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Abstract: Oral Squamous Cell Carcinoma is one among the most common cancer and early detection
is the main key to avoid deaths. Automated diagnostic tools that process the histopathological im-
ages of a patient to detect abnormal oral lesions will be very much useful for the clinicians. A deep
learning framework have been designed with an intermediate layer between feature extraction lay-
ers and classification layers for classifying the histopathological images into two categories, namely
normal and oral squamous cell carcinoma. The intermediate layer is constructed using the proposed
Swarm Intelligence technique called Modified Gorilla Troops Optimizer. Various optimization al-
gorithms are implemented in literature for optimal parameter identification, weights updating and
feature selection in deep learning models, but this work focuses on usage of optimization algorithm
as intermediate layer that transforms the extracted features into the features that are more suitable
for classification. Three datasets totally comprising 2784 normal and 3632 oral squamous cell carci-
noma subjects are considered in this work. Three popular CNN architectures namely InceptionV2,
MobileNetV3, and EfficientNetB3 are investigated as feature extraction layers. Two fully connected
Neural Network layers along with batch normalization and dropout are used as classification layers.
Among the investigated feature extraction models, MobileNetV3 performs well in all the three da-
tasets with the highest accuracy of 0.89. Usage of the proposed Modified Gorilla Troops Optimizer
as an intermediate layer boosts this accuracy to 0.95.

Keywords: oral cancer; histopathologic images; CNN; deep learning framework; swarm
intelligence; gorilla troops optimizer

1. Introduction

Any neighbour tissue impairment due to uncontrolled cell growth and its invasion is called as
Cancer. Oral cancer is ranked sixth most prevailing cancer globally and it falls under the broad cate-
gory of head and neck cancer. Oral cancer results in malignant cancer cell growth in lips and various
parts of oral cavity. Worldwide, it is ranked as the fifteenth most common reason for death among
various types of cancer. Out of one lakh people, minimum four people are affected by this disease
across the globe [1,2]. Approximately, seventy-seven new cases and fifty-two thousand deaths are
registered every year in India and one-fourth of the global oral cancer occurs in India [3].

Most common types of oral cancer include Oral Squamous Cell Carcinoma (OSCC), Verrucous
carcinoma, Minor salivary gland carcinomas, Lymphoma, and Mucosal melanoma. Among them,
OSCC is a predominant type of oral cancer which contributes around 84% — 97% of oral cancer [4].
The major risk factors that lead to development of OSCC includes tobacco usage, frequent chewing
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of betel quid, alcohol intake, oral infection, and genetic disorders [5]. Detection of OSCC at early stage
is very crucial to avoid deaths since the five-year survival rate of humans with early-stage OSCC is
around 85% while it is only around 40% with advanced stage [6,7]. Hence early detection is the key
to reduce the mortality rate and so there is a huge demand for diagnostic tools that identifies the
OSCC at earlier stages of malignancy.

Apart from physical examination, major diagnostic tools used for identification of oral cancer
includes techniques such as endoscope biopsy, liquid biopsy, vital staining technique, ultrasound
imaging, Magnetic Resonance Imaging (MRI), Computed Tomography (CT) imaging, Raman spec-
troscopy, Gene/DNA array-based biomarker detection, enzyme assays-based biomarker detection,
and histopathological examination [4]. Among these techniques, histopathologic examination is
mainly preferred since it can be used to detect both malignant and benign tumours by identifying the
changes in histopathological and molecular levels. Histological assays can be used to reveal the grad-
ual growth of malignant cells in oral cavity beginning from elementary dysplasia to tumours with
high invasive nature. It is helpful in analysing the cells proliferation, growth of abnormalities, cyto-
plasmic-level and cellular-level atypia, changes at the surface of epithelium, and deep tissue-level
cytoarchitecture [8]. Usually, abnormalities in microscopic and clinical levels arise only after the ab-
normalities in molecular and genetic levels. Histopathological examination is good in capturing these
molecular level changes and so preferred for early detection [9].

Analysis of histopathological images through visual inspection is usually subjective in nature
and prone to errors sometimes. Computerized diagnostic tools will be very helpful to assist the clini-
cian in the decision-making process to reduce such errors. Various Machine Learning (ML) tech-
niques are used nowadays in variety of fields. Particularly in healthcare field, the implementation of
ML algorithms is increasing day by day. Accuracy and robustness are the key concerns in such
healthcare related decision-making tools. Fortunately, nowadays Deep Learning (DL) models are
available for solving these issues. Deep learning is a sub-field in machine learning where the Artificial
Neural Network (ANN) models with many numbers hidden layers are trained with large set of train-
ing images and labels; labels of new unseen images will be predicted using the trained model. The
main advantage of deep learning is the non-requirement of hand-crafted feature engineering com-
pared to traditional supervised classifiers such as Support Vector Machine (SVM), K-Nearest Neigh-
bour (KNN), Decision Trees (DT), etc where domain experts are required to identify the appropriate
features and Region of Interest (Rol) [10,11].

Convolutional Neural Network (CNN) is a popular deep learning technique where convolution
operation is involved in multiple ANN layers. Various CNN architectures are developed, and they
are very efficient in different image classification tasks [12,13]. Popular CNN architectures include
ResNet, EffiecientNet, InceptionNet, MobileNet, etc. The main advantage of these architectures is
their ability to work well on a classification task even if most of their weights are pre-trained on
another classification task. This concept is known as transfer learning and works very well for two
similar and unique classification tasks. Two main advantages of transfer learning are reduction in
training time and competence to work well on small datasets [14,15].

To improve the accuracy of such deep learning models, various techniques are used such as fine-
tuning, feature selection, regularization, optimal parameter selection, optimization, etc. On the other
hand, various population-based Swarm Intelligence (SI) optimization algorithms are widely used for
optimal parameter identification, weights updating and feature selection in deep learning models for
enhancing the accuracy. SI algorithms are meta-heuristic iterative algorithm that are usually inspired
by the characteristic and nature of Swarm of animals. These algorithms are preferred in many appli-
cations mainly due to their minimalism, derivation free design and ability to avoid local optima [16].
Some of the popular SI algorithms include Particle Swarm Optimization (PSO), Ant Colony Optimi-
zation, Grey Wolf Optimizer, Dragonfly Optimization, Elephant Herding Optimization, Gorilla
Troops Optimizer (GTO), etc.

