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Abstract: Recently, smart mobility intelligent traffic services have become a critical task in Intelligent
Transportation Systems (ITS). This involves not only the use of advanced sensors and controllers but also the
ability to respond to real-time traffic situations at intersections, alleviate congestion, and generate policies to
prevent traffic jams. DRL (Deep Reinforcement Learning) provides a natural framework for processing tasks.
In DRL, each intersection can control itself and coordinate with neighbors to achieve optimal network-wide
policies. However, comparing approaches remains a challenging task due to the existence of numerous possible
configurations. This research performs a critical comparison of various traffic controllers found in the literature.
It demonstrates that using a nonlinear approximator for coordination mechanisms and enhancing observability
at each intersection are key performance drivers.

Keywords: smart mobility intelligent traffic service; intelligent transportation system; real-time
traffic situation; deep reinforcement learning (DRL); optimal network-wide policy

1. Introduction

In Korea today, the smart mobility traffic information system combines and analyzes personal
movement information such as taxis or private cars using big data. It also refers to a new
transportation information provision service that leads potential private users to complex public
transportation by extracting demand patterns of transportation users and providing integrated
mobility services for reservation, information, use, and payment according to individual user needs.
It is a technology that allows users to set routes for transportation modes from their desired departure
point to destination, according to the demands of public transportation users [1]. By operating
transportation modes at desired time slots and implementing interconnections between different
modes, it enhances the convenience of transportation for individuals with mobility challenges. It
transitions from a conventional independent transportation service system that focuses on individual
modes to a user-centric integrated and customized transportation service system that combines and
operates various modes such as public transportation, personal vehicles, and shared cars [2]. This
system aims to provide seamless transportation information connectivity, improve efficiency in short,
medium, and long-distance travel, and implement an environmentally friendly and sharing
economy-based transportation service in response to climate change. Due to these reasons, the need
for an intelligent transportation system in Korea can be summarized as follows. Firstly, although the
public transportation mode share in Korea has shown excellent performance compared to advanced
countries, it has been stagnant at around 40% since 2014 [3], reaching its limit in terms of increasing
the mode share. To respond efficiently to the constantly changing transportation demand that varies
by local government and small-scale areas, an efficient operational method is needed along with the
supply of new concept transportation modes. Secondly, while Korea has improved the public
transportation service centered around public transportation providers, various countries have
recently introduced new public transportation services, and the concepts of car sharing and ride
sharing have been spreading in the private vehicle sector [4]. Thirdly, in the field of public
transportation, overseas cases of Mobility as a Service (MaaS) are emerging, especially in the Nordic
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region of Western Europe. MaaS provides demand-based subscriber transportation packages,
offering integrated transportation information including various modes of transportation on a single
platform, as well as integrated payment services [5]. It represents a departure from the existing
transportation systems provided by supply-oriented providers and aims to provide personalized
optimal transportation information and route systems, reservation and payment systems, and other
integrated operational services from the user's perspective. The rapid urbanization has led to
increased congestion in urban areas. To alleviate this, there is a need to establish an integrated system
that provides personalized transportation services based on comprehensive analysis using big data.
This includes tailored guidance for public transportation based on individual user demands,
integrated mobility services that provide information, reservations, usage, and payment, and
coordinated operations of various transportation modes to meet the demand. Additionally, in terms
of transportation planning and operation in smart cities, it is necessary to activate smart mobility by
utilizing user activity-based mobility data and develop and standardize service technologies for
integrated public transportation and shared mobility services. The related trends of strategic
products for smart mobility intelligent transportation systems are shown in Table 1.

Table 1. Current trends in strategic products.

Market status and outlook Product industry characteristics

- The smart mobility ecosystem is being
formed, and the portfolio of
transportation means is expanding.

- Integration and synergy with new
trans portation means such as Mobility
as a Service (MaaS) and integrated

- (Overseas) The smart mobility market is expected to
grow from $33 billion and 31 million in 2019 to $91
billion in 2025.

- (Domestic) The smart mobility market is expected to
grow from KRW 727.1 billion in 2019 to KRW 2.2 trillion

and 20 billion in 2025. . )
information exchange.
Policy trends Technological trends
- [Establishment of domestic and
. L interna-  tional = standards  for
- (Overseas) Various programs are being implemented, . .
. . . . transportation data and communication
including research and development, and designation protocols

of pilot cities for smart mobility on a global scale.

