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Abstract: Recently, smart mobility intelligent traffic services have become a critical task in Intelligent 

Transportation Systems (ITS). This involves not only the use of advanced sensors and controllers but also the 

ability to respond to real-time traffic situations at intersections, alleviate congestion, and generate policies to 

prevent traffic jams. DRL (Deep Reinforcement Learning) provides a natural framework for processing tasks. 

In DRL, each intersection can control itself and coordinate with neighbors to achieve optimal network-wide 

policies. However, comparing approaches remains a challenging task due to the existence of numerous possible 

configurations. This research performs a critical comparison of various traffic controllers found in the literature. 

It demonstrates that using a nonlinear approximator for coordination mechanisms and enhancing observability 

at each intersection are key performance drivers. 

Keywords: smart mobility intelligent traffic service; intelligent transportation system; real-time 

traffic situation; deep reinforcement learning (DRL); optimal network-wide policy 

 

1. Introduction 

In Korea today, the smart mobility traffic information system combines and analyzes personal 

movement information such as taxis or private cars using big data. It also refers to a new 

transportation information provision service that leads potential private users to complex public 

transportation by extracting demand patterns of transportation users and providing integrated 

mobility services for reservation, information, use, and payment according to individual user needs. 

It is a technology that allows users to set routes for transportation modes from their desired departure 

point to destination, according to the demands of public transportation users [1]. By operating 

transportation modes at desired time slots and implementing interconnections between different 

modes, it enhances the convenience of transportation for individuals with mobility challenges. It 

transitions from a conventional independent transportation service system that focuses on individual 

modes to a user-centric integrated and customized transportation service system that combines and 

operates various modes such as public transportation, personal vehicles, and shared cars [2]. This 

system aims to provide seamless transportation information connectivity, improve efficiency in short, 

medium, and long-distance travel, and implement an environmentally friendly and sharing 

economy-based transportation service in response to climate change. Due to these reasons, the need 

for an intelligent transportation system in Korea can be summarized as follows. Firstly, although the 

public transportation mode share in Korea has shown excellent performance compared to advanced 

countries, it has been stagnant at around 40% since 2014 [3], reaching its limit in terms of increasing 

the mode share. To respond efficiently to the constantly changing transportation demand that varies 

by local government and small-scale areas, an efficient operational method is needed along with the 

supply of new concept transportation modes. Secondly, while Korea has improved the public 

transportation service centered around public transportation providers, various countries have 

recently introduced new public transportation services, and the concepts of car sharing and ride 

sharing have been spreading in the private vehicle sector [4]. Thirdly, in the field of public 

transportation, overseas cases of Mobility as a Service (MaaS) are emerging, especially in the Nordic 
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region of Western Europe. MaaS provides demand-based subscriber transportation packages, 

offering integrated transportation information including various modes of transportation on a single 

platform, as well as integrated payment services [5]. It represents a departure from the existing 

transportation systems provided by supply-oriented providers and aims to provide personalized 

optimal transportation information and route systems, reservation and payment systems, and other 

integrated operational services from the user's perspective. The rapid urbanization has led to 

increased congestion in urban areas. To alleviate this, there is a need to establish an integrated system 

that provides personalized transportation services based on comprehensive analysis using big data. 

This includes tailored guidance for public transportation based on individual user demands, 

integrated mobility services that provide information, reservations, usage, and payment, and 

coordinated operations of various transportation modes to meet the demand. Additionally, in terms 

of transportation planning and operation in smart cities, it is necessary to activate smart mobility by 

utilizing user activity-based mobility data and develop and standardize service technologies for 

integrated public transportation and shared mobility services. The related trends of strategic 

products for smart mobility intelligent transportation systems are shown in Table 1. 

Table 1. Current trends in strategic products. 

Market status and outlook Product industry characteristics 

- (Overseas) The smart mobility market is expected to 

grow from $33 billion and 31 million in 2019 to $91 

billion in 2025. 

- (Domestic) The smart mobility market is expected to 

grow from KRW 727.1 billion in 2019 to KRW 2.2 trillion 

and 20 billion in 2025. 

- The smart mobility ecosystem is being 

formed, and the portfolio of 

transportation means is expanding. 

- Integration and synergy with new 

trans portation means such as Mobility 

as a Service (MaaS) and integrated 

information exchange. 

Policy trends Technological trends 

- (Overseas) Various programs are being implemented, 

including research and development, and designation 

of pilot cities for smart mobility on a global scale. 

- (Domestic) The "Smart City National Strategy Project" 

is being pursued through research and development, 

and specific sub-projects in the field of smart mobility 

(such as the development of smart mobility and parking 

space sharing support technologies). 

