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Article 
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Abstract: Transcriptional regulation constitutes a key step in gene expression regulation. Myocyte enhancer 
factor 2C (MEF2C) is a transcription factor of MADS box family involved in the early development of several 
cell types including muscle cells. Over the last decade a novel layer of complexity modulating gene regulation 
is emerging as non-coding RNAs have been identified, impacting in both transcriptional and post-
transcriptional regulation. microRNAs represent the most studied and abundantly expressed subtype of small 
non-coding RNAs and their functional role have been widely documented. On the other hand, our knowledge 
on the transcriptional and post-transcriptional regulatory mechanisms that drive microRNA expression is still 
incipient. We recently demonstrated that MEF2C is able to transactive the long, but not short, regulatory 
element upstream of miR-23a-miR-27a-miR-24-2 transcriptional start site. However, MEF2C over-expression 
and silencing, respectively, displayed distinct effects on each of the miR-23a-miR-27a-miR-24-2 mature cluster 
members, without affecting pri-miRNA expression levels, supporting thus additional MEF2C-driven 
regulatory mechanisms. Within this study we demonstrated a complex post-transcriptional regulatory 
mechanisms directed by MEF2C in the regulation of miR-23a-miR-27a-miR-24-2 cluster members, distinctly 
involving different domains of the MEF2C transcription factor and the physical interaction with pre-miRNAs 
and RNA interacting proteins such as Ksrp, HnRNPa3 and Ddx17. 

Keywords: Mef2c; microRNAs; RNPs 

 

Introduction 

Transcriptional regulation constitutes a key step in gene expression regulation. Multiple types 
of transcription factors have been identified from flies to humans, regulating multiple developmental, 
homeostatic and pathological processes [1–3]. In this context, a core of transcription factors has been 
identified to play essential roles in myogenesis, such as SRF, NKX2.5, GATA4 and MEF2C [4]. 
Myocyte enhancer factor 2C (MEF2C) is a transcription factor of MADS box family involved in the 
early development of several cell types, including neural, immune, cartilaginous and endothelial 
cells, yet the main role of MEF2C is exerted by regulating muscle development (i.e., skeletal, cardiac 
and smooth) [5–11]. MEF2C deficient mice are embryonic lethal displaying complex cardiovascular 
defects as the early heart tube does not undergoes looping morphogenesis and thus the future right 
ventricle is absent [12,13]. Importantly, MEF2C also plays a pivotal role in cardiac pathological 
conditions such as cardiac hypertrophy [13] and it represents an essential cornerstone for cardiac 
reprogramming [15,16]. 

Multiple studies have reported the essential role of MEF2C regulating gene expression in 
different biological contexts, including cardiac [17–21], skeletal [22–24] and smooth muscle [25] cells. 
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Transcriptional activity of MEF2C is dependent of the carboxyl terminal, a process that is 
sumoylation-dependent [26], whereas the MADS and MEF2 domains mediate DNA binding, 
dimerization and co-factor interactions [27–29]. Adjacent to the MEF2 domain is the HJURP-C 
(Holliday junction recognition protein C-termial) domain, followed by two transcriptional activation 
domains (TAD1 and TAD2), which are responsible for transcriptional activation [29]. Although 
different MEF2C isoforms have been reported, their functional role remains rather elusive [30]. 

Over the last decade a novel layer of complexity modulating gene regulation is emerging as non-
coding RNAs have been identified, impacting in both transcriptional and post-transcriptional 
regulation. Non-coding RNAs are broadly classified according to their transcript length into small 
non-coding RNAs (<200 nt) and long non-coding RNAs (>200 nt) [31]. Among the small non-coding 
RNAs, microRNAs represent the most studied and abundantly expressed subtype. MicroRNAs are 
nuclearly encoded and transcribed into microRNA precursor molecules by RNA polymerase II. In 
certain genomic localization, microRNAs are clustered in such a way that the primary transcript 
contains multiple microRNA precursors, leading to a pri-mRNA precursor. Pri-miRNAs are then 
processed by nucleases such as Drosha and Dgcr8 to generate distinct pre-miRNA molecules, that 
are subsequently exported by exportin-5/Ran protein complex to the cytoplasm [32]. Within the 
cytoplasm the pre-miRNAs are processed into a mature microRNAs duplex by Dicer RNAse and 
loaded into the RISC complex. Within the RISC complex, one of the strands of the double-stranded 
microRNA molecule is subsequently degraded and the remaining one conforms the mature 
microRNA that is now able to scan RNA molecules for sequence homology of its seed sequence 
leading to post-transcriptional RNA target cleavage, translation repression and/or RNA 
deadenylation. Thus, final output consequence, in most cases, is a decrease on the miRNA/protein 
target abundance [33]. Importantly, there are emerging evidences that certain microRNAs can also 
modulate transcriptional regulation, by exerting their function within the nucleus, impacting thus on 
alternative splicing and RNA and microRNA transcriptional regulation [34]. 

microRNAs are highly conserved during evolution, ranging from C. elegans to humans. 
microRNAs display temporal and spatial differential expression during embryonic and adulthood, 
contributing thus to both embryonic development and tissue homeostasis [35]. Impaired expression 
and/or function of microRNAs thus have been recently reported to lead to pathological conditions 
[36–40]. In this context, several microRNAs have been reported to be regulated by MEF2C [41] and 
similarly several microRNAs also modulate MEF2C expression in different biological contexts [42–
48]. 