- (Domestic) The "Smart City National Strategy Project"
is being pursued through research and development,
and specific sub-projects in the field of smart mobility
(such as the development of smart mobility and parking
space sharing support technologies).

- Development of communication inter
faces for interconnecting transportation
means.

- Development of interfaces for mutual
in formation sharing between smart
mobility service partners and private
sector centers.

Key players (Companies) Core technologies

- Real-time traffic guidance system for
situational response

- Smart technology for traffic accident

alerts

- Integrated payment system and
sharing of smart public transportation
information

- Real-time traffic information
monitoring  system  based  on
video/images

- Technology for real-time traffic
information collection and sharing at

- (Overseas) Uber, Grab, GM, Ford, Sie mens, Toyota
- (Domestic) KT, Kakao, ESRI, DoctorSoft

lane level
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- Deep learning-based technology for
traffic situation prediction

- Technology for automatic detection of
traffic accidents and identification of
perpetrators/victims  using  video
information

2. Scope and Classification

2.1. Value Chain

Smart mobility is one of the key components of a smart city, along with transportation, energy,
resources, and infrastructure management. It plays a crucial role in the city's economic and social
systems, with significant government funding and direct impact on citizens' daily lives. Smart
mobility generates a vast amount of data that influences the city's resources, logistics, energy, and
economic flows. The technologies that constitute smart mobility are expected to play a significant
role in enhancing the competitiveness of cities and countries. The development and production of
new modes of transportation are expected to create jobs, reduce traffic accidents through
technological advancements, and improve the efficiency of transportation systems, resulting in
economic benefits. For example, advancements in smart cars are projected to create around 320,000
jobs and reduce approximately 2,500 serious traffic accidents annually, resulting in an estimated
economic impact of 75.4 billion KRW by 2030. The goal is to enhance user convenience, such as
reducing overall travel time, through the integration of smart mobility systems. By establishing a
bidirectional data collection and sharing system between vehicles and infrastructure, rapid and
proactive responses to unforeseen situations and preventive measures become possible. As vehicles
themselves become a means of communication, they can contribute to solving urban and
transportation issues through data integration facilitated by loT, a key component of smart cities.
During the initial stages of introducing autonomous driving, potential challenges arising from the
coexistence of autonomous and conventional vehicles can be overcome through vehicle-to-
everything (V2X) communication, thereby improving the safety and efficiency of cities and
transportation. Table 2 represents the industrial structure of the smart mobility transportation
information system field.

Table 2. Smart mobility transportation information system field.

Smart mobility transportation information

Back-end industry Front-end industry

system
- Sensor - Vehicle
communication - Information collection technology - Transportation
- IoT communication - Information collection technology - Information
- Big data analysis - User-centric  personalized integrated communication
- Intelligent analysis  transportation information - Infrastructure
- Machine Learning, - Service technology, etc. Development
etc. - Platform provision, etc.

2.2. Classification by Purpose

In the field of smart mobility, various and creative services are being discovered through citizen-
participatory (bottom-up) service concepts. Representative services include personal transportation
sharing services, public transportation sharing services, and micro-mobility services. Table 3
provides a classification by purpose for strategies to implement smart mobility.
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Table 3. Smart mobility transportation information system field.

Classification Contents
- It is a service that operates on predetermined routes using small-scale personal
Personal transportation transportation vehicles designed to accommodate 1-2 passengers, in response to
sharing service (On- individual demand for transportation.
demand) - Itis a first-mile and last-mile service that operates based on individual calls and
destination designation, without fixed operating hours.
. . - It is a service that circulates on a predetermined route using small autonomous
- Public transit-based

driving vehicles (6-12 passenger capacity)

shared mobility service . . . : . . .
Y - It is a service that operates vehicles (dispatching, etc.) in response to real-time

Circul
(Circular) (or pre-surveyed) user demand through user information collection technology
- Micro mobility vehicles that use environmentally friendly fuels such as electric
Micro Mobility service power and represent small-sized personal transportation for 1-2 passengers,

including low-speed electric cars, single-seater electric vehicles, electric bicycles,
etc.