- Establishment of domestic and 

interna- tional standards for 

transportation data and communication 

protocols. 

- Development of communication inter 

faces for interconnecting transportation 

means. 

- Development of interfaces for mutual 

in formation sharing between smart 

mobility service partners and private 

sector centers. 

Key players (Companies) Core technologies 

- (Overseas) Uber, Grab, GM, Ford, Sie mens, Toyota 

- (Domestic) KT, Kakao, ESRI, DoctorSoft 

- Real-time traffic guidance system for 

situational response 

- Smart technology for traffic accident 

alerts 

- Integrated payment system and 

sharing of smart public transportation 

information 

- Real-time traffic information 

monitoring system based on 

video/images 

- Technology for real-time traffic 

information collection and sharing at 

lane level 
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- Deep learning-based technology for 

traffic situation prediction 

- Technology for automatic detection of 

traffic accidents and identification of 

perpetrators/victims using video 

information 

2. Scope and Classification 

2.1. Value Chain 

Smart mobility is one of the key components of a smart city, along with transportation, energy, 

resources, and infrastructure management. It plays a crucial role in the city's economic and social 

systems, with significant government funding and direct impact on citizens' daily lives. Smart 

mobility generates a vast amount of data that influences the city's resources, logistics, energy, and 

economic flows. The technologies that constitute smart mobility are expected to play a significant 

role in enhancing the competitiveness of cities and countries. The development and production of 

new modes of transportation are expected to create jobs, reduce traffic accidents through 

technological advancements, and improve the efficiency of transportation systems, resulting in 

economic benefits. For example, advancements in smart cars are projected to create around 320,000 

jobs and reduce approximately 2,500 serious traffic accidents annually, resulting in an estimated 

economic impact of 75.4 billion KRW by 2030. The goal is to enhance user convenience, such as 

reducing overall travel time, through the integration of smart mobility systems. By establishing a 

bidirectional data collection and sharing system between vehicles and infrastructure, rapid and 

proactive responses to unforeseen situations and preventive measures become possible. As vehicles 

themselves become a means of communication, they can contribute to solving urban and 

transportation issues through data integration facilitated by IoT, a key component of smart cities. 

During the initial stages of introducing autonomous driving, potential challenges arising from the 

coexistence of autonomous and conventional vehicles can be overcome through vehicle-to-

everything (V2X) communication, thereby improving the safety and efficiency of cities and 

transportation. Table 2 represents the industrial structure of the smart mobility transportation 

information system field. 

Table 2. Smart mobility transportation information system field. 

Back-end industry 
Smart mobility transportation information 

system 
Front-end industry 

- Sensor 

communication 

- IoT communication 

- Big data analysis 

- Intelligent analysis 

- Machine Learning, 

etc. 

- Information collection technology 

- Information collection technology 

- User-centric personalized integrated 

transportation information 

- Service technology, etc. 

- Vehicle 

- Transportation 

- Information 

communication 

- Infrastructure 

Development 

- Platform provision, etc. 

2.2. Classification by Purpose 

In the field of smart mobility, various and creative services are being discovered through citizen-

participatory (bottom-up) service concepts. Representative services include personal transportation 

sharing services, public transportation sharing services, and micro-mobility services. Table 3 

provides a classification by purpose for strategies to implement smart mobility. 
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Table 3. Smart mobility transportation information system field. 

Classification Contents 

Personal transportation 

sharing service (On-

demand) 

- It is a service that operates on predetermined routes using small-scale personal 

transportation vehicles designed to accommodate 1-2 passengers, in response to 

individual demand for transportation. 

- It is a first-mile and last-mile service that operates based on individual calls and 

destination designation, without fixed operating hours. 

- Public transit-based 

shared mobility service 

(Circular) 

- It is a service that circulates on a predetermined route using small autonomous 

driving vehicles (6-12 passenger capacity) 

- It is a service that operates vehicles (dispatching, etc.) in response to real-time 

(or pre-surveyed) user demand through user information collection technology 

- Micro Mobility service 

- Micro mobility vehicles that use environmentally friendly fuels such as electric 

power and represent small-sized personal transportation for 1-2 passengers, 

including low-speed electric cars, single-seater electric vehicles, electric bicycles, 

etc. 