The functional role of microRNAs during cardiac development and diseases have been 
extensively documented [36–39,49]. Within this context, genetic deletion of miR-1-2 [50,51] and miR-
126 [52,53], respectively, have revealed the essential role of these miRNAs in cardiac and vascular 
embryonic development. Importantly, several clustered microRNAs such as miR-19-72 [54–56], miR-
106a-363 [57], miR-106b-25 [58,59] and miR-23/27/24 [60–62], have been reported to play modulatory 
roles in distinct biological contexts, including the cardiovascular system [59–60,63–65]. While our 
current understanding of the detailed functional relevance of each of these microRNAs is 
progressively emerging, our knowledge on the transcriptional and post-transcriptional regulatory 
mechanisms that drive microRNA expression is still incipient. 

Lee et al. [66] demonstrated that miR-23a-miR-27a-miR-24-2 cluster is transcribed as an RNA 
polymerase II-dependent primary transcript whose main transcriptional regulation is driven by a 
−600 bp upstream promoter. We subsequently reported the identification of upstream regulatory 
elements driving miR-23a-miR-27a-miR-24-2 transcriptional regulation in both cardiac and skeletal 
muscle cells [67]. Within this context, we demonstrated that MEF2C is able to transactive the long (-
1830 to +1 nt) regulatory element but not the short (-776 to +1 nt) element, in accordance with the 
identification of MEF2 regulatory binding sites distribution. However, MEF2C over-expression and 
silencing, respectively, displayed distinct effects on each of the miR-23a-miR-27a-miR-24-2 cluster 
members, without affecting pri-miRNA expression levels in different cell types [67], supporting thus 
additional MEF2C-driven regulatory mechanisms. Within this study we report complex 
transcriptional and post-transcriptional regulatory mechanisms directed by MEF2C in the regulation 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 October 2023                   doi:10.20944/preprints202310.0287.v1

https://doi.org/10.20944/preprints202310.0287.v1


 3 

 

of miR-23a-miR-27a-miR-24-2 cluster, distinctly involving different domains of the MEF2C 
transcription factor and the physical interaction with pre-miRNAs and RNA interacting proteins such 
as Ksrp, HnRNPa3 and Ddx17. 

Results 

We have previously characterized the transcriptional potential of the 1.8 Kb upstream sequences 
of the miR-23a-miR-27a-miR-24-2 cluster and reported that MEF2C is capable of transcriptionally 
activate these regulatory regions in HL1 atrial cardiomyocytes. Such transcriptional activation 
enhances thus the expression of the miR-23a-miR-27a-miR-24-2 pri-miRNA. However, we have also 
previously reported that MEF2C overexpression and inhibition, respectively, distinctly regulate the 
expression of each of the miR-23a-miR-27a-miR-24-2 mature cluster members, independently of its 
transcriptional potential. Importantly, modulation of miR-23a-miR-27a-miR-24-2 cluster members by 
MEF2C is tissue-specific. Therefore, our previous data suggest that MEF2C modulation of miR-23a-
miR-27a-miR-24-2 cluster members is exerted by either direct or indirect post-transcriptional 
mechanisms. Since microRNAs have been recently reported to exert both cytoplasmic and well as 
nuclear function, we firstly explored the subcellular localization of the miR-23a-miR-27a-miR-24-2 
mature cluster members. qRT-PCR of nuclear and cytoplasmic fractions revealed that all three 
members, i.e., miR-23a_3p, miR-27a_3p and miR-24_3p are similarly localized in both subcellular 
compartments in HL1 cardiomyocytes (Figure 1A), in contrast to miR-130a that is preferentially and 
significantly enhanced within the cytoplasm (Figure 1A), while Xist2 is enhanced in the nucleus 
(Figure 1A), serving as internal subcellular fractioning controls. 

Subsequently we therefore tested whether MEF2C modulation of miR-23a-miR-27a-miR-24-2 
cluster members is exerted by either direct or indirect post-transcriptional mechanisms. We first 
explored the plausible interaction between MEF2C with miR-23a-miR-27a-miR-24-2 cluster members 
by performing MEF2C protein pull-down assays (Supplementary Figure 1A). Our data 
demonstrated that MEF2C interacts with pre-miR-23a and pre-miR-27a but not to pre-miR-24-2 
(Figure 1B). Importantly, MEF2C neither binds to the mature microRNAs, i.e., miR-23a_3p, miR-
27a_3p and miR-24_3p (Figure 1C), nor to the miR-23a-miR-27a-miR-24-2 pri-miRNA (Figure 1D), 
demonstrating a direct post-transcriptional role of MEF2C governing the expression of the precursor 
forms of miR-23a_3p and miR-27a_3p but not miR-24_3p (Figure 1E). 
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Figure 1. Panel A) qRT-PCR analyses of the nuclear and cytoplasmic distribution of miR-23a_3p, miR-
27a_3p, miR-24_3p mature microRNAs in HL1 cardiomyocytes. Note that all three microRNAs are 
similarly expressed in the nucleus and cytoplasm in contrast to miR-130a that is primarily cytoplasmic 
and the long non-coding RNA Xist2 that is preferentially nuclear. Panel B) qRT-PCR analyses of Mef2c 
pulldown assays for pre-miR-23a, pre-miR-27a and pre-miR-24, respectively. Note that increased 
levels are observed for pre-miR-23a, and pre-miR-27a but not for pre-miR-24. Panel C) qRT-PCR 
analyses of Mef2c pulldown assays for mature miR-23a_3p, miR-27a_3p and miR-24_3p, respectively. 
Note that none of the mature microRNAs are increased after Mef2c pull-down assays. Panel D) qRT-
PCR analyses of Mef2c pulldown assays for pri-miR-23-miR-27a-miR-24-2. Panel E) Schematic 
representation of the Mef2c association to the miR-23a-miR-27a-miR-24-2 clustered microRNAs. All 
data are normalized to Gapdh for mRNA expression analyses and to 5S for microRNA expression 
analyses. *p<0.05, **p<0.01, *** p<0.001. 