2.3. Classification by Technology

The Smart Mobility Traffic Information System can be broadly classified into the implementation
technologies of an Al-based Smart Mobility Center. It can be further categorized as follows: The
implementation technologies of the Mobility Center include Al-based urban traffic control
technology, mobile-based MaaS (Mobility as a Service) technology, prediction technology based on
big data and simulation, and navigation service technology based on connected cars. These
technologies work together to control the flow of transportation throughout the city, providing
personalized services and delivering a higher level of service to citizens. The details are shown in the

table below as Table 4.

Table 4. Classification by technology.

Classification

Contents

Smart Traffic Signal
System Implementation
Technology

- To control urban traffic, the city is divided into larger sections first. Each
section is equipped with cameras and LiDAR sensor-based intersection vehicle
tracking systems to monitor queue lengths and traffic volume in each direction.
The data is accumulated and utilized for regional macro-simulation and
intersection-level simulation through reinforcement learning. This technology
enables the control of large-scale traffic signals in the city.

- By reducing congestion in chronic bottleneck areas, it aims to reduce
greenhouse gas emissions and improve citizen satisfaction. It also enables the
implementation of a new signal system using Al technology, which can lead to
global technological leadership.

Big Data-Based Personal
Mobility System
Technology

- To effectively implement MaaS, efficient handling, management, and an
ecosystem for big data are required. Key technologies include real-time
acquisition and processing of mobile and vehicle GPS data, preprocessing of big
data, analysis of individual mobility patterns, real-time prediction of urban
traffic demand, and prediction of long-term traffic demand and movement
patterns by day of the week.

- Personal mobility services, including shared autonomous vehicles, need to
consider operation in a mixed environment of autonomous and conventional
vehicles. Key technologies include integration with urban traffic flow
simulations, optimal dispatching of shared autonomous vehicles, and
management of multimodal transportation operations, including public
transportation.

Mobility Simulator-Based
Traffic Prediction System
Implementation
Technology

- A simulation system that can faithfully replicate the actual transportation
system in a virtual world plays an important role. Traffic simulation is essential
for ITS impact assessment, public transportation route planning, traffic
congestion prediction, and traffic flow control, among others.
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- To simulate cities larger than metropolitan scale, distributed/parallel
simulation performance is crucial. It is also necessary to consider features such
as the ability to handle events like accidents, construction, and emergency
situations, as well as high-speed processing through mesoscopic or platoon-
based behavioral model simulations.

- C-ITS (Cooperative Intelligent Transport Systems) is a technology that can
advance the functions of current traffic information centers in a future-oriented
manner. It requires the establishment of wide-area C-ITS testbeds on actual
roads and the development of various services.

- It is possible to develop various services in categories such as traffic accident
prevention services, traffic accident response services, emergency vehicle
support services, public transportation support services, congestion mitigation
services, and pedestrian services.

C-ITS System and Service
Implementation
Technology

- To ensure efficient pavement management, artificial intelligence technology is

utilized in combination with drones and black boxes to continuously acquire

videos of road pavement conditions. Deep learning is used to diagnose the
Al-Based Road Pavement = pavement condition and predict the deterioration using big data. Based on
Maintenance and Hazard  predictive maintenance strategies, the road pavement condition is managed and
Warning System maintained in the optimal state. Real-time information on road hazards such as
Technology potholes is provided to drivers, enhancing their safety.

- In public transportation vehicles such as buses and taxis, video acquisition

through black boxes and drones is possible, allowing for efficient and periodic

video acquisition through various means of acquisition.

