep learning 

models for feature transformation of test feature set.  

------------------------------------------------------------------------------------------------------------- 

Step 1: Extract features using pre-trained transfer learning models for each oral histopathologi-

cal image. 

Step 2: Consider number of features as size of population in MGTO. Initialize the position of 

Gorillas with extracted features.  

Step 3: Initialize parameters of MGTO: 𝑈𝑈𝑙𝑙 = max (𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑁𝑁) , 𝐿𝐿𝑙𝑙 = min (𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑁𝑁) , 

MaxIter = 11, 𝑝𝑝 = 0.3, and 𝛽𝛽 = 0.7 

Step 4: Compute the fitness value of each Gorilla using equation (25) 

Step 5: Update the position of each Gorilla using equation (21) 

Step 6: Identify the Silverback Gorilla i.e., the Gorilla with highest fitness. 

Step 7: Update the position of each Gorilla using equation (22) if |𝐶𝐶| ≥ 1. Otherwise use equa-

tion (23) 

Step 8: Repeat steps 4 to 7 until maximum number of iterations is reached. If the maximum 

number of iterations are completed, then go to step 9.  

Step 9: Consider the final position of Gorillas as the output of Feature Transform and give them 

as input to the classification layer.  

--------------------------------------------------------------------------------------------------------------

---- 
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Figure 7. Ideal value computation for Max_Iter. 

 

Figure 8. Ideal value computation of 𝑝𝑝 and 𝛽𝛽 parameters. 

6. Results and Discussion 

Initially the experiment is conducted without any intermediate layer in the deep learning model. 

Three different transfer learning-based models namely InceptionV2, MobileNetV3, and Efficient-

NetB3 are tested as feature extraction layers. As mentioned in Table 2, the specifications of classifica-

tion layer remain the same for all the three different feature extraction layers. The confusion matrix 

attained for these three deep learning models without intermediate layer on first dataset in OSCC 

detection is shown in Figure 9. The label 0 represents the class Normal and label 1 represents the class 

OSCC in Figure 9. EfficientNetB3 classify all the input images as OSCC and so its True Negative (TN) 

= 0. This clearly indicates the poor performance of the EfficientNetB3 based deep learning model 

without intermediate layer. To detect OSCC, high TP is required while to detect normal class 

properly, high TN is required. Among the remaining two models without intermediate layer, highest 

True Positive (TP) is attained by MobileNetV3 while the highest TN is attained by InceptionV2.  
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(a) MobilenetV3 (b) InceptionV2 

 
(c) EfficientnetB3. 

Figure 9. Confusion Matrix of Deep learning models without intermediate layer. 

To improve the number of TN and TP, MGTO based intermediate layer is proposed in this work. 

Figure 10. shows the confusion matrix of three different feature extraction-based deep learning mod-

els with MGTO as intermediate layer in OSCC detection. When MGTO is not used as intermediate 

layer in EfficientNetB3 based deep learning model, then all the oral images are classified as OSCC 

while better TN and TP values are attained with the proposed layer. Highest TN and TP values are 

attained for the proposed MobileNetV3 based feature extraction with MGTO as intermediate layer.  
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(a) MobilenetV3 (b) InceptionV2 

 
(c) EfficientnetB3 

Figure 10. Confusion Matrix of Deep learning models with MGTO as intermediate layer. 

Based on the confusion matrix, four popular performance metrics namely Accuracy, Precision, 

Recall, and F1-score are used in this research work to analyse the performance of deep learning mod-

els. Apart from deep learning models with and without MGTO based intermediate layer, three other 

swarm intelligence-based optimization algorithms namely PSO, EHO, and GTO are also tested as 

intermediate layer and their results are also presented in Table 4. Implementation procedure for PSO, 

EHO, and GTO as intermediate layer will also follow the Algorithm 1 presented in previous section. 

Only the parameters and the way of updating the position of Swarm will vary based on the optimi-

zation algorithm used. The final ideal parameters of all the four tested intermediate layer after train-

ing is listed in Table 5.  

Table 4. Performance metrics computed on test set of first dataset. 