We subsequently tested which part of the MEF2C transcription factor is exerting pre-miR-23a 
and pre-miR-27a modulation and whether it also affects the expression of the mature microRNA 
cluster members. For this purpose, we constructed two distinct MEF2C variants. The first one lacks 
the SRF-type DNA-binding and dimerization domain, the MADS_MEF2_like and the HJURP_C 
domain at the 5´end (MEF2C 5´del) (Supplementary Figure 1B). The second one lacks the 3´end 
(MEF2C 3´del) and thus maintained these domains (Supplementary Figure 1B). In addition, we also 
performed MEF2C overexpression and silencing studies. MEF2C over-expression and silencing were 
successfully achieved. In addition, the overexpression of MEF2C full-length, MEF2C 5´del, and 
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MEF2C 3´del show similar levels (Supplementary Figure 1C). Furthermore, transactivation assays of 
the L regulatory element of the miR-23a-miR-27a-miR-24-2 locus was successfully achieved with 
MEF2C full-length and MEF2C 3´del constructs, but not with MEF2C 5´del, as expected, since the 
latter lacks DNA-binding and dimerization domains (Supplementary Figure 1D). 

qRT-PCR analyses of precursor pre-miR-23a, pre-miR-27a and pre-miR-24-2 demonstrate that 
both MEF2C 5´del and MEF2C 3´del significantly increase the steady state levels of pre-miR-23a_3p, 
pre-miR-27a_3p but not of pre-miR-24_3p (Figure 2A) while over-expression of full length MEF2C 
and silencing resulted in minimal but significant downregulation of pre-miR-23a, premiR-27a but not 
of pre-miR-24-2 (Figure 2A). Thus, these data reinforced the previous observations by MEF2C 
pulldown demonstrating a regulatory role on pre-miR-23a, premiR-27a but not of pre-miR-24-2. qRT-
PCR analyses of mature miR-23a-miR-27a-miR-24-2 cluster members demonstrate that MEF2C full-
length over-expression significantly down-regulates miR-23a_3p, miR-27a_3p but not miR-24_3p 
expression (Figure 2B) while MEF2C silencing selectively downregulates only miR-27a_3p. 
Importantly, MEF2C 3´del and MEF2C 5´del significantly up-regulated all mature microRNA cluster 
members, i.e., miR-23a_3p, miR-27a_3p and miR-24_3p (Figure 2B). 

Therefore, our data indicates that both 5´end and 3´end of MEF2C regions play inhibitory roles 
to modulate mature miR-23a-miR-27a-miR-24-2 cluster members. Moreover, mature miR-24_3p 
expression is modulated by both MEF2C 5´del and MEF2C 3´del but not its precursor form (pre-miR-
24-2) (Figure 2C), suggesting a dual role for MEF2C regulating such post-transcriptional events 
(Figure 2A and 2B), yet it should be taken into account that miR-24-1 precursor, located in a distinct 
chromosomal locus, might also contribute to miR-24_3p expression levels. 
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Figure 2. Panel A) qRT-PCR analyses of pre-miR-23a, pre-miR-27a and pre-miR-24 expression after 
over-expression of Mef2c full-length (FL), Mef2c 5´del, Mef2c 3´del and Mef2c siRNA in HL1 
cardiomyocytes, respectively. Note increased levels are observed for pre-miR-23a, and pre-miR-27a 
but not for pre-miR-24 after Mef2c 5´del and Mef2c 3´del overexpression, while Mef2c FL and Mef2c 
siRNA significantly decreased them. Panel B) qRT-PCR analyses of mature miR-23a_3p, miR-27a_3p 
and miR-24_3p expression after over-expression of Mef2c full-length (FL), Mef2c 5´del, Mef2c 3´del 
and Mef2c siRNA in HL1 cardiomyocytes, respectively. Note increased levels are observed for all 
mature microRNAs after Mef2c 5´del and Mef2c 3´del overexpression, while Mef2c FL significantly 
decreased miR-23a_3p and miR-27a_3p but not miR-24, while Mef2c siRNA only decreased miR-
27a_3p. Panel C) Schematic representation of the Mef2c 5´del and Mef2c 3´del regulation to the miR-
23a-miR-27a-miR-24-2 clustered microRNAs. All data are normalized to Gapdh for mRNA expression 
analyses and to 5S for microRNA expression analyses. *p<0.05, **p<0.01, *** p<0.001, **** p<0.0001. 