2.4. Case Study

For example, various research studies on traffic management at intersections are being
conducted in Korea. Among them, research on traffic signal systems is actively underway. The
current signal systems are fixed in nature. In order to increase the throughput of intersections,
adaptive methods have also been studied. Adaptive methods involve adjusting the timing of traffic
signals or changing the sequence of signals based on traffic volume. The optimization problem of
traffic signal control, which involves a large amount of data in a dynamically changing traffic
environment, poses a high level of complexity when solved using traditional mathematical models
or optimization methods. To solve the traffic signal problem, fuzzy techniques and Q-learning
techniques are widely used. A traffic signal control technique using fuzzy techniques has been
proposed for a single intersection. In this approach, the order of green signals remains fixed, but the
duration of green signals is dynamically adjusted based on traffic volume. The number of vehicles
entering the intersection is measured to determine the current traffic flow during the green signal
and the traffic flow during the red signal in the next phase. Based on the identified traffic flow, the
decision to extend the duration of the green signal is made. The reduction of green signal duration is
not considered in this approach. On the other hand, Askerzada et al [6]. determine the traffic flow
pattern based on the measured number of vehicles and adjust the duration of the green signal
accordingly. Traffic signal control using fuzzy techniques allows for more flexible control in dynamic
traffic environments. However, fuzzy control models incur significant overhead as the fuzzy control
rules change and are generated with the changing environment. Therefore, research on traffic signal
techniques using reinforcement learning, such as Q-learning, is also being conducted. The Q-learning
(QL) technique learns through reinforcement learning to find the optimal policy. QL has the
advantage of not requiring a pre-defined environment model, making it suitable for dynamic traffic
environments. Research on signal control at intersections using QL can be divided into single
intersection studies and studies that consider multiple intersections together. Single intersection
studies focus on obtaining learning experiences in a single environment and determining useful
ranges for various parameters. The order of green signals is fixed, and the duration of green signals
is adjusted through learning. Chin et al [7]. considered the queue length as a parameter and aimed to
always have the fewest vehicles waiting at the intersection. The queue length represents the length
of vehicles waiting in the intersection lane. Abdulhai et al [8-10]. considered the queue length and
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the time it takes for vehicles to exit the intersection. They aimed to minimize traffic delay by reducing
the deviation in queue length. While studies on signal control at single intersections are important,
intersections are connected and influenced by adjacent intersections. Therefore, studies on signal
control considering multiple intersections are being conducted. Multiple intersection studies involve
considering various variables due to the consideration of multiple intersections. Khamis et al [11-15].
proposed a system that minimizes travel time between multiple intersections. The travel time refers
to the time taken from the origin to the destination. The system also pursues a green wave, which
gradually turns on three or more consecutive traffic signals for a progressing group of vehicles,
allowing them to pass through intersections without stopping. This enables vehicles to maintain
speed and minimize fuel consumption. Chin et al [16-20]. distribute appropriate green signal timings
according to the situation by extending or reducing the duration of green signals at multiple
intersections. This adaptive signal control technique aims to minimize queue length. Comparative
studies on various intersections analyzed and adjusted the duration of green signals based on a fixed
signal order. However, since intersections are configured consecutively, adjacent intersections affect
each other. If the order of signals can be flexibly changed according to the situation, more efficient
traffic signal control can be achieved.

3. Deep Reinforcement Learning

Traffic signal controllers with fixed timings are typically defined by different cycle profiles and
are observed over time as they alternate, attempting to handle the various traffic flows that commonly
occur. Some of these methods are defined by mathematical models that use calculus, linear
programming, and other optimization algorithms such as Webster, GreenWave [21-23], and
Maxband [24-26]. Other methods involve using traffic simulators to build traffic models. For example,
Rouphail et al [27]. minimized link delays and queue times using a genetic algorithm (GA) applied
with the CORSIM simulator, for a 9-intersection network. However, the results were limited due to
the slow convergence of the GA algorithm. Traffic controllers have started using models that
optimize various traffic metrics by utilizing sensor data. This enables them to better adapt to changes
in traffic flow as following;

—  Max-pressure aims to maintain balance in the queue length of adjacent intersections. The
pressure of a phase is defined as the difference in queue length between incoming and outgoing
lanes. Minimizing the pressure of a phase maximizes the throughput of the system, according
to Max-pressure algorithm.

—  SCATS (Sydney Co-Ordinated Adaptive Traffic System) repetitively selects the next signal plan
from a predefined set of plans based on the current traffic conditions and predefined
performance measures. The model infers the performance of all plans before each cycle and then
chooses the plan with better performance.

— RHODES is a hierarchical system that predicts the traffic load on each link and allocates phase
time according to the predictions, and Liu, et al. developed a controller that identifies upstream
and downstream vehicles, in intervals of 15 minutes, to measure their delay and then choosing
a signal timing plan that minimizes it.

—  Tan, et al. developed a traffic controller that senses the number of incoming vehicles and uses
fuzzy logic to determine the green time of a single intersection, and Lee, et al. also used a fuzzy
logic controller but in multiple intersections. The controller takes decisions based on vehicle data
of adjacent junctions.