2.3. Classification by Technology 

The Smart Mobility Traffic Information System can be broadly classified into the implementation 

technologies of an AI-based Smart Mobility Center. It can be further categorized as follows: The 

implementation technologies of the Mobility Center include AI-based urban traffic control 

technology, mobile-based MaaS (Mobility as a Service) technology, prediction technology based on 

big data and simulation, and navigation service technology based on connected cars. These 

technologies work together to control the flow of transportation throughout the city, providing 

personalized services and delivering a higher level of service to citizens. The details are shown in the 

table below as Table 4. 

Table 4. Classification by technology. 

Classification Contents 

Smart Traffic Signal 

System Implementation 

Technology 

- To control urban traffic, the city is divided into larger sections first. Each 

section is equipped with cameras and LiDAR sensor-based intersection vehicle 

tracking systems to monitor queue lengths and traffic volume in each direction. 

The data is accumulated and utilized for regional macro-simulation and 

intersection-level simulation through reinforcement learning. This technology 

enables the control of large-scale traffic signals in the city. 

- By reducing congestion in chronic bottleneck areas, it aims to reduce 

greenhouse gas emissions and improve citizen satisfaction. It also enables the 

implementation of a new signal system using AI technology, which can lead to 

global technological leadership. 

Big Data-Based Personal 

Mobility System 

Technology 

- To effectively implement MaaS, efficient handling, management, and an 

ecosystem for big data are required. Key technologies include real-time 

acquisition and processing of mobile and vehicle GPS data, preprocessing of big 

data, analysis of individual mobility patterns, real-time prediction of urban 

traffic demand, and prediction of long-term traffic demand and movement 

patterns by day of the week. 

- Personal mobility services, including shared autonomous vehicles, need to 

consider operation in a mixed environment of autonomous and conventional 

vehicles. Key technologies include integration with urban traffic flow 

simulations, optimal dispatching of shared autonomous vehicles, and 

management of multimodal transportation operations, including public 

transportation. 

Mobility Simulator-Based 

Traffic Prediction System 

Implementation 

Technology 

- A simulation system that can faithfully replicate the actual transportation 

system in a virtual world plays an important role. Traffic simulation is essential 

for ITS impact assessment, public transportation route planning, traffic 

congestion prediction, and traffic flow control, among others. 
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- To simulate cities larger than metropolitan scale, distributed/parallel 

simulation performance is crucial. It is also necessary to consider features such 

as the ability to handle events like accidents, construction, and emergency 

situations, as well as high-speed processing through mesoscopic or platoon-

based behavioral model simulations. 

C-ITS System and Service 

Implementation 

Technology 

- C-ITS (Cooperative Intelligent Transport Systems) is a technology that can 

advance the functions of current traffic information centers in a future-oriented 

manner. It requires the establishment of wide-area C-ITS testbeds on actual 

roads and the development of various services. 

- It is possible to develop various services in categories such as traffic accident 

prevention services, traffic accident response services, emergency vehicle 

support services, public transportation support services, congestion mitigation 

services, and pedestrian services. 

AI-Based Road Pavement 

Maintenance and Hazard 

Warning System 

Technology 

- To ensure efficient pavement management, artificial intelligence technology is 

utilized in combination with drones and black boxes to continuously acquire 

videos of road pavement conditions. Deep learning is used to diagnose the 

pavement condition and predict the deterioration using big data. Based on 

predictive maintenance strategies, the road pavement condition is managed and 

maintained in the optimal state. Real-time information on road hazards such as 

potholes is provided to drivers, enhancing their safety. 

- In public transportation vehicles such as buses and taxis, video acquisition 

through black boxes and drones is possible, allowing for efficient and periodic 

video acquisition through various means of acquisition. 

2.4. Case Study 

For example, various research studies on traffic management at intersections are being 

conducted in Korea. Among them, research on traffic signal systems is actively underway. The 

current signal systems are fixed in nature. In order to increase the throughput of intersections, 

adaptive methods have also been studied. Adaptive methods involve adjusting the timing of traffic 

signals or changing the sequence of signals based on traffic volume. The optimization problem of 

traffic signal control, which involves a large amount of data in a dynamically changing traffic 

environment, poses a high level of complexity when solved using traditional mathematical models 

or optimization methods. To solve the traffic signal problem, fuzzy techniques and Q-learning 

techniques are widely used. A traffic signal control technique using fuzzy techniques has been 

proposed for a single intersection. In this approach, the order of green signals remains fixed, but the 

duration of green signals is dynamically adjusted based on traffic volume. The number of vehicles 

entering the intersection is measured to determine the current traffic flow during the green signal 

and the traffic flow during the red signal in the next phase. Based on the identified traffic flow, the 

decision to extend the duration of the green signal is made. The reduction of green signal duration is 

not considered in this approach. On the other hand, Askerzada et al [6]. determine the traffic flow 

pattern based on the measured number of vehicles and adjust the duration of the green signal 

accordingly. Traffic signal control using fuzzy techniques allows for more flexible control in dynamic 

traffic environments. However, fuzzy control models incur significant overhead as the fuzzy control 

rules change and are generated with the changing environment. Therefore, research on traffic signal 

techniques using reinforcement learning, such as Q-learning, is also being conducted. The Q-learning 

