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Article 

Self-Calibration of UAV Thermal Imagery Using 
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Poland 
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Abstract: Unmanned aerial vehicles (UAV) thermal imagery offers several advantages in environmental 

monitoring, as it can provide a low-cost, high-resolution, and flexible solution to measure the temperature of 

the surface of the land. Limitations related to the maximum load of the drone lead to use of lightweight 

uncooled thermal cameras whose internal components are not stabilized to a constant temperature. Such 

cameras suffer from several unwanted effects that contribute to the increase in temperature measurement error 

from ±0.5 °C in laboratory conditions, to ±5 °C in unstable flight conditions. This article describes a post 

processing procedure, that reduces the above unwanted effects. It consists of following steps: i) devignetting 

using single image vignette correction algorithm, ii) georeferencing of images using EXIF data, scale-invariant 

feature transform (SIFT) stitching, and gradient descent optimisation, and iii) temperature calibration by 

minimisation of bias between overlapping thermal images using gradient descent optimisation. The solution 

was tested in several case studies of river areas, where natural water bodies were used as a reference 

temperature benchmark. In all tests, the precision of the measurements was increased. The root of the mean of 

the Square of Errors RMSE on average was reduced by 39.0% and Mean of the absolute value of Errors MAE 

by 40.5%. The proposed algorithm can be called self-calibrating, as in contrast to other known solutions is fully 

automatic, uses only field data and does not require any calibration equipment or additional operator effort. A 

Python implementation of the solution is available on GitHub. 

Keywords: UAV; thermal images; surface temperature; calibration 

 

1. Introduction 

1.1. Uncooled thermal cameras issues 

Thermal imagery from UAVs has several advantages in environmental applications as they can 

provide a low-cost, high-resolution, and flexible approach to environmental monitoring and 

management. UAV-based thermal and narrowband multispectral imaging sensors can provide low-

cost approaches to meet the critical requirements of spatial, spectral, and temporal resolutions for 

vegetation monitoring [1]. UAVs provide high spatial resolution and flexibility in acquisition and 

sensor integration, which can be used for land cover classification, change detection, and thematic 

mapping [2]. Aerial thermography from low-cost UAVs can be used to generate digital 

thermographic digital terrain models, which find application in the classification of land uses 

according to their thermal response [3]. Thermal remote sensing has many potential uses in precision 

agriculture, including monitoring plant hydration levels, identifying instances of plant diseases, 

evaluating crop yield, and analysing plant characteristics [4]. 

Limitations related to the maximum load of the UAV, as well as cost constraints, lead to the use 

of mainly lightweight uncooled thermal cameras. This solution has several shortcomings when 

measuring temperature under field conditions. Uncooled UAV thermal cameras require careful 

calibration and correction for various factors to obtain accurate temperature measurements. They 

suffer from vignette effects, sensor drift, ambient temperature influences, and measurement bias, 

which can be corrected with an ambient temperature-dependent radiometric calibration function [5]. 

Non-radiometric uncooled thermal cameras are highly sensitive to changes in their internal 
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temperature and require empirical line calibration to convert camera digital numbers to temperature 

values [6]. Fluctuations in the temperature of the focal plane array (FPA) array detector, wind, and 

irradiance can affect temperature measurements, and that adequate settings of camera gain and offset 

are crucial to obtaining reliable results [7]. Uncooled thermal cameras also suffer from thermal-drift-

induced nonuniformity or vignetting [8]. The above factors contribute to fluctuations in camera’s 
accuracy from ±0.5 °C in laboratory conditions to ±5 °C in unstable UAV flight conditions [6]. 

The literature review provides a number of solutions to reduce this problem. To minimise 

measurement errors in UAV thermal cameras, it is suggested that the camera be warmed up for 15-

40 minutes before starting the actual measurement [6,8]. There are also several methods to eliminate 

unwanted phenomena outcomes with calibration under controlled conditions. Ribeiro-Gomes et al. 

proposed a calibration algorithm based on neural networks that allows for increased measurement 

accuracy [9]. In another study by Yuan and Hua, nonuniformity of vignetting was examined in UAV-

based uncooled thermal cameras and a simple vignetting reduction method using reference images 

of a homogeneous target was proposed [8]. In Aragon et al., an ambient temperature-dependent 

radiometric calibration function was used to correct for sensor drift, ambient temperature influences, 

measurement bias, and vignette effects [5]. An advanced radiometric calibration approach that 

stabilises the camera's response, removes fixed pattern noise, and converts thermal image values into 

object temperatures was proposed by Lin et al. [10]. The disadvantage of calibration-based methods 

is that they require non-standard equipment and the extra effort needed to collect calibration data. A 

correction based only on the field data collected by the UAV system (self-calibration) would be 

favoured. Mesas-Carrascosa et al. developed a method for bias correction using redundant data from 

overlapping areas of aerial thermal images using mathematical modelling of the metric of “variation 
of digital number per second” [11]. Unfortunately, despite good results, the authors did not provide 
a specific explanation, a formula, or sample source code illustrating the calculation of this metric. 

