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Abstract: Unmanned aerial vehicles (UAV) thermal imagery offers several advantages in environmental
monitoring, as it can provide a low-cost, high-resolution, and flexible solution to measure the temperature of
the surface of the land. Limitations related to the maximum load of the drone lead to use of lightweight
uncooled thermal cameras whose internal components are not stabilized to a constant temperature. Such
cameras suffer from several unwanted effects that contribute to the increase in temperature measurement error
from +0.5 °C in laboratory conditions, to +5 °C in unstable flight conditions. This article describes a post
processing procedure, that reduces the above unwanted effects. It consists of following steps: i) devignetting
using single image vignette correction algorithm, ii) georeferencing of images using EXIF data, scale-invariant
feature transform (SIFT) stitching, and gradient descent optimisation, and iii) temperature calibration by
minimisation of bias between overlapping thermal images using gradient descent optimisation. The solution
was tested in several case studies of river areas, where natural water bodies were used as a reference
temperature benchmark. In all tests, the precision of the measurements was increased. The root of the mean of
the Square of Errors RMSE on average was reduced by 39.0% and Mean of the absolute value of Errors MAE
by 40.5%. The proposed algorithm can be called self-calibrating, as in contrast to other known solutions is fully
automatic, uses only field data and does not require any calibration equipment or additional operator effort. A
Python implementation of the solution is available on GitHub.

Keywords: UAV; thermal images; surface temperature; calibration

1. Introduction

1.1. Uncooled thermal cameras issues

Thermal imagery from UAVs has several advantages in environmental applications as they can
provide a low-cost, high-resolution, and flexible approach to environmental monitoring and
management. UAV-based thermal and narrowband multispectral imaging sensors can provide low-
cost approaches to meet the critical requirements of spatial, spectral, and temporal resolutions for
vegetation monitoring [1]. UAVs provide high spatial resolution and flexibility in acquisition and
sensor integration, which can be used for land cover classification, change detection, and thematic
mapping [2]. Aerial thermography from low-cost UAVs can be used to generate digital
thermographic digital terrain models, which find application in the classification of land uses
according to their thermal response [3]. Thermal remote sensing has many potential uses in precision
agriculture, including monitoring plant hydration levels, identifying instances of plant diseases,
evaluating crop yield, and analysing plant characteristics [4].

Limitations related to the maximum load of the UAV, as well as cost constraints, lead to the use
of mainly lightweight uncooled thermal cameras. This solution has several shortcomings when
measuring temperature under field conditions. Uncooled UAV thermal cameras require careful
calibration and correction for various factors to obtain accurate temperature measurements. They
suffer from vignette effects, sensor drift, ambient temperature influences, and measurement bias,
which can be corrected with an ambient temperature-dependent radiometric calibration function [5].
Non-radiometric uncooled thermal cameras are highly sensitive to changes in their internal
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temperature and require empirical line calibration to convert camera digital numbers to temperature
values [6]. Fluctuations in the temperature of the focal plane array (FPA) array detector, wind, and
irradiance can affect temperature measurements, and that adequate settings of camera gain and offset
are crucial to obtaining reliable results [7]. Uncooled thermal cameras also suffer from thermal-drift-
induced nonuniformity or vignetting [8]. The above factors contribute to fluctuations in camera’s
accuracy from *0.5 °C in laboratory conditions to +5 °C in unstable UAYV flight conditions [6].