(QL) technique learns through reinforcement learning to find the optimal policy. QL has the 

advantage of not requiring a pre-defined environment model, making it suitable for dynamic traffic 

environments. Research on signal control at intersections using QL can be divided into single 

intersection studies and studies that consider multiple intersections together. Single intersection 

studies focus on obtaining learning experiences in a single environment and determining useful 

ranges for various parameters. The order of green signals is fixed, and the duration of green signals 

is adjusted through learning. Chin et al [7]. considered the queue length as a parameter and aimed to 

always have the fewest vehicles waiting at the intersection. The queue length represents the length 

of vehicles waiting in the intersection lane. Abdulhai et al [8–10]. considered the queue length and 
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the time it takes for vehicles to exit the intersection. They aimed to minimize traffic delay by reducing 

the deviation in queue length. While studies on signal control at single intersections are important, 

intersections are connected and influenced by adjacent intersections. Therefore, studies on signal 

control considering multiple intersections are being conducted. Multiple intersection studies involve 

considering various variables due to the consideration of multiple intersections. Khamis et al [11–15]. 

proposed a system that minimizes travel time between multiple intersections. The travel time refers 

to the time taken from the origin to the destination. The system also pursues a green wave, which 

gradually turns on three or more consecutive traffic signals for a progressing group of vehicles, 

allowing them to pass through intersections without stopping. This enables vehicles to maintain 

speed and minimize fuel consumption. Chin et al [16–20]. distribute appropriate green signal timings 

according to the situation by extending or reducing the duration of green signals at multiple 

intersections. This adaptive signal control technique aims to minimize queue length. Comparative 

studies on various intersections analyzed and adjusted the duration of green signals based on a fixed 

signal order. However, since intersections are configured consecutively, adjacent intersections affect 

each other. If the order of signals can be flexibly changed according to the situation, more efficient 

traffic signal control can be achieved. 

3. Deep Reinforcement Learning 

Traffic signal controllers with fixed timings are typically defined by different cycle profiles and 

are observed over time as they alternate, attempting to handle the various traffic flows that commonly 

occur. Some of these methods are defined by mathematical models that use calculus, linear 

programming, and other optimization algorithms such as Webster, GreenWave [21–23], and 

Maxband [24–26]. Other methods involve using traffic simulators to build traffic models. For example, 

Rouphail et al [27]. minimized link delays and queue times using a genetic algorithm (GA) applied 

with the CORSIM simulator, for a 9-intersection network. However, the results were limited due to 

the slow convergence of the GA algorithm. Traffic controllers have started using models that 

optimize various traffic metrics by utilizing sensor data. This enables them to better adapt to changes 

in traffic flow as following;  

− Max-pressure aims to maintain balance in the queue length of adjacent intersections. The 

pressure of a phase is defined as the difference in queue length between incoming and outgoing 

lanes. Minimizing the pressure of a phase maximizes the throughput of the system, according 

to Max-pressure algorithm. 

− SCATS (Sydney Co-Ordinated Adaptive Traffic System) repetitively selects the next signal plan 

from a predefined set of plans based on the current traffic conditions and predefined 

performance measures. The model infers the performance of all plans before each cycle and then 

chooses the plan with better performance. 

− RHODES is a hierarchical system that predicts the traffic load on each link and allocates phase 

time according to the predictions, and Liu, et al. developed a controller that identifies upstream 

and downstream vehicles, in intervals of 15 minutes, to measure their delay and then choosing 

a signal timing plan that minimizes it. 

− Tan, et al. developed a traffic controller that senses the number of incoming vehicles and uses 

fuzzy logic to determine the green time of a single intersection, and Lee, et al. also used a fuzzy 

logic controller but in multiple intersections. The controller takes decisions based on vehicle data 

of adjacent junctions. 