Also, since this method leverages the rate of digital number variation, it requires precise timing of 

image acquisition achieved with a custom drone attachment. Often by default the time information 

available in the image metadata is provided with a precision of a second, which is not sufficient for 

rate of digital number variation calculation, as during the flight successive photos are taken even as 

often as every ca. 1 second. 

Another important aspect of the problem is the choice of thermal imaging camera brand. Some 

manufacturers of cameras prevail in publications related to the topic discussed. The files generated 

by such cameras offer a great deal of freedom to recalibrate temperature measurements, as the sensor 

response raw data can be easily accessed. Another manufacturer offering in recent years its own 

thermal imaging cameras dedicated to drones, has another internal processing algorithms policy. In 

their case, raw sensor data is not openly available, and it is impossible for the user to recalibrate the 

device. The user has to rely on producer's closed-source Thermal SDK library allowing to make 

corrections to the measurement taking into account air humidity, target emissivity or flight altitude. 

It is not known what exact processes are represented in this algorithm. Moreover, we noticed its 

significant shortcomings: i) the maximum flight altitude acceptable by the library is 25m, which is 

too low for most flights covering large areas, ii) the library returns errors for some humidity values 

(in our tests, most often for relative humidity of about 60%), iii) for a given frame it is possible to 

select only one emissivity (it is not possible to set different emissivities for different objects in the 

same photo). However, most of the UAV dedicated cameras are susceptible to adverse phenomena 

typical of uncooled thermal cameras (bias, vignette effect). 

1.2. Gradient descent algorithm 

A major source of measurement uncertainty is bias, which can be addressed by investigating 

redundant data from overlapping areas of the images. It is desirable that the temperature difference 

between all pairs of overlapping images be as small as possible. This is a minimisation problem that 

can be solved with any optimisation method. This work focusses on the use of gradient descent, 

which is an optimization algorithm commonly used in machine learning. However, beyond its main 
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application in machine learning, gradient descent can be used to optimise any differentiable objective 

function. 

Gradient descent works by iteratively updating a set of parameters in the direction of the 

steepest descent of a cost function. The algorithm computes the gradient of the cost function with 

respect to the parameters, and then updates the parameters by taking a step in the direction of the 

negative gradient. The learning rate parameter determines the size of the step and it is usually set to 

a small value to avoid overshooting the minimum of the cost function. The algorithm continues to 

iterate until the cost function converges to a minimum or a stopping criterion is met. With the 

popularity of machine learning, gradient descent has become more accessible thanks to the 

development of software libraries that accelerate the algorithm by using the GPU (Graphical 

Processing Unit).  

1.3. Objective of this work 

The aim of this work is to develop a method for post-processing of aerial thermal imagery that 

reduces the effects of undesirable phenomena occurring in uncooled thermal cameras without the 

use of non-standard equipment, such as reference black bodies or custom UAV attachments, and 

without access to raw thermal sensor data. Achieving this goal is important, as the use of thermal 

imaging cameras is becoming widespread, but proven post-processing methods are lacking. 

2. Materials and Methods 

2.1. Data 

The thermal pictures were collected by the DJI Matrice 300 RTK drone system equipped with a 

Zenmuse H20T multicamera sensor that contains the thermal camera. Data used in this study was 

collected of several areas in southern Poland: 

• Area around ca. 500 m Kocinka stream stretch near Grodzisko village (50.8715 N, 18.9661 E) 

• Area around ca. 350 m Kocinka stream stretch near Rybna village (50.9371 N, 19.1134 E) 

• Area around ca. 160 m Sudół stream stretch near Kraków city (50.0999 N, 19.9027 E) 

The water temperature of the rivers was measured directly along their course in each case. The 

results were constant for the entire section and did not depend on chainage. Table 1 provides details 

of the locations, dates, conditions of the surveys, and measured temperatures. 

Table 1. Details of the surveys carried out. 