Modulation of miR-23a-miR-27a-miR-24-2 cluster members by MEF2C can also be indirectly 
exerted by association with ribonucleic proteins (RNPs). We therefore tested the tissue-specific 
expression of distinct RNPs previously reported to interact with distinct microRNAs [66–69] in 
different cell types, showing differential regulation of mature miR-23a-miR-27a-miR-24-2 cluster 
members [65]. Therefore, we evaluated expression of seven distinct RNPs (Adar1, Ddx5, Ddx17, 
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HnRNPa1, HnRNPa3, HnRNPa2b1, Ksrp) in 3T3 fibroblasts, HL1 atrial cardiomyocytes and Sol8 
skeletal myoblasts. 

Adar1, Ddx5 and HnRNPa1 displayed increased expression in 3T3 fibroblasts as compared to 
HL1 atrial cardiomyocytes and Sol8 skeletal myoblasts (Figure 3A). Ksrp displayed similarly 
enhanced expression in 3T3 fibroblasts and HL1 atrial cardiomyocytes as compared to Sol8 skeletal 
myoblasts (Figure 3A). HnRNPa2b1 and Ddx17 a similar expression pattern with enhanced 
expression in HL1 cardiomyocytes, while HhRNPa3 displayed the opposite pattern, i.e., decreased 
expression in HL1 atrial cardiomyocytes as compared to 3T3 fibroblasts and Sol8 skeletal myoblasts 
(Figure 3A). Overall, these data showed that the RNA constituents of all mentioned RNPs are 
expressed in these three distinct cell lines tested. However, the distinct RNPs showed a differential 
expression in these cell lines, supporting thus a plausible contribution of these RNPs regulating the 
distinct miR-23a-miR-27a-miR-24-2 cluster members by MEF2C in different cell types, as previously 
demonstrated [65]. 

We also tested whether these RNP transcripts are distinctly distributed within the subcellular 
compartments in HL1 cardiomyocytes. Our data revealed that Adar1 is highly enriched in the nuclear 
compartment whereas Ddx5, Ddx17 and Ksrp are prominently localized in the cytoplasm. On the 
other hand, HnRNPa1, HnRNPa3 and HnRNPa2b1 are similarly distributed within both nuclear and 
cytoplasmic compartments, in line with MEF2C mRNA distribution (Figure 3B). 

We additionally tested if these RNPs are regulated by MEF2C. Over-expression of MEF2C full 
length resulted in up-regulation of Adar1 and down-regulation of HnRNPa3 and Ksrp, while Ddx5, 
Ddx17, HnRNPa1 and HnRNPa2b1 were not altered (Figure 3C). MEF2C silencing decreased Ddx17, 
HnRNPa3, HnRNPa2b1 and Ksrp while increased HnRNPa1. Adar1 and Ddx5 display no significant 
differences (Figure 3C). MEF2C 5´del significantly increased Adar1 and significantly downregulated 
Ddx5, Ddx17, HnRNPa1, HnRNPa3, HnRNPa2b1 and Ksrp (Figure 3C), while MEF2C 3´del 
significantly increased Adar1, HnRNPa1, HnRNPa3 while Ddx5, Ddx17 and Ksrp display significant 
downregulation (Figure 3C). HnRNPa2b1 displayed no significant differences after MEF2C 3´del 
over-expression (Figure 3C). In sum, our data demonstrate that these RNPs are distinctly modulated 
by MEF2C. Particularly, it is important to highlight that Ksrp is similarly down-regulated in all 
experimental conditions, Ddx17 is down-regulated in MEF2C 3´del and MEF2C 5´del and MEF2C 
siRNAs conditions, while HnRNPa3 is downregulated by MEF2C full-length, MEF2C siRNA and 
MEF2C 3´del. Furthermore, Ddx5, Ddx17 and Ksrp are downregulated by MEF2C 3´del and MEF2C 
5´del over-expression (Figure 3D), supporting a plausible role of these RNPs, distinctly regulating 
miR-23a-miR-27a-miR-24-2 cluster members and/or its precursors. 
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Figure 3. Panel A) qRT-PCR analyses of distinct RNPs (Adar1, Ddx5, Ddx17, HnRNPa1, HnRNPa2b1, 
HnRNPa3, Ksrp) in three distinct cells lines, 3T3 fibroblasts, HL1 cardiomyocytes and Sol8 skeletal 
muscle myoblasts. Observe that these RNPs display distinct expression levels on each of the tested 
cell line. Panel B) qRT-PCR analyses of the nuclear and cytoplasmic distribution of these RNPs in HL1 
cardiomyocytes. Note that Adar1 is preferentially expressed in the nucleus while Ddx5, Ddx17 and 
Ksrp are preferentially expressed in the cytoplasm. Panel C) qRT-PCR analyses of RNPs expression 
after over-expression of Mef2c full-length (FL), Mef2c 5´del, Mef2c 3´del and Mef2c siRNA in HL1 
cardiomyocytes, respectively. Note that these RNPs are distinctly regulated by each of the Mef2c 
construct analysed. Panel D) Schematic representation of the Mef2c 5´del and Mef2c 3´del regulation 
of the RNPs. All data are normalized to Gapdh expression. *p<0.05, **p<0.01, *** p<0.001. 