This work primarily focuses on classifying the histopathological images into two categories:
Normal and OSCC. Histopathological image features are extracted using pre-trained weights of
transfer learning based popular CNN models namely InceptionV2, MobileNetV3, and
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EfficientNetB3. Then Modified Gorilla Troops Optimizer (MGTO) is used as an intermediate layer in
between feature extraction and classification layers. Two fully connected ANN layers along with
batch normalization and dropout are used as classification layers.

The key contributions of this research work are listed below:

1. Proposal of novel deep learning framework that includes a swarm intelligence-based optimiza-
tion algorithm as an intermediate layer in deep learning model.

2. Development of MGTO through appropriate modifications that enhances the classification ac-
curacy.

3. Comparative analysis of popular deep learning models with and without the proposed inter-

mediate layer in terms of various classification metrics and training time.

The remaining paper is organized as follows: Section 2 deals with the related works and section
3 is related to background of various transfer learning models used and original GTO. Fourth section
deals with the methodology used in this research work and fifth section presents the implementation
procedure for proposed MGTO as an intermediate layer. Results are presented and discussed in the
sixth section. Last section summarizes the conclusion and future work.

2. Related work

Various techniques based on machine learning and deep learning are proposed in the literature
to diagnose oral cancer by analysing the medical images. Early publication related to oral cancer di-
agnosis mainly revolves around feature extraction and traditional supervised classifiers [17-20]. For
example, [21] considered features based on texture discrimination using higher order spectra, laws
texture energy, and local binary pattern and fed these features to supervised classifiers such as DT,
Gaussian Mixture Mode, KNN, Sugeno Fuzzy Classifier, and Radial Basis Probabilistic Neural Net-
work. Similarly, [22] proposed textural changes detection using features extracted from digital im-
ages of oral lesions through grey level cooccurrence matrix and grey level run length matrix. They
used back propagation-based ANN for classification. Particularly for OSCC diagnosis, [23,24] pro-
posed texture, shape and colour feature extraction from histopathological images and classification
through DT, SVM, and Logistic Regression.

Usage of deep learning models in medical image analysis is increasing rapidly particularly from
the last decade onwards. Various deep learning models are developed and tested for oral cancer di-
agnosis that involves both binary and multi-class classification. [25] investigated customized AlexNet
to detect OSCC from histopathological images. [26] investigated DenseNet121 model on oral biopsy
images to detect OSCC and found that it performs better than Regions with CNN (R-CNN) model.
Other transfer learning models such as Inception-ResNet-V2 [27], Xception [28], ResNet101 [29] are
also investigated for diagnosing oral cancer from medical images. Apart from the above-mentioned
works where popular CNN architectures are investigated, some works are reported which proposes
their own CNN model for detecting oral cancer. For example, [30] proposed HRNet model for diag-
nosing malignant lesions in oral cavities and compared it with popular ResNet50 and DenseNet169
models. [31] developed a modified CNN model which performs well when compared to transfer
learning-based models such as Resnet-50, VGG-16, VGG-19, and Alexnet. Similarly, [29] proposed
their own ten-layer CNN model that outperforms the pretrained CNN models in diagnosis of OSCC
from histopathological images. Other than CNN and its variants, capsule networks are also imple-
mented in some works to identify oral malignancy. [32] tested the performance capsule networks to
identify OSCC from histopathological images.

To increase the classification accuracy and robustness of deep learning models, various optimi-
zation algorithms are investigated in many applications and some of them are summarized as fol-
lows: [33] designed a hybrid optimization algorithm that mixes PSO and Al-Biruni Earth Radius Op-
timization for optimizing the design parameters of CNN and Deep Belief Network in malignant oral
lesion identification. [34] presented segmenting psoriasis skin images using Adaptive Golden Eagle
Optimization for finding the ideal weight and bias parameters of CNN. [35] considered Artificial Bee
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Colony optimization algorithm for finding the optimal hyper-parameters of CNN that works as clas-
sifier for identifying the species of plant. [36] proposed optimal guidance-whale optimization algo-
rithm to select features extracted from AlexNet-ResNet50 model and supplied the selected features
to Bi-directional long short-term memory for Land Use Land Cover classification. [37] suggested
Modified Lion Optimization for selecting the optimal features for transfer learning-based CNN clas-
sification model to build a multimodal biometric system. In this manner, numerous optimization al-
gorithms are incorporated for finding optimal hyper-parameters, training the model, and feature se-
lection in deep learning. Comparatively only few works are reported regarding the usage of optimi-
zation algorithm as a transformation technique. For example, crow search optimization algorithm is
used as transformation technique for improving the classification performance of weighted KNN in
severity classification of breast cancer [38].

From the above related works, the following points can be summarized. Compared to hand
crafted feature extraction and traditional supervised classifiers, deep learning models perform well
in diagnosis of OSCC. But still, they are lagging in classification accuracy and robustness. To solve
those two concerns, optimization algorithms are widely used in various applications for improvisa-
tion of deep learning models in different ways. Hence this work attempts to use MGTO optimization
algorithm as an intermediate layer between feature extraction and classification layers for enhancing
the accuracy of OSCC diagnosis.

3. Background

3.1. CNN

CNN [39] based deep learning models are widely used to classify images in variety of applica-
tions mainly due to their capability of recognizing the underlying pattern. Convolution operation at
multiple layers act as the foundation for CNN and generally a typical CNN contains convolutional
layers, pooling layers and fully connected layers. The goal of convolution layers is to extract the image
attributes such as contours, colours, etc. Pooling layers will act as a dimensionality reduction layer
i.e,, it reduces the number of features. Max and average pooling layers are very popular when com-
pared to others. The last stage is usually built using fully connected layers called DenseNet and it is
responsible for classification [40].