Transfer learning 

model 
Intermediate layer Accuracy Precision  Recall F1-score 

MobilenetV3 NO 0.89 0.87 0.92 0.89 

EfficientnetB3 NO 0.52 0.52 1 0.68 

InceptionV2 NO 0.88 0.89 0.88 0.88 

MobilenetV3 PSO 0.79 0.78 0.82 0.8 
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EfficientnetB3 PSO 0.75 0.75 0.78 0.77 

InceptionV2 PSO 0.82 0.85 0.8 0.82 

MobilenetV3 EHO 0.77 0.77 0.8 0.79 

EfficientnetB3 EHO 0.8 0.82 0.78 0.8 

InceptionV2 EHO 0.83 0.85 0.82 0.83 

MobilenetV3 GTO 0.87 0.87 0.88 0.88 

EfficientnetB3 GTO 0.81 0.83 0.8 0.81 

InceptionV2 GTO 0.86 0.86 0.88 0.87 

MobilenetV3 MGTO 0.95 0.95 0.95 0.95 

EfficientnetB3 MGTO 0.9 0.92 0.9 0.91 

InceptionV2 MGTO 0.93 0.93 0.93 0.93 

Table 5. Ideal parameters of various intermediate layers. 

Feature extraction Intermediate layer Ideal Parameter values 

MobilenetV3 

PSO Max_Iter = 10, w=0.6, c1=0.7, and c2=0.9 

EHO Max_Iter = 12, 𝛼𝛼 = 0.9, and 𝛽𝛽=0.8 

GTO Max_Iter = 11, p = 0.2, and β = 0.7 

MGTO Max_Iter = 11, p = 0.3, and β = 0.7 

EfficientnetB3 

PSO Max_Iter = 12, w=0.4, c1=0.7, and c2=0.9 

EHO Max_Iter = 12, 𝛼𝛼 = 0.7, and 𝛽𝛽=0.8 

GTO Max_Iter = 8, p = 0.5, and β = 0.7 

MGTO Max_Iter = 9, p = 0.3, and β = 0.8 

InceptionV2 

PSO Max_Iter = 12, w=0.6, c1=0.8, and c2=0.8 

EHO Max_Iter = 11, 𝛼𝛼 = 0.8, and 𝛽𝛽=0.6 

GTO Max_Iter = 7, p = 0.4, and β = 0.7 

MGTO Max_Iter = 9, p = 0.4, and β = 0.6 

The main objective of this work is to detect OSCC and so precision, recall, and F1-score in Table 

4 are related to truthful identification of OSCC class while the accuracy metric is related to truthful 

identification of both normal and OSCC classes. As seen in Table 4, deep learning models without 

any intermediate layer provides less accuracy than the proposed deep learning models with MGTO 

as intermediate layer. 

 
(a) MobilenetV3 
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(b) InceptionV2 

(c) EfficientnetB3 

Figure 11. Training & validation accuracy and loss of Deep learning models without intermediate 

layer on first dataset. 

 
(a) MobilenetV3 
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(b) InceptionV2 

 
(c) EfficientnetB3 

Figure 12. Training & validation accuracy and loss of Deep learning models with MGTO as interme-

diate layer on first dataset. 

Among the models without intermediate layer, MobileNetV3 offers highest accuracy of 0.89 

which is followed by InceptionV2 with accuracy of 0.88 and EfficientNetB3 with accuracy of 0.52. The 

reason for such poor performance of EfficientNetB3 is explained as follows: All the three feature ex-

traction models are pre-trained on ImageNet dataset and features are extracted based on the weights 

appropriate for ImageNet dataset. The weights and architecture of EfficientNetB3 fails to capture the 

significant features from input oral images while vital features are properly extracted by the remain-

ing two feature extraction models. This statement is further supported by Figure 11 where the train-

ing and validation accuracy & loss are presented for all the three investigated deep learning models 

without intermediate layer on the first dataset.  

Since quality features are extracted by MobileNetV3 and InceptionV2, both training & validation 

accuracy are increasing gradually during training. In addition, both training & validation loss are 

also decreasing in exponential manner. But deep learning model that uses EfficientNetB3 fails to 

grow both training and validation accuracy due to poor features extracted from the histopathological 

oral images. Figure 12 presents the training & validation accuracy and loss when MGTO is used as 

intermediate layer on the first dataset. It clearly shows the improved accuracy during both training 

and validation because of transformed appropriate features produced by MGTO. To support the 

findings based on first dataset, other two smaller OSCC datasets are tested. The second and third 

dataset are highly imbalanced since the number of OSCC class samples is much higher than the num-

ber of normal class samples.  The performance metrics attained on those two datasets are presented 

in Table 6 and Table 7.  
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Table 6. Performance metrics computed on test set of second dataset. 