The literature review provides a number of solutions to reduce this problem. To minimise
measurement errors in UAV thermal cameras, it is suggested that the camera be warmed up for 15-
40 minutes before starting the actual measurement [6,8]. There are also several methods to eliminate
unwanted phenomena outcomes with calibration under controlled conditions. Ribeiro-Gomes et al.
proposed a calibration algorithm based on neural networks that allows for increased measurement
accuracy [9]. In another study by Yuan and Hua, nonuniformity of vignetting was examined in UAV-
based uncooled thermal cameras and a simple vignetting reduction method using reference images
of a homogeneous target was proposed [8]. In Aragon et al., an ambient temperature-dependent
radiometric calibration function was used to correct for sensor drift, ambient temperature influences,
measurement bias, and vignette effects [5]. An advanced radiometric calibration approach that
stabilises the camera's response, removes fixed pattern noise, and converts thermal image values into
object temperatures was proposed by Lin et al. [10]. The disadvantage of calibration-based methods
is that they require non-standard equipment and the extra effort needed to collect calibration data. A
correction based only on the field data collected by the UAV system (self-calibration) would be
favoured. Mesas-Carrascosa et al. developed a method for bias correction using redundant data from
overlapping areas of aerial thermal images using mathematical modelling of the metric of “variation
of digital number per second” [11]. Unfortunately, despite good results, the authors did not provide
a specific explanation, a formula, or sample source code illustrating the calculation of this metric.
Also, since this method leverages the rate of digital number variation, it requires precise timing of
image acquisition achieved with a custom drone attachment. Often by default the time information
available in the image metadata is provided with a precision of a second, which is not sufficient for
rate of digital number variation calculation, as during the flight successive photos are taken even as
often as every ca. 1 second.

Another important aspect of the problem is the choice of thermal imaging camera brand. Some
manufacturers of cameras prevail in publications related to the topic discussed. The files generated
by such cameras offer a great deal of freedom to recalibrate temperature measurements, as the sensor
response raw data can be easily accessed. Another manufacturer offering in recent years its own
thermal imaging cameras dedicated to drones, has another internal processing algorithms policy. In
their case, raw sensor data is not openly available, and it is impossible for the user to recalibrate the
device. The user has to rely on producer's closed-source Thermal SDK library allowing to make
corrections to the measurement taking into account air humidity, target emissivity or flight altitude.
It is not known what exact processes are represented in this algorithm. Moreover, we noticed its
significant shortcomings: i) the maximum flight altitude acceptable by the library is 25m, which is
too low for most flights covering large areas, ii) the library returns errors for some humidity values
(in our tests, most often for relative humidity of about 60%), iii) for a given frame it is possible to
select only one emissivity (it is not possible to set different emissivities for different objects in the
same photo). However, most of the UAV dedicated cameras are susceptible to adverse phenomena
typical of uncooled thermal cameras (bias, vignette effect).

1.2. Gradient descent algorithm

A major source of measurement uncertainty is bias, which can be addressed by investigating
redundant data from overlapping areas of the images. It is desirable that the temperature difference
between all pairs of overlapping images be as small as possible. This is a minimisation problem that
can be solved with any optimisation method. This work focusses on the use of gradient descent,
which is an optimization algorithm commonly used in machine learning. However, beyond its main
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application in machine learning, gradient descent can be used to optimise any differentiable objective
function.

Gradient descent works by iteratively updating a set of parameters in the direction of the
steepest descent of a cost function. The algorithm computes the gradient of the cost function with
respect to the parameters, and then updates the parameters by taking a step in the direction of the
negative gradient. The learning rate parameter determines the size of the step and it is usually set to
a small value to avoid overshooting the minimum of the cost function. The algorithm continues to
iterate until the cost function converges to a minimum or a stopping criterion is met. With the
popularity of machine learning, gradient descent has become more accessible thanks to the
development of software libraries that accelerate the algorithm by using the GPU (Graphical
Processing Unit).

1.3. Objective of this work

The aim of this work is to develop a method for post-processing of aerial thermal imagery that
reduces the effects of undesirable phenomena occurring in uncooled thermal cameras without the
use of non-standard equipment, such as reference black bodies or custom UAV attachments, and
without access to raw thermal sensor data. Achieving this goal is important, as the use of thermal
imaging cameras is becoming widespread, but proven post-processing methods are lacking.

2. Materials and Methods

2.1. Data

The thermal pictures were collected by the DJI Matrice 300 RTK drone system equipped with a
Zenmuse H20T multicamera sensor that contains the thermal camera. Data used in this study was
collected of several areas in southern Poland:

e  Area around ca. 500 m Kocinka stream stretch near Grodzisko village (50.8715 N, 18.9661 E)

e  Area around ca. 350 m Kocinka stream stretch near Rybna village (50.9371 N, 19.1134 E)
e  Areaaround ca. 160 m Sudét stream stretch near Krakow city (50.0999 N, 19.9027 E)

The water temperature of the rivers was measured directly along their course in each case. The
results were constant for the entire section and did not depend on chainage. Table 1 provides details
of the locations, dates, conditions of the surveys, and measured temperatures.