3.2. InceptionV2

Inception [41] model is an altered version of CNN in which inception blocks are included. These
inception blocks refer to the processing of same input with different filter sizes before combining
them. InceptionV2 is an advanced variant of original InceptionV1. When compared to Inception V1,
two 3*3 convolution operations are performed in InceptionV2 instead of one 5*5 convolution opera-
tion. In addition, filter size n*n is factorized into 1*n and n*1 convolutions in Inception V2.

3.3. MobileNetV3

MobileNet [42] is a modified version of CNN where batch normalization and ReLU activation
functions are used instead of single 3*3 convolution layer. In addition, one convolution operation is
carried out for each colour channel in MobileNet while flattening of colour channels will happen in
typical CNN. Relatively MobileNet architectures requires minimal computational power and so
mainly preferred in mobile devices and embedded systems. Compared to MobileNetV1, bottleneck
with residuals are implemented in MobileNetV2 while layer removal and swish non-linearity are
incorporated in MobileNetV3.

3.4. EfficientNetB3

Unlike typical CNN, EfficientNet [43] uniformly scales all dimensions with a compound coeffi-
cient. Fixed set of scaling coefficients are used to uniformly scale the network depth, width and
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resolution. The original EfficientNetB0 version is based on the MobileNetV2 combined with squeeze
and excitation blocks. EffientNetB3 is developed by scaling up baseline network of previous versions.

3.5. Gorilla Troops Optimization

GTO is one of the iterative meta-heuristic optimization algorithms which is proposed in the year
2021 [44]. It is based on the social activities and characteristics of Gorilla troop. Usually, each such
troop contains one adult male gorilla which is called as silverback gorilla, substantial number of adult
female gorillas, and their Childs. The male gorilla will lead the troop and it is responsible for control-
ling the troop activities such as identification of sources of food, solving the conflicts, and decision
making. GTO is mathematically modelled as five-stage algorithm where three stages are responsible
for exploration while the remaining two stages are related to exploitation. The positions of Gorillas
are updated using the following equations:

U, — L)*n + 1L, rand <p
Xt+D)={ (-0 X.(t) +L+H rand = 0.5 (1)
X(@)—L*(L=* (X(t) — Xr(t)) + 13 (X(t) — X,-(1))) rand < 0.5

Here X is the position of current Gorilla at iteration t. r,1,,73 and rand are the random
numbers in the range 0 to 1. p is a parameter whose value will usually lie between 0 and 1. U, and
L, are the upper and lower boundaries respectively. X, is a Gorilla randomly chosen at each itera-
tion. The values of C, L, and H are calculated using the equations (2), (4), and (5) respectively.

c=rs (1-72) o
F=cos(2*m)+1 3)
L=Cxl 4)
H=2Zx*X() (5

In equation (2), Iter represents the current iteration and Maxit represents the maximum num-
ber of iterations. F present in equation (2) is calculated using equation (3) and r, is a random num-
ber in the range 0 to 1. Here [ is an integer randomly chosen in the range -1 to 1. In equation (5), Z
is a random number in the range -C to +C. Based on the position of Silverback, other gorillas will
change their position while searching for food and this behaviour is represented using the equation
(6). The M value mentioned in equation (6) is computed using the equations (7) and (8).

X(t + 1) =Lx*xM * (X(t) - Xsilverback) + X(t) (6)
M= (x| ) ™
g=2" ©)

Here Xgiyerpack 15 the position of Silverback Gorilla which is the Gorilla with best position when
compared to positions of other Gorillas and N is the total number of Gorillas. Gorillas’ behaviour for
competing to choose the adult females is represented using the equation (9).

X(t + 1) = Xsilverback - (Xsilverback * Q - X(t) * Q) * A (9)

Q=2%r;—1 (10)

A= B+E (11)
A rand = 0.5

b= {Nz rand < 0.5 (12)

In the above equations, 15 and rand are the random numbers in the range 0 to 1 while f is a
parameter whose value is crucial in deciding the updated positions of Gorillas. N; is a random num-
ber in the range decided by the problem dimension while N, is a random number that follows nor-
mal distribution in the range [0,1]. Initially, equation (1) will be used to update all the Gorilla’s posi-
tion. Then Silverback Gorilla will be found in that iteration. After that, other Gorillas position will be
updated based on Silverback Gorilla’s position. If the value of |C| = 1, then the position of Gorillas
is updated using equation (6) otherwise they will be updated using equation (9).
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3.6. Particle Swarm Optimization

PSO [45] is one of the popular and efficient swarm intelligence-based optimization algorithm.
PSO is inspired from the characteristics exhibited by bird flocks while searching for food. Usually,
the population will be initialized randomly and updated in each iteration based on the fitness func-
tion. The velocity of each particle is mathematically modelled and updated using equation (13).
vi(t+1) =wHv(t) + g * 1y * (pi(0) — x;(0)) + 5 x 1y * (ghest — x;(£))  (13)

Here, v;(t) stands for velocity of it" particle in iteration t; Three crucial parameters PSO are w,
c1, and ¢2; The position of ith particle in iteration t is represented as x;(t); p;(t) and gbest represents
the personal best and global best particle positions respectively. r; and r, are the random number
in the range 0 to 1. The position of each particle is updated based old position and new velocity as
represented in equation (14).

Personal best and global best will be computed in each iteration using the equations (15) and
(16) respectively.

p;i(t) if flx;(c+1D)=Ff(piD)
. 1) =
pie+ 1) {xi(t +1) if fxt+1D) < fF(p:(D)
gbest € {py(),p1(£), ..., pm(0) } (16)
= min {f (po(®)), f(p1 (D), ... f (P (£)) }

Here, f represents the fitness function which is crucial in deciding the performance of PSO.

(15)

3.7. Elephant Herding Optimization

Elephant Herding Optimization (EHO) [46] is inspired by the behaviour of elephants. Like PSO
and GTO, EHO also comes under the category of swarm intelligence meta-heuristic algorithm. The
position of elephant is updated using equation (17).