While such systems generally outperform fixed-timing controllers, they have been tested in very
simplistic scenarios. They cannot adapt well to real-world urban traffic with complex dynamics, such
as multi-intersection or heterogeneous traffic flow. Recently, reinforcement learning has become
popular in building traffic signal controllers as agents can learn traffic control policies by interacting
with the environment without predefined models. The reinforcement learning framework naturally
fits the traffic signal controller problem, with the traffic controller as the agent, traffic data as the state
representation, and phase control as the agent's actions. Various learning models have been explored
to build traffic signal controllers. However, comparing proposed solutions and results is challenging
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due to significant variations in problem definitions across literature. We offer the adoption of a Deep
Reinforcement Learning (DRL) approach to address the traffic control problem.

3.1. CRL (Classic Reinforcement Learning)

The main distinction in different reinforcement learning approaches lies in whether there is a
need to learn the transition probability function P. In model-based methods, the agent learns a
transition model that estimates the probability of transitioning between given states given possible
actions, and then calculates the expected rewards for each transition. The value function is then
estimated using dynamic programming-based methods, and decisions are made based on this
estimation. Model-based methods require learning P and the reward function R, while model-free
methods skip this step and learn by interacting with the environment and directly observing rewards.
They perform value function or policy updates by interacting with the environment and directly
observing rewards. Learning the transition probability function in the context of traffic control
problems implies modeling an environment that can predict metrics such as vehicle speed, position,
and acceleration. Wiering [28] used a model-based approach in a multi-agent model operating in a
network of six controlled intersections, where each controller receives the discretized positions and
destinations of each vehicle on approach lanes, resulting in 278 possible traffic situations. The defined
RL-controller performs better than simpler controllers such as fixed-time and Longest Queue First
(LQF), assuming that each vehicle can communicate with each infeasible signal controller.
Additionally, since all distances have the same number of lanes, the network is simplified, resulting
in unrealistic homogeneous traffic patterns. Our research also mentions the possibility of having
smarter driving policies to avoid congested intersections when previous communication is assumed
to be possible. Some research have attempted a model-based approach, but most of the research
community adopts a model-free approach due to the difficulty of fully modeling the unpredictable
behavior of human drivers when considering their natural and unpredictable actions. Most tasks that
use a model-free approach rely on algorithms such as Q-learning and SARSA to learn optimal traffic
control policies. Thorpe et al. [29] built a model-free system using SARSA and compared the
performance of three state representations: volume, presence, and absence. By dividing each lane in
each section of the network into equal-distance intervals or unequal-distance intervals, vehicles can
be controlled. The RL model outperformed fixed-time and maximum volume controllers regardless
of the state representation used, and the unequal-distance intervals state representation
outperformed the other two state representations. Previous reinforcement learning-based controllers
were applied to single intersections because the state space exponentially increases with the number
of controlled intersections. Considering that a single intersection model is overly simplified and
cannot estimate traffic at the city level, other studies aimed to apply reinforcement learning to
multiple traffic intersections by constructing multi-agent models.

3.2. MRL (Multi-Agent Reinforcement Learning)

In a MA(Multi-agent setting), each agent controls one intersection in a traffic network with
multiple intersections. This approach minimizes the explosion of the state space by allowing each
agent to operate in a small partition of the environment. In a non-cooperative approach, each agent
seeks to maximize specific rewards, such as queue lengths or cumulative delays, using the state
representing their respective intersections. This is commonly referred to as Independent Learners (IL).

Independent Learners. The initial systems consisted of independent learners (IL) and a small
number of intersections, where smaller intersections performed better. However, over time,
researchers were able to adapt IL to larger road networks. Camponogara et al [30-33]. developed a
multi-agent system based on Q-learning and modeled it as a distributed stochastic game. They
applied the system to a simple network with two intersections and compared it to random and
Longest Queue First policies. The proposed multi-agent model showed significant performance
improvement compared to the other two policies. However, the agents did not collaborate, and the
proposed scenario was very simplistic. Aslani et al [34-36]. controlled 50 intersections in Tehran using
well-known reinforcement learning models, Actor-Critic, and the classic tile coding for function
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approximation. Mnih et al [37-39]. introduced Deep Q-Network (DQN) in the Atari Learning
Environment (ALE) domain. This approach uses deep neural networks to estimate the Q-function
and utilizes a replay buffer to store experiences defined by tuples, which serve as inputs to the neural
network. DQN quickly adapts to outperform a baseline by controlling a single intersection in the
ATSC. Chu et al. verify that DQN-based IL performs under a greedy algorithm that selects the phase
with the highest vehicle count. DQN-IL also fails to perform even simpler Q-learning counterparts
for a network of 4 intersection roads. These results suggest a trade-off between size and performance.

Collaborative Learners. In an environment where the actions of one agent can affect other agents
at nearby intersections, having isolated self-interested agents that only seek to maximize their own
gains at their own intersections can improve local performance for some agents but may lead to a
degradation of global performance, especially when dealing with large-scale networks. Therefore,
efforts are made to maximize global performance through some form of collaboration or information
sharing among agents. A naive approach is simply adding information about every other intersection
to the state space. However, this leads to an exponential growth as the number of intersections
increases and becomes infeasible for larger networks. Thus, a key challenge in multi-agent settings is
to implement coordination and information sharing among agents while maintaining a manageable
size of the state space. There are two types of cooperative MARL (Multi-Agent Reinforcement
Learning) systems related to this task. Joint Action Learners (JAL) explicitly construct models for
coordinating the actions of agents, and coordination graphs are one form of JAL that has been applied
to reinforcement learning-based adaptive traffic signal control [40]. Kuyer et al. designed a vehicle-
based model similar to the model-based approach by Wiering using the GLD (Green Light District)
simulator [41]. The system achieved coordination using the coordinate graph algorithm called Max-
Plus [42]. The proposed model was compared with the original Wiering model, and the extension
created by Steingréver added congestion bits to the state space [43-45]. The designed model
outperformed other models in both small-scale (4 intersections) and large-scale (8-15 intersections)
networks. Van der Pol applied a deep learning approach in both single and multi-agent settings. The
learning agents used the DQN (Deep Q-Network) algorithm with binary matrices as inputs
representing whether a vehicle is present at a specific location. For single intersection networks, the
DQN agents showed better stability and performance compared to the baseline agent using linear
approximation. Collaborative multi-agent systems have been shown to overcome the curse of
dimensionality in dealing with complex traffic networks, outperforming fixed-timing, single RL
agent, and non-collaborative multi-agent RL models. However, most of the tasks rely on directly
adding information about other agents to the state representation, which typically leads to state space
explosion or utilizes coordination graph approaches such as the Max-plus algorithm that exploits the
spatial locality of agents. The actual effectiveness of such coordination methods is difficult to
ascertain as each task defines different state-action representations and test scenario sets. This work
is inspired by where a fixed MDP formulation is used to compare traffic controllers. The methodology
inspired by Varela is used for experimental setup and evaluation to ensure fairness.

4. Proposed Research System

The proposal of this study emphasizes the importance of adhering to a rigorous methodology
in order to enable experiment reproducibility and result comparison based on the traffic conditions
in Korea. The methodology employed is a slightly adapted version of Varela, which is a
reinforcement learning-based adaptive traffic signal control methodology for multi-agent
coordination. While the existing methodologies for independent learners consist of four steps, this
study extends it to two additional steps, namely MDP formulation and RL method, as distinct
components. The five steps include simulation setup, MDP formulation, RL method, training, and
evaluation as followings in Figure 1.
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[ Simulation Domain ‘ MDP Formulation
Setup
RL Method ’ ‘ Training ] [ Evaluation

Figure 1. Proposed Method of Flow Diagram, composed of five processes. MDP is Markov Decision
Process and RL is Reinforcement Learning.

Since Markov Decision Process (MDP) defines the optimization problem, meaningful
comparisons between different reinforcement learning methods require the same underlying MDP.
Moreover, the MDP formulation can have a decisive impact on the performance of the reinforcement
learning model. This has been demonstrated by keeping the learning algorithm fixed and altering the
underlying MDP formulation. In this study, we keep the underlying MDP fixed and test different
baselines and RL-based methods, evaluating separate function approximations, adjustment methods,
and observation scopes.