We subsequently tested whether MEF2C can interact with these RNPs. MEF2C protein pulldown 
demonstrate that Ddx17, Ksrp and HnRNPa3 are interacting with MEF2C (Figure 4A), while no 
significant interaction was observed for HnRNPa1, HnRNPa2b1, Ddx5 and Adar1, respectively 
(Figure 4A). 
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Finally, we performed RNPs silencing assays in order to dissect if RNP inhibition can modulate 
miR-23a-miR-27a-miR-24-2 cluster members. Ddx17, HnRNPa1 and HnRNPa2b1 siRNA 
administration does not significantly modulate miR-23a_3p, miR-27a_3p and miR-24_3p pre-
miRNAs, respectively, except for HnRNPa1 that significantly up-regulates pre-miR-27a and pre-miR-
24-2 (Figure 4B and 4D). On the other hand, Ddx5, HnRNPa3 and Ksrp inhibition enhanced miR-
23a_3p, miR-27a_3p, miR-24_3p pre-miRNAs, except pre-miR-24-2 after Ksrp inhibition (Figure 4B 
and 4D). For the mature miR-23a-miR-27a-miR-24-2 cluster members, Ddx17 and HnRNPa1 silencing 
significantly up-regulated while Ddx5 significantly downregulated all miR-23a-miR-27a-miR-24-2 
cluster members, i.e., miR-23a_3p, miR-27a_3p and miR-24_3p (Figure 4C and 4D). On the other 
hand, HnRNPa2b1 inhibition exclusively upregulates miR-23a_3p, but not miR-27a_3p and miR-
24_3p while HnRNPa3 silencing leads to downregulation of miR-23a_3p, upregulation of miR-27a_3p 
and no significant modulation of miR-24_3p (Figure 4C and 4D). Finally, Ksrp silencing leads to 
downregulation of all miR-23a-miR-27a-miR-24-2 cluster members, i.e., miR-23a_3p, miR-27a_3p and 
miR-24_3p (Figure 4C and 4D). Thus, these observations revealed that Ddx5, HnRNPa3 and Ksrp are 
essential primarily for pre-miR-23a and pre-miR-27a, and to a lesser extend for pre-miR-24-2 (only 
Ddx5 and HnRNPa3), supporting a key role modulating differential expression of the miR-23a-miR-
27a-miR-24-2 cluster members. Similarly, HnRNPa2b1, HnRNPa3 and Ksrp silencing also distinct 
modulate mature miR-23a-miR-27a-miR-24-2 cluster members. In sum, these data illustrate that 
distinct RNPs can impact on differential pre-miRNA and mature miR-23a-miR-27a-miR-24-2 cluster 
members expression. 
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Figure 4. Panel A) qRT-PCR analyses of Mef2c pulldown assays for RNPs in HL1 cardiomyocytes. 
Note that increased levels are observed for Ddx17, HnRNPa3 and Ksrp are observed. Panel B) qRT-
PCR analyses of pre-miR-23a, pre-miR-27a and pre-miR-24-2 expression after silencing each of the 
RNP previously tested in HL1 cardiomyocytes, respectively. Note that silencing Ddx5 and HnRNPa3 
enhanced expression of all pre-microRNAs while silencing Ksrp only up-regulated pre-miR-23a and 
pre-miR-27a but not pre-miR-24-2. Panel C) qRT-PCR analyses of mature miR-23a_3p, miR-27a_3p 
and miR-24_3p expression after silencing each of the RNP previously tested in HL1 cardiomyocytes, 
respectively. Note that silencing Ddx5 and Ksrp decreased expression of all pre-microRNAs while 
silencing HnRNPa2b1 selectively up-regulated only pre-miR-23a. Panel D) Schematic representation 
of the effects of RNP silencing on miR-23a-miR-27a-miR-24-2 pre-miRNAs and mature microRNAs 
expression, respectively. All data are normalized to Gapdh for mRNA expression analyses and to 5S 
for microRNA expression analyses. *p<0.05, **p<0.01, *** p<0.001. 
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Figure 5. Schematic representation of Mef2c post-transcriptional regulation of miR-23a-miR-27a-miR-
24-2 clustered pre-miRNAs and microRNAs, respectively. 

Discussion 

Within the last decade, our understanding of the functional role of distinct microRNAs has 
greatly emerged, however our knowledge on the transcriptional and post-transcriptional regulatory 
mechanisms driving microRNA expression is still incipient. We previously demonstrated that 
MEF2C over-expression and silencing, respectively, displayed distinct effects on each of the mature 
miR-23a-miR-27a-miR-24-2 cluster members [67], supporting thus additional MEF2C-driven 
regulatory mechanisms. We provide herein evidences that MEF2C can directly bind to pre-miR23a 
and pre-miR-27a, but not to pre-miR-24-2. Importantly, MEF2C does not directly bind to either the 
pri-miRNA miR-23a-miR-27a-24-2 precursor nor to the mature miR-23a_3p, miR-27a_3p and miR-
24_3p molecules. Furthermore, we also demonstrated that distinct MEF2C domains can differentially 
modulate both pre-miRNAs and microRNAs expression. While there are emerging evidences that 
distinct proteins can influence MEF2C expression levels leading to sumoylation and caspase cleavage 
[26,72], this is to the best of our knowledge the first proof that a transcription factor can influence 
microRNA biogenesis by directly interacting with pre-miRNA molecules. 