XV = xM + @ (xpes — xP) xTan (17)
and x?'* are the new and old positions of it" elephant. X, is the best elephant po-
sition found using equation (18). X eneer in equation (18) is computed using equation (19). In addition

to updating the best elephant position, worst elephant position x,,,.s; is also updated using equation

Here x[**”

(20).
Xbest = B * Xcenter n (18)
Xcenter = %* Zgl:l Xi (19)
Xworst = Xmin + (Xmax — Xmin + 1) * rand (20)

a and f are the EHO parameters; rand is a random number in the range [0,1]; n is the number
of elephants. x4, and X,,;; are the maximum and minimum boundaries for elephant positions.

4. Materials and Methods

Three publicly available datasets totally comprising 2784 normal and 3632 oral squamous cell
carcinoma subjects are considered in this work. First dataset is obtained from Kaggle [45], and it con-
tain oral histopathological images in both 100x and 400x zoom levels. First dataset contains totally
5192 images and out of them 2494 images belong to Normal class and 2698 belongs to OSCC class.
Second and third datasets are obtained from the online repository built by Tabassum Yesmin Rahman
et al. [46]. Oral histopathological images with zoom levels of 100x and 400x are present in second and
third datasets respectively. 89 normal images and 439 OSCC images are available in the second da-
taset while 201 normal images and 495 OSCC images are available in the third dataset. Some of the
sample oral histopathological images belonging to normal and OSCC classes are shown in Figure 1
& Figure 2 respectively.
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Figure 2. Sample oral histopathological images belonging to OSCC class.

The typical procedure for implementing the oral cancer detection using transfer learning-based
feature extraction is shown in Figure 3. Histopathological oral images from the three datasets are fed
to the feature extraction layers discretely and resultant classification performance metrics are also
computed individually. Features are extracted using the transfer learning approach where the
weights are pre-trained for another similar dataset. Three popular CNN architectures namely Incep-
tionV2, MobileNetV3, and EfficientNetB3 are investigated in this work for feature extraction. Weights
that are pre-trained for popular ImageNet dataset is considered in all the three architectures. The
extracted features are then divided into training, validation, and test feature sets using stratified shuf-
fle split approach in the 70:15:15 ratio respectively. Stratified shuffle split is considered since it ran-
domly selects the samples according to the class ratio in the original dataset. In other words, stratified
shuffle split ensures the ratio of each class in all the three resultant sets as same as shown in Table 1.
This approach of data splitting is very crucial in imbalanced datasets. Then the classification layers
are trained using training and validation feature sets where the ideal weights of neural networks for
classifying the oral histopathological images are found.

Two fully connected Neural Network layers along with batch normalization and dropout are
used as classification layers as shown in Figure 4. Finally, the trained classification layers with ideal
weights are used to classify the test feature set as Normal or OSCC class. In Figure 4, the functional
layer depicts the transfer learning based pre-trained model while the remaining layers are used for
classification. The specifications of classification layer considered in this research work is presented
in Table 2. For comparison purposes, the classification layer is unaltered for all the datasets and dif-
ferent feature extraction layers. Specifications related to number of epochs and batch size during
training, optimizer, early stopping and reduction of learning rate on plateau are also mentioned in
Table 2. Based on the transfer model used for feature extraction layer, the number of trainable pa-
rameters of complete deep learning model will vary as shown in Table 3. The number of features
extracted per input image by the three different feature extraction layers are also shown in Table 3.


https://doi.org/10.20944/preprints202310.0290.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 October 2023

do0i:10.20944/preprints202310.0290.v1

Table 1. Stratified shuffle data split on three datasets.

Total number of Number of train- Number of valida- Number of
Dataset Class . .
samples ing samples tion samples  test samples
First Normal 2494 1746 374 374
S OSsCC 2698 1890 404 404
Second Normal 89 63 13 13
eco 0SsCC 439 307 66 66
. Normal 201 141 30 30
Third 0SCC 495 347 74 74
.-"'I'-I.istupamological Oral Imageg' { 'J.Training Feature Set |
( = \ Feature Extraction Layers Stratified Shuffle a3
Using Data Split Pyt
Pre-trained model 0=~,0

Validation Feature Set|

D@
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(" TestFeature Set |
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Figure 3. Typical approach for OSCC detection using Transfer learning-based feature extraction.

ﬂ Fumctional . BatchMoxmalization - Dense - Dxopout

Figure 4. Typical deep learning architecture with functional layer depicting the transfer learning
model for feature extraction and remaining layers depicting the classification layers.

Table 2. Specifications of classification layer and techniques used.

Classification layers Specifications
& techniques used P
Batch Normalization

momentum= 0.99, epsilon=0.001
units = 256, kernel regularizer = L2 regularizer with coefficient 1 = 0.016, activ-

Dense ity regularizer = L1 regularizer with coefficient 1 = 0.006, bias regularizer = L1
regularizer with coefficient 1 = 0.006, activation= ReLu
Dropout drop rate= 0.45
Dense

units = 2, activation= SoftMax
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epochs = 100, batch size = 128, stratified shuffle split: training - 70%, testing -

Trainin
8 15%, validation -15%
.. Adamax with learning rate= 0.001, loss= sparse categorical cross-entropy,
Optimizer & . p & 124
metrics=accuracy
) patience =5, minimum delta = 0, monitor = validation loss, restore best
Early stopping

weights = True, mode = minimum

Reduce learning rate

monitor = validation loss, factor = 0.2, patience = 4, mode = minimum
on Plateau

Table 3. Specifications of Feature extraction layer.

Number of
Feature extraction LayersTotal number of parametersNumber of Trainable parameters features
extracted
Mobilenet V3 25,91,554 3,31,010 1280
Efficientnet B3 1,11,83,665 3,97,058 1536
InceptionV2 5,47,36,866 3,97,058 1536

The proposed approach for OSCC detection is presented in Figures 5 and 6. An intermediate
layer based on MGTO is included in the proposed method when compared to Figure 3 and Figure 4.
Like classification layer, the newly introduced intermediate layer also needs to be trained where it
will learn the ideal values for its parameters related to the MGTO algorithm. Hence it will be trained
with original training and validation feature sets. Then all the three original feature sets will be sup-
plied as input to the trained MGTO layer where the features sets are transformed to produce another
three transformed sets namely training, testing, and validation. The size of the input and output fea-
ture sets remains same. Then the transformed sets are considered for classification layers for detecting
the class of oral histopathological image. This research work is carried out in a system with following
configurations: i9 processor with 32GB RAM and NVIDIA RTX A2000 12GB GPU.
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Figure 5. Overview of Proposed Approach for OSCC Detection.
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Figure 6. Proposed deep learning architecture where MGTO is used as intermediate layer between
feature extraction (functional) layer and classification layer. .