While such systems generally outperform fixed-timing controllers, they have been tested in very 

simplistic scenarios. They cannot adapt well to real-world urban traffic with complex dynamics, such 

as multi-intersection or heterogeneous traffic flow. Recently, reinforcement learning has become 

popular in building traffic signal controllers as agents can learn traffic control policies by interacting 

with the environment without predefined models. The reinforcement learning framework naturally 

fits the traffic signal controller problem, with the traffic controller as the agent, traffic data as the state 

representation, and phase control as the agent's actions. Various learning models have been explored 

to build traffic signal controllers. However, comparing proposed solutions and results is challenging 
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due to significant variations in problem definitions across literature. We offer the adoption of a Deep 

Reinforcement Learning (DRL) approach to address the traffic control problem. 

3.1. CRL (Classic Reinforcement Learning) 

The main distinction in different reinforcement learning approaches lies in whether there is a 

need to learn the transition probability function P. In model-based methods, the agent learns a 

transition model that estimates the probability of transitioning between given states given possible 

actions, and then calculates the expected rewards for each transition. The value function is then 

estimated using dynamic programming-based methods, and decisions are made based on this 

estimation. Model-based methods require learning P and the reward function R, while model-free 

methods skip this step and learn by interacting with the environment and directly observing rewards. 

They perform value function or policy updates by interacting with the environment and directly 

observing rewards. Learning the transition probability function in the context of traffic control 

problems implies modeling an environment that can predict metrics such as vehicle speed, position, 

and acceleration. Wiering [28] used a model-based approach in a multi-agent model operating in a 

network of six controlled intersections, where each controller receives the discretized positions and 

destinations of each vehicle on approach lanes, resulting in 278 possible traffic situations. The defined 

RL-controller performs better than simpler controllers such as fixed-time and Longest Queue First 

(LQF), assuming that each vehicle can communicate with each infeasible signal controller. 

Additionally, since all distances have the same number of lanes, the network is simplified, resulting 

in unrealistic homogeneous traffic patterns. Our research also mentions the possibility of having 

smarter driving policies to avoid congested intersections when previous communication is assumed 

to be possible. Some research have attempted a model-based approach, but most of the research 

community adopts a model-free approach due to the difficulty of fully modeling the unpredictable 

behavior of human drivers when considering their natural and unpredictable actions. Most tasks that 

use a model-free approach rely on algorithms such as Q-learning and SARSA to learn optimal traffic 

control policies. Thorpe et al. [29] built a model-free system using SARSA and compared the 

performance of three state representations: volume, presence, and absence. By dividing each lane in 

each section of the network into equal-distance intervals or unequal-distance intervals, vehicles can 

be controlled. The RL model outperformed fixed-time and maximum volume controllers regardless 

of the state representation used, and the unequal-distance intervals state representation 

outperformed the other two state representations. Previous reinforcement learning-based controllers 

were applied to single intersections because the state space exponentially increases with the number 

of controlled intersections. Considering that a single intersection model is overly simplified and 

cannot estimate traffic at the city level, other studies aimed to apply reinforcement learning to 

multiple traffic intersections by constructing multi-agent models. 

3.2. MRL (Multi-Agent Reinforcement Learning) 

In a MA(Multi-agent setting), each agent controls one intersection in a traffic network with 

multiple intersections. This approach minimizes the explosion of the state space by allowing each 

agent to operate in a small partition of the environment. In a non-cooperative approach, each agent 

seeks to maximize specific rewards, such as queue lengths or cumulative delays, using the state 

representing their respective intersections. This is commonly referred to as Independent Learners (IL).  

Independent Learners. The initial systems consisted of independent learners (IL) and a small 

number of intersections, where smaller intersections performed better. However, over time, 

researchers were able to adapt IL to larger road networks. Camponogara et al [30–33]. developed a 

multi-agent system based on Q-learning and modeled it as a distributed stochastic game. They 

applied the system to a simple network with two intersections and compared it to random and 

Longest Queue First policies. The proposed multi-agent model showed significant performance 

improvement compared to the other two policies. However, the agents did not collaborate, and the 

proposed scenario was very simplistic. Aslani et al [34–36]. controlled 50 intersections in Tehran using 

well-known reinforcement learning models, Actor-Critic, and the classic tile coding for function 
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approximation. Mnih et al [37–39]. introduced Deep Q-Network (DQN) in the Atari Learning 

Environment (ALE) domain. This approach uses deep neural networks to estimate the Q-function 

and utilizes a replay buffer to store experiences defined by tuples, which serve as inputs to the neural 

network. DQN quickly adapts to outperform a baseline by controlling a single intersection in the 

ATSC. Chu et al. verify that DQN-based IL performs under a greedy algorithm that selects the phase 

with the highest vehicle count. DQN-IL also fails to perform even simpler Q-learning counterparts 

for a network of 4 intersection roads. These results suggest a trade-off between size and performance. 