Table 1. Details of the surveys carried out.

Alias Location Time Conditions Water
temperature

20211215_kocinka_rybna Kocinka, Rybna  15.12.2021 12:20 Fog, snow cover 4.6 °C

20220118 _kocinka_rybna Kocinka, Rybna 18.01.2022 14:55 Snow cover, total cloud cover 2.6 °C

20220325_kocinka_rybna Kocinka, Rybna 25.03.2022 07:30 No cloud cover 5.6 °C

20221220 _sudol_krakow Sudét, Krakow  20.12.2022 11:20 Moderate cloud cover 2.0°C

20230111 _kocinka_grodzisko Kocinka, Grodzisko  11.01.2023 No cloud cover 4.2 °C

2.2. Algorithm

2.2.1. Vignette correction

The correction of the vignette effect was conducted using the “single image” method [12]. ‘Single
image’ means that the algorithm tries to model the correction of the vignette effect only on the basis
of the currently processed image and does not have any auxiliary data available (e.g., an image of a
homogeneous target with a clearly visible vignette effect). It was implemented by translating the
MATLAB code available at https://github.com/GUQOYI1/Vignetting_corrector into Python. Several
changes have been made to adapt the algorithm to work with thermal images. Standard images are
represented with floating point values from 0 to 1, or integers from 0 to 255. The original
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implementation of the algorithm assumed this data format, so it had to be modified to work on
unconstrained float values. Thermal image values can also be negative. The vignette correction
algorithm works on logarithms of pixel values, so temperatures are converted to Kelvins in order to
avoid the logarithm of 0. The vignette correction algorithm tends to increase the brightness of the
photo. For standard photos this is not a problem, but for thermal images, where increasing the
brightness will result in a bias in the temperature reading, this cannot be accepted. We assume that
images with vignette effect occurring contain correct temperature in their central part. Therefore, we
can use the central part of the photo before correction as a reference level for the photo obtained after
applying the vignette correction algorithm. The bias is compensated for by subtracting the average
difference between the central areas of the images before and after vignette correction. While the
vignette effect mainly affects the edge part of the image, the central area size is defined as a rectangle
with sides twice smaller than the whole image.

2.2.2. Georeferencing

The georeferencing algorithm is largely based on the aerial photos stitching solution proposed
by Luna Yue Huang [13]. Modifications in our method consists of direct georeferencing to Universal
Transverse Mercator (UTM) coordinate system.

The first part of the georeferencing procedure is initial georeferencing of images based on EXIF
metadata. These contain information about the geographic coordinates, yaw, and altitude of the
drone camera at the time the image was taken. This information, along with the angle of field of view
taken from the camera specifications, allows estimation of an affine transformation parameters of
translation (v,, v)), scale (sx, s,), and counter clockwise rotation () that allows to embed the image
in an UTM coordinate system. This is not an accurate estimation, due to the low accuracy of the UAV's
GPS geolocation and high sensitivity to the shift of the camera viewing area under the influence of
wind blows. In this estimation the scale s, and s, parameters are equal, and the shear (c,, c,)
coefficients are 0. The transformation parameters allow us to obtain the transformation matrix A

based on Equation 1.
cosf —sinf v, Sy € O
A= <sin9 cos @ vy> : (cy Sy 0)
0 0 1 0 0 1
Sxcosf —c,sinf ¢y cos0 —s,sinf v,
= (cy cosf + s, sin@ s, cosf —c,sind vy>,
0 0 1