5. Implementation of Proposed MGTO

The equations to update the Gorilla’s position are modified based on Sine Cosine Algorithm [48]
to increase the exploitation and exploration capabilities of GTO. In MGTO, three equations that up-
date the position of Gorillas are modified. Equations (1), (6), and (9) of GTO are modified as repre-
sented in equations (21), (22), and (23) respectively in MGTO. All other equations of GTO remain
intact in MGTO.

U= L) + L rand <p
(r,—=C)+ X, (t)+L+H rand = 0.5
X(t)—L+rad = sin(X(t) — Xr(t)) + rad * cos(X(t) — X,-(t))) rand < 0.5
X(t + 1) =L*Mx*rad * Sln(X(t) - Xsilverback) + X(t) (22)

X(t+1) = 1)
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X(t+ 1) = Xsiwervack — rad * oS Kiwerpack * @ — X(t) x Q) * A (23)
rad in the above equations is computed using equation (24). const in equation (24) is a constant
and it is considered as three as suggested in [48]; Crnt_Iter represents the current iteration number

while Max_Iter represents the maximum number of iterations.
const )

rad = const— Crnt Iter X ( (24)

AXter

original GTO, the Gorilla’s population is initialized randomly. But to use MGTO as intermediate
layer in deep learning models, the Gorilla’s population is initialized with the features extracted from
the previous layer. Number of Gorillas will be equal to the number of features extracted. Then the
Gorilla’s position will be updated in each iteration using MGTO equations. Fitness function is very
crucial in optimization algorithms, and it will be selected based on the problem to be solved. To use
MGTO for transforming the features, the fitness function based on variance metric is considered.
Fitness of each Gorilla, F(X;) will depend on its own position and four nearest-neighbour Gorillas as
shown in equation (25).

F(X;) = Variance(X;_p, X;—1, Xi, Xi+1, Xi42) (25)

In MGTO, p and f are the parameters which mainly decides the performance along with
Max_Iter. The ideal values of these parameters are found based on the accuracy attained during train-
ing and validation. Validation accuracy for various values of Max_Iter is plotted in Figures 7 and 11
is found as ideal value where the validation accuracy of 0.77 is reached. While finding the optimal
value for Max_Iter, other two parameters namely p and f are kept as 0.5 (median of range [0,1]). To
find the optimal values for p and  parameters, Max_Iter is kept at its ideal value 11. Figure 8 de-
picts the validation accuracy for various values of p and f parameters. Highest validation accuracy
of 0.95 is attained when p =0.3 and f =0.7. Finding the ideal values for the parameters of MGTO is
termed as training and for this purpose, training and validation feature sets are used. After training,
MGTO transform will be implemented for all the three feature sets namely training, validation, and
test sets with the ideal parameters value of Max_Iter = 11, p =0.3, and f =0.7. Notably these are the
ideal parameters of MGTO on first dataset when MobileNetV3 is employed as feature extraction
layer. The ideal parametric values may change depending upon the input data given to MGTO layer.
The ideal values for other input data will be presented in the next section. Procedure for implement-
ing the MGTO as intermediate feature transform layer for test feature set is summarized in Algorithm
1.

Algorithm 1: Algorithm to implement the proposed MGTO as intermediate layer in deep learning
models for feature transformation of test feature set.

Step 1: Extract features using pre-trained transfer learning models for each oral histopathologi-
cal image.

Step 2: Consider number of features as size of population in MGTO. Initialize the position of
Gorillas with extracted features.

Step 3: Initialize parameters of MGTO: U, = max (X', X?,....,X"), L, = min (X%, X2, ..., XV),
MaXjer = 11, p =0.3,and B =0.7

Step 4: Compute the fitness value of each Gorilla using equation (25)

Step 5: Update the position of each Gorilla using equation (21)

Step 6: Identify the Silverback Gorilla i.e., the Gorilla with highest fitness.

Step 7: Update the position of each Gorilla using equation (22) if [C| = 1. Otherwise use equa-
tion (23)

Step 8: Repeat steps 4 to 7 until maximum number of iterations is reached. If the maximum
number of iterations are completed, then go to step 9.

Step 9: Consider the final position of Gorillas as the output of Feature Transform and give them
as input to the classification layer.
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Figure 8. Ideal value computation of p and f parameters.

6. Results and Discussion

Initially the experiment is conducted without any intermediate layer in the deep learning model.
Three different transfer learning-based models namely InceptionV2, MobileNetV3, and Efficient-
NetB3 are tested as feature extraction layers. As mentioned in Table 2, the specifications of classifica-
tion layer remain the same for all the three different feature extraction layers. The confusion matrix
attained for these three deep learning models without intermediate layer on first dataset in OSCC
detection is shown in Figure 9. The label 0 represents the class Normal and label 1 represents the class
OSCC in Figure 9. EfficientNetB3 classify all the input images as OSCC and so its True Negative (TN)
= 0. This clearly indicates the poor performance of the EfficientNetB3 based deep learning model
without intermediate layer. To detect OSCC, high TP is required while to detect normal class
properly, high TN is required. Among the remaining two models without intermediate layer, highest
True Positive (TP) is attained by MobileNetV3 while the highest TN is attained by InceptionV2.
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Figure 9. Confusion Matrix of Deep learning models without intermediate layer.

To improve the number of TN and TP, MGTO based intermediate layer is proposed in this work.
Figure 10. shows the confusion matrix of three different feature extraction-based deep learning mod-
els with MGTO as intermediate layer in OSCC detection. When MGTO is not used as intermediate
layer in EfficientNetB3 based deep learning model, then all the oral images are classified as OSCC
while better TN and TP values are attained with the proposed layer. Highest TN and TP values are
attained for the proposed MobileNetV3 based feature extraction with MGTO as intermediate layer.
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Figure 10. Confusion Matrix of Deep learning models with MGTO as intermediate layer.