Alias Location Time Conditions 
Water 

temperature 

20211215_kocinka_rybna Kocinka, Rybna 15.12.2021 12:20 Fog, snow cover 4.6 °C 

20220118_kocinka_rybna Kocinka, Rybna 18.01.2022 14:55 Snow cover, total cloud cover 2.6 °C 

20220325_kocinka_rybna Kocinka, Rybna 25.03.2022 07:30 No cloud cover 5.6 °C 

20221220_sudol_krakow Sudół, Kraków 20.12.2022 11:20 Moderate cloud cover 2.0 °C 

20230111_kocinka_grodzisko Kocinka, Grodzisko 11.01.2023 No cloud cover 4.2 °C 

2.2. Algorithm 

2.2.1. Vignette correction 

The correction of the vignette effect was conducted using the “single image” method [12]. ‘Single 
image’ means that the algorithm tries to model the correction of the vignette effect only on the basis 
of the currently processed image and does not have any auxiliary data available (e.g., an image of a 

homogeneous target with a clearly visible vignette effect). It was implemented by translating the 

MATLAB code available at https://github.com/GUOYI1/Vignetting_corrector into Python. Several 

changes have been made to adapt the algorithm to work with thermal images. Standard images are 

represented with floating point values from 0 to 1, or integers from 0 to 255. The original 
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implementation of the algorithm assumed this data format, so it had to be modified to work on 

unconstrained float values. Thermal image values can also be negative. The vignette correction 

algorithm works on logarithms of pixel values, so temperatures are converted to Kelvins in order to 

avoid the logarithm of 0. The vignette correction algorithm tends to increase the brightness of the 

photo. For standard photos this is not a problem, but for thermal images, where increasing the 

brightness will result in a bias in the temperature reading, this cannot be accepted. We assume that 

images with vignette effect occurring contain correct temperature in their central part. Therefore, we 

can use the central part of the photo before correction as a reference level for the photo obtained after 

applying the vignette correction algorithm. The bias is compensated for by subtracting the average 

difference between the central areas of the images before and after vignette correction. While the 

vignette effect mainly affects the edge part of the image, the central area size is defined as a rectangle 

with sides twice smaller than the whole image. 

2.2.2. Georeferencing 

The georeferencing algorithm is largely based on the aerial photos stitching solution proposed 

by Luna Yue Huang [13]. Modifications in our method consists of direct georeferencing to Universal 

Transverse Mercator (UTM) coordinate system. 

The first part of the georeferencing procedure is initial georeferencing of images based on EXIF 

metadata. These contain information about the geographic coordinates, yaw, and altitude of the 

drone camera at the time the image was taken. This information, along with the angle of field of view 

taken from the camera specifications, allows estimation of an affine transformation parameters of 

translation (𝑣𝑥, 𝑣𝑦), scale (𝑠𝑥, 𝑠𝑦), and counter clockwise rotation (𝜃) that allows to embed the image 

in an UTM coordinate system. This is not an accurate estimation, due to the low accuracy of the UAV's 

GPS geolocation and high sensitivity to the shift of the camera viewing area under the influence of 

wind blows. In this estimation the scale 𝑠𝑥  and 𝑠𝑦  parameters are equal, and the shear (𝑐𝑥 , 𝑐𝑦) 

coefficients are 0. The transformation parameters allow us to obtain the transformation matrix 𝐴 

based on Equation 1. 

𝐴 = (cos 𝜃 − sin 𝜃 𝑣𝑥sin 𝜃 cos 𝜃 𝑣𝑦0 0 1 ) ∙ (𝑠𝑥 𝑐𝑥 0𝑐𝑦 𝑠𝑦 00 0 1) 

= (𝑠𝑥 cos 𝜃 − 𝑐𝑦 sin 𝜃 𝑐𝑥 cos 𝜃 − 𝑠𝑦 sin 𝜃 𝑣𝑥𝑐𝑦 cos 𝜃 + 𝑠𝑥 sin 𝜃 𝑠𝑦 cos 𝜃 − 𝑐𝑥 sin 𝜃 𝑣𝑦0 0 1 ), 

(1) 

Based on the initial georeferencing, pairs of overlapping images are found. To ensure that all 

possible pairs are found even when errors in the initial georeferencing may indicate a lack of 

overlapping, footprints are expanded (buffered) by a dilation operation by the given padding value. 

Each pair of images is aligned and a relative transformation matrix 𝐴𝑅 is found by a well-established 

in the field of image vision stitching method: i) finding corresponding points (keypoints) in both 

images using scale-invariant feature transform (SIFT) [14], ii) matching keypoints using fast 

approximate nearest neighbour search (FLANN) [15], and iii) estimation of best transformation 

matrix using random sample consensus (RANSAC) [16]. Relative transformations are verified in two 

stages: i) since we assume that the images are taken from the same altitude, the scaling factor in the 

relative transformation of two overlapping images must be approximately equal to 1. If the value of 

the scaling factor for relative transformations is outside the range 0.9 – 1.1, the relative transformation 

is considered incorrect. ii) as all images are taken in nadir orientation, the relative transformations 

should not perform a shearing operation. When there is no shear, the absolute values of the relative 

transformation matrix 𝐴𝑅  satisfy the following condition: |𝐴𝑅11| = |𝐴𝑅22| and |𝐴𝑅12| = |𝐴𝑅21|. If 

deviation between these values is greater than 0.1, the relative transformation is considered to be 

incorrect. If the relative transformation is found to be incorrect, according to Luna Yue Huang 

solution, an attempt is made to establish a relative transformation using the same pair of images, but 

resized to twice lower resolution. Such a procedure allows you to obtain a different keypoints using 
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for scale determination. If the relative transformation obtained in this way again fails to pass 

verification, the pair of photos is discarded. 