Transfer learning 

model 
Intermediate layer Accuracy Precision  Recall F1-score 

MobilenetV3 NO 0.8 0.8 0.97 0.88 

EfficientnetB3 NO 0.74 0.74 1 0.85 

InceptionV2 NO 0.8 0.82 0.93 0.87 

MobilenetV3 PSO 0.78 0.81 0.92 0.86 

EfficientnetB3 PSO 0.75 0.79 0.9 0.84 

InceptionV2 PSO 0.8 0.81 0.95 0.87 

MobilenetV3 EHO 0.76 0.8 0.9 0.85 

EfficientnetB3 EHO 0.75 0.81 0.86 0.84 

InceptionV2 EHO 0.78 0.82 0.9 0.85 

MobilenetV3 GTO 0.82 0.82 0.98 0.89 

EfficientnetB3 GTO 0.78 0.81 0.92 0.86 

InceptionV2 GTO 0.82 0.83 0.97 0.89 

MobilenetV3 MGTO 0.88 0.88 0.97 0.92 

EfficientnetB3 MGTO 0.81 0.81 0.97 0.88 

InceptionV2 MGTO 0.86 0.84 1 0.91 

Table 7. Performance metrics computed on test set of third dataset. 

Transfer learning 

model 
Intermediate layer Accuracy Precision  Recall F1-score 

MobilenetV3 NO 0.84 0.86 0.92 0.89 

EfficientnetB3 NO 0.71 0.71 1 0.83 

InceptionV2 NO 0.82 0.86 0.89 0.88 

MobilenetV3 PSO 0.78 0.84 0.85 0.85 

EfficientnetB3 PSO 0.73 0.81 0.81 0.81 

InceptionV2 PSO 0.78 0.83 0.87 0.85 

MobilenetV3 EHO 0.8 0.84 0.89 0.86 

EfficientnetB3 EHO 0.73 0.81 0.83 0.82 

InceptionV2 EHO 0.81 0.85 0.89 0.87 

MobilenetV3 GTO 0.91 0.92 0.96 0.94 

EfficientnetB3 GTO 0.75 0.83 0.83 0.83 

InceptionV2 GTO 0.86 0.87 0.95 0.9 

MobilenetV3 MGTO 0.94 0.97 0.85 0.96 

EfficientnetB3 MGTO 0.9 0.93 0.93 0.93 

InceptionV2 MGTO 0.93 0.97 0.93 0.95 

From the Table 4, Table 6, and Table 7, it is very clear that MGTO works very well as intermedi-

ate layer when compared to other tested intermediate layers in all the three datasets. The significance 

of MGTO as intermediate layer can be clearly witnessed in Figure 13 where percentage of accuracy 

increase attained by the usage of various intermediate layers when compared to deep learning model 

without intermediate layer is depicted.  
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Figure 13. Percentage accuracy increase due to the usage of intermediate layers in DL models when 

compared to the accuracy offered by DL models without intermediate layer. 

On all the three datasets, the percentage of accuracy increase is very less or even negative when 

PSO, EHO, & GTO are used as intermediate layer on the features extracted from MobileNetV3 and 

InceptionNetV2. Notably, already these two feature extraction models without intermediate layer 

produces accuracy of more than 0.8 in all the three datasets. Implicitly, these intermediate layers fails 

to significantly improve the accuracy since they are not able to produce more appropriate trans-

formed features for classification. Only on the features extracted by EfficientNetB3 of first dataset, 

these intermediate layers are able to provide significant accuracy increase since the original features 

extracted by EfficientNetB3 is very poor on the first dataset which yield accuracy of only 0.52. Out of 

these three intermediate layers, GTO comparatively performs well on all the three datasets. Hence 

intuition for improving GTO further with suitable modifications raised. MGTO is formulated with 

the modifications stated in the previous section and it worked well on all the three datasets.  

In the first dataset, 73% of increase in accuracy is witnessed on the EfficientNetB3 based DL 

model due to the usage of MGTO as intermediate layer. Nearly 6% accuracy is increased due to 

MGTO on MobileNetV3 and InceptionV2 based DL models. Notably the highest accuracy 0.95 is pro-

duced on the first dataset by MobileNetV3-MGTO based DL model. Even on the imbalanced second 

and third datasets, MGTO is capable of producing significant accuracy increase. The reason for this 

better performance is threefold. Firstly, the modification of GTO with Sine and Cosine algorithm in-

creases its exploration and exploitation capability well. Exploitation is responsible for local search 

i.e., fine-tuning and exploration is responsible for global search. Secondly, the selection of appropriate 

fitness function. Local variance based fitness function worked well to transform the features of dif-

ferent classes in different way. Thirdly, the usage of ideal parameters in MGTO resulted in better 

accuracy. As shown in Figure 7 & Figure 8, values of MGTO parameters will have huge impact on 

accuracy. Due to the above mentioned reasons, MGTO works soundly as intermediate layer that 

transforms the input features into more-appropriate features for classification. In other words, the 

introduction of proposed intermediate layer helps the classifier to distinguish the features of two 

different classes. This statement is backed by the scatter plots shown in Figure 14, Figure 15, and 

Figure 16. In scatter plots, the label 0 represents the class Normal and label 1 represents the class 

OSCC. To represent the features of first dataset in scatter plot, two averages are computed. Average1 

is the mean of first half features and Average2 is the mean of remaining half features. For example, 

1280 features are extracted by MobileNetV3; mean of first 640 features are considered as Average1 

and remaining 640 features are considered as Average2.  
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(a) without intermediate layer (b) with MGTO as intermediate layer   

Figure 14. Scatter Plot of features extracted by MobileNetV3. 