Based on the confusion matrix, four popular performance metrics namely Accuracy, Precision,
Recall, and F1-score are used in this research work to analyse the performance of deep learning mod-
els. Apart from deep learning models with and without MGTO based intermediate layer, three other
swarm intelligence-based optimization algorithms namely PSO, EHO, and GTO are also tested as
intermediate layer and their results are also presented in Table 4. Implementation procedure for PSO,
EHO, and GTO as intermediate layer will also follow the Algorithm 1 presented in previous section.
Only the parameters and the way of updating the position of Swarm will vary based on the optimi-

zation algorithm used. The final ideal parameters of all the four tested intermediate layer after train-
ing is listed in Table 5.

Table 4. Performance metrics computed on test set of first dataset.

Transfer learning

Intermediate layer  Accuracy Precision Recall Fl-score
model
MobilenetV3 NO 0.89 0.87 0.92 0.89
EfficientnetB3 NO 0.52 0.52 1 0.68
InceptionV2 NO 0.88 0.89 0.88 0.88

MobilenetV3 PSO 0.79 0.78 0.82 0.8
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EfficientnetB3 PSO 0.75 0.75 0.78 0.77
InceptionV2 PSO 0.82 0.85 0.8 0.82
MobilenetV3 EHO 0.77 0.77 0.8 0.79
EfficientnetB3 EHO 0.8 0.82 0.78 0.8
InceptionV2 EHO 0.83 0.85 0.82 0.83
MobilenetV3 GTO 0.87 0.87 0.88 0.88
EfficientnetB3 GTO 0.81 0.83 0.8 0.81
InceptionV2 GTO 0.86 0.86 0.88 0.87
MobilenetV3 MGTO 0.95 0.95 0.95 0.95
EfficientnetB3 MGTO 0.9 0.92 0.9 091
InceptionV2 MGTO 0.93 0.93 0.93 0.93

Table 5. Ideal parameters of various intermediate layers.

Feature extraction Intermediate layer Ideal Parameter values
PSO Max_Iter = 10, w=0.6, c1=0.7, and c2=0.9
. EHO Max Iter=12, « =0.9, and £=0.8
MobilenetV3 GTO Max_Iter = 11, p =02, and B = 0.7
MGTO Max_Iter = 11, p =0.3,and § =0.7
PSO Max Iter = 12, w=0.4, ¢1=0.7, and ¢2=0.9
) EHO Max Iter =12, a =0.7, and $=0.8
EfficientnetB3 GTO Max_Iter =8, p =0.5,and 3 =0.7
MGTO Max_Iter =9, p =0.3,and § =0.8
PSO Max Iter = 12, w=0.6, c1=0.8, and ¢2=0.8
. EHO Max Iter=11, a« = 0.8, and £=0.6
InceptionV2 GTO Max_ Iter =7, p =0.4,and 3 =0.7
MGTO Max Iter =9, p =0.4,and B =0.6

The main objective of this work is to detect OSCC and so precision, recall, and F1-score in Table
4 are related to truthful identification of OSCC class while the accuracy metric is related to truthful
identification of both normal and OSCC classes. As seen in Table 4, deep learning models without
any intermediate layer provides less accuracy than the proposed deep learning models with MGTO
as intermediate layer.
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Figure 11. Training & validation accuracy and loss of Deep learning models without intermediate
layer on first dataset.

Training and Validation Accuracy Training and Validation Loss
1o - —— Trairen] LOas
i S SRR SR LE — aldsraon Lows
]
W ™,
o LY i1}
= f \ =
fﬁ 1l | E &
1)
! |
oo kS 1]
% N ', ; |
L 1 ¥
o | VKI
Y \J
] ¥ |
II 1] L F 3
| 1/
| \
|
| 1
o6 \
Vo
'II_-' — ARG ACEUALY _
wWEkdatinn ACturacy a
o 10 0 ) %0 [ I® Epoch % x a
Epoch pec

(a) MobilenetV3


https://doi.org/10.20944/preprints202310.0290.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 October 2023

Training and Validation Accuracy

do0i:10.20944/preprints202310.0290.v1

Training and Validation Loss

—— Tranérg Loss

? — 2 || Validatnn Lots
093 ! |I
g
8,94 i \
o I ol |
& | a |
8 [ o \
)

—— Traming ACOuracy P —.—_- —
1LY wabdation Abcuraty e S —
o
a 1 1% 20 5 o 5 L L] 0 2%
Epoch Epoch
(b) InceptionV2
Training and Validation Accuracy Training and Validation Loss
LG o R e —— Trairan 0 Loss
i I| waldatssn Lask
-_.i‘f_ L \II

&34 .lll( i
o | w i\
e | 5 |I
= |
a | | “ \

a
on \
)
ar4 |
on 4 . \
i 1 M
.‘H"'-\..
—— traanin @ Accuracy T— e
e - : : - - -.Iul-1.l|r--1.l: Aq.\.ufllfv | o . - . : ) = ) :
-] 2 4 L] n Lo Lx 14 s O 2 a A L] 1] L2 14 16
Epoch Epoch

(c) EfficientnetB3

Figure 12. Training & validation accuracy and loss of Deep learning models with MGTO as interme-
diate layer on first dataset.

Among the models without intermediate layer, MobileNetV3 offers highest accuracy of 0.89
which is followed by InceptionV2 with accuracy of 0.88 and EfficientNetB3 with accuracy of 0.52. The
reason for such poor performance of EfficientNetB3 is explained as follows: All the three feature ex-
traction models are pre-trained on ImageNet dataset and features are extracted based on the weights
appropriate for ImageNet dataset. The weights and architecture of EfficientNetB3 fails to capture the
significant features from input oral images while vital features are properly extracted by the remain-
ing two feature extraction models. This statement is further supported by Figure 11 where the train-
ing and validation accuracy & loss are presented for all the three investigated deep learning models
without intermediate layer on the first dataset.

