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Abstract: Dyslipidemia (Dys) is a disease characterised by abnormally high levels of lipids in the
blood. It causes the deposits of lipids on the arterial wall, leading to the insurgence of atherosclerosis,
i.e., the increased thickness of arterial walls, which finally increases the risk of cardiovascular diseases.
Dyslipidemia is as comorbidity of Type 2 Diabetes Mellitus (T2DM). A set of genes has been associated
with dyslipidemia, but examining the regulation of such genes in age and sex is still an open research
field. In this study, starting from publicly available databases, we select genes associated with
dyslipidemia and we analyse their basal level changes by means of age and sex. Also studying the
networks associated to the genes, we identify the rewiring changes showing that there exists a set of
genes whose expression changes with age in: artery tibial, artery aorta and blood. Finally, we report
about changes associated to gender atributes in the extracted data.
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1. Introduction

Dyslipidemia is a disease characterized by a high level of lipids in the bloodstream [1]. It has
emerged as a potential risk factor in the insurgence of atherosclerosis, a chronic inflammatory disorder
of the arterial walls [1]. Atherosclerosis is commonly defined as the process of hardening of the
arteries. It may cause many cardiovascular diseases, such as stroke and coronary artery disease [2–4].
The link between dyslipidemia and atherosclerosis has been studied in recent years [5,6], and as a
result, the pathophysiological mechanisms driving this lethal disease have been partially elucidated.
Dyslipidemia is often associated with type 2 diabetes mellitus as a comorbidity [7–9].

Lipids molecules, i.e., cholesterol and triglycerides, play an important role in many cellular
processes; thus, the imbalance of their normal levels may cause dysfunctions. In particular, high
levels of lipids can lead to the formation of lipid-rich plaques bound to the arteries. Consequently,
such plaques can modify the elasticity of arterial walls, starting a set of events culminating in
atherosclerosis [10,11]. Elevated levels of low-density lipoprotein cholesterol (LDL) [12], contribute to
atherogenesis by accumulating in the subendothelial space, triggering an inflammatory response and
promoting the recruitment of immune cells. High-density lipoprotein cholesterol (HDL) is thought to
exert protective effects against atherosclerosis [13,14]. HDL promotes reverse cholesterol transport and
removes cholesterol from peripheral tissues, including atherosclerotic plaques. However, dysfunctional
HDL particles may lose their protective properties in dyslipidemia, exacerbating atherosclerotic plaque
formation [15].

Many studies exist elucidating the link between dyslipidemia and atherosclerosis, particularly in
the context of patients affected by type 2 diabetes mellitus [16,17]. Nevertheless, using sex and age as
a filtering item for gene characterization is a topic of recent research interest. Using gender and sex
donor information in the analysis and study of genes is particularly relevant for diabetic patients. A
set of recent studies has provided many insights regarding the molecular causes for insurgence and
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progression of the pathology in males and females, also considering age values [7,8,17]. Moreover,
the underlying pathophysiology of diabetes is exacerbated by the ageing process, by accelerating the
progression of many comorbidities [18–25].

Man et al., [26] proposed a clinical study to investigate sexual dimorphism in the incidence and
complications of atherosclerosis. By combining multiple histological and imaging, the authors discuss
the role of sex as a biological variable in atherosclerosis. The paper also evidences the importance of
understanding the differences between men and women in the development and complications of
atherosclerosis, as well as how risk factors, plaque size, and plaque characteristics may vary between
sexes. The study in [27] emphasizes that sex hormones significantly alter the immune response during
atherosclerosis, resulting in different disease phenotypes in men and women. For instance, women
tend to exhibit increased antibody and autoantibody responses in response to infection and damage,
while men typically have elevated innate immune activation.

A growing body of evidence suggests that age-related changes in the vascular and various
molecular pathways contribute to the initiation and progression of atherosclerosis [28]. For instance,
structural and functional changes occur in the blood vessels with advancing age, collectively
called vascular ageing. The accumulation of senescent cells, which exhibit a senescence-associated
secretory phenotype (SASP), contributes to the chronic inflammatory process in the arterial wall,
accelerating the atherogenesis process. Finally, epigenetic changes, such as DNA methylation, histone
modifications, and non-coding RNA regulation, may impact gene expression patterns during ageing
and atherosclerosis.

Starting from demographic data which evidence a different incidence of atherosclerosis and
previous studies [7], we hypothesize that there exist some molecular differences due to age and sex
of the basal expression of genes related to dyslipidemia-associated atherosclerosis [29]. We consider
genes for which there is evidence of correlation with dyslipidemia as reported in the T2DiACoD
database [30].

We analyze the expression of such genes and their variations with age and sex in blood, artery
aorta, and adipose tissue. Figure 1 summarizes the steps of our analysis.