 

(a) without intermediate layer (b) with MGTO as intermediate layer 

 

Figure 15. Scatter Plot of features extracted by InceptioNetV2. 

 
 

(a) without intermediate layer (b) with MGTO as intermediate layer 

Figure 16. Scatter Plot of features extracted by EfficientNetB3. 

Comparison of three scatter plots without intermediate layer, gives the reasons for better per-

formance of MobileNetV3 and poor performance of EfficientNetB3. MobileNetV3 features of two 

classes are slightly scatter and overlapped while EfficientNetB3 features are heavily overlapped. On 

comparison of scatter plots with and without intermediate layers of all the three feature extraction 

models, clearly suggests the significance of MGTO. The proposed layer transforms the features in a 
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manner that is more suitable for classification by spreading the two different class features apart to 

some extent. When these transformed features are used for training and validation, then the classifi-

cation layer gets trained well. Finally better performance is achieved when transformed test dataset 

is categorized by the trained classification layer.  

 

Figure 17. Precision, Recall, and F1 score of various OSCC classification models. 

Apart from accuracy, other performance metrics are also relevantly important. Precision gives 

the percentage of correct OSCC predictions among total number of OSCC predicted. Recall is related 

to percentage of actual OSCC which was identified correctly as OSCC. F1 score is the harmonic mean 

of precision and recall score. These metrics are depicted for all the three datasets in Figure 17. Con-

sidering these three metrics, DL models with MGTO as intermediate layer outperforms all other in-

vestigated intermediate layers. In the first dataset, highest performance is offered by the proposed 

MobileNetV3-MGTO based DL model through which precision = 0.95, recall = 0.95, and F1-score = 

0.95 is achieved. Even on the second and third datasets, highest F1 score is archived by the proposed 

DL model. Though highest F1 score and accuracy is attained by the proposed DL model on all the 

three datasets, it fails to attain balanced precision and recall in imbalanced datasets. For example, 

recall is very much higher than precision for the proposed DL model in second dataset while preci-

sion is very much higher than recall for the proposed DL model in third dataset. But it attains almost 

equal precision and recall in first dataset which is a balanced dataset. Hence wherever higher values 

of both precision and recall is required on imbalanced dataset, the proposed DL model underper-

forms there. This could be considered as first limitation of proposed model.      

Training time of all the investigated DL models on the first dataset is presented in Table 8. DL 

models without intermediate layer will get trained comparatively quickly while the presence of in-

termediate layer may take more training time. MobileNetV3 have less training time since the number 

of features extracted is 1280 while the number of features extracted by EfficientNetB3 and Inception-

NetV2 is 1536. A pie chart is presented in Figure 18 which depicts the percentage of time taken by a 

DL model when compared to the total training time taken by all the DL models. PSO and EHO takes 

relatively less training time than other intermediate layers due to their simple structure. When com-

pared to GTO, the proposed MGTO intermediate layer will take more training time due to the inclu-

sion of sine and cosine argument calculations. Only 2% of total training time is taken by MobileNetV3 

DL model without any intermediate layer while 7% of total training time is taken by the proposed 

DL model. This could be considered as second limitation.  

Table 8. Time taken for training various DL models. 

DL Model 
Training Time  

(hh:mm:ss) 
DL Model 

Training Time 

(hh:mm:ss) 
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MN 00:05:33 IN-EHO 00:18:22 

EN 00:15:42 MN-GTO 00:15:15 

IN 00:14:37 EN-GTO 00:19:17 

MN-PSO 00:09:23 IN-GTO 00:21:39 

EN-PSO 00:17:52 MN-MGTO 00:15:52 

IN-PSO 00:17:01 EN-MGTO 00:20:12 

MN-EHO 00:12:47 IN-MGTO 00:22:21 

EN-EHO 00:18:46     

 

Figure 18. Pie-chart representing the percentage of training time taken by each DL model with respect 

to total training time taken by all DL models. 