Based on the obtained pairs, an undirected graph was constructed [17], where each node is an 

aerial photo, and each edge is a valid relative transformation between a pair of photos. The connected 

components are then extracted from the graph. A connected component in graph theory is a group 

of vertices in a graph that are all directly or indirectly connected to each other. Only images (nodes) 

from a connected component containing the largest number of nodes are used for further processing. 

Iterating over each pair of images, the coordinates of the corners of the second image are 

calculated in the pixel coordinate system of the first image using equation 2. This idea is also 

visualised in Figure 1. 

 

Figure 1. Alignment of an example pair of images with dimensions of 640 × 512  pixels. The 

coordinates of the marked corners are expressed in the pixels coordinate system of the first image. 

𝑝1𝑠𝑡 = 𝐴𝑅 ∙ 𝑝2𝑛𝑑, (2) 

where: 𝐴𝑅 – relative transformation matrix between 2nd image and 1st image pixel coordinate system, 𝑝2𝑛𝑑 – coordinates of corner point expressed in 2nd image pixel coordinate system, 𝑝1𝑠𝑡  – coordinates of the same point expressed in 1st image pixel coordinate system. 

Optimisation of georeferencing of all images involves tuning the absolute geographic 

transformation parameters (𝑣𝑥, 𝑣𝑦, 𝑠𝑥, 𝑠𝑦 , 𝜃) to make the relative transformations recovered from 

them as close as possible to the relative transformations obtained earlier using alignment of each pair 

separately. Recovery of the relative transformation matrix 𝐴𝑅̂  from the absolute geographic 

transformation matrices 𝐴1𝑠𝑡̂  and 𝐴2𝑛𝑑̂  of two georeferenced images is obtained according to 

Equation 3. 𝐴𝑅̂ = 𝐴1𝑠𝑡̂ −1 ∙ 𝐴2𝑛𝑑̂, (3) 𝑐𝑥  and 𝑐𝑦  shear parameters are not tuned during the optimization. Although tuning of these 

parameters further improves the matching between pairs of photos, it also introduces an 

unacceptable shearing of the entire mosaic of photos. 

Similarly to equation 2, the coordinates of points expressed in the pixel reference system of the 

2nd photo can be converted to coordinates expressed in the reference system of the 1st image using 

equation 4.  𝑝1𝑠𝑡̂ = 𝐴𝑅̂ ∙ 𝑝2𝑛𝑑, (4) 

where: 𝐴𝑅̂ – relative transformation matrix between 2nd image and 1st image pixel coordinate system, 𝑝2𝑛𝑑 – coordinates of point expressed in 2nd image pixel coordinate system, 𝑝1𝑠𝑡̂  – coordinates of the same point expressed in 1st image pixel coordinate system. 

Optimisation is performed using the gradient descent method with the loss function ℒ that 

consist of two components ℒ𝑅 and ℒ𝐴. Component ℒ𝑅 is the mean Euclidean distance between the 
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points at the corners of the images obtained from the relative transformations recovered from the 

tuned absolute geographic transformations and the points from the corners of the images from the 

relative transformations obtained during the pair alignment. ℒ𝑅 = 1𝑁𝑃∑ 14∑ ‖𝑝1𝑠𝑡,𝑖,𝑗 − 𝑝1𝑠𝑡,𝑖,𝑗̂ ‖4𝑗=1𝑁𝑃𝑖=1 , (5) 

where: 𝑁𝑃 – number of pairs, 𝑝1𝑠𝑡,𝑖,𝑗 – point of j-th corner of the i-th pair 2nd image expressed in the 1st image pixel coordinate 

system estimated from pairs alignment, 𝑝1𝑠𝑡,𝑖,𝑗̂  – point of j-th corner of the i-th pair 2nd image expressed in the 1st image pixel coordinate 

system estimated using relative transformation recovered from absolute geographic transformations 

tuned during optimization. 