On the other hand, ample evidences are reported on the key role of distinct ribonucleoproteins 
(RNPs) modulating microRNA expression [73–78]. Thus, to further support the plausible role of 
several of these RNPs in MEF2C-driven miR-23a-miR-27a-miR-24-2 expression, we analyzed the 
expression of seven distinct RNPs in three distinct cell types (fibroblasts, cardiomyocytes and skeletal 
muscle myoblasts) demonstrating that all of them are indeed expressed while displaying cell type 
enrichment, i.e., Ddx17 and HnRNPa2b1 are more abundantly expressed in cardiomyocytes, while 
Adar1, Ddx5 and HnRNPa3 are widely expressed in fibroblasts. Furthermore, we demonstrate that 
these RNPs displayed distinct subcellular distribution, i.e., Adar1 is primarily in the nucleus, Ddx5, 
Ddx17 and Ksrp are primarily in the cytoplasm while HnRNPa1, HnRNPa2b1 and HnRNPa3 are both 
nuclear and cytoplasmic, in line with previous reports [79–84]. Importantly, we firstly demonstrated 
that mature miR-23a-miR-27a-miR-24-2 cluster microRNA members are equally distributed in both 
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nuclear and cytoplasmic subcellular compartments, support the notion that they might exert distinct 
functional roles, as recently reported [85–87] and thus can be distinctly regulated in the cytoplasm 
vs. the nucleus. Furthermore these data also support that distinct RNPs might be involved in 
differential and subcellular compartment-specific miR-23a-miR-27a-miR-24-2 cluster members 
expression. 

Scarce evidences have been reported for transcription factors directly binding to RNPs [88], 
supporting a plausible role in post-transcriptional regulation. For MEF2C, only AUF1 binding have 
been reported, promoting skeletal muscle myogenesis [84]. Within this study we report for the first 
time that MEF2C can directly bind to Ddx17, HnRNPa3 and Ksrp mRNAs, respectively. Additionally, 
MEF2C indirectly regulates Adar1 and HnRNPa2b1 expression. Furthermore, we also demonstrate 
that distinct MEF2C domains differently contribute to RNPs expression. In this context, both 5´and 
3´MEF2C ends can selectively inhibit Ddx5, Ddx17 and Ksrp expression, while enhance Adar1 
expression. On the other hand, HnRNPa1, HnRNPa3 and HnRNPa2b1 are distinctly regulated by 
MEF2C 3´and 5´ends respectively. While additional studies are required to fully understand the 
molecular mechanisms directing MEF2C 3´and 5´ends modulation of these RNPs, our data support 
the notion that they might be transcriptionally regulated since the MEF2C 5´del construct, lacking 
transcriptional potential (Supplementary Figure 1D), primarily downregulates their expression while 
MEF2C 3´del constructs displays the opposite pattern. In sum our data demonstrate that MEF2C can 
directly and indirectly regulate distinct RNPs in cardiomyocytes, with potential impact on miR-23a-
miR-27a-miR-24-2 cluster members expression. 

As previously stated, a large body of evidences have been reported on RNPs modulating 
microRNA expression [76–81], yet their role in differential microRNAs cluster expression has only 
been reported for Adar1 [85–88] and Ksrp [94–96]. Several studies reported miR-27b regulating Ksrp 
expression in distinct biological settings [97–99], but no proofs have been reported for miR-27b to be 
regulated by Ksrp. miR-27b regulation by RNPs have only been reported for HnRNPa1 in colorectal 
cancer [100] and HnRNPa2b1 in preeclampsia [101]. Importantly no data have been reported for the 
involvement of these RNPs in the regulation of the miR-23a_3p or miR-24, as well as for any of the 
miR-23a-miR-27a-miR-24-2 cluster members, except for Ksrp regulating miR-23a_3p [102] and Adar1 
regulating pre-miR-27a_3p to mature miR-27a_3p processing in cancer [103]. 

We provide herein evidences that silencing Krsp selectively upregulates pre-miR-23a and pre-
miR-27a but not pre-miR-24-2 expression. Similarly, silencing HnRNPa1 leads to pre-miR-27a and 
pre-miR-24-2 downregulation without affecting pre-miR-23a expression. For the mature microRNAs, 
Ksrp and Ddx5 inhibition diminished all mature miR-23a-miR-27a-miR-24-2 cluster members, while 
selective inhibition of Ddx17 and HhRNPa1 enhanced all mature miR-23a-miR-27a-miR-24-2 cluster 
members. Curiously, HnRNPab1 silencing, selectively upregulates miR-23a_3p but not miR-27a_3p 
and miR-24_3p, while HnRNPa3 silencing upregulates miR-23a_3p and downregulates miR-27a_3p 
and miR-24_3p. It is important nonetheless in this context that miR-24 levels, might results for the 
amplification of the mature miR-24_3p from both pre-miR-24-1 and pre-miR-24-2 precursors, as 
previously mentioned. Importantly, MEF2C directly interacts with Ddx17, HnRNPa3 and Ksrp, and 
MEF2C silencing is essential for proper Ddx17, HnRNPa1, HnRNPa2b1, HnRNPa3 and Ksrp, also 
proving proofs of the differential role of the MEF2C C-terminal and N-terminal on this regulation. 

Overall, these data demonstrate a complex and pivotal role of distinct RNPs regulating miR-23a-
miR-27a-miR-24-2 cluster members, and support the notion that distinct RNPs, particularly 
HnRNPa1 and Ksrp plays a pivotal role in regulating differential expression of miR-23a-miR-27a-
miR-24-2 cluster members by acting selectively on distinct premiRNAs. Surprisingly, selective 
inhibition of mature miR-23a-miR-27a-miR-24-2 cluster members by RNPs silencing is observed only 
for HnRNPa2b1 and HnRNPa3, but they do not recapitulate the effects provided by MEF2C silencing, 
supporting the notion that combinatorial rather than single MEF2C-driven RNPs modulation is 
occurring. Furthermore, it is important to highlight in this context, that all mature miR-23a-miR-27a-
miR-24-2 cluster members are similarly expressed in both subcellular nuclear and cytoplasmic 
compartment as well as several RNPs. Notably, siRNA silencing would only be affecting those events 
occurring in the cytoplasm and therefore, inhibition might only be partial. The causal relationship 
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between such distinct subcellular compartment localization deserves further analyses and might 
provide novel insights on the precise molecular mechanisms controlling differential expression of the 
mature microRNAs of genomic clustered microRNAs. 