The accuracy comparison of some related works for oral cancer detection is presented in Table 

9. Supervised classifiers such as K-Nearest Neighbour, Support Vector machine attains compara-

tively lesser accuracy than the deep learning models. The proposed deep learning model with MGTO 

as intermediate layer offers the highest accuracy of 95% and shows the importance of proposed DL 

model.   

Table 9. Comparison of accuracy attained in related works. 

Related Works Year Classification Framework 
Accuracy (%) 

attained 

A. U. Rahman et al. [25] 2022 AlexNet 90.06% 

M. Aberville [48]  2017 Convolutional Neural Network 88.3% 

H. Alkhadar [49] 2021 
KNN, Logistic Regression, Decision Tree, Ran-

dom Forest 
76% 

A.Alhazmi [50]  2021 Artificial Neural Network 78.95% 

C.S. Chu [51]  2020 SVM, KNN 70.59% 

R.A.Welikala [52]  2020 ResNet101 78.30% 

Shavlokhova, V [53]  2021 CNN 77.89% 

Proposed 2023 
Pre-trained MobileNetV3 for feature extraction 

and MGTO as intermediate layer 
95% 

7. Conclusion 

This research work focuses on developing an enhanced deep learning model to diagnose OSCC 

disease. The proposed DL model with MGTO as intermediate layer and MobileNetV3 as feature ex-

traction layer is able to classify 95% of the histopathological oral images correctly. Totally three oral 

histopathological images datasets were tested and in all the three datasets, inclusion of MGTO as 

MN

2%

EN

6% IN

6% MN-PSO

4%
EN-PSO

7%

IN-PSO

7%

MN-EHO

5%

EN-EHO

8%IN-EHO

8%

MN-GTO

6%

EN-GTO

8%

IN-GTO

9%

MN-MGTO

7%

EN-MGTO

8%

IN-MGTO

9%
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intermediate layer enhanced the accuracy of DL model. Features were transformed by the MGTO to 

produce more appropriate features for classification. MGTO outperforms other investigated SI algo-

rithms as an intermediate layer when compared to PSO, EHO, and GTO, primarily due to the modi-

fications made in the GTO equations and its fitness function. The limitations of proposed DL model 

are relatively higher training time and loss of either precision or recall score in imbalanced dataset. 

Future work will be in the direction of investigating other SI algorithms as intermediate layer in DL 

models. In addition, the proposed model needs to be tested for other medical image classification 

problems. 

Funding: This research received no external funding. 

Data Availability : The data used for findings will be shared by the author upon request. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Gupta B., Bray F., Kumar N., Johnson N.W. Associations between oral hygiene habits, diet, tobacco and 

alcohol and risk of oral cancer: a case–control study from India. Cancer Epidemiol. 2017;51:7–14. doi: 

10.1016/j.canep.2017.09.003. 

2. Inchingolo, F. et al. Oral cancer: A historical review. Int. J. Environ. Res. Public Health 17, 3168 (2020). 

3. Laprise C., Shahul H.P., Madathil S.A., Thekkepurakkal A.S., Castonguay G., Varghese I., Shiraz S., Allison 

P., Schlecht N.F., Rousseau M.C., Franco E.L., Nicolau B. Periodontal diseases and risk of oral cancer in 

Southern India: results from the HeNCe Life study. Int. J. Canc. 2016;139:1512–1519. doi: 10.1002/ijc.30201 

4. Borse V, Konwar AN, Buragohain P. Oral cancer diagnosis and perspectives in India. Sens Int. 

2020;1:100046. doi: 10.1016/j.sintl.2020.100046. Epub 2020 Sep 24. PMID: 34766046; PMCID: PMC7515567. 

5. Ajay P., Ashwinirani S., Nayak A., Suragimath G., Kamala K., Sande A., Naik R. Oral cancer prevalence in 

Western population of Maharashtra, India, for a period of 5 years. J. Oral Res. Rev. 2018;10:11. doi: 

10.4103/jorr.jorr_23_17. 

6. Karadaghy OA, Shew M, New J, Bur AM. Development and assessment of a machine learning model to 

help predict survival among patients with oral squamous cell carcinoma. JAMA Otolaryngol Head Neck 

Surg. 2019;145(12):1115-1120 

7. Seoane-Romero J, Vazquez-Mahia I, Seoane J, Varela-Centelles P, Tomas I, Lopez-Cedrun J. Factors related 

to late stage diagnosis of oral squamous cell carcinoma. Medicina Oral Patología Oral y Cirugia Bucal. 

2012;17(1):e35-e40. 