Component ℒ𝐴  is a mean Euclidean distance between geographic centroids of tuned image 

footprints and geographic centroids of image footprints obtained during initial georeferencing using 

EXIF data. ℒ𝐴 = 1𝑁𝐼∑ ‖𝑝𝑖 − 𝑝𝑖̂‖𝑁𝐼𝑖=1 , (6) 

where: 𝑁𝐼 – number of images, 𝑝𝑖  – point of centroid of i-th image obtained from EXIF data expressed in geographic coordinate 

system, 𝑝𝑖̂ – point of centroid of i-th image obtained from absolute geographic transformation tuned 

during optimization. 

By minimizing the ℒ𝑅 factor, the optimized absolute geographic transformations are adjusted 

so that the retrieved from them relative transformations between pairs of images are as close as 

possible to the relative transformations previously obtained separately for each pair in the alignment 

process. Minimizing the ℒ𝑎  factor ensures that the entire mosaic will not move in any direction 

during the optimization. Equation 7 is the final formula for the ℒ loss function. To minimise the 

impact on the relative matching of images using ℒ𝑅 component, the ℒ𝐴 component is multiplied by 

a factor of 10−6. The factor value was selected experimentally by qualitative assessment of results 

tested for different values. ℒ = ℒ𝑅 + 10−6ℒ𝐴, (7) 

2.2.3. Thermal calibration 

In order to minimise the temperature bias between overlapping images using Gradient Descent, 

a consistent dataset has to be prepared. If the reduction of the vignette effect has not yielded sufficient 

results and the photos overlap is large enough, the areas of the photos near the edges where the 

vignette effect affects the temperature images the most can be truncated (Figure 2). 

 

Figure 2. Example of cropped areas and the common area of a pair of images used for calibration. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 October 2023                   doi:10.20944/preprints202310.0187.v1

https://doi.org/10.20944/preprints202310.0187.v1


 7 

 

For the two images from each pair, only the common part is retained, as well as a mask that 

allows us to reproduce the irregular shape of the cutout from the rectangular array. Temperature 

cutouts of both images and mask are resized to array of 32 × 32  pixels. During resizing, the 

temperatures are interpolated using the bilinear method, and the mask is interpolated using the 

nearest neighbours method. The example result of the common clip is shown at Figure 3. The example 

corresponds to the images shown in Figures 1 and 2. The rotation is due to the transformation to an 

absolute geographic datum. The lack of the preservation of aspect ratio is due to the need for scaling 

to fill the whole area of square array of 32 × 32. 

 

    
(a) (b) (c)  

Figure 3. Example components of the dataset sample: a) binary mask, b) first temperature image, c) 

second temperature image. 

By resizing the slices to 32 × 32 pixels, it was possible to create a coherent dataset of three 

arrays (masks and pair of images common part) of size 𝑁𝑝 × 32 × 32 (𝑁𝑝 is number of pairs), which 

could then be used in optimization using the gradient method. 

Optimisation of the temperature values involves tuning the 𝑏 parameter that is used for the 

offset of each image according to equation 8. 𝑣̂ = 𝑣 + 𝑏, (8) 

where: 𝑣̂ – temperature value with applied calibration, 𝑣 – temperature value before calibration, 

Optimisation uses a loss function ℒ that consists of two components: ℒ𝐵 and ℒ𝑀. Component 𝐿𝐵 is pixelwise mean squared error between calibrated temperature values of first and second cutout 

images from given pair. It is calculated with Equation 8. ℒ𝐵 = 1𝑁𝑃∑ 132∑ 132∑ (𝑣1𝑠𝑡,𝑖,𝑗,𝑘̂ −𝑣2𝑛𝑑,𝑖,𝑗,𝑘̂ )232𝑘=132𝑗=1𝑁𝑃𝑖=1 , (9) 

where: 𝑁𝑃 – number of pairs, 𝑣1𝑠𝑡,𝑖,𝑗,𝑘̂  – value of calibrated first image in i-th pair at pixel coordinate (𝑗, 𝑘), 𝑣2𝑛𝑑,𝑖,𝑗,𝑘̂  – value of calibrated first image in i-th pair at pixel coordinate (𝑗, 𝑘), ℒ𝑀  is absolute difference between mean of all uncalibrated images and mean of calibrated 

images. It is calculated with Equation 9. ℒ𝑀 = |𝜇 − 𝜇̂|, (10) 

where: 𝜇 – mean value of uncalibrated images, 𝜇̂ – mean value of calibrated images. 

By minimizing the ℒ𝐵 component, the bias between the temperature values in the overlapping 

images is minimized. The ℒ𝑀 component ensure that during optimization the whole mosaic will not 

drift from initial mean value. The total loss is calculated using equation 11. To minimise the impact 

on bias correction using the ℒ𝐵 component, the ℒ𝑀 component was multiplied by factor of 10−2. 