Based on the initial georeferencing, pairs of overlapping images are found. To ensure that all
possible pairs are found even when errors in the initial georeferencing may indicate a lack of
overlapping, footprints are expanded (buffered) by a dilation operation by the given padding value.
Each pair of images is aligned and a relative transformation matrix Ay is found by a well-established
in the field of image vision stitching method: i) finding corresponding points (keypoints) in both
images using scale-invariant feature transform (SIFT) [14] ii) matching keypoints using fast
approximate nearest neighbour search (FLANN) [15], and iii) estimation of best transformation
matrix using random sample consensus (RANSAC) [16]. Relative transformations are verified in two
stages: i) since we assume that the images are taken from the same altitude, the scaling factor in the
relative transformation of two overlapping images must be approximately equal to 1. If the value of
the scaling factor for relative transformations is outside the range 0.9 — 1.1, the relative transformation
is considered incorrect. ii) as all images are taken in nadir orientation, the relative transformations
should not perform a shearing operation. When there is no shear, the absolute values of the relative
transformation matrix Ap satisfy the following condition: |Agi1| = [Agaz| and |Agiz| = |Agaql. If
deviation between these values is greater than 0.1, the relative transformation is considered to be
incorrect. If the relative transformation is found to be incorrect, according to Luna Yue Huang
solution, an attempt is made to establish a relative transformation using the same pair of images, but
resized to twice lower resolution. Such a procedure allows you to obtain a different keypoints using
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for scale determination. If the relative transformation obtained in this way again fails to pass
verification, the pair of photos is discarded.

Based on the obtained pairs, an undirected graph was constructed [17], where each node is an
aerial photo, and each edge is a valid relative transformation between a pair of photos. The connected
components are then extracted from the graph. A connected component in graph theory is a group
of vertices in a graph that are all directly or indirectly connected to each other. Only images (nodes)
from a connected component containing the largest number of nodes are used for further processing.

Iterating over each pair of images, the coordinates of the corners of the second image are
calculated in the pixel coordinate system of the first image using equation 2. This idea is also

visualised in Figure 1.

0,0 640, 0
(<]
géo 146. 15 116.04 ,783.38,146.22
.: (]
3 i
£
=]
=
¢ ‘.'( . N
L 640,512
| J122.00,62582 ,759.23,656.00

Figure 1. Alignment of an example pair of images with dimensions of 640 x 512 pixels. The
coordinates of the marked corners are expressed in the pixels coordinate system of the first image.

Pist = Ar " Donas )

where:

Ap —relative transformation matrix between 2nd image and 1st image pixel coordinate system,

P2na — coordinates of corner point expressed in 2nd image pixel coordinate system,

P1st — coordinates of the same point expressed in 1st image pixel coordinate system.

Optimisation of georeferencing of all images involves tuning the absolute geographic
transformation parameters (vy, v), S, Sy, 0) to make the relative transformations recovered from
them as close as possible to the relative transformations obtained earlier using alignment of each pair
separately. Recovery of the relative transformation matrix Ap from the absolute geographic
transformation matrices A, and A,,q of two georeferenced images is obtained according to
Equation 3.

— — =1 —_—
Ap = A1t " Azna 3)

¢ and ¢, shear parameters are not tuned during the optimization. Although tuning of these
parameters further improves the matching between pairs of photos, it also introduces an
unacceptable shearing of the entire mosaic of photos.

Similarly to equation 2, the coordinates of points expressed in the pixel reference system of the
2nd photo can be converted to coordinates expressed in the reference system of the 1st image using

equation 4.
Prst = Ar " Panas (4)

where:
Ay - relative transformation matrix between 2nd image and 1st image pixel coordinate system,
Pang — coordinates of point expressed in 2nd image pixel coordinate system,
P1st — coordinates of the same point expressed in 1st image pixel coordinate system.
Optimisation is performed using the gradient descent method with the loss function £ that
consist of two components L and £,. Component L is the mean Euclidean distance between the
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points at the corners of the images obtained from the relative transformations recovered from the
tuned absolute geographic transformations and the points from the corners of the images from the
relative transformations obtained during the pair alignment.

, ©)

_ 1 yNp 1ya —
LR - N_Pzi:1 ZZj:l”plst,i,j - plSt,l,]

where:

Np —number of pairs,

Disti,j — point of j-th corner of the i-th pair 2nd image expressed in the 1st image pixel coordinate
system estimated from pairs alignment,

Disty, — point of j-th corner of the i-th pair 2nd image expressed in the 1st image pixel coordinate
system estimated using relative transformation recovered from absolute geographic transformations
tuned during optimization.