4.1. Simulation Domain Setup

The first step of the proposed methodology is simulation domain setup, which is composed
based on the choice of traffic conditions. A realistic modeling is used for the agent to train and learn
effective traffic control policies, defining the network topology used in the simulator, and specifying
the traffic demand, which is derived from Suncheon City in Korea. Unlike traffic macro simulators
that simulate the overall traffic flow, traffic micro modeling simulate individual vehicle attributes
such as position, velocity, acceleration, route, and emission rate for each vehicle from real
environment. These have been used to evaluate current traffic controllers and prototype new traffic
controllers, and can be used in the context of reinforcement learning to model the environment in
which the agent learns traffic policies in Figure 2.

Figure 2. Suncheon City Traffic Flow from real environment.

4.2. MNT(Motorway Networks Topology)-Based MDP Formulation

It is possible to extract the network from real-world locations. By leveraging available open-
source services, it is feasible to export parts of urban areas, and by preparing this information during
the simulation setup phase, it can be provided to the simulator, opening up the possibility to simulate
a rich set of networks related to real traffic signal control.

Unfortunately, Real-world data can generate realistic traffic demands that match actual
observations, reducing the gap between the simulator and the deployed traffic controllers in the real
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world. However, this data needs to be validated before being used and the setup process can be
complex as it is often specific to the network. Acquiring such data can be challenging, and it may be
noisy or even unavailable. Therefore, data-driven traffic demands fall outside the scope of this
research.

MDP (Markov Decision Process) consists of state features, reward signals, action schemes, and
observation scope. A group of collaborating multi agent-based DRL is defined by a MDP that
accounts for the lack of observability and interactions. The MDP is defined by the tuple is shown as
Equation (1) in Figure 2.

(s.(a®)_, 2, _,). . (™), R.Y) (1)

State space S (sE€S5) is represents the state at time t, composed of features of incoming approaches

at intersections. In this research, The equation is described by feature maps ¢(s) composed of data on
internal states and incoming approaches by shown as Equation (2).

Q(S) = Xg, X, Xy vee wre ven vee s Xy e vos e Xr_1 2)

The internal state is defined by the index of the current green phase, x; € {0,1,...,r — 1}, where
P is the number of phases, and the time since this phase has been active, x; € {10,20,...,90}. The
feature x, on the incoming approaches of any given agent n at phase p is defined by the cumulative
delay by shown as Equation (3).

v
Xr = Zvevr e_S(E) ®)

Here, v, is the speed of the vehicle in the incoming approach of step p for the agent, and v, is
the speed limit for step r. No delay occurs if all vehicles travel at the speed limit for each step, or if
there are no vehicles in a step. If a vehicle travels slower than the speed limit, the delay becomes
positive until it reaches the maximum stop (v = 0), and the delay becomes a maximum of 1. Mostly,
this choice was influenced by the research done by Pedro theory.

4.3. DRL (Deep Reinforcement Learning) Approaches

The DRL (Deep Reinforcement Learning) method consists of learning algorithms with different
function approximation methods, adjustment methods, and observation scopes. In this task, agent
coordination is achieved using the QL algorithm for the domain and some of its variations. It should
be noted that (i) the QL algorithm receives a discrete state space, so it is necessary to discretize the
state defined in the previous MDP formula. (ii) In this algorithm, each intersection must share its state
and behavior during training and share its state during execution.

Deep QL (Deep Q-Learning) is a type of reinforcement learning that explores a non-deterministic
environment and selects the best action based on experience. Deep QL learns based on the concepts
of state, action, and reward. When time is denoted as t, the situation of the environment is defined as
a state (s;). When an action (a;) is taken in a state, a reward (r3,,) is given, and the system transitions
to the next state (s;,1) by shown as Equation (4).

S¢ D% Sep 4)

The set of states for a total of n states and m actions is represented by equation (5), and the set of
actions is represented by equation (6). Each state, action, and reward has a Q-function, denoted by
equation (7).

S = 50,51,52) cur eve weewens Spy (5)
A = 00,07,05 e e, Ay (6)
Q:SXA — R )

The learning values in Deep Q-Learning are stored in a Q-table. In this case, the value is obtained
from the maximum value among the values for the current state, action, and reward (r;4,) and the
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new state (max, Q(S¢+1, a¢+1)). This is done using the learning rate (lr, ) and the discount factor (df,
v) by shown as Equation (8).