The factor value was selected experimentally by qualitative assessment of results tested for different 

values. 
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ℒ = ℒ𝐵 + 10−2ℒ𝑀, (11) 

2.3. Final processing and result analysis 

The rivers in the measured areas have homogenous temperatures throughout the surveyed 

sections and a well-defined emissivity value of 0.95. Therefore, they can be used to verify the 

proposed method. The sets of both the original and bias-corrected images were offset (the same offset 

value for all images from the given set) so that the average water body temperature read from the 

thermal mosaic was equal to the measured reference water temperature. We decided on this because 

the temperatures returned by the DJI Thermal SDK may differ significantly from the actual 

temperatures, it is straightforward correction and makes it easier to compare measurements from 

before and after calibration. 

3. Results 

3.1. Vignette correction 

A 'single image' algorithm was used to correct the vignette effect. For this reason, it is prone to 

misinterpretations of the image and the resulting erroneous correction of the vignette effect. Figure 4 

shows an example of correct vignette effect correction. In this case, the standard deviation of the 

image as a result of the vignette effect correction has decreased, which manifests itself as a narrowing 

of the histogram of pixel values. Figure 5 shows an incorrect correction of the vignette effect, where 

it is likely that the river near the left edge of the image caused the misinterpretation. In this case, the 

correction resulted in an increase in the standard deviation of the photo, which manifests itself as a 

widening of the histogram of pixel values. 

 

 

Figure 4. Example of successful vignette correction. 
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Figure 5. Example of unsuccessful vignette correction. 

To quantitatively investigate the effectiveness of the devignetting algorithm, it was checked for 

how many images a reduction in standard deviation was obtained as a result of devignetting. For 

74.4% of the images (2261 out of 3037 total images) there was a reduction in the standard deviation. 

For 25.6% of the images (776 out of 3037 total images) there was an increase in the standard deviation. 

The average reduction in standard deviation was -0.07 °C while the average increase in standard 

deviation was 0.01 °C. The detailed distribution of the changes in standard deviation as a result of 

the vignette effect correction is shown in the histogram in Figure 6. 

 

Figure 6. Change in the standard deviation of the images as a result of the devignetting algorithm. 

The dashed line is drawn at zero. 

3.2. Visual assessment 

Figures 7–11 show parts of thermal image mosaics before and after calibration for each case 

study. These are not orthomosaics - they were created straightforwardly by displaying all 

georeferenced images. Where the images overlap, a later image from the collection is displayed. 
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Figure 7. 20211215_kocinka_rybna – fragment of mosaic before (left) and after (right) the calibration. 

  

Figure 8. 20220118_kocinka_rybna – fragment of mosaic before (left) and after (right) the calibration. 

  

Figure 9. 20220325_kocinka_rybna – fragment of mosaic before (left) and after (right) the calibration. 
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Figure 10. 20221220_sudol_krakow – fragment of mosaic before (left) and after (right) the 

calibration. 

  

Figure 11. 20230111_kocinka_grodzisko – fragment of mosaic before (left) and after (right) the 

calibration. 

3.3. Waterbody temperature 

Table 2 summarizes the obtained RMSE and MAE of stream temperature measurements using 

uncalibrated and calibrated thermal images. Both calibrated and uncalibrated images were subjected 

to the offset described in section 2.3. 

Table 2. Comparison of root mean squared error and mean absolute error of stream temperature 

measurement using uncalibrated and calibrated thermal images. 

Case study 
RMSE 

Uncalibrated 

RMSE 

Calibrated 

MAE 

Uncalibrated 

MAE 

Calibrated 

20211215_kocinka_rybna 0.679375 0.310173 0.539997 0.249083 

20220118_kocinka_rybna 0.958521 0.528135 0.579392 0.337545 

20220325_kocinka_rybna 1.229638 0.93813 0.894125 0.664885 

20221220_sudol_krakow 1.099734 0.703925 0.831873 0.519501 

20230111_kocinka_grodzisko 0.96338 0.61609 0.815541 0.458868 

Figure 12 show the temperatures sampled along the river centreline from the uncalibrated and 

the calibrated images. There are multiple measurements for a single chainage value, as a given point 

may be present in multiple overlapping images. Peaks in the temperature readings that have not been 

compensated by calibration are sampled on vegetation overhanging the water surface. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 12. Temperatures sampled along the river centreline from the uncalibrated (flight time colour 

scale large points) and the calibrated images (red small points) for each case study. The dashed line 

is the actual water temperature. (a) 20211215_kocinka_rybna, (b) 20220118_kocinka_rybna, 

(c) 20220325_kocinka_rybna, (d) 20221220_sudol_krakow, (e) 20230111_kocinka_grodzisko. 

4. Discussion 

4.1. Devignetting 

The single-image vignette correction method has proven successful when applied to thermal 

images. Although there was an increase in the standard deviation for about a quarter of the images. 

This was a minor increase, as on average a seven times greater reduction in standard deviation was 

recorded for the rest of the three-quarters of the images. 

4.2. Visual assessment of mosaics 

A visual comparison of the mosaics before and after calibration shows an improvement in 

temperature fluctuations, particularly between successive flight passages. The algorithm also handles 

the correction of undervalued images taken at the beginning of the flight, when the camera is 

warming up. Correction of the images from the case study 20211215_kocinka_rybna and 

20220118_kocinka_rybna has allowed us to see the warmer tributary of the stream, which is fed by 

warmer groundwater (Figures 7 and 8 after calibration). 
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4.3. Measurement precision and accuracy 

The proposed solution based on minimising the bias between overlapping images significantly 

increased the precision of the water temperature measurements taken in all case studies. Despite the 

improvement in calibration precision, the accuracy can still be poor due to imperfections of the 

Thermal SDK library provided by the manufacturer, which was used for conversion of raw data to 

temperature values. However, an increase in accuracy can be easily achieved by an additional offset 

applied to all images (see Section 2.3) if any reference points are available for the study area. After 

applying this offset, the average root mean squared error was reduced by 39.0% and the mean 

absolute error by 40.5%. 

4.4. Applications 

Previous methods of reducing adverse phenomena occurring in uncooled thermal cameras have 

relied on calibration under controlled laboratory conditions and required non-standard 

instrumentation such as reference black bodies or custom UAV attachments. For this reason, they 

require an additional effort of specialised operator and cannot be automated. On the other hand, our 

proposed solution requires minimal effort as it only requires data collected during a standard UAV 

flight and is highly automated making it possible to use by a non-specialised operator. This also 

makes the solution ready to be implemented as part of a photogrammetric software workflow.  
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Appendix A 

The algorithm was implemented in Jupyter Notebooks using the Python programming 

language. The processing solution includes 5 notebooks responsible for preliminary images 

conversion, vignette correction, georeferencing of images, calibration of temperature values and 

offsetting of all images (1_conversion.ipynb, 2_devignetting.ipynb, 3_georeferencing.ipynb, 

4_calibration.ipynb, respectively). They can be run on any operating system thanks to the Docker 

containerisation. 

Conversion notebook 

First, the images must be converted from the camera manufacturer's specific format (usually a 

JPG image with RGB channels providing temperature visualisation) to a single-channel TIFF file 

containing temperature values. For this study, the DJI The thermal SDK library provided by the 

thermal camera manufacturer was used for extraction of temperature arrays from manufacturer-

specific JPG file format. This library requires values of flight altitude, air humidity, surface emissivity, 
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and surface reflection temperature. The extracted temperatures are saved to a TIF file. The EXIF data 

is copied unchanged from the input JPG file to the resulting TIF file. 

Georeferencing notebook 

For initial georeferencing, longitude (𝜆), latitude (𝜑), altitude (𝑧) and rotation (𝜃) data were 

extracted from the images using the exiftool software. The camera's diagonal angle of view (𝛼) was 

taken from the camera documentation. The length of the image footprint diagonal (𝑙𝑑) expressed in 

meters was calculated with 𝑙𝑑 = 2𝑧 tan(0.5𝛼) formula. The horizontal and vertical footprint length 

was calculated using 𝑙ℎ = 𝑙𝑑(𝑝ℎ √𝑝ℎ2 + 𝑝𝑣2⁄ )  and 𝑙𝑣 = 𝑙𝑑(𝑝𝑣 √𝑝ℎ2 + 𝑝𝑣2⁄ )  formulas respectively, 

where 𝑝ℎ and 𝑝𝑣 are width and height of image expressed in number of pixels (in this case study 𝑝ℎ = 640 and 𝑝𝑣 = 512). The longitude and altitude were converted into 𝑥, 𝑦 coordinates of the 

UTM system using the pyproj library. These are the coordinates of the centroid of the footprint of the 

photo. Footprint was initialized using Polygon object of the shapely library with four corner points: (𝑥 − 0.5𝑙ℎ , 𝑦 − 0.5𝑙𝑣), (𝑥 + 0.5𝑙ℎ, 𝑦 − 0.5𝑙𝑣), (𝑥 + 0.5𝑙ℎ, 𝑦 + 0.5𝑙𝑣), (𝑥 − 0.5𝑙ℎ , 𝑦 + 0.5𝑙𝑣). It was then 

rotated by 𝜃 around the centroid using affinity.rotate function from shapely library to obtain final 

footprint. 