Component £, is a mean Euclidean distance between geographic centroids of tuned image
footprints and geographic centroids of image footprints obtained during initial georeferencing using
EXIF data.

1 ~
Ly = N—IZ?L’lllpi -, (6)

where:

N; —number of images,

p; —point of centroid of i-th image obtained from EXIF data expressed in geographic coordinate
system,

P, — point of centroid of i-th image obtained from absolute geographic transformation tuned
during optimization.

By minimizing the Ly factor, the optimized absolute geographic transformations are adjusted
so that the retrieved from them relative transformations between pairs of images are as close as
possible to the relative transformations previously obtained separately for each pair in the alignment
process. Minimizing the L, factor ensures that the entire mosaic will not move in any direction
during the optimization. Equation 7 is the final formula for the £ loss function. To minimise the
impact on the relative matching of images using £p component, the £, component is multiplied by
a factor of 107°. The factor value was selected experimentally by qualitative assessment of results
tested for different values.

L= LR + 10_6LA, (7)

2.2.3. Thermal calibration

In order to minimise the temperature bias between overlapping images using Gradient Descent,
a consistent dataset has to be prepared. If the reduction of the vignette effect has not yielded sufficient
results and the photos overlap is large enough, the areas of the photos near the edges where the
vignette effect affects the temperature images the most can be truncated (Figure 2).

77 cropped area
Y cropped area

3% area used for
calibration

Figure 2. Example of cropped areas and the common area of a pair of images used for calibration.


https://doi.org/10.20944/preprints202310.0187.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2023 do0i:10.20944/preprints202310.0187.v1

For the two images from each pair, only the common part is retained, as well as a mask that
allows us to reproduce the irregular shape of the cutout from the rectangular array. Temperature
cutouts of both images and mask are resized to array of 32 X 32 pixels. During resizing, the
temperatures are interpolated using the bilinear method, and the mask is interpolated using the
nearest neighbours method. The example result of the common clip is shown at Figure 3. The example
corresponds to the images shown in Figures 1 and 2. The rotation is due to the transformation to an
absolute geographic datum. The lack of the preservation of aspect ratio is due to the need for scaling
to fill the whole area of square array of 32 x 32.

C) (b)

Figure 3. Example components of the dataset sample: a) binary mask, b) first temperature image, c)
second temperature image.

By resizing the slices to 32 X 32 pixels, it was possible to create a coherent dataset of three
arrays (masks and pair of images common part) of size N, X 32 X 32 (N,, is number of pairs), which
could then be used in optimization using the gradient method.

Optimisation of the temperature values involves tuning the b parameter that is used for the
offset of each image according to equation 8.

D=v+b, (8)

where:

¥ —temperature value with applied calibration,

v —temperature value before calibration,

Optimisation uses a loss function £ that consists of two components: £z and L£j. Component
Lp is pixelwise mean squared error between calibrated temperature values of first and second cutout
images from given pair. It is calculated with Equation 8.

— 1 yNp 1y32 1y32 ( — — )?
LB - N_Pzi:1 52j=1§ k=1(v15t,l,],k - Uan,l,],k) s (9)

where:

Np —number of pairs,

Vistr,x — value of calibrated first image in i-th pair at pixel coordinate (j, k),

Vznay,k — value of calibrated first image in i-th pair at pixel coordinate (j, k),

Ly, is absolute difference between mean of all uncalibrated images and mean of calibrated
images. It is calculated with Equation 9.

Ly = |u—pl, (10)

where:

u —mean value of uncalibrated images,

A —mean value of calibrated images.