Since quality features are extracted by MobileNetV3 and InceptionV2, both training & validation
accuracy are increasing gradually during training. In addition, both training & validation loss are
also decreasing in exponential manner. But deep learning model that uses EfficientNetB3 fails to
grow both training and validation accuracy due to poor features extracted from the histopathological
oral images. Figure 12 presents the training & validation accuracy and loss when MGTO is used as
intermediate layer on the first dataset. It clearly shows the improved accuracy during both training
and validation because of transformed appropriate features produced by MGTO. To support the
findings based on first dataset, other two smaller OSCC datasets are tested. The second and third
dataset are highly imbalanced since the number of OSCC class samples is much higher than the num-

ber of normal class samples. The performance metrics attained on those two datasets are presented
in Table 6 and Table 7.
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Table 6. Performance metrics computed on test set of second dataset.

Transfer learning

Intermediate layer ~ Accuracy Precision Recall F1-score
model
MobilenetV3 NO 0.8 0.8 0.97 0.88
EfficientnetB3 NO 0.74 0.74 1 0.85
InceptionV2 NO 0.8 0.82 0.93 0.87
MobilenetV3 PSO 0.78 0.81 0.92 0.86
EfficientnetB3 PSO 0.75 0.79 0.9 0.84
InceptionV2 PSO 0.8 0.81 0.95 0.87
MobilenetV3 EHO 0.76 0.8 0.9 0.85
EfficientnetB3 EHO 0.75 0.81 0.86 0.84
InceptionV2 EHO 0.78 0.82 0.9 0.85
MobilenetV3 GTO 0.82 0.82 0.98 0.89
EfficientnetB3 GTO 0.78 0.81 0.92 0.86
InceptionV2 GTO 0.82 0.83 0.97 0.89
MobilenetV3 MGTO 0.88 0.88 0.97 0.92
EfficientnetB3 MGTO 0.81 0.81 0.97 0.88
InceptionV2 MGTO 0.86 0.84 1 0.91

Table 7. Performance metrics computed on test set of third dataset.

Transfer learning

Intermediate layer  Accuracy Precision Recall Fl-score
model
MobilenetV3 NO 0.84 0.86 0.92 0.89
EfficientnetB3 NO 0.71 0.71 1 0.83
InceptionV2 NO 0.82 0.86 0.89 0.88
MobilenetV3 PSO 0.78 0.84 0.85 0.85
EfficientnetB3 PSO 0.73 0.81 0.81 0.81
InceptionV2 PSO 0.78 0.83 0.87 0.85
MobilenetV3 EHO 0.8 0.84 0.89 0.86
EfficientnetB3 EHO 0.73 0.81 0.83 0.82
InceptionV2 EHO 0.81 0.85 0.89 0.87
MobilenetV3 GTO 091 0.92 0.96 0.94
EfficientnetB3 GTO 0.75 0.83 0.83 0.83
InceptionV2 GTO 0.86 0.87 0.95 0.9
MobilenetV3 MGTO 0.94 0.97 0.85 0.96
EfficientnetB3 MGTO 0.9 0.93 0.93 0.93
InceptionV2 MGTO 0.93 0.97 0.93 0.95

From the Table 4, Table 6, and Table 7, it is very clear that MGTO works very well as intermedi-
ate layer when compared to other tested intermediate layers in all the three datasets. The significance
of MGTO as intermediate layer can be clearly witnessed in Figure 13 where percentage of accuracy
increase attained by the usage of various intermediate layers when compared to deep learning model
without intermediate layer is depicted.
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Figure 13. Percentage accuracy increase due to the usage of intermediate layers in DL models when
compared to the accuracy offered by DL models without intermediate layer.

On all the three datasets, the percentage of accuracy increase is very less or even negative when
PSO, EHO, & GTO are used as intermediate layer on the features extracted from MobileNetV3 and
InceptionNetV2. Notably, already these two feature extraction models without intermediate layer
produces accuracy of more than 0.8 in all the three datasets. Implicitly, these intermediate layers fails
to significantly improve the accuracy since they are not able to produce more appropriate trans-
formed features for classification. Only on the features extracted by EfficientNetB3 of first dataset,
these intermediate layers are able to provide significant accuracy increase since the original features
extracted by EfficientNetB3 is very poor on the first dataset which yield accuracy of only 0.52. Out of
these three intermediate layers, GTO comparatively performs well on all the three datasets. Hence
intuition for improving GTO further with suitable modifications raised. MGTO is formulated with
the modifications stated in the previous section and it worked well on all the three datasets.

In the first dataset, 73% of increase in accuracy is witnessed on the EfficientNetB3 based DL
model due to the usage of MGTO as intermediate layer. Nearly 6% accuracy is increased due to
MGTO on MobileNetV3 and InceptionV2 based DL models. Notably the highest accuracy 0.95 is pro-
duced on the first dataset by MobileNetV3-MGTO based DL model. Even on the imbalanced second
and third datasets, MGTO is capable of producing significant accuracy increase. The reason for this
better performance is threefold. Firstly, the modification of GTO with Sine and Cosine algorithm in-
creases its exploration and exploitation capability well. Exploitation is responsible for local search
i.e,, fine-tuning and exploration is responsible for global search. Secondly, the selection of appropriate
fitness function. Local variance based fitness function worked well to transform the features of dif-
ferent classes in different way. Thirdly, the usage of ideal parameters in MGTO resulted in better
accuracy. As shown in Figure 7 & Figure 8, values of MGTO parameters will have huge impact on
accuracy. Due to the above mentioned reasons, MGTO works soundly as intermediate layer that
transforms the input features into more-appropriate features for classification. In other words, the
introduction of proposed intermediate layer helps the classifier to distinguish the features of two
different classes. This statement is backed by the scatter plots shown in Figure 14, Figure 15, and
Figure 16. In scatter plots, the label 0 represents the class Normal and label 1 represents the class
OSCC. To represent the features of first dataset in scatter plot, two averages are computed. Averagel
is the mean of first half features and Average2 is the mean of remaining half features. For example,
1280 features are extracted by MobileNetV3; mean of first 640 features are considered as Averagel
and remaining 640 features are considered as Average2.
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Figure 14. Scatter Plot of features extracted by MobileNetV3.
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Figure 15. Scatter Plot of features extracted by InceptioNetV2.
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Figure 16. Scatter Plot of features extracted by EfficientNetB3.