In summary, we provide herein evidence of the complex post-transcriptional regulatory 
mechanism exerted by MEF2C on the regulation of miR-23a-miR-27a-miR-24-2 cluster members. 
MEF2C can directly and selectively bind to pre-miR-23a_3p and pre-miR-27a_3p but not to pre-miR-
24-2. MEF2C can directly bind to distinct RNPs, such as Ddx7, HhRNPa3 and Ksrp, and indirectly 
regulate the expression of other RNPs such as Adar1 and HnRNPa2b1. Importantly, such regulation 
is distinctly exerted by the MEF2C amino- and carboxy-terminals. Silencing of MEF2C-binding RNP 
Ksrp selectively regulates pre-miR-23a and pre-miR-27a, but not pre-miR-24-2, supporting the notion 
of a direct implication of this pathway on the differential expression of miR-23a-miR-27a-miR-24-2 
cluster members, yet a combinatorial action of distinct RNPs seems to be required to fully achieved 
the final miR-23a-miR-27a-miR-24-2 cluster members expression of the mature microRNAs. 

Materials & Methods 

MEF2C pulldown assays 

For immunoprecipitation of endogenous MEF2C, HL1 cells were lysed with PEB buffer for 10 
min on ice and centrifuged at 10 000 g for 15 min at 4°C. The supernatants were incubated with 
protein A Sepharose beads (Abcam) coated with 15 g of antibody that recognized MEF2C (Cell 
Signalling) or control IgG (Abcam) for 2 h at 4°C, respectively. The corresponding beads were washed 
with NT2 buffer (50 mM Tris–HCl [Ph 7.5], 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40). Protein 
complexes were incubated with 20 units of DNase I (15 min at 37°C). In this step, an aliquot from 
each reaction was isolated for Western blot validation. Subsequently they were further incubated with 
0.1% SDS/0.5 mg/ml Proteinase K (30 min at 55°C) to remove DNA and proteins, respectively. The 
RNA isolated from the IP materials were further assessed by RT-qRT-PCR analysis. 

Nuclear/cytoplasmic distribution 

Cytoplasmic and nuclear RNA fractions from HL1 cardiomyocytes were isolated with 
Cytoplasmic & Nuclear RNA Purification Kit (Norgen, Belmont, CA, USA) following the 
manufacturer’s instructions. After RNA isolation, RT-qRT-PCR analysis for nuclear enriched Xist2 
mRNA marker and cytoplasmic Gapdh mRNA marker were performed to validate enrichment on 
each subcellular fractions. RT-qRT-PCR analysis of distinct microRNAs, Xist2 and RNPs was 
subsequently performed as detailed above. 

Generation of MEF2C 3´delection and 5´delection constructs 

pcDNA MEF2C plasmids were used to generation two distinct constructs, with 3´and 
5´deletions, respectively [104]. MEF2C 3´deletion (MEF2C 3´del) was constructed by deletion the 3´ 
fragment ranging from nucleotide 1112 of the MEF2C full length (PstI restriction site) to the 3´end of 
the mouse MEF2C transcript (NM_001170537.2) (Supplementary Figure 1B). Thus, this construct 
deleted the last 288 amino acids of the MEF2C protein (NP_001164008), maintaining thus the SRF-
type DNA-binding and dimerization domain (1-59 aa), the MADS_MEF2_like domain (2-78 aa) and 
the HJURP_C domain (110-156 aa). 

MEF2C 5´deletion (MEF2C 5´del) was constructed by deletion of the 5´fragment spanning from 
nucleotide 1 until nucleotide 1522 of the MEF2C full length (ScaI restriction site), i.e., mouse MEF2C 
transcript (NM_001170537.2) (Supplementary Figure 1B). Thus, this construct deleted the first 314 
amino acids of the MEF2C protein (NP_001164008), thus deleting the SRF-type DNA-binding and 
dimerization domain (1-59 aa), the MADS_MEF2_like domain (2-78 aa) and the HJURP_C domain 
(110-156 aa). 
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Plasmid transfections 

HL1 cardiomyocytes (6 × 105 cells per well) were transfected with plasmid containing MEF2C 
open reading frame (ORF) full length (wt), MEF2C 5´deletion (MEF2C 5´del), MEF2C 3´deletion 
(MEF2C 3´del) as previously described [100–102]. 

siRNA transfections 

HL1 cardiomyocytes (6 × 105 cells per well) were transfected with siRNA-MEF2C, siRNA-Adar1, 
siRNA-HnRNPa3, siRNA-Ksrp, siRNA-Ddx5, siRNA-Ddx17, siRNA-HnRNPa1 and siRNA-
HnRNPa2b1 (Sigma, Aldrich, Munich, Germany), respectively, as previously described [100–102]. 
siRNA sequences are provided in Supplementary Table 1. 