By minimizing the Lz component, the bias between the temperature values in the overlapping
images is minimized. The L,, component ensure that during optimization the whole mosaic will not
drift from initial mean value. The total loss is calculated using equation 11. To minimise the impact
on bias correction using the Lz component, the £, component was multiplied by factor of 1072
The factor value was selected experimentally by qualitative assessment of results tested for different
values.
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L=_Ly+1072L,, (11)

2.3. Final processing and result analysis

The rivers in the measured areas have homogenous temperatures throughout the surveyed
sections and a well-defined emissivity value of 0.95. Therefore, they can be used to verify the
proposed method. The sets of both the original and bias-corrected images were offset (the same offset
value for all images from the given set) so that the average water body temperature read from the
thermal mosaic was equal to the measured reference water temperature. We decided on this because
the temperatures returned by the DJI Thermal SDK may differ significantly from the actual
temperatures, it is straightforward correction and makes it easier to compare measurements from
before and after calibration.

3. Results

3.1. Vignette correction

A 'single image' algorithm was used to correct the vignette effect. For this reason, it is prone to
misinterpretations of the image and the resulting erroneous correction of the vignette effect. Figure 4
shows an example of correct vignette effect correction. In this case, the standard deviation of the
image as a result of the vignette effect correction has decreased, which manifests itself as a narrowing
of the histogram of pixel values. Figure 5 shows an incorrect correction of the vignette effect, where
it is likely that the river near the left edge of the image caused the misinterpretation. In this case, the
correction resulted in an increase in the standard deviation of the photo, which manifests itself as a
widening of the histogram of pixel values.

Original Vignette corrected
5
42
g
32
o
e
2 g
@
1
6268 Ir’"', —— Original
1 &
6000 - :' :I ---- Vignette corrected
15 il
2 4000 i
& '-.
2000 4
0 .

Temperature (°C)

Figure 4. Example of successful vignette correction.
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Figure 5. Example of unsuccessful vignette correction.

To quantitatively investigate the effectiveness of the devignetting algorithm, it was checked for
how many images a reduction in standard deviation was obtained as a result of devignetting. For
74.4% of the images (2261 out of 3037 total images) there was a reduction in the standard deviation.
For 25.6% of the images (776 out of 3037 total images) there was an increase in the standard deviation.
The average reduction in standard deviation was -0.07 °C while the average increase in standard
deviation was 0.01 °C. The detailed distribution of the changes in standard deviation as a result of
the vignette effect correction is shown in the histogram in Figure 6.

400

300 A

200 ~

Number of images

100 -

O-
-0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 —-0.05 0.00 0.05
Standard deviation change (°C)

Figure 6. Change in the standard deviation of the images as a result of the devignetting algorithm.
The dashed line is drawn at zero.

3.2. Visual assessment

Figures 7-11 show parts of thermal image mosaics before and after calibration for each case
study. These are not orthomosaics - they were created straightforwardly by displaying all
georeferenced images. Where the images overlap, a later image from the collection is displayed.
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Temperature (°C)
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Figure 9. 20220325_kocinka_rybna — fragment of mosaic before (left) and after (right) the calibration.
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11

Temperature (°C)

Figure 10. 20221220_sudol_krakow — fragment of mosaic before (left) and after (right) the
calibration.

Temperature (°C)

Figure 11. 20230111_kocinka_grodzisko — fragment of mosaic before (left) and after (right) the
calibration.

3.3. Waterbody temperature

Table 2 summarizes the obtained RMSE and MAE of stream temperature measurements using

uncalibrated and calibrated thermal images. Both calibrated and uncalibrated images were subjected
to the offset described in section 2.3.

Table 2. Comparison of root mean squared error and mean absolute error of stream temperature
measurement using uncalibrated and calibrated thermal images.

Case study RMSE RMSE MAE MAE
Uncalibrated Calibrated Uncalibrated Calibrated
20211215_kocinka_rybna 0.679375 0.310173 0.539997 0.249083
20220118 _kocinka_rybna 0.958521 0.528135 0.579392 0.337545
20220325_kocinka_rybna 1.229638 0.93813 0.894125 0.664885
20221220_sudol_krakow 1.099734 0.703925 0.831873 0.519501
20230111_kocinka_grodzisko 0.96338 0.61609 0.815541 0.458868

Figure 12 show the temperatures sampled along the river centreline from the uncalibrated and
the calibrated images. There are multiple measurements for a single chainage value, as a given point
may be present in multiple overlapping images. Peaks in the temperature readings that have not been
compensated by calibration are sampled on vegetation overhanging the water surface.
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Figure 12. Temperatures sampled along the river centreline from the uncalibrated (flight time colour
scale large points) and the calibrated images (red small points) for each case study. The dashed line
is the actual water temperature. (a) 20211215_kocinka_rybna, (b) 20220118_kocinka_rybna,
(c) 20220325_kocinka_rybna, (d) 20221220_sudol_krakow, (e) 20230111_kocinka_grodzisko.