8. Dascălu I.T. Histopathological aspects in oral squamous cell carcinoma. Open Access J. Dent. Sci. 2018;3 

doi: 10.23880/oajds-16000173 

9. Mangalath U., Mikacha M.K., Abdul Khadar A.H., Aslam S., Francis P., Kalathingal J. Recent trends in 

prevention of oral cancer. J. Int. Soc. Prev. Community Dent. 2014;4:131. doi: 10.4103/2231-0762.149018.  

10. N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G.V. Hernandez, L. Krpalkova, D. Riordan, J. 

Walsh, Deep learning vs. traditional computer vision, in: Science and Information Conference, Springer, 

2019, pp. 128–144.  

11. I.J. Hussein, M.A. Burhanuddin, M.A. Mohammed, N. Benameur, M.S. Maashi, M.S. Maashi, Fully auto-

matic identification of gynaecological abnormality using a new adaptive frequency filter and histogram of 

oriented gradients (hog), Expert Systems (2021) e12789. 

12. Sun, Y., Xue, B., Zhang, M., Yen, G.G., Completely Automated CNN Architecture Design Based on Blocks, 

(2020) IEEE Transactions on Neural Networks and Learning Systems, 31 (4), art. no. 8742788, pp. 1242-1254. 

13. Johner, F.M., Wassner, J. Efficient evolutionary architecture search for CNN optimization on GTSRB (2019) 

Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, 

art. no. 8999305, pp. 56-61 

14. Mozafari, M., Farahbakhsh, R., Crespi, N. A BERT-Based Transfer Learning Approach for Hate Speech 

Detection in Online Social Media (2020) Studies in Computational Intelligence, 881 SCI, pp. 928-940 doi: 

10.1007/978-3-030-36687-2_77 

15. Khoh, W.H., Pang, Y.H., Teoh, A.B.J., Ooi, S.Y. In-air hand gesture signature using transfer learning and its 

forgery attack (2021) Applied Soft Computing, Part A 113, art. no. 108033 

16. Seyedali Mirjalili, Seyed Mohammad Mirjalili, Andrew Lewis, Grey Wolf Optimizer, Advances in Engi-

neering Software,Volume 69,2014,Pages 46-61 

17. M.M.R. Krishnan, C. Chakraborty, A.K. Ray, Wavelet based texture classification of oral histopathological 

sections, Int. J. Microsc., Sci. Technol. Appl. Educ. 2 (4) (2010) 897–906.  

18. M.M.R. Krishnan, P. Shah, A. Choudhary, C. Chakraborty, R.R. Paul, A.K. Ray, Textural characterization 

of histopathological images for oral sub-mucous fibrosis detection, Tissue Cell 43 (5) (2011) 318–330 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 October 2023                   doi:10.20944/preprints202310.0290.v1

https://www.scopus.com/record/display.uri?eid=2-s2.0-85082984441&origin=reflist&sort=plf-f&src=s&sid=bdebf74a21300d30fe9eb5e941016d48&sot=b&sdt=b&sl=43&s=TITLE%28convolutional+AND+neural+AND+network%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85080963566&origin=reflist&sort=plf-f&src=s&sid=bdebf74a21300d30fe9eb5e941016d48&sot=b&sdt=b&sl=43&s=TITLE%28convolutional+AND+neural+AND+network%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85076696813&origin=reflist&sort=plf-f&src=s&sid=bdebf74a21300d30fe9eb5e941016d48&sot=b&sdt=b&sl=24&s=TITLE%28transfer+learning%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85076696813&origin=reflist&sort=plf-f&src=s&sid=bdebf74a21300d30fe9eb5e941016d48&sot=b&sdt=b&sl=24&s=TITLE%28transfer+learning%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85119183195&origin=reflist&sort=plf-f&src=s&sid=bdebf74a21300d30fe9eb5e941016d48&sot=b&sdt=b&sl=24&s=TITLE%28transfer+learning%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85119183195&origin=reflist&sort=plf-f&src=s&sid=bdebf74a21300d30fe9eb5e941016d48&sot=b&sdt=b&sl=24&s=TITLE%28transfer+learning%29
https://doi.org/10.20944/preprints202310.0290.v1


 

 

19. M. Krishnan, U. Acharya, C. Chakraborty, A. Ray, Automated diagnosis of oral cancer using higher order 

spectra features and local binary pattern: a comparative study, Technol. Cancer Res. Treat. 10 (5) (2011) 

443–455.  

20. R. Patra, C. Chakraborty, J. Chatterjee, Textural analysis of spinous layer for grading oral submucous fi-

brosis, Int. J. Comput. Appl. 47 (2012) 975–8887.  

21. M. M. R. Krishnan, V. Venkatraghavan, U. R. Acharya, M. Pal, R. R. Paul, L. C. Min, A. K. Ray, J. Chatterjee, 

and C. Chakraborty, ‘‘Automated oral cancer identification using histopathological images: A hybrid fea-

ture extraction paradigm,’’ Micron, vol. 43, nos. 2–3, pp. 352–364, Feb. 2012.  

22. B. Thomas, V. Kumar, and S. Saini, ‘‘Texture analysis based segmentation and classification of oral cancer 

lesions in color images using ANN,’’ in Proc. IEEE Int. Conf. Signal Process., Comput. Control (ISPCC), 

Sep. 2013, pp. 1–5 

23.  T. Rahman, L. Mahanta, C. Chakraborty, A. Das, J. Sarma, Textural pattern classification for oral squamous 

cell carcinoma, J. Microsc. 269 (1) (2018) 85–93.  

24. T.Y. Rahman, L.B. Mahanta, A.K. Das, J.D. Sarma, Automated oral squamous cell carcinoma identification 

using shape, texture and color features of whole image strips, Tissue Cell 63 (2020) 101322. 

25. A. U. Rahman, A. Alqahtani, N. Aldhaferi et al., “Histopathologic oral cancer prediction using oral squa-

mous cell carcinoma biopsy empowered with transfer learning,” Sensors, vol. 22, no. 10, p. 3833, 2022 

26. K. Warin, W. Limprasert, S. Suebnukarn, S. Jinaporntham, and P. Jantana, “Automatic classifcation and 

detection of oral cancer in photographic images using deep learning algorithms,” Journal of Oral Pathology 

and Medicine, vol. 50, no. 9, pp. 911–918, 2021. 

27.  S. Camalan, H. Mahmood, H. Binol et al., “Convolutional neural network-based clinical predictors of oral 

dysplasia: class activation map analysis of deep learning results,” Cancers, vol. 13, p. 1291, 2021.  

28. J. Musulin, D. Stifani´c, A. Zulijani, T. ˇ Cabov, A. Dekani´c, and ´ Z. Car, “An enhanced histopathology 
analysis: an AI-based system for multiclass grading of oral squamous cell carcinoma and segmenting of 

epithelial and stromal tissue,” Cancers, vol. 13, p. 1784, 2021. 

29. M. Das, R. Dash, and S. K. Mishra, “Automatic detection of oral squamous cell carcinoma from histopatho-

logical images of oral mucosa using deep convolutional neural network,” International Journal of Environ-

mental Research and Public Health, vol. 20, no. 3, p. 2131, 2023. 

30.  H. Lin, H. Chen, L. Weng, J. Shao, and J. Lin, “Automatic detection of oral cancer in smartphone-based 

images using deep learning for early diagnosis,” Journal of Biomedical Optics, vol. 26, no. 8, Article ID 

086007, 2021. 

31.  N. Das, E. Hussain, L.B. Mahanta, Automated classification of cells into multiple classes in epithelial tissue 

of oral squamous cell carcinoma using transfer learning and convolutional neural network, Neural Netw. 

128 (2020) 47–60. 

32. S. Panigrahi, J. Das, and T. Swarnkar, “Capsule network based analysis of histopathological images of oral 

squamous cell carcinoma,” Journal of King Saud University-Computer and Information Sciences, vol. 34, 

no. 7, pp. 4546–4553, 2022. 

33. H. Myriam, A. A. Abdelhamid, E. S. M. El-Kenawy et al., “Advanced meta-heuristic algorithm based on 

Particle Swarm and Al-biruni Earth Radius optimization methods for oral cancer detection,” IEEE Access, 

vol. 11, pp. 23681–23700, 2023. 

34. Panneerselvam, K., Nayudu, P.P. Improved Golden Eagle Optimization Based CNN for Automatic Seg-

mentation of Psoriasis Skin Images. Wireless Pers Commun 131, 1817–1831 (2023). 

https://doi.org/10.1007/s11277-023-10522-0 

35. Erkan, U., Toktas, A. & Ustun, D. Hyperparameter optimization of deep CNN classifier for plant species 

identification using artificial bee colony algorithm. J Ambient Intell Human Comput 14, 8827–8838 (2023). 

https://doi.org/10.1007/s12652-021-03631-w 

36. Vinaykumar, V.N., Babu, J.A., Frnda, J."Optimal guidance whale optimization algorithm and hybrid deep 

learning networks for land use land cover classification" (2023) Eurasip Journal on Advances in Signal Pro-

cessing, 2023 (1), art. no. 13. doi: 10.1186/s13634-023-00980-w 

37. Anilkumar Gona, M. Subramoniam, R. Swarnalatha, Transfer learning convolutional neural network with 

modified Lion optimization for multimodal biometric system, Computers and Electrical Engineering,Vol-

ume 108,2023, 108664, https://doi.org/10.1016/j.compeleceng.2023.108664. 