Collaborative Learners. In an environment where the actions of one agent can affect other agents 

at nearby intersections, having isolated self-interested agents that only seek to maximize their own 

gains at their own intersections can improve local performance for some agents but may lead to a 

degradation of global performance, especially when dealing with large-scale networks. Therefore, 

efforts are made to maximize global performance through some form of collaboration or information 

sharing among agents. A naive approach is simply adding information about every other intersection 

to the state space. However, this leads to an exponential growth as the number of intersections 

increases and becomes infeasible for larger networks. Thus, a key challenge in multi-agent settings is 

to implement coordination and information sharing among agents while maintaining a manageable 

size of the state space. There are two types of cooperative MARL (Multi-Agent Reinforcement 

Learning) systems related to this task. Joint Action Learners (JAL) explicitly construct models for 

coordinating the actions of agents, and coordination graphs are one form of JAL that has been applied 

to reinforcement learning-based adaptive traffic signal control [40]. Kuyer et al. designed a vehicle-

based model similar to the model-based approach by Wiering using the GLD (Green Light District) 

simulator [41]. The system achieved coordination using the coordinate graph algorithm called Max-

Plus [42]. The proposed model was compared with the original Wiering model, and the extension 

created by Steingröver added congestion bits to the state space [43–45]. The designed model 

outperformed other models in both small-scale (4 intersections) and large-scale (8-15 intersections) 

networks. Van der Pol applied a deep learning approach in both single and multi-agent settings. The 

learning agents used the DQN (Deep Q-Network) algorithm with binary matrices as inputs 

representing whether a vehicle is present at a specific location. For single intersection networks, the 

DQN agents showed better stability and performance compared to the baseline agent using linear 

approximation. Collaborative multi-agent systems have been shown to overcome the curse of 

dimensionality in dealing with complex traffic networks, outperforming fixed-timing, single RL 

agent, and non-collaborative multi-agent RL models. However, most of the tasks rely on directly 

adding information about other agents to the state representation, which typically leads to state space 

explosion or utilizes coordination graph approaches such as the Max-plus algorithm that exploits the 

spatial locality of agents. The actual effectiveness of such coordination methods is difficult to 

ascertain as each task defines different state-action representations and test scenario sets. This work 

is inspired by where a fixed MDP formulation is used to compare traffic controllers. The methodology 

inspired by Varela is used for experimental setup and evaluation to ensure fairness. 

4. Proposed Research System 

The proposal of this study emphasizes the importance of adhering to a rigorous methodology 

in order to enable experiment reproducibility and result comparison based on the traffic conditions 

in Korea. The methodology employed is a slightly adapted version of Varela, which is a 

reinforcement learning-based adaptive traffic signal control methodology for multi-agent 

coordination. While the existing methodologies for independent learners consist of four steps, this 

study extends it to two additional steps, namely MDP formulation and RL method, as distinct 

components. The five steps include simulation setup, MDP formulation, RL method, training, and 

evaluation as followings in Figure 1. 
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Figure 1. Proposed Method of Flow Diagram, composed of five processes. MDP is Markov Decision 

Process and RL is Reinforcement Learning. 

Since Markov Decision Process (MDP) defines the optimization problem, meaningful 

comparisons between different reinforcement learning methods require the same underlying MDP. 

Moreover, the MDP formulation can have a decisive impact on the performance of the reinforcement 

learning model. This has been demonstrated by keeping the learning algorithm fixed and altering the 

underlying MDP formulation. In this study, we keep the underlying MDP fixed and test different 

baselines and RL-based methods, evaluating separate function approximations, adjustment methods, 

and observation scopes. 

4.1. Simulation Domain Setup 

The first step of the proposed methodology is simulation domain setup, which is composed 

based on the choice of traffic conditions. A realistic modeling is used for the agent to train and learn 

effective traffic control policies, defining the network topology used in the simulator, and specifying 

the traffic demand, which is derived from Suncheon City in Korea. Unlike traffic macro simulators 

that simulate the overall traffic flow, traffic micro modeling simulate individual vehicle attributes 

such as position, velocity, acceleration, route, and emission rate for each vehicle from real 

environment. These have been used to evaluate current traffic controllers and prototype new traffic 

controllers, and can be used in the context of reinforcement learning to model the environment in 

which the agent learns traffic policies in Figure 2. 

 

Figure 2. Suncheon City Traffic Flow from real environment. 

4.2. MNT(Motorway Networks Topology)-Based MDP Formulation 

It is possible to extract the network from real-world locations. By leveraging available open-

source services, it is feasible to export parts of urban areas, and by preparing this information during 

the simulation setup phase, it can be provided to the simulator, opening up the possibility to simulate 

a rich set of networks related to real traffic signal control. 