8)

In general, Deep Q-Learning involves exploration, where actions are chosen based on the state
and reward. When selecting actions, occasionally trying out new actions can lead to better results
rather than solely relying on the actions that yield the highest immediate rewards. Therefore, the
concept of exploration with randomness is applied, known as epsilon-greedy selection. This research
proposes a traffic signal control system using Deep Q-Learning in a multi-intersection setting. Each
intersection is equipped with a local agent (Lygent), and each agent independently performs Deep Q-
Learning based on the time information of the waiting vehicles from neighboring intersections that
are aiming to enter the respective intersection. Accordingly, we have our research approaches for it,
during training, certain procedures of simulations and algorithm rely on random number generators.
Simply changing the seed of these generators can statistically induce significant differences in the
performance of the implemented traffic controllers. Due to this variance, multiple independent
training runs are seeded for each controller, and the results are averaged across each controller to
obtain performance outcomes that reflect how the traffic controller actually performs. These random
seeds also allow for complete replication of all experiments. The DRL process involves exploration
and exploitation phases, where congestion can occur in the network during simulations, preventing
vehicles from moving through the road network. This can happen more frequently during the
exploration phase, where actions are randomly selected by the agent. When congestion occurs, the
agent halts learning, and the simulation essentially comes to a halt. To avoid congestion, the
reinforcement learning task is episodic, where the simulator is reset after a set time to prevent
unfavorable outcomes from persisting indefinitely. There are two main performance metrics and two
auxiliary performance metrics. The reason for the reward to increase during training is to allow the
agent to make better decisions and indicate that the generated policy, such as in deep reinforcement
learning models like DQN, is approaching stable state preservation. The other two auxiliary metrics
are the average number of vehicles in the road network and the average speed. As training progresses,
the agent should be able to make better decisions reflecting a decrease in the average number of
vehicles in the network as it becomes more dispersed and an increase in average speed in Figure 3.

Qlse, a] € Q(se, ar) +a* (rpq +v* maxg Q(Ser1, Arrr) - Q(Se, ar))
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Figure 3. Training metrics of Suncheon City Traffic Flow by Deep Q-Learning.

Here, the state of DQL (Deep Q-Learning) is defined as the number of available directions for
vehicles to move at a given intersection. For example, in Figure 4, it is a 4-way intersection with 4
adjacent directions. Each direction at a 4-way intersection allows for left turns and straight
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movements. Therefore, the state of a 4-way intersection can be classified into 8 categories (( S=
{50, 51,52, wuv ver v e, Sy }). The actions in the proposed DQL consist of the possible actions to take at the
intersection, and there are three action sets as shown in Figure 5 (A = {ag, a;, @y, ... cov v oo, Qi }).

Motorway of Suncheon City

Figure 4. Adjacent 4 Intersection of Motorway of Suncheon City.

At time t, the reward ((r)}) of the local agent at an intersection is composed of the throughput
(t,) and the average waiting time (wt) of adjacent intersections, as shown in Equation 9. The
throughput represents the number of vehicles processed at intersection 7 within a unit time, while the
waiting time is the average waiting time of vehicles at intersection i and its adjacent intersections.
The weights (o) are used to adjust the importance of throughput and waiting time, with w greater
than 1 and & defined between 0 and 1.

Mi=axwP+A-a)* XXM ©)

1 2 3

Ir Jr

Figure 5. Action set of Deep Q-Learning.
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5. Discussion

This research paper proposes a traffic signal control method using Deep Q-learning for multi-
intersection of motorway of Suncheon City in Korea. The objective of this research is to maximize the
throughput and minimize the waiting time at intersections through collaboration with neighboring
intersections. To evaluate the performance of the proposed system, it is compared with fixed-time
signal control and adaptive signal control methods. The results show that when using DRL-TCS
(Deep Reinforcement Learning Traffic Control System) on 4 neighboring intersections, the proposed
method outperforms in terms of average queue length, throughput, and waiting time. However, for
larger intersections, using only a distributed approach may not be sufficient for traffic control.
Therefore, further research on a deep learning-based traffic signal method that combines distributed
and centralized approaches is needed to address this limitation.
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