4. Discussion

4.1. Devignetting

The single-image vignette correction method has proven successful when applied to thermal
images. Although there was an increase in the standard deviation for about a quarter of the images.
This was a minor increase, as on average a seven times greater reduction in standard deviation was
recorded for the rest of the three-quarters of the images.

4.2. Visual assessment of mosaics

A visual comparison of the mosaics before and after calibration shows an improvement in
temperature fluctuations, particularly between successive flight passages. The algorithm also handles
the correction of undervalued images taken at the beginning of the flight, when the camera is
warming up. Correction of the images from the case study 20211215 _kocinka_rybna and
20220118_kocinka_rybna has allowed us to see the warmer tributary of the stream, which is fed by
warmer groundwater (Figures 7 and 8 after calibration).
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4.3. Measurement precision and accuracy

The proposed solution based on minimising the bias between overlapping images significantly
increased the precision of the water temperature measurements taken in all case studies. Despite the
improvement in calibration precision, the accuracy can still be poor due to imperfections of the
Thermal SDK library provided by the manufacturer, which was used for conversion of raw data to
temperature values. However, an increase in accuracy can be easily achieved by an additional offset
applied to all images (see Section 2.3) if any reference points are available for the study area. After
applying this offset, the average root mean squared error was reduced by 39.0% and the mean
absolute error by 40.5%.

4.4. Applications

Previous methods of reducing adverse phenomena occurring in uncooled thermal cameras have
relied on calibration under controlled laboratory conditions and required non-standard
instrumentation such as reference black bodies or custom UAV attachments. For this reason, they
require an additional effort of specialised operator and cannot be automated. On the other hand, our
proposed solution requires minimal effort as it only requires data collected during a standard UAV
flight and is highly automated making it possible to use by a non-specialised operator. This also
makes the solution ready to be implemented as part of a photogrammetric software workflow.
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Appendix A

The algorithm was implemented in Jupyter Notebooks using the Python programming
language. The processing solution includes 5 notebooks responsible for preliminary images
conversion, vignette correction, georeferencing of images, calibration of temperature values and
offsetting of all images (1_conversion.ipynb, 2_devignetting.ipynb, 3_georeferencing.ipynb,
4_calibration.ipynb, respectively). They can be run on any operating system thanks to the Docker
containerisation.

Conversion notebook

First, the images must be converted from the camera manufacturer's specific format (usually a
JPG image with RGB channels providing temperature visualisation) to a single-channel TIFF file
containing temperature values. For this study, the DJI The thermal SDK library provided by the
thermal camera manufacturer was used for extraction of temperature arrays from manufacturer-
specific JPG file format. This library requires values of flight altitude, air humidity, surface emissivity,
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and surface reflection temperature. The extracted temperatures are saved to a TIF file. The EXIF data
is copied unchanged from the input JPG file to the resulting TIF file.

Georeferencing notebook

For initial georeferencing, longitude (1), latitude (¢), altitude (z) and rotation () data were
extracted from the images using the exiftool software. The camera's diagonal angle of view (a) was
taken from the camera documentation. The length of the image footprint diagonal (I;) expressed in
meters was calculated with [; = 2ztan(0.5a) formula. The horizontal and vertical footprint length

was calculated using [, =, (ph/w/p,zl + p,%) and [, = ld(p,,/ Vi + p,%) formulas respectively,

where p, and p, are width and height of image expressed in number of pixels (in this case study
pn = 640 and p, = 512). The longitude and altitude were converted into x, y coordinates of the
UTM system using the pyproj library. These are the coordinates of the centroid of the footprint of the
photo. Footprint was initialized using Polygon object of the shapely library with four corner points:
(x — 051,y — 0.51,), (x+ 0.5,y —0.5l,), (x+0.5l,y+0.5L,), (x—0.5l,y+0.5],). It was then
rotated by 6 around the centroid using affinity.rotate function from shapely library to obtain final
footprint.

A modified variant of the transformation matrix was used in the implementation to take into
account that images expressed as arrays have the y-axis pointing downward. The modified
transformation matrix is similar to standard transformation matrix with clockwise rotation; however,
it uses clockwise rotation and bottom-right pixel coordinates are used as v, and v, parameters. The
modified version of the transformation matrix used in the implementation of the algorithm is

presented in equation Al.
cos@ sinf v, Sy € O
A= <sin9 —cos @ vy> : (cy Sy 0)
0 0 1 0 0 1
Sxcosf + ¢, sinf c,cos0 +s,sinf v,
= (Sx sinf — ¢, cosf ¢, sinf — s, cosb vy>,
0 0 1

The modified transformation matrix was composed with v, and v, parameters being
coordinates of the bottom-right footprints corner, s, and s, parameters being pixel size calculated
with s, =5, = l3/y/pj + p2, 0 parameter equal to negative yaw value extracted from EXIF data (as
counterclockwise rotation is needed), and shear ¢, and c, parameters equal to 0.

In order to optimize the process of finding matches of overlapping pairs of photos, candidates
are found that are potentially overlapping. The process of finding candidates consists of dilating all
footprints by 5m and then finding pairs of overlapping dilated footprints. Dilation is necessary,
because due to inaccurate initial georeferencing some of footprints may indicate no overlap even if
corresponding photos contain common area. Then, with the help of the CV2 library, an attempt is
made to stitch a given image with each of the potential neighbours. Stitching procedure consist of
several steps using functions from cv2 library: i) detecting features and computing descriptors with
SIFT algorithm using detectAndCompute function, ii) descriptor matching using knnMatch function
from FlannBasedMatcher class object, iii) filtering out incorrect matches using Lowe’s ratio test with
ratio value equal 0.7, iv) using correct matches with estimateAffinePartial2D function to estimate
relative transformation matrix between given image and potential overlapping neighbor. If the
number of matching points used for calculation of the transformation matrix is greater than or equal
to 8, the pair of images and their relative transformation matrix are qualified for further processing.
At this stage, using a relative transformation matrix, the coordinates of the corners of the stitched
image in the relative reference system of the other image of the pair are also calculated.

To further ensure that the stitched pairs are correct, we filter out pairs where the scaling factor
in the relative transformation matrix is outside the range of 0.8 to 1.2, as we assume that the images
were taken from the same altitude, so the relative scaling factor must be equal to 1.
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All stitched pairs of images that remain up to this point are interpreted as undirected graphs
using the networkx library. Using the connected_components function, the connected component that
contains the largest number of nodes (images) is extracted. It is also possible to visualise the stitched
pairs and connected components as a graph with the geographical position of the nodes preserved.
An example graph visualisation is shown in Figure Al.

Figure Al. Graph visualization with preserved relative geographical positions of nodes and largest
connected component marked in green. Green nodes are used for georeferencing optimization, red
nodes are discarded. Example for Sudoét case study.

The data prepared up to this point is loaded into the tensor objects of the pytorch library. Values
of these tensors relate either to images or image pairs. Transformation parameters v,, v,, 0, sy, sy,
Cx, Cy are stored in separate tensors of length equal number of images. These tensors will be tuned
during the gradient descent optimization, so they are initialized with parameter requires_grad=True.
A short optimisation time is ensured by using the ReduceLROnPlateau learning rate scheduler.

Georeferencing notebook

Footprints are read from previously generated GeoTIFF files. Then, based on them, pairs are
found whose common part area is not less than the value defined as MIN_INTERCESTION_AREA.
Samples that are the common part in pairs of images are scaled to a low resolution, defined as
CLIP_SIZE. The data set is loaded into the tensors and gradient descent optimisation is performed.
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