Unfortunately, Real-world data can generate realistic traffic demands that match actual 

observations, reducing the gap between the simulator and the deployed traffic controllers in the real 
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world. However, this data needs to be validated before being used and the setup process can be 

complex as it is often specific to the network. Acquiring such data can be challenging, and it may be 

noisy or even unavailable. Therefore, data-driven traffic demands fall outside the scope of this 

research.  

MDP (Markov Decision Process) consists of state features, reward signals, action schemes, and 

observation scope. A group of collaborating multi agent-based DRL is defined by a MDP that 

accounts for the lack of observability and interactions. The MDP is defined by the tuple is shown as 

Equation (1) in Figure 2. (S, (𝐴(𝑛))𝑛=1𝑁 , (𝑍(𝑛))𝑛=1𝑁 ) , 𝑃, ((O(𝑛))𝑛=1𝑁 , 𝑅, 𝛶) (1) 

State space S (s∈S) is represents the state at time t, composed of features of incoming approaches 

at intersections. In this research, The equation is described by feature maps ϕ(s) composed of data on 

internal states and incoming approaches by shown as Equation (2). 

ϕ(s)  = 𝑥𝑔, 𝑥𝑡 , 𝑥0, … … … … , 𝑥𝑟 , … … …. 𝑥𝑟−1 (2) 

The internal state is defined by the index of the current green phase, xg  ∈  {0, 1, . . . , r − 1}, where 

P is the number of phases, and the time since this phase has been active, 𝑥𝑡  ∈ {10, 20, . . . , 90}. The 

feature 𝑥𝑟 on the incoming approaches of any given agent n at phase p is defined by the cumulative 

delay by shown as Equation (3). 𝑥𝑟  = ∑ e−5( 𝑣𝑣𝑟)𝑣∈𝑣𝑟  (3) 

Here, 𝑣𝑟 is the speed of the vehicle in the incoming approach of step p for the agent, and 𝑣𝑟 is 

the speed limit for step r. No delay occurs if all vehicles travel at the speed limit for each step, or if 

there are no vehicles in a step. If a vehicle travels slower than the speed limit, the delay becomes 

positive until it reaches the maximum stop (v = 0), and the delay becomes a maximum of 1. Mostly, 

this choice was influenced by the research done by Pedro theory.  

4.3. DRL (Deep Reinforcement Learning) Approaches 

The DRL (Deep Reinforcement Learning) method consists of learning algorithms with different 

function approximation methods, adjustment methods, and observation scopes. In this task, agent 

coordination is achieved using the QL algorithm for the domain and some of its variations. It should 

be noted that (i) the QL algorithm receives a discrete state space, so it is necessary to discretize the 

state defined in the previous MDP formula. (ii) In this algorithm, each intersection must share its state 

and behavior during training and share its state during execution. 

Deep QL (Deep Q-Learning) is a type of reinforcement learning that explores a non-deterministic 

environment and selects the best action based on experience. Deep QL learns based on the concepts 

of state, action, and reward. When time is denoted as t, the situation of the environment is defined as 

a state (𝑠𝑡). When an action (𝑎𝑡) is taken in a state, a reward (𝑟𝑡+1) is given, and the system transitions 

to the next state (𝑠𝑡+1) by shown as Equation (4). 𝑠𝑡  →𝑎𝑡 𝑠𝑡+1 (4) 

The set of states for a total of n states and m actions is represented by equation (5), and the set of 

actions is represented by equation (6). Each state, action, and reward has a Q-function, denoted by 

equation (7). 

S  = 𝑠0, 𝑠1, 𝑠2, … … … … , 𝑠𝑛 (5) 

A  = 𝑎0, 𝑎1, 𝑎2, … … … … , 𝑎𝑚 (6) 

Q: S X A → R (7) 

The learning values in Deep Q-Learning are stored in a Q-table. In this case, the value is obtained 

from the maximum value among the values for the current state, action, and reward (𝑟𝑡+1) and the 
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new state (𝑚𝑎𝑥𝑎 Q(𝑠𝑡+1, 𝑎𝑡+1)). This is done using the learning rate (lr, α) and the discount factor (df, 

γ) by shown as Equation (8). 