A modified variant of the transformation matrix was used in the implementation to take into 

account that images expressed as arrays have the y-axis pointing downward. The modified 

transformation matrix is similar to standard transformation matrix with clockwise rotation; however, 

it uses clockwise rotation and bottom-right pixel coordinates are used as 𝑣𝑥 and 𝑣𝑦 parameters. The 

modified version of the transformation matrix used in the implementation of the algorithm is 

presented in equation A1. 

𝐴 = (cos 𝜃 sin 𝜃 𝑣𝑥sin 𝜃 − cos 𝜃 𝑣𝑦0 0 1 ) ∙ (𝑠𝑥 𝑐𝑥 0𝑐𝑦 𝑠𝑦 00 0 1) 

= (𝑠𝑥 cos 𝜃 + 𝑐𝑦 sin 𝜃 𝑐𝑥 cos 𝜃 + 𝑠𝑦 sin 𝜃 𝑣𝑥𝑠𝑥 sin 𝜃 − 𝑐𝑦 cos 𝜃 𝑐𝑥 sin 𝜃 − 𝑠𝑦 cos 𝜃 𝑣𝑦0 0 1 ), 

(A1) 

The modified transformation matrix was composed with 𝑣𝑥  and 𝑣𝑦  parameters being 

coordinates of the bottom-right footprints corner, 𝑠𝑥 and 𝑠𝑦  parameters being pixel size calculated 

with 𝑠𝑥 = 𝑠𝑦 = 𝑙𝑑/√𝑝ℎ2 + 𝑝𝑣2, 𝜃 parameter equal to negative yaw value extracted from EXIF data (as 

counterclockwise rotation is needed), and shear 𝑐𝑥 and 𝑐𝑦 parameters equal to 0. 

In order to optimize the process of finding matches of overlapping pairs of photos, candidates 

are found that are potentially overlapping. The process of finding candidates consists of dilating all 

footprints by 5m and then finding pairs of overlapping dilated footprints. Dilation is necessary, 

because due to inaccurate initial georeferencing some of footprints may indicate no overlap even if 

corresponding photos contain common area. Then, with the help of the CV2 library, an attempt is 

made to stitch a given image with each of the potential neighbours. Stitching procedure consist of 

several steps using functions from cv2 library: i) detecting features and computing descriptors with 

SIFT algorithm using detectAndCompute function, ii) descriptor matching using knnMatch function 

from FlannBasedMatcher class object, iii) filtering out incorrect matches using Lowe’s ratio test with 
ratio value equal 0.7, iv) using correct matches with estimateAffinePartial2D function to estimate 

relative transformation matrix between given image and potential overlapping neighbor. If the 

number of matching points used for calculation of the transformation matrix is greater than or equal 

to 8, the pair of images and their relative transformation matrix are qualified for further processing. 

At this stage, using a relative transformation matrix, the coordinates of the corners of the stitched 

image in the relative reference system of the other image of the pair are also calculated. 

To further ensure that the stitched pairs are correct, we filter out pairs where the scaling factor 

in the relative transformation matrix is outside the range of 0.8 to 1.2, as we assume that the images 

were taken from the same altitude, so the relative scaling factor must be equal to 1. 
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All stitched pairs of images that remain up to this point are interpreted as undirected graphs 

using the networkx library. Using the connected_components function, the connected component that 

contains the largest number of nodes (images) is extracted. It is also possible to visualise the stitched 

pairs and connected components as a graph with the geographical position of the nodes preserved. 

An example graph visualisation is shown in Figure A1. 

 

Figure A1. Graph visualization with preserved relative geographical positions of nodes and largest 

connected component marked in green. Green nodes are used for georeferencing optimization, red 

nodes are discarded. Example for Sudół case study. 

The data prepared up to this point is loaded into the tensor objects of the pytorch library. Values 

of these tensors relate either to images or image pairs. Transformation parameters 𝑣𝑥, 𝑣𝑦, 𝜃, 𝑠𝑥, 𝑠𝑦 , 𝑐𝑥, 𝑐𝑦 are stored in separate tensors of length equal number of images. These tensors will be tuned 

during the gradient descent optimization, so they are initialized with parameter requires_grad=True. 

A short optimisation time is ensured by using the ReduceLROnPlateau learning rate scheduler. 

Georeferencing notebook 

Footprints are read from previously generated GeoTIFF files. Then, based on them, pairs are 

found whose common part area is not less than the value defined as MIN_INTERCESTION_AREA. 

Samples that are the common part in pairs of images are scaled to a low resolution, defined as 

CLIP_SIZE. The data set is loaded into the tensors and gradient descent optimisation is performed. 
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