Figure 1. Figure depicts the main steps of the proposed methodology.

Our results show the existence of genes whose expression changes with age and sex and are
related to the risk of presenting dyslipidemia-associated atherosclerosis. We also analyze these genes
on a network level by gathering information from the STRING [31] database for deriving the protein
interaction networks with a multiscale approach [32]. Using the proposed analysis, we suggest that
ageing and sex may stratify the risk of dyslipidemia-associated atherosclerosis, suggesting the need
for further research on the mechanisms of the pathology increasing related to the age [33].

2. Materials and Methods

We propose to use a methodology based on using and integrating available data sources describing
genes, gender, and age associated with gene donors. The methodology uses the following data sources:
(i) T2DiACoD database [30]; (ii) GTEx database [34,35], (iii) STRING network database [36]. The
methodology also uses voyAGEr [37] to analyse sex differences [17], and GTexVisualiser to access the
GTEx database.
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The methodology consists of accessing genes and noncoding transcripts related to complications
of type 2 diabetes mellitus extracted from T2DiACoD. The database has a curated list of genes
related to different comorbidities. Each gene is annotated with one or more associated comorbidities
(atherosclerosis, retinopathy, neuropathy, cardiovascular disease). Focussing on atherosclerosis, we
obtain a list of 115 genes related to such a disease. GTEx database is queried employing GTExVisualizer,
and metadata related to tissue, sex and age of the sample are extracted using genes identified in the
T2DiACoD database in the previous step. Expression data are measured as Transcript per Million
(TPM). This data integration and gene enrichment process was performed using an ad-hoc realised
script that has been integrated into GTExVisualizer [17,34]. The integrated data are reported in
the data matrix whose snapshot is reported in Figure 1, while the entire data is available at https:
//drive.google.com/drive/folders/1-YpCRGdN_UtdS_3hEKrF7_Icbhq_V09d.

Data processing is performed by grouping gene samples by sex, and for each gene, we calculate
the average values of the expression for the following age classes: 20-29, 30-39, 40-49, 50-59, 60-69,
70-79 years. In this way, we summarise the evolution of the average values of each gene during the
age in males and in females.

The developed methodology took as input the above-reported matrix and focused on those genes
that can be considered of interest, i.e., whose average expression values are monotonically increasing
or decreasing in the age intervals. The framework includes a module to evaluate differences among age
intervals. A Kruskal-Wallis test is measured. A p − value less than 0.01 (after correction for multiple
tests) was considered significant. The calculated p − value has been corrected with the Bonferroni
correction method.

The framework builds protein interaction networks induced by increasing or decreasing genes.
This is built by using the selected genes to query the STRING database [35], an available data source
capable of building interaction networks. Indeed, the STRING protein interaction network database
is used to build protein networks. In the framework instance with the 11 genes defined above and
used to query the GTeX database, we considered only physical interactions with a reliability value
higher than 0.400. In addition, we calculated the functional enrichment [38] on the STRING web server.
Finally, to verify the extraction process, we compare the results with those obtained using the voyAGEr
web portal [37] to evaluate differences in age and sex. voyAGEr also accesses GTEx data to build a
linear model (ShARP-LM) to analyse tissue-specific differential gene expression. The gene expression
is linearly modelled considering factors: age, sex, and age-sex interaction effects. Using voyAGEr, we
can identify the age periods when significant changes in gene expression occur.

3. Results

We identified 11 genes whose expression changes with age in blood, artery tibial, and artery aorta
tissues. In blood, we found a decrease in KLF14 expression. In the artery tibial, we found a decrease
in the expression of the PPARA gene, while the MTHFR, HGF, LEP, LPL, TNFRSF11B, MOK, CETP,
and MIF genes increased with age. Finally, we found an increased expression of the TCF7L2 gene in
the aorta tissue. Table 1 summarizes these results while Figures 2–4 depicts the gene expression as
boxplots.
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Table 1. Genes presenting a significant increase or decrease of basal levels with age class (20-29, 30-39,
40-49, 50-59, 60-69, 70-79) in different tissues. Differences have been tested by using a Kruskal-Wallis
test.

Tissue Increasing Decreasing
Blood KLF14
Artery Tibial MTHFR PPARA

HGF
LEP
LPL
TNFRSF11B
MOK
CETP
MIF

Aorta TCF7L2

Figure 2. Boxplots of gene expression in artery tibial tissue. All the genes present a significant
increase or decrease of basal levels with age class (20-29, 30-39, 40-49, 50-59, 60-69, 70-79) in different
tissues. Differences have been tested by using a Kruskal-Wallis test. Figure evidences a decrease in the
expression of PPARA, while MTHFR, HGF, LEP, LPL, TNFRSF11B, MOK, CETP, and MIF increased
with age.
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Figure 3. Increased expression of TCF7L2 in the aorta tissue.
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Figure 4. Expression with age of KLF14 gene in blood.

We extracted from the STRING database the protein interaction network associated with the genes
of artery tibial, represented in Figure 5.

Figure 5. Protein Interaction Network Associated with genes presenting changes with age in artery
tibial tissue.

We performed a functional analysis of this network on the STRING database, reporting the results
depicted in Figure 6. Using the STRING database, we studied functional analysis of the obtained
network. The results are reported in Figure 6. The Figure represent both the associated protein
interaction network of the selected genes and the related associations of such proteins.
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Figure 6. Functional Enrichment of the Genes

Finally, we also identified for the HGF, LEP, MOK, MTHFR, PPARA, and TNFRSF11B genes a
significant change in basal expression with sex as reported in Figures 7–12.

Figure 7. Changes in the Expression of HGF gene with age due to sex effects. The bottom part of the
figure reports the associated p-value.
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Figure 8. Changes in the Expression of LEP gene with age due to sex effects. The bottom part of the
figure reports the associated p-value.
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Figure 9. Changes in the Expression of MOK gene with age due to sex effects. The bottom part of the
figure reports the associated p-value.
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Figure 10. Changes in the Expression of MTHFR gene with age due to sex effects. The bottom part of
the figure reports the associated p-value.
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Figure 11. Changes in the Expression of PPARA gene with age due to sex effects. The bottom part of
the figure reports the associated p-value.
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Figure 12. Changes in the Expression of PPARA gene with age due to sex effects. The bottom part of
the figure reports the associated p-value.

4. Discussion

The bioinformatic analysis we carried out in this work evidenced the existence of a set of genes in
artery tibial tissue presenting changes in basal expression with age [39]. Modifying gene expression
and other parameters may constitute a risk factor for the insurgence and development of some diseases.
We here analyzed genes related to dyslipidemia-based atherosclerosis [38].

In the artery tibial, we found changes in KLF14 gene, which encodes a transcription factor that
regulates several cellular processes. The decrease in its expression in blood with age suggests that it
might play a role in age-related changes in the blood and may have implications in aging processes
or age-related diseases [40,41]. PPARA encodes a nuclear receptor involved in lipid metabolism and
inflammation. The decrease in its expression in artery tibial with age may indicate alterations in lipid
metabolism and inflammation pathways in this tissue during aging [28,42? ].

The changes in the expression of MTHFR, HGF, LEP, LPL, TNFRSF11B, MOK, CETP, and
MIF in artery tibial with age suggests that they might be involved in age-related processes in this
tissue [43,44].

TCF7L2 encodes a transcription factor in the wnt signalling pathway and plays a crucial role
in various cellular processes [45]. The increased expression of TCF7L2 in the artery aorta with age
indicates its potential involvement in aging-related changes in this tissue and might have implications
for cardiovascular health [46].

The identified genes could be related to molecular mechanisms associated with aging and
dyslipidemia-based atherosclerosis. This may illuminate the potential molecular mechanisms
associated with ageing and dyslipidaemia-based atherosclerosis. The decrease in KLF14 expression in
blood and the expression of PPARA in the tibial artery, along with the increased expression of MTHFR,
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HGF, LEP, LPL, TNFRSF11B, MOK, CETP, and MIF in the tibial artery, and TCF7L2 in the aorta artery,
may indicate their involvement in age-related processes. The protein-interaction network associated
with these genes in the tibial artery further provides valuable information on their potential functional
relationships.

In general, this study provides valuable information on age-related changes in gene expression in
different tissues. It is important to note that gene expression is just one aspect of the complex process
of aging, and further research is needed to understand the underlying mechanisms and potential
implications of these findings for age-related diseases and health conditions [47,48]. Additionally,
considering the dynamic nature of gene regulation, factors such as lifestyle, environmental influences,
and genetic variations can also contribute to the observed changes in gene expression with age.

The results also open an interesting direction regarding the roles of the identified genes through
the aging-related changes.

5. Conclusions

We identified 11 genes whose expression changes with age in the blood tissues, artery tibial, and
artery aorta.

It is essential to recognize that changes in gene expression are part of a complex interplay of
various factors that contribute to the ageing process. Thus, these findings lay the groundwork for
future research to explore the broader implications of these gene expression alterations and how they
may influence age-related diseases and overall health.

This work is based on available data, and in silico experiments have been conducted. Even if we
keep in mind that our findings stimulate further laboratory and clinical experiments, future work may
include the definition of a clinical study to validate results in dysmetabolic patients.
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