Q[𝑠𝑡, 𝑎𝑡] ← Q(𝑠𝑡, 𝑎𝑡) + α * (𝑟𝑡+1 + γ * 𝑚𝑎𝑥𝑎 Q(𝑠𝑡+1, 𝑎𝑡+1) - Q(𝑠𝑡, 𝑎𝑡)) (8) 

In general, Deep Q-Learning involves exploration, where actions are chosen based on the state 

and reward. When selecting actions, occasionally trying out new actions can lead to better results 

rather than solely relying on the actions that yield the highest immediate rewards. Therefore, the 

concept of exploration with randomness is applied, known as epsilon-greedy selection. This research 

proposes a traffic signal control system using Deep Q-Learning in a multi-intersection setting. Each 

intersection is equipped with a local agent (𝐿𝑎𝑔𝑒𝑛𝑡), and each agent independently performs Deep Q-

Learning based on the time information of the waiting vehicles from neighboring intersections that 

are aiming to enter the respective intersection. Accordingly, we have our research approaches for it, 

during training, certain procedures of simulations and algorithm rely on random number generators. 

Simply changing the seed of these generators can statistically induce significant differences in the 

performance of the implemented traffic controllers. Due to this variance, multiple independent 

training runs are seeded for each controller, and the results are averaged across each controller to 

obtain performance outcomes that reflect how the traffic controller actually performs. These random 

seeds also allow for complete replication of all experiments. The DRL process involves exploration 

and exploitation phases, where congestion can occur in the network during simulations, preventing 

vehicles from moving through the road network. This can happen more frequently during the 

exploration phase, where actions are randomly selected by the agent. When congestion occurs, the 

agent halts learning, and the simulation essentially comes to a halt. To avoid congestion, the 

reinforcement learning task is episodic, where the simulator is reset after a set time to prevent 

unfavorable outcomes from persisting indefinitely. There are two main performance metrics and two 

auxiliary performance metrics. The reason for the reward to increase during training is to allow the 

agent to make better decisions and indicate that the generated policy, such as in deep reinforcement 

learning models like DQN, is approaching stable state preservation. The other two auxiliary metrics 

are the average number of vehicles in the road network and the average speed. As training progresses, 

the agent should be able to make better decisions reflecting a decrease in the average number of 

vehicles in the network as it becomes more dispersed and an increase in average speed in Figure 3. 

 

Figure 3. Training metrics of Suncheon City Traffic Flow by Deep Q-Learning. 

Here, the state of DQL (Deep Q-Learning) is defined as the number of available directions for 

vehicles to move at a given intersection. For example, in Figure 4, it is a 4-way intersection with 4 

adjacent directions. Each direction at a 4-way intersection allows for left turns and straight 
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movements. Therefore, the state of a 4-way intersection can be classified into 8 categories (( S= 

{𝑠0, 𝑠1, 𝑠2, … … … … , 𝑠𝑛}). The actions in the proposed DQL consist of the possible actions to take at the 

intersection, and there are three action sets as shown in Figure 5 (A = {𝑎0, 𝑎1, 𝑎2, … … … … , 𝑎𝑚}). 

 

Figure 4. Adjacent 4 Intersection of Motorway of Suncheon City. 

At time t, the reward ((𝑟)𝑡𝑖 ) of the local agent at an intersection is composed of the throughput 

( 𝑡𝑝 ) and the average waiting time (wt) of adjacent intersections, as shown in Equation 9. The 

throughput represents the number of vehicles processed at intersection i within a unit time, while the 

waiting time is the average waiting time of vehicles at intersection i and its adjacent intersections. 

The weights (α) are used to adjust the importance of throughput and waiting time, with w greater 

than 1 and ξ defined between 0 and 1. (𝑟)𝑡𝑖 =  𝛼 ∗ 𝑤𝑖𝑡𝑝 + (1 − 𝛼) ∗   ∑ ((𝜉)𝑖𝑤𝑡)𝐿𝑎𝑔𝑒𝑛𝑡𝑘=1  (9) 

 

Figure 5. Action set of Deep Q-Learning. 
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5. Discussion 

This research paper proposes a traffic signal control method using Deep Q-learning for multi-

intersection of motorway of Suncheon City in Korea. The objective of this research is to maximize the 

throughput and minimize the waiting time at intersections through collaboration with neighboring 

intersections. To evaluate the performance of the proposed system, it is compared with fixed-time 

signal control and adaptive signal control methods. The results show that when using DRL-TCS 

(Deep Reinforcement Learning Traffic Control System) on 4 neighboring intersections, the proposed 

method outperforms in terms of average queue length, throughput, and waiting time. However, for 

larger intersections, using only a distributed approach may not be sufficient for traffic control. 

Therefore, further research on a deep learning-based traffic signal method that combines distributed 

and centralized approaches is needed to address this limitation. 
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