Comparison of three scatter plots without intermediate layer, gives the reasons for better per-
formance of MobileNetV3 and poor performance of EfficientNetB3. MobileNetV3 features of two
classes are slightly scatter and overlapped while EfficientNetB3 features are heavily overlapped. On
comparison of scatter plots with and without intermediate layers of all the three feature extraction
models, clearly suggests the significance of MGTO. The proposed layer transforms the features in a


https://doi.org/10.20944/preprints202310.0290.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 October 2023 do0i:10.20944/preprints202310.0290.v1

manner that is more suitable for classification by spreading the two different class features apart to
some extent. When these transformed features are used for training and validation, then the classifi-
cation layer gets trained well. Finally better performance is achieved when transformed test dataset
is categorized by the trained classification layer.

b i)
Precision Ml Recall ssFl-score

1

SgEgEs 5g2 £2268
GEE 52 §§§§

-]
ta

Score Value
(=]
-

o
o

=
w

o
=

z 2
3

First Dataset Second Dataset Third Dataset

IN-GTO
IN—MGT o
MN- PSO
MN-EHO
MN-GTO
MN-MGTO
IN-PSO
IN-EHO
IN-GTO
IN~MGTO
MN- pso
EN 950
EN-EHO
EN-GTO
EN—MGTU
IN—FSO
IN-EHO

I

EN MG'I'O
IN-F'SO
IN-EHO
MN-EHO
MN-GTO

EN-GTO
EN-MGTO
IN~MGT G

Figure 17. Precision, Recall, and F1 score of various OSCC classification models.

Apart from accuracy, other performance metrics are also relevantly important. Precision gives
the percentage of correct OSCC predictions among total number of OSCC predicted. Recall is related
to percentage of actual OSCC which was identified correctly as OSCC. F1 score is the harmonic mean
of precision and recall score. These metrics are depicted for all the three datasets in Figure 17. Con-
sidering these three metrics, DL models with MGTO as intermediate layer outperforms all other in-
vestigated intermediate layers. In the first dataset, highest performance is offered by the proposed
MobileNetV3-MGTO based DL model through which precision = 0.95, recall = 0.95, and F1-score =
0.95 is achieved. Even on the second and third datasets, highest F1 score is archived by the proposed
DL model. Though highest F1 score and accuracy is attained by the proposed DL model on all the
three datasets, it fails to attain balanced precision and recall in imbalanced datasets. For example,
recall is very much higher than precision for the proposed DL model in second dataset while preci-
sion is very much higher than recall for the proposed DL model in third dataset. But it attains almost
equal precision and recall in first dataset which is a balanced dataset. Hence wherever higher values
of both precision and recall is required on imbalanced dataset, the proposed DL model underper-
forms there. This could be considered as first limitation of proposed model.

Training time of all the investigated DL models on the first dataset is presented in Table 8. DL
models without intermediate layer will get trained comparatively quickly while the presence of in-
termediate layer may take more training time. MobileNetV3 have less training time since the number
of features extracted is 1280 while the number of features extracted by EfficientNetB3 and Inception-
NetV2 is 1536. A pie chart is presented in Figure 18 which depicts the percentage of time taken by a
DL model when compared to the total training time taken by all the DL models. PSO and EHO takes
relatively less training time than other intermediate layers due to their simple structure. When com-
pared to GTO, the proposed MGTO intermediate layer will take more training time due to the inclu-
sion of sine and cosine argument calculations. Only 2% of total training time is taken by MobileNetV3
DL model without any intermediate layer while 7% of total training time is taken by the proposed
DL model. This could be considered as second limitation.

Table 8. Time taken for training various DL models.

Training Time DL Model Training Time

DL Model (hh:mm:ss) (hh:mm:ss)
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MN 00:05:33 IN-EHO 00:18:22
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EN-PSO 00:17:52 MN-MGTO 00:15:52
IN-PSO 00:17:01 EN-MGTO 00:20:12
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Figure 18. Pie-chart representing the percentage of training time taken by each DL model with respect
to total training time taken by all DL models.

The accuracy comparison of some related works for oral cancer detection is presented in Table
9. Supervised classifiers such as K-Nearest Neighbour, Support Vector machine attains compara-
tively lesser accuracy than the deep learning models. The proposed deep learning model with MGTO
as intermediate layer offers the highest accuracy of 95% and shows the importance of proposed DL
model.

Table 9. Comparison of accuracy attained in related works.

Related Works Year Classification Framework Accura.lcy (%)
attained
A. U. Rahman et al. [25] 2022 AlexNet 90.06%
M. Aberville [48] 2017 Convolutional Neural Network 88.3%
H. Alkhadar [49] 2001 KNN, Logistic Regression, Decision Tree, Ran- 76%
dom Forest
A.Alhazmi [50] 2021 Artificial Neural Network 78.95%
C.S. Chu [51] 2020 SVM, KNN 70.59%
R.A.Welikala [52] 2020 ResNet101 78.30%
Shavlokhova, V [53] 2021 CNN 77.89%
Proposed 2023 Pre-trained MobileNetV3 for feature extraction 959

and MGTO as intermediate layer

7. Conclusion

This research work focuses on developing an enhanced deep learning model to diagnose OSCC
disease. The proposed DL model with MGTO as intermediate layer and MobileNetV3 as feature ex-
traction layer is able to classify 95% of the histopathological oral images correctly. Totally three oral
histopathological images datasets were tested and in all the three datasets, inclusion of MGTO as
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intermediate layer enhanced the accuracy of DL model. Features were transformed by the MGTO to
produce more appropriate features for classification. MGTO outperforms other investigated SI algo-
rithms as an intermediate layer when compared to PSO, EHO, and GTO, primarily due to the modi-
fications made in the GTO equations and its fitness function. The limitations of proposed DL model
are relatively higher training time and loss of either precision or recall score in imbalanced dataset.
Future work will be in the direction of investigating other SI algorithms as intermediate layer in DL
models. In addition, the proposed model needs to be tested for other medical image classification
problems.
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