38. Sannasi Chakravarthy S.R., Bharanidharan N., Rajaguru H., Deep Learning-Based Metaheuristic Weighted 

K-Nearest Neighbor Algorithm for the Severity Classification of Breast Cancer, IRBM, Vol.no.44, issue 3, 

2023 

39. K. O’Shea and R. Nash, ‘‘An introduction to convolutional neural networks,’’ Dec. 2015, arXiv:1511.08458.  

40. S.-H. Wang, P. Phillips, Y. Sui, B. Liu, M. Yang, and H. Cheng, ‘‘Classification of Alzheimer’s disease based 

on eight-layer convolutional neural network with leaky rectified linear unit and max pooling,’’ J. Med. 

Syst., vol. 42, no. 5, p. 85, Mar. 2018. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 October 2023                   doi:10.20944/preprints202310.0290.v1

https://doi.org/10.1007/s11277-023-10522-0
https://doi.org/10.1007/s12652-021-03631-w
https://doi.org/10.1016/j.compeleceng.2023.108664
https://doi.org/10.20944/preprints202310.0290.v1


 

 

41. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer 

vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 

2818–2826. 

42. A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mo-

bileNets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint 

arXiv:1704.04861, 2017. 

43. Mingxing Tan 1 Quoc V. Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, 

arXiv:1905.11946v5 [cs.LG] 11 Sep 2020 

44. Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S. Artificial gorilla troops optimizer: A new na-

ture-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst. 2021;1-72. 

45. Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch Com-

putat Methods Eng 29, 2531–2561 (2022). 

46. Li, J.; Lei, H.; Alavi, A.H.; Wang, G.-G. Elephant Herding Optimization: Variants, Hybrids, and Applica-

tions. Mathematics 2020, 8, 1415. https://doi.org/10.3390/math8091415 

47. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 

120–133. 

48. Aubreville, M.; Knipfer, C.; Oetter, N.; Jaremenko, C.; Rodner, E.; Denzler, J.; Bohr, C.; Neumann, H.; 

Stelzle, F.; Maier, A. Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the 

Oral Cavity using Deep Learning. Sci. Rep. 2017, 7, 11979. 

49. Alkhadar, H.; Macluskey, M.; White, S.; Ellis, I.; Gardner, A. Comparison of machine learning algorithms 

for the prediction of five-year survival in oral squamous cell carcinoma. J. Oral Pathol. Med. 2021, 50, 378–

384 

50. Alhazmi, A.; Alhazmi, Y.; Makrami, A.; Salawi, N.; Masmali, K.; Patil, S. Application of artificial intelligence 

and machine learning for prediction of oral cancer risk. J. Oral Pathol. Med. 2021, 50, 444–450.  

51. Chu, C.S.; Lee, N.P.; Adeoye, J.; Thomson, P.; Choi, S.W. Machine learning and treatment outcome predic-

tion for oral cancer. J. Oral Pathol. Med. 2020, 49, 977–985 

52. Welikala, R.A.; Remagnino, P.; Lim, J.H.; Chan, C.S.; Rajendran, S.; Kallarakkal, T.G.; Zain, R.B.; Jayasinghe, 

R.D.; Rimal, J.; Kerr, A.R.; et al. Automated Detection and Classification of Oral Lesions Using Deep Learn-

ing for Early Detection of Oral Cancer. IEEE Access 2020, 8, 132677–132693 

53. Shavlokhova, V.; Sandhu, S.; Flechtenmacher, C.; Koveshazi, I.; Neumeier, F.; Padrón-Laso, V.; Jonke, Ž.; 
Saravi, B.; Vollmer, M.; Vollmer, A.; et al. Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluo-

rescent Confocal Microscopy Data: A Feasibility Study. J. Clin. Med. 2021, 10, 5326 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 October 2023                   doi:10.20944/preprints202310.0290.v1

https://doi.org/10.3390/math8091415
https://doi.org/10.20944/preprints202310.0290.v1

	1. Introduction
	2. Related work
	3. Background
	3.1. CNN
	3.2. InceptionV2
	3.3. MobileNetV3
	3.4. EfficientNetB3
	3.5. Gorilla Troops Optimization
	3.6. Particle Swarm Optimization
	3.7. Elephant Herding Optimization

	4. Materials and Methods
	5. Implementation of Proposed MGTO
	6. Results and Discussion
	7. Conclusion
	References