RNA isolation and retrotranscription 

Total RNA was isolated using Trizol (Roche) according to manufacturer’s guidelines and DNase 
treated using RNase-Free DNase (Roche) for 15 min at room temperature. In all cases, at least three 
distinct pooled samples were used to perform the corresponding RT-qRT-PCR experiments. 

qRT-PCR analyses (mRNA) 

First strand cDNA was synthesized at 50°C for 1 h using 1 μg of RNA, oligo-dT primers and 
Superscript III Reverse Transcriptase (Invitrogen) according to manufacturer’s guidelines. Negative 
controls to assess genomic contamination were performed for each sample, without reverse 
transcriptase, which resulted in all cases in no detectable amplification product. RT-qRT-PCR was 
performed in CFX384TM thermocycler (Bio-Rad) and SyBR Green detection system. Reactions were 
performed in 96-well plates with optical sealing tape (Cultek) in 20 μL total volume containing SYBR 
Green Mix (Finnzymes) and the corresponding cDNA. Two internal controls, mouse Gusb and Gapdh 
mRNAs, were used in parallel for each run and represented as previously described [105–107]. 
Amplification conditions were as follows: denaturalization step of 95 °C for 10 min, followed by 40 
cycles of 95 °C for 30 s, 60 °C for 30 s, 72 °C for 30 s; with final elongation step of 72 °C for 10 min. All 
primers were designed to span exon-exon boundaries using online Primer3 software Primer3input 
(http://bioinfo.ut.ee/primer3-0.4.0/). Primer sequences are provided in Supplementary Table 1. 
Amplification bands of pri-miRNA and pre-miRNAs are illustrated in Supplementary Figure 1E, 
demonstrating a single transcript for pri-miRNA miR-23a-miR-27a_miR-24-2 and specific 
amplifications for each pre-miRNA, i.e., pre-miRNA-23a, pre-miR-27a and pre-miR-24-2, 
respectively. No amplifications were observed in PCR control reactions containing only water as the 
template. Each PCR reaction was performed at least three times to obtain representative averages. 
The Livak method was used to analyze the relative quantification RT-PCR data [108] and normalized 
in all cases taking as 100% the wild-type (control) value, as previously described [105,106]. 

qRT-PCR analyses (microRNA) 

For microRNA expression analyses, 20 ng of total RNA was used for retro-transcription with 
Universal cDNA Synthesis Kit II (Exiqon) and the resulting cDNA was diluted 1/80, following 
manufacture´s guidelines. Real time PCR experiments were performed with 1 L of cDNA, SsoFast 
EvaGreen mix and corresponding primer sets as described on Supplementary Table 1. All qRT-PCRs 
were performed using a CFX384TM thermocycler (Bio-Rad) following the manufacturer’s 
recommendations. The relative level of expression of each gene was calculated as described by Livak 
& Schmittgen [108] using Gapdh as internal control for mRNA expression analyses and 5S for 
microRNA expression analyses, respectively. Each PCR reaction was performed at least three times 
to obtain representative averages. 
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Statistical analyses 

For statistical analyses of datasets, unpaired Student’s t-tests were used. Significance levels or P 
values are stated in each corresponding figure legend. P < 0.05 was considered statistically significant. 

Supplementary Materials: Figure 1. Panel A. Western blot analsyes demonstrating Mef2c pulldown assay as 
compared to IgG negative control. Panel B. Schematic representation of the MEF2C constructs, i.e., MEF2C FL, 
MEF2C 3´del and MEF2C 5´del. Note that within MEF2C 3´del construct, the sequences from a Pst1 site to the 3´ 
of the MEF2C gene are deleted, preserving the Srf, MADS-MEF2 and HJURP_C domains. On the other hand, 
within MEF2C 5´del construct, the sequences from the 5´ of the MEF2C gene to the ScaI site are deleted, 
eliminating therefore the Srf, MADS-MEF2 and HJURP_C domains. Panel C. qRT-PCR analyses of Mef2c 
expression in HL1 atrial cardiomyocytes after transfection with the distinct MEF2C constructs and MEF2C 
siRNA. Observe that similar expression levels are obtained after transfection with MEF2C FL, MEF2C 5´del y 
MEF2C 3´del while MEF2C siRNA significantly diminished its expression. Panel D. Transactivation analyses of 
the L fragment of the miR-23a-miR-27a-miR-24-2 locus with MEF2C FL, MEF2C 5´del and MEF2C 3´ constructs. 
Observe that MEF2C FL and MEF2C 3´ constructs can transactive this fragment while MEF2C 5´del cannot 
transactive it as reported by luciferase assays. Panel E. RT-PCR analyses of pri-miRNA and pre-miRNAs 
amplification products as revealed in gel electrophoresis. pre-miR-23a, pre-miR-27a and pre-miR-24-2 
amplification resulted in products below 100 bp, as expected, while pri-miRNA amplification resulted in an 
approximately 350 bp band, as expected. Figure 2. Schematic representation of the miR-23a-miR-27a-mir-24-2 
locus with its genomic sequence, upon which the pre-miRNA precursor sequences is highlighted (pre-miR-23a 
in yellow, pre-miR-27a in green and pre-miR-24-2 in pink). Primer sequences for pri-miRNA amplification are 
highlighted in blue, spanning from pre-miR-23a to pre-miR-24-2 sequence. Primers for pre-miRNA amplification 
are underlined. Table 1. List of primer and siRNA sequences. 
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