

Review

Not peer-reviewed version

Recent Advances on Imaging for Late-Stage Age-Related Macular Degeneration

[Anny M.S. Cheng](#) , [Kakarla V. Chalam](#) , Vikram S. Brar , David T.Y. Yang , Jineel Bhatt , Raphael G. Banoub , [Shailesh K. Gupta](#) *

Posted Date: 4 October 2023

doi: [10.20944/preprints202310.0180.v1](https://doi.org/10.20944/preprints202310.0180.v1)

Keywords: Age-related macular degeneration; confocal scanning laser ophthalmoscope; fundus autofluorescence; macular atrophy; microperimetry; multifocal electroretinogram; optical coherence tomography angiography; optical coherence tomography

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Recent Advances on Imaging for Late-Stage Age-Related Macular Degeneration

Anny M.S. Cheng, MD ^{1,2,3}, Kakarla V. Chalam, MD, PhD, MBA ⁴, Vikram S. Brar, M.D ⁵, David T.Y. Yang, BS ⁶, Jineel Bhatt, MD ², Raphael G. Banoub, MD ^{1,2} and Shailesh K. Gupta, MD and MBA^{1,2,*}

¹ Department of Ophthalmology, Broward Health, Fort Lauderdale, FL, USA; annycheng0927@gmail.com (A.M.S.C.); rbanoub@browardhealth.org (R.G.B.)

² Specialty Retina Center, Coral Springs, FL, USA; docjineel@gmail.com

³ Department of Ophthalmology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, USA

⁴ Department of Ophthalmology, Loma Linda University, Loma Linda, CA, USA; kakarla.chalam@gmail.com

⁵ Virginia Commonwealth University, Department of Ophthalmology, Richmond, VA, USA; vikram.brar@vcuhealth.org

⁶ University of California, Davis, College of Biological Science, Sacramento, CA, USA; davidyang0709@gmail.com

* Correspondence: sgupta@specialtyretina.com

Abstract: Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. In late-stage AMD, geographic atrophy (GA) of dry AMD or choroidal neovascularization (CNV) of neovascular AMD results in macular atrophy (MA), leading to significant visual loss. Despite the development of innovative therapies, there are currently no established effective treatments for MA. As a result, early detection of MA is critical in identifying later central macular involvement throughout time. Accurate and early diagnosis is achieved through a combination of clinical examination and imaging techniques. Our review of the literature depicted advances in retinal imaging to identify biomarkers of progression and risk factors for late AMD. Imaging methods like fundus autofluorescence (FAF), near-infrared reflectance (NIR), widefield imaging, optical coherence tomography (OCT), multicolor confocal scanning laser ophthalmoscopy (cSLO), and optical coherence tomography angiography (OCTA) can be used to detect and monitor the progression of retinal atrophy. Multifocal electroretinogram (ERG) and microperimetry are methods for quantifying visual function to map disease progression. The evolving diverse imaging modalities optimize detection of pathology anatomy and measurement of visual function; they may also contribute to the understanding of the underlying mechanistic pathways, particularly the underlying MA changes in late AMD.

Keywords: age-related macular degeneration; confocal scanning laser ophthalmoscope; fundus autofluorescence; macular atrophy; microperimetry; multifocal electroretinogram; optical coherence tomography angiography; optical coherence tomography

1. Introduction

Age-related macular degeneration (AMD) has been recognized as one of the leading causes of vision impairment and blindness worldwide in the elderly[1]. In a meta-analysis of individuals aged 45–85 years old, the pooled global prevalence of early, late, and any stage of AMD was 8.01%, 0.37%, and 8.69%, respectively. The number of individuals globally with AMD is projected to increase from 196 million in 2020 to 288 million in 2040[2]. Studies have suggested geographical or ethnic differences in different stages of AMD prevalence[3–6]. The prevalence rates of early (11.2% vs 6.8% vs 7.1%) and any stages of AMD (12.3% vs 7.4% vs 7.5%) were higher in Europeans compared to

Asians and Africans. In the late stage of AMD, significant visual impairment is due to dry AMD with geographic macular atrophy (MA) or wet AMD with choroidal neovascularization (CNV). Of the nearly 12 million people considered legally blind from late AMD, with similar rates from overall geographic atrophy (GA) and neovascular AMD (nAMD), Europeans had a higher prevalence of GA (1.11%) than Africans (0.14%), Asians (0.21%), and Hispanics (0.16%)[2,5]. The increasing use of anti-vascular endothelial growth factor (VEGF) therapies has substantially altered the prognosis of nAMD, improved vision, and reduced the risk of severe vision loss[7]. In contrast, MA is the morphological end stage manifestation of a degenerative disease process which manifests as vision loss as the lesion enlarges and involves the foveal center[8]. Due to its chronic nature and progressive increase in vision loss, AMD, and specifically MA, will continue to be a global public health concern with substantial socioeconomic and healthcare consequences.

MA, an anatomic endpoint of AMD is characterized by the permanent degradation of the retinal pigment epithelium (RPE) and overlying photoreceptors. In wet nAMD, choroidal neovascularization penetrates the neural retina, leading to the leakage of fluid, lipid, blood and resulting in retinal fibrosis. While in GA, in the setting of dry AMD, the retinal pigment epithelium, choriocapillaris, and photoreceptors are progressively atrophied[9]. nAMD was essentially incurable two decades ago; however, treatments based on the suppression of VEGF have significantly prevented vision loss or improved vision[10–12]. A cohort study reported that 50% of the nAMD eyes in 647 patients had visual acuity of 20/40 or better in the 5 years following anti-VEGF treatment, confirming anti-VEGF therapy as a major long-term therapeutic advance for nAMD[13]. However, studies found that MA developed in nAMD despite intensive anti-VEGF therapy. In the CATT study, 18.3% and 38% of patients developed MA within 2 years and 5 years of initiating anti-VEGF treatment, respectively[14,15]. In the Seven Year Observational Update of Macular Degeneration study (SEVEN-UP) reporting on patients post MARINA/ANCHOR and HORIZON Trials, nearly all (98%) of eyes treated for nAMD over 7 years developed MA[16]. Furthermore, the HARBOR Study found 29.4% (229/778) of eyes had newly developed MA at 24 months after anti-VEGF injection [17]. What factors induce or aggravate MA progression in nAMD remains unknown[18]. Besides the natural progression of underlying or impending atrophy as GA in dry AMD, different hypotheses have implicated CNV-induced photoreceptor injury and anti-VEGF therapy in nAMD as causes of MA[19,20]. In fact, VEGF appears to be critical for the survival and maintenance of non-vascular tissues such as RPE and choriocapillaris integrity; therefore, its suppression could result in the development or progression of MA. In contrast a recent study showed anti-VEGF treatment regimen or injection frequency was not correlated to progression of existing MA or incidence of new MA in eyes with nAMD over 4 years[21]. In addition, the Alternative Treatments to Inhibit Vascular Endothelial Growth Factor in Patients with Age-Related Choroidal Neovascularization (IVAN) and RIVAL studies found no difference in incidence of MA among different anti-VEGF therapies[22,23]. A prospective cohort study, the Age-Related Eye Disease Study (AREDS), reported that the incident rate of MA in untreated nAMD was approximately one-third of eyes within 5 years and one-half by 8 years[24]. This further confirmed that natural progression to MA is the final common pathway in both nAMD and dry AMD disease progression.

In late-stage AMD, MA is present in areas previously occupied by drusenoid pigment epithelial detachments (PED) and is characterized by confluent loss of the RPE[25]. It has been proposed that MA development could depend on the underlying MA phenotype, in which type 3 (RAP) lesions may have a greater risk of the development and progression of atrophy, whereas type 1 lesions are associated with a lower risk of MA progression[26,27]. MA is also associated with reticular pseudodrusen (RPD), located subretinally as yellowish-white net-like patterns, which is a risk factor for progression to the late stage of AMD in both dry and wet AMD patients[28,29]. Currently, there are no standard and effective treatments for MA despite emerging innovative therapies. While new treatment modalities are being investigated that will improve the clinical course of AMD, implementing early detection and preventative techniques can help delay or halt disease progression. Hence, it is important to detect incident MA at the first appearance to identify subsequent progression to central macular involvement over time. Different imaging modalities are evolving for identifying

disease progression and prognostic factors and may also contribute to the understanding of the pathogenetic pathways specifically the underlying macular changes in late AMD. A summary of these methods is provided below.

2. Assessment using Imaging

2.1. Fluorescein Angiography & Indocyanine green angiography

Angiography is an intravenous dye-based imaging technique to study the circulation of the choroid and retina where, once dye is administered, a time-based sequence of fundus images is digitally recorded. Fluorescein angiography utilizes sodium fluorescein dye to illuminate the retina at a peak wavelength of 490 nm (blue) and then photographically record the excited fluorescent 530 nm (green) light that is emitted[30]. Indocyanine Green (ICG) angiography utilizes ICG, a molecule that is 98% protein bound, and therefore remains in the fenestrated choriocapillaris longer and leaks less relative to fluorescein dye. It is sometimes more useful than fluorescein dye to study choroidal diseases such as nAMD[31].

As imaging technologies evolve, their diagnostic and monitoring applications for AMD and MA have expanded. The course of MA in late AMD is characterized by the development of atrophic areas that enlarge continuously over time with cell death of the RPE, the outer neurosensory retina, and the choriocapillaris[32]. In fundus fluorescein angiography (FA), atrophic patches appear as well-defined, hyperfluorescent areas because of enhanced visualization of the normal choroidal fluorescence caused by the loss of RPE cells (window defect), which would normally diminish the transmission of fluorescein fluorescence. Compared to fundus photography, this demarcated hyperfluorescent signal provides a sharper contrast between the atrophic and the surrounding non-atrophic areas. However, other pathologic findings in dry or wet AMD, such as drusen, pigmentary changes, fibrotic tissue, or neovascularization, may also result in an increased fluorescence signal or progressive dye leakage and therefore obscure the boundary demarcation of atrophy[33,34]. In indocyanine green angiography (ICG-A), atrophic patches appear as discrete hypofluorescent areas with loss of background fluorescence owing to small and medium vessel choriocapillaris atrophy[35]. However, the large, deep choroidal vessels may still be visible and interfere with the outline of the area of atrophy and cause more difficulty in exact and reliable delineation. While ICG-A is useful in the differential diagnosis of polypoidal choroidal vasculopathy (PCV), chronic central serous chorioretinopathy (CSC), and retinal angiomatic proliferation (RAP), which are often misdiagnosed as nAMD[36], ICG-A has a negligible role for the identification of atrophy in AMD. In addition, both ICG-A and FA are invasive procedures that carry the risk of local infiltration, extravasation at the injection site, as well as the risk of an allergic reaction, which can be rare but severe and life-threatening, to the intravenously administered dye[37]. FA is therefore recommended for the detection, classification, and quantification of NV but not atrophic changes; ICG-A can be used to distinguish other disease entities that cause atrophy[38].

2.2. Fundus Autofluorescence

Fundus autofluorescence (FAF) is a non-invasive method, that provides rapid, noninvasive, high-contrast retinal images that are particularly useful for detecting atrophic areas, especially for better atrophic lesion boundary discrimination compared with color fundus photography[39,40]. FAF utilizes the fluorescent properties of lipofuscin, a byproduct of lysosomal breakdown of photoreceptor outer segments within the RPE cell. When excited by an appropriate light source, the bisretinoid components of lipofuscin absorb blue light with a peak excitation wavelength of approximately 470 nm and emit yellow-green light with a peak wavelength of 600 nm. A detector is then used to record the emissions signals as they are emitted. An FAF image, then, is a density map of lipofuscin where the brighter "hyperflourescent" areas represent areas of increased lipofuscin density and darker "hypflourescent" areas represent areas of decreased lipofuscin density[41,42].

One of the hallmarks of early and intermediate AMD is macular drusen[43], which form with RPE aging. Drusen are composed of lipofuscin containing dense lipids, carbohydrates, zinc, and

proteins, including apolipoprotein B and E, as well as components of the complement system[44]. Recent grading systems, including the Age-Related Eye Disease Study (AREDS) and the Beckman Initiative for Macular Research Classification Committee, have classified drusen based on drusen type and size to associate drusen regression with or without RPE atrophy in NV or GA of late AMD[45-47]

A recent study classified drusen-associated atrophy stages based on FAF and histological findings in eyes with late AMD[48]. In stage 2, the earliest stage with detectable findings, FAF exhibited uniform hyperautofluorescence, indicating photoreceptor photopigment loss, whereas hypoautofluorescence in stages 3 and 4 corresponded to varying degrees of RPE atrophy. The FAF appearance is initially hyperfluorescent (stage 2), followed by a hypoautofluorescent center surrounded by hyperautofluorescent borders when associated with focal areas of RPE atrophy (stage 3), and hypoautofluorescent lesions with complete RPE loss (stage 4)[48]. As the disease progresses through stages, the proportion of lipid within the drusen decreases relative to the proportion of calcification, with 80% of the drusen being refractile at the advanced stage 4. The refractile drusen appear as yellowish-white, glistening lesions and are associated with an increased risk of developing late AMD; however, they are undetectable on FAF alone[49]

Of note, it was reported that cuticular drusen are strongly associated with late AMD[50]. Eyes with the cuticular drusen can develop NV or acquired vitelliform lesions (AVL)[51] which may regress to GA or RPE atrophy[52]. In longitudinal studies, GA developed in 19.0% of eyes with cuticular drusen over a mean follow-up period of 40±18months, whereas GA developed in 28.4% and NV in 12.5% over a 5-year follow-up period[53]. The cuticular drusen apex is steep and is where the atrophic RPE is located. FAF is an effective method to detect cuticular drusen with the display of numerous hypo-autofluorescences corresponding to the apex of the cuticle drusen with hyperautofluorescent rims. However, some FAF imaging cameras with different excitation wavelengths may not visualize these drusen[54]

Studies showed that reticular pseudodrusen (subretinal dursenoid deposits) are highly associated with late AMD, such as GA, Type 3 macular NV, and drusenoid PED[55-57]. Soft drusen are located beneath the RPE whereas reticular pseudodrusen are found on the surface of RPE[58]. Studies classify reticular pseudodrusen into 3 types[59,60] in which the ribbon/reticular type is likely to progress to advanced AMD, including GA and Type 3 macular NV[61-63]. Similar to cuticular drusen, eyes with the reticular pseudodrusen can develop NV or regress to GA or outer retina atrophy with focal photoreceptors loss and choroidal thinning[64]. FAF may demonstrate a reticular pattern in eyes with reticular pseudodrusen; however, studies indicate that FAF is not the most specific method for detecting reticular pseudodrusen[65]

Assessing the risk of late AMD depends on stratifying the types of drusenoid deposits and RPE abnormalities; and requires correctly evaluating imaging characteristics. The high-contrast differentiation of atrophic versus nonatrophic areas by FAF is a reliable image quantification of lesion area[66]. Currently, conventional blue light excitation with excitation wavelength of 488 nm is the most popularly used mode for FAF imaging. However, macular pigment blocks blue light, resulting in a relatively diminished signal intensity at the fovea, which appears as a zone of hypofluorescence[67]. Therefore, blue-light FAF may result in an overestimation of atrophic patch size and be mistaken for central atrophy involvement. The relative hypofluorescence of the fovea could mask an atrophic area, making it challenging to identify central minimal atrophic changes or adjacent paracentral atrophic margins[68]. The quality of blue FAF signal may also be affected by pupil size or media opacity such as cataracts or vitreous opacity. FAF imaging systems include confocal scanning laser ophthalmoscopy (cSLO) systems and flash fundus camera-based systems. cSLO has FAF imaging with two excitation wavelengths (488 nm and 514 nm), while fundus camera autofluorescence relies on excitation wavelengths in the green to orange range (510-610 nm). One study reported that green-light FAF images (514 nm) are superior to blue autofluorescence (488 nm) for the evaluation of small central GA lesion size[67]. Although the measurement of the atrophic lesions size in current clinical studies depends mainly on blue-light FAF, green-light FAF appears to

be a more accurate, and a potentially important evaluation tool for central MA progression in future studies.

In certain phenotypic variants of GA, the loss of contrast between intact and atrophic RPE can have an altered FAF appearance, which differs from the markedly hypo-autofluorescent images in other forms of GA[69] . In eyes with hemorrhagic nAMD or late nAMD with MA, the FAF signal may be reduced, and it is difficult to distinguish between atrophy and areas of fibrosis using FAF alone[60] . Recently, blue-light FAF has been utilized in conjunction with near-infrared reflectance (NIR), which is unaffected by luteal pigment and enhances foveal evaluation. NIR is characterized by a long excitation wavelength (820 nm diode laser) [70] that avoids the absorption of a shorter wavelength of light (480 nm) by melanin and lipofuscin granules at the RPE level, thereby allowing visualization of the retina and choroid[71,72] . Specifically, NIR reveals sub-RPE lesions effectively. Refractile drusen, for instance, are highly reflective, seen as glistening dots using NIR that are undetectable using FAF[73] . Studies have reported that NIR has a very high sensitivity for detecting reticular pseudodrusen[74–77] . However, systematic validation studies for NIR alone in the detection of atrophic AMD are still lacking. Hence, FAF combined with other diagnostic modalities such as NIR may improve visibility of the obscured atrophic demarcated areas compared to when using FAF alone. Furthermore, widefield imaging devices can be used for the acquisition of FAF and both FA and ICG-A. Widefield imaging with a field of view that exceeds 100 degrees and extends up to 150 degrees enables visualization of larger areas of the retina. Widefield imaging can monitor peripheral abnormalities to provide a more complete understanding of AMD[78]

2.3. Optical Coherence Tomography

OCT is a noninvasive imaging modality that utilizes transversely scanned short coherence length light with interferometry to generate 2 dimensional and 3 dimensional cross-sectional maps of the retina and choroid with micrometer level resolution [79] . While FAF is valuable for quantifying RPE loss in MA, it does not discern non-RPE layer changes[68] . The classic definition of atrophy has been revised to incorporate changes in the outer retinal layers based on optical coherence tomography (OCT) findings[69] . A classification system and criteria for OCT-defined atrophy associated with AMD has been proposed by The International Classification of Atrophy Meetings (CAM). According to the CAM study group, the OCT finding of atrophy undergoes an evolution of 4 different stages[80] : (1) incomplete outer retinal atrophy, (2) complete outer retinal atrophy, (3) incomplete RPE and outer retinal atrophy (iRORA), and (4) complete RPE and outer retinal atrophy (cRORA). Of note is that these terms apply to atrophy in both non-neovascular (dry) and neovascular (wet) forms of AMD[69] . The correlation between FAF changes and the four distinct atrophy categories is currently unknown. The severity to which hypoautofluorescence in FAF correlates with a single category of OCT-defined atrophy requires further investigation.

It is crucial that high resolution 3-dimensional OCT help identify the early phase of the atrophic process prior to lesion detection in 2-dimensional FAF [69–73] The high axial resolution of Fourier-domain OCT devices, including spectral-domain OCT (SD-OCT) and swept-source OCT (SS-OCT), allows for the study of atrophy to quantify specific retinal layer loss. The wide application of SD-OCT has revolutionized the diagnosis and management of nAMD as it can provide assessment of risk and treatment prognosis, including the need for repeated anti-VEGF injections and other therapeutic intervention[81] . Currently OCT has evolved into an effective imaging modality for evaluating early AMD changes. High-resolution OCT detects the presence of drusen and pigmentary changes in the early stages of AMD[82–84], but SD-OCT provides important information regarding changes in retinal layers such as the outer plexiform layer (OPL), inner nuclear layer (INL), external limiting membrane (ELM), and ellipsoid zone (EZ). Unlike previously reported non-unique risk factors for the development of atrophy, such as hyperreflective foci and drusen characteristics including heterogeneous internal reflectivity and maximum drusen height and choroidal thickness beneath the drusen[85,86] , SD-OCT may detect unique early features such as the subsidence of the OPL and INL and a hyporeflective wedge-shaped band within the limits of the OPL, that represent significant risk and are present prior to development of drusen-associated atrophy[87] . In addition, SD-OCT can

detect early morphological changes before conventional diagnostic instruments can. For instance, in one study, SD-OCT showed that 2.9% of eyes with drusen-associated atrophy were already present in patients classified as having intermediate AMD on color fundus photography[47,87] . In another study, the pathological SD-OCT features occurred approximately one year prior to the development of definitive drusen-associated atrophy[87] . This may enable treatment to be considered at an earlier time point in order to halt the progression of atrophy[88–90] , before late atrophic changes are detectable by conventional diagnostic methods.

A consensus was reached on the descriptions of imaging characteristics associated with atrophy or atrophy progression risk in eyes with AMD[80] . These OCT features at risk for atrophy include intraretinal hyperreflective foci, extracellular deposits (soft drusen, drusen with hyporeflective cores, cuticular drusen, drusenoid PED, and subretinal drusenoid deposits), hyperreflective crystalline deposits in the sub-RPE basal lamina (BL) space and acquired vitelliform lesions[74,91–97] . As drusen regress, the overlying retinal layers progress to atrophy that can be detected by OCT imaging. Outer retinal atrophy features included INL and OPL subsidence, ELM descent, a hyporeflective wedge-shaped band within the Henle fiber layer, often accompanied by RPE disturbance and increased signal hypertransmission into the choroid, and ELM and EZ disruption[98–101] . For iRORA to be present, three OCT features, including photoreceptor degeneration, RPE attenuation or disruption, and increased signal transmission into the choroid, are required to be present[102] . However, a minimum size limit for iRORA was not proposed. The study further reported that iRORA will progress and develop into cRORA over a variable time period ranging from months to years[102] . A model was then developed to estimate future potential atrophy growth regions and identify predictive biomarkers. The most predictive SD-OCT biomarkers were thickness loss of bands, reflectivity of bands, thickness of reticular pseudodrusen, GA projection image, increased minimum retinal intensity map, and GA eccentricity, based on quantitative characteristics of GA[103]

The anatomical correlations of the individual bands identified by an SD-OCT line scan are well established[104] . The distance interval between scans must be small enough to avoid missing pathologic characteristics such as drusen, reticular pseudodrusen, and pigment migration into the inner retina. Scanning with a spacing of 125–250 μm is suggested for the detection of reticular pseudodrusen, which indicate rapid atrophy progression, and the volume rendering of outer retinal tubulations[105,106] . However, a less density scan is typically preferred in longitudinal, large-scale clinical trials as a trade-off to achieve shorter acquisition time[107] . New advances in OCT imaging include SS-OCT, which offers faster scanning rates and a larger scan area[108] , and enhanced depth OCT (ED-OCT), which employs enhanced depth imaging acquisition techniques to enable greater tissue penetration in the axial direction and the visualization of more choroidal details[109] . Currently, detection of relevant clinical findings involves a volume scan by SD-OCT, or SS-OCT, but can be facilitated by screening with ED-OCT imaging to better detect the choroidal hyper transmission signal.

2.4. Multicolor Confocal Scanning Laser Ophthalmoscopy

Recently, MultiColor imaging has been developed for SD-OCT[110] . MultiColor images consist of a composite image by using the cSLO to capture three simultaneous laser wavelengths: blue reflectance (486 nm), green reflectance (518 nm) and infrared reflectance (815 nm)[111] . Hence, these various wavelengths of light penetrate and reveal the details of different retinal layers. Blue reflectance with the shortest wavelength reaches the vitreoretinal interface and inner retina, whereas infrared reflectance penetrates the deepest to detect structures in the outer retina and choroid. One study reported that both SD-OCT and MultiColor OCT detected smaller atrophic AMD size than blue-light FAF, which may represent an overestimation of the size of atrophic regions and foveal involvement[112] . However, retinal structures become less distinct due to chromatic aberration caused by the three lasers with slightly different focal planes. In addition, their optical reflection properties could hinder the distinction between subtle hemorrhages and pigmentary lesions. To date, only a few studies using this imaging are available[112–114] . Due to the limitations of current

knowledge, the application of multicolor imaging for atrophic and nAMD should be optional, as its utility has yet to be demonstrated.

2.5. Optical Coherence Tomography Angiography

Imaging capable of providing appropriate visibility of the choriocapillaris and choroid has improved our understanding of atrophic and nAMD. While FA allows visualization of the retinal vasculature but not the choriocapillaris, ICG-A has not been widely utilized for choriocapillaris visualization in AMD due to its lack of depth resolution and inability to differentiate between choriocapillary blood flow and that of deeper choroidal vasculature [115–117]. In contrast, optical coherence tomography angiography (OCTA) allows depth-resolved imaging of the retinal, choriocapillary, and choroidal vasculatures. OCTA generates three-dimensional images of vasculature but without dye injection. Repeated imaging of stationary tissue with OCTA produces a series of identical B-scans; when there is motion due to blood flow, the repeated B-scans will alter, and the changes can be quantified[118–121]. Unlike dye-based angiography, such as FA or ICG-A, which is time-consuming and has a limited imaging window after injection, OCTA is quick and can be administered at any time during each patient visit. Recent OCTA studies demonstrated choriocapillaris loss across a spectrum of AMD phenotypes, including soft drusen, reticular pseudodrusen[122–125], and CNV[126]. OCTA also allows for the evaluation of choroidal layers within and around atrophic lesions. Some studies found that the area surrounding the GA margin has greater choriocapillaris flow loss than the area of RPE atrophy or GA[127], indicating that choriocapillaris degeneration may occur prior to the development of GA and may be a prognostic factor for atrophic progression[128–131]. However, there are conflicting findings that choriocapillaris loss was linearly related to or less than RPE loss in GA[132], leading to the conclusion that the RPE appeared to be the primary target in GA[133,134]. In the GA region, it may be difficult to distinguish choriocapillaris flow impairment from atrophy due to OCTA's lower limit limitation in detecting slow blood flow. Increasing the interscan time can increase the sensitivity of OCTA to slow flows, but it also increases eye motion artifact noise[135]. Hence, both the sensitivity to slow flow and the potential artifacts must be considered when interpreting OCTA data[132]. In addition, OCTA limitations include acquisition time and field when used with conventional OCT. Therefore, dense, high-quality SD OCT or SS-OCT scans are required to obtain reliable OCTA results. The Consensus on Atrophy (CAM) study group recommended OCTA may be optionally included in studies on non-neovascular and neovascular AMD for exploratory purposes[38].

3. Assessment through Visual Function

The progression of AMD to advanced stages invariably involves the foveal region, which develops dense and irreversible scotomas, resulting in retinal function impairment and irreversible vision loss. Currently, the progression of visual impairment and the estimation of ultimate residual visual function are determined by measuring visual acuity. Standard visual acuity tests, such as best corrected visual acuity (BCVA), do not fully capture the functional impact of atrophic AMD because lesions frequently spare the foveal center in the early stage, causing standard vision charts to falsely indicate that vision is unaffected[136]. Other tests such as dark adaptation, flicker threshold, and photostress recovery time, are more sensitive than BCVA in detecting early functional loss in AMD[137–139]; however, they are time consuming and therefore limited their clinical use. Hence, there is a need for a clinical method that is both reliable and practical for assessing visual function across the macula.

3.1. Multifocal Electroretinogram (ERG) for mapping progression

Ophthalmic electrophysiology can be used to measure the function of the choroid, RPE, and photoreceptor layer [140]; It can be a reliable method for mapping disease progression and quantifying not only retinal but also visual function. Multifocal ERG (mfERG) is based on an M-sequence stimulation technique that allows simultaneous measurements of multiple retinal

responses at different locations. Retinal stimulation is conducted by an array of 61 or 103 hexagonal elements that map retinal function within the central 30–50 degrees to include the blind spot[141–143]. Accurate results require good patient fixation, suggesting mfERG may be more appropriate for assessing retinal function in patients with preserved central vision. Multiple studies have reported the efficacy of the mfERG in assessing AMD[144–155]. Studies evaluating the function of photoreceptors in AMD have revealed that rods are affected before cones, with rod-mediated scotopic sensitivity mfERG increasing latency in early AMD [145,156]. When comparing mfERG in AMD to normal controls, studies revealed reduced N1 and P1(bipolar cells) amplitudes and implicit latencies in AMD in both rod- and cone-mediated mfERGs, indicating that both rod and cone function are impaired in age-related maculopathy (ARM)[144,145,156,157]. Reduced photoreceptor inner segment ellipsoids (ISe), which are related to visual function, were observed in early AMD and significantly correlated with a delay in mfERG P1 implicit time[158]. ARM progression with drusen regression and increasing RPE changes has also been linked to a delay in mfERG implicit time[159]. Over time, mfERG became more delayed with reduced response density[144,149,159]. Some anti-VEGF injection of nAMD studies demonstrated a positive correlation between significant improvement of mfERG central zone amplitude and functional improvement of the macula, as measured by visual acuity and contrast sensitivity, along with decreased central foveal thickness[160–164]. This suggests that mfERG responses may be used to predict improvement in macular function and anatomical changes in AMD after treatment. ERG can detect the functional abnormalities observed in AMD, such as the early loss of rod photoreceptors and the loss of central and paracentral perimetric sensitivities, while they appear to improve after anti-VEGF therapy. The accuracy of mfERG in detecting photoreceptor degeneration and macular function disturbances may be beneficial in the early diagnosis and progression of AMD.

3.2. Microperimetry for retinal sensitivity for severity of degeneration

Microperimetry is an automated perimetry system with eye tracking that measures differential light sensitivity (DLS), which is the minimum luminance of a white-spot stimulus that can be perceived on a white superimposed background of uniform luminance. Mean sensitivity (MS) quantifies the average DLS across all stimulus locations. It is a non-invasive technique to map retinal sensitivity spatially. Researchers discovered that reductions in retinal sensitivity occur rapidly and precede visual acuity changes in AMD[165–167]. Localized decreases in retinal sensitivity have been reported in GA precursor lesions[168], in which the deterioration of visual function can occur months to years before the patient experiences visual problems[169]. Microperimetric sensitivity has also been associated with drusen volume, reticular pseudodrusen and extent of pigmentary changes[170]. In eyes affected by GA, microperimetry detects an increasing number of scotomatous points and a dropping of MS over time, which correlates anatomically with an increase in atrophic size [171] and a reduction of the inner segment–outer segment junctional layer of photoreceptors to indicate disease progression[172,173]. Eyes with atrophic AMD were found to have decreased sensitivity in all retinal regions, including those at the GA margin or outside atrophic lesions, indicating that patients with GA have a more extensive functional deficit than those with mild/intermediate AMD[174]. Currently, anatomic assessment of AMD via multimodal fundus imaging is commonly used to diagnose and monitor the disease; however, both mfERG and microperimetry can identify dysfunction in patients with AMD and quantify late-stage progression by measuring local functional deficits in the retina.

4. Ongoing trends in management and research

In this review, we attempt to correlate relevant diagnostic tools to corresponding features of dry AMD and findings that emerge prior to the formation of MA, based on consensus definitions.

With increasing life expectancy and an aging global population, late AMD poses a considerable and expanding threat to society, and the resulting visual impairment represents an enormous resource burden. The causes of AMD are multifactorial and include aging, genetic or high oxidative stress[175].

In the late stage of AMD, significant visual impairment is due to CNV in wet AMD and GA in dry AMD. The visual outcomes of patients with late nAMD have improved due to the development of anti-VEGF medication[176–179]. Novel therapeutic techniques such as gene therapy using recombinant adeno-associated virus vectors delivering VEGF-inhibitory compounds and subsequent expression for long-term nAMD control are emerging[180,181]. However a staggering percentage of nAMD patients stabilized by anti-VEGF treatment still go onto to develop MA: more than 98 percent at 7 years in some studies[182]. New treatments for GA in dry AMD include complement pathway C3 and C5 inhibitors[183–186]. In all of these efforts, the ability to utilize advances in imaging modalities to detect and document disease findings remains a critical stepping stone to future therapies.

Author Contributions: Conceptualization, A.M.C., K.V.C, V.S.B. and S.K.G.; methodology, A.M.C., K.V.C., V.S.B. and S.K.G.; software, D.T.Y.; formal analysis, A.M.C., K.V.C and S.K.G.; resources, A.M.C., K.V.C, V.S.B and S.K.G.; writing—original draft preparation, A.M.C., D.T.Y., J.B. and R.G.B; writing—review and editing, K.V.C, V.S.B. and S.K.G.; supervision, K.V.C, V.S.B. and S.K.G.; project administration, R.G.B. All authors have read and agreed to the published version of the manuscript.”

Funding: This research received no external funding

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Acknowledgments: None

Conflicts of Interest: The authors declare no conflict of interest.

Financial Disclosure: No authors have any proprietary interest in this study.

References

1. Klaver CCW: Age-Specific Prevalence and Causes of Blindness and Visual Impairment in an Older Population. *Archives of Ophthalmology*. 1998, 116:653. 10.1001/archophth.116.5.653
2. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, Wong TY: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. *Lancet Glob Health*. 2014, 2:e106–16. 10.1016/S2214-109X(13)70145-1
3. Korb CA, Kottler UB, Wolfram C, et al.: Prevalence of age-related macular degeneration in a large European cohort: results from the population-based Gutenberg Health Study. *Graefes Arch Clin Exp Ophthalmol*. 2014, 252:1403–11. 10.1007/s00417-014-2591-9
4. Friedman DS, O'Colmain BJ, Muñoz B, et al.: Prevalence of age-related macular degeneration in the United States. *Arch Ophthalmol*. 2004, 122:564–72. 10.1001/archophth.122.4.564
5. Owen CG, Jarrar Z, Wormald R, Cook DG, Fletcher AE, Rudnicka AR: The estimated prevalence and incidence of late stage age related macular degeneration in the UK. *British Journal of Ophthalmology*. 2012, 96:752–6. 10.1136/bjophthalmol-2011-301109
6. Colijn JM, Buitendijk GHS, Prokofyeva E, et al.: Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future. *Ophthalmology*. 2017, 124:1753–63. 10.1016/j.ophtha.2017.05.035
7. Gillies MC, Campain A, Barthelmes D, et al.: Long-Term Outcomes of Treatment of Neovascular Age-Related Macular Degeneration: Data from an Observational Study. *Ophthalmology*. 2015, 122:1837–45. 10.1016/j.ophtha.2015.05.010
8. Heier JS, Pieramici D, Chakravarthy U, et al.: Visual Function Decline Resulting from Geographic Atrophy. *Ophthalmol Retina*. 2020, 4:673–88. 10.1016/j.oret.2020.01.019
9. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY: Age-related macular degeneration. *The Lancet*. 2012, 379:1728–38. 10.1016/S0140-6736(12)60282-7
10. Cheng AM, Joshi S, Banoub RG, Saddeci J, Chalam K V: Faricimab Effectively Resolves Intraretinal Fluid and Preserves Vision in Refractory, Recalcitrant, and Nonresponsive Neovascular Age-Related Macular Degeneration. *Cureus*. Published Online First: 7 June 2023. 10.7759/cureus.40100
11. Bakri SJ, Thorne JE, Ho AC, Ehlers JP, Schoenberger SD, Yeh S, Kim SJ: Safety and Efficacy of Anti-Vascular Endothelial Growth Factor Therapies for Neovascular Age-Related Macular Degeneration: A Report by the American Academy of Ophthalmology. *Ophthalmology*. 2019, 126:55–63. 10.1016/j.ophtha.2018.07.028
12. Rosenfeld PJ, Brown DM, Heier JS, et al.: Ranibizumab for neovascular age-related macular degeneration. *N Engl J Med*. 2006, 355:1419–31. 10.1056/NEJMoa054481

13. Maguire MG, Martin DF, Ying G, et al.: Five-Year Outcomes with Anti-Vascular Endothelial Growth Factor Treatment of Neovascular Age-Related Macular Degeneration. *Ophthalmology*. 2016, 123:1751–61. 10.1016/j.ophtha.2016.03.045
14. Grunwald JE, Pistilli M, Daniel E, et al.: Incidence and Growth of Geographic Atrophy during 5 Years of Comparison of Age-Related Macular Degeneration Treatments Trials. *Ophthalmology*. 2017, 124:97–104. 10.1016/j.ophtha.2016.09.012
15. Grunwald JE, Daniel E, Huang J, et al.: Risk of Geographic Atrophy in the Comparison of Age-related Macular Degeneration Treatments Trials. *Ophthalmology*. 2014, 121:150–61. 10.1016/j.ophtha.2013.08.015
16. Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K: Seven-Year Outcomes in Ranibizumab-Treated Patients in ANCHOR, MARINA, and HORIZON. *Ophthalmology*. 2013, 120:2292–9. 10.1016/j.ophtha.2013.03.046
17. Sadda SR, Tuomi LL, Ding B, Fung AE, Hopkins JJ: Macular Atrophy in the HARBOR Study for Neovascular Age-Related Macular Degeneration. *Ophthalmology*. 2018, 125:878–86. 10.1016/j.ophtha.2017.12.026
18. Abdelfattah NS, Zhang H, Boyer DS, Sadda SR: PROGRESSION OF MACULAR ATROPHY IN PATIENTS WITH NEOVASCULAR AGE-RELATED MACULAR DEGENERATION UNDERGOING ANTIVASCULAR ENDOTHELIAL GROWTH FACTOR THERAPY. *Retina*. 2016, 36:1843–50. 10.1097/IAE.0000000000001059
19. Bhisitkul RB, Desai SJ, Boyer DS, Sadda SR, Zhang K: Fellow Eye Comparisons for 7-Year Outcomes in Ranibizumab-Treated AMD Subjects from ANCHOR, MARINA, and HORIZON (SEVEN-UP Study). *Ophthalmology*. 2016, 123:1269–77. 10.1016/j.ophtha.2016.01.033
20. Gemenetzi M, Lotery AJ, Patel PJ: Risk of geographic atrophy in age-related macular degeneration patients treated with intravitreal anti-VEGF agents. *Eye*. 2017, 31:1–9. 10.1038/eye.2016.208
21. Spooner KL, Fraser-Bell S, Cozzi M, et al.: Macular Atrophy Incidence and Progression in Eyes with Neovascular Age-Related Macular Degeneration Treated with Vascular Endothelial Growth Factor Inhibitors Using a Treat-and-Extend or a Pro Re Nata Regimen. *Ophthalmology*. 2020, 127:1663–73. 10.1016/j.ophtha.2020.06.019
22. Bailey C, Scott LJ, Rogers CA, et al.: Intralesional Macular Atrophy in Anti-Vascular Endothelial Growth Factor Therapy for Age-Related Macular Degeneration in the IVAN Trial. *Ophthalmology*. 2019, 126:75–86. 10.1016/j.ophtha.2018.07.013
23. Gillies MC, Hunyor AP, Arnold JJ, et al.: Macular Atrophy in Neovascular Age-Related Macular Degeneration. *Ophthalmology*. 2020, 127:198–210. 10.1016/j.ophtha.2019.08.023
24. Christakis PG, Agrón E, Klein ML, et al.: Incidence of Macular Atrophy after Untreated Neovascular Age-Related Macular Degeneration. *Ophthalmology*. 2020, 127:784–92. 10.1016/j.ophtha.2019.11.016
25. Schmitz-Valckenberg S, Sadda S, Staurenghi G, Chew EY, Fleckenstein M, Holz FG: GEOGRAPHIC ATROPHY. *Retina*. 2016, 36:2250–64. 10.1097/IAE.0000000000001258
26. Capuano V, Miere A, Querques L, et al.: Treatment-Naïve Quiescent Choroidal Neovascularization in Geographic Atrophy Secondary to Nonexudative Age-Related Macular Degeneration. *Am J Ophthalmol*. 2017, 182:45–55. 10.1016/j.ajo.2017.07.009
27. Pfau M, Möller PT, Künzel SH, et al.: Type 1 Choroidal Neovascularization Is Associated with Reduced Localized Progression of Atrophy in Age-Related Macular Degeneration. *Ophthalmol Retina*. 2020, 4:238–48. 10.1016/j.oret.2019.09.016
28. Heimes B, Lommatsch A, Zeimer M, Gutfleisch M, Spital G, Dietzel M, Pauleikhoff D: Long-term visual course after anti-VEGF therapy for exudative AMD in clinical practice evaluation of the German reinjection scheme. *Graefe's Archive for Clinical and Experimental Ophthalmology*. 2011, 249:639–44. 10.1007/s00417-010-1524-5
29. Wightman AJ, Guymer RH: Reticular pseudodrusen: current understanding. *Clin Exp Optom*. 2019, 102:455–62. 10.1111/cxo.12842
30. Hill DW: Fluorescein angiography in fundus diagnosis. *Br Med Bull*. 1970, 26:161–5. 10.1093/oxfordjournals.bmb.a070769
31. Wald KJ, Elsner AE, Wolf S, Staurenghi G, Weiter JJ: Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration. *Int Ophthalmol Clin*. 1994, 34:311–25. 10.1097/00004397-199403430-00029
32. Sarks SH: Ageing and degeneration in the macular region: a clinico-pathological study. *British Journal of Ophthalmology*. 1976, 60:324–41. 10.1136/bjo.60.5.324
33. Tomi A, Marin I: Angiofluorographic aspects in age-related macular degeneration. *J Med Life*. 2014, 7 Spec No. 4:4–17.
34. NOVOTNY HR, ALVIS DL: A Method of Photographing Fluorescence in Circulating Blood in the Human Retina. *Circulation*. 1961, 24:82–6. 10.1161/01.CIR.24.1.82
35. Schneider U, Sherif-Adel S, Gelisken F, Kreissig I: Indocyanine green angiography and transmission defects. *Acta Ophthalmol Scand*. 2009, 75:653–6. 10.1111/j.1600-0420.1997.tb00624.x

36. Ozkaya A, Alagoz C, Garip R, Alkin Z, Perente I, Yazici AT, Taskapili M: The role of indocyanine green angiography imaging in further differential diagnosis of patients with nAMD who are morphologically poor responders to ranibizumab in a real-life setting. *Eye*. 2016, 30:958–65. 10.1038/eye.2016.71
37. Meira J, Marques ML, Falcão-Reis F, Rebelo Gomes E, Carneiro Â: <p>Immediate Reactions to Fluorescein and Indocyanine Green in Retinal Angiography: Review of Literature and Proposal for Patient's Evaluation</p>. *Clinical Ophthalmology*. 2020, Volume 14:171–8. 10.2147/OPTH.S234858
38. Holz FG, Sadda SR, Staurenghi G, et al.: Imaging Protocols in Clinical Studies in Advanced Age-Related Macular Degeneration. *Ophthalmology*. 2017, 124:464–78. 10.1016/j.ophtha.2016.12.002
39. Jaffe GJ, Schmitz-Valckenberg S, Boyer D, et al.: Randomized Trial to Evaluate Tandospirone in Geographic Atrophy Secondary to Age-Related Macular Degeneration: The GATE Study. *Am J Ophthalmol*. 2015, 160:1226–34. 10.1016/j.ajo.2015.08.024
40. Schmitz-Valckenberg S, Sahel J-A, Danis R, et al.: Natural History of Geographic Atrophy Progression Secondary to Age-Related Macular Degeneration (Geographic Atrophy Progression Study). *Ophthalmology*. 2016, 123:361–8. 10.1016/j.ophtha.2015.09.036
41. Hopkins J, Walsh A, Chakravarthy U: Fundus autofluorescence in age-related macular degeneration: an epiphomenon? *Invest Ophthalmol Vis Sci*. 2006, 47:2269–71. 10.1167/iovs.05-1482
42. Schmitz-Valckenberg S, Fleckenstein M, Scholl HPN, Holz FG: Fundus autofluorescence and progression of age-related macular degeneration. *Surv Ophthalmol*. 2009, 54:96–117. 10.1016/j.survophthal.2008.10.004
43. Spaide RF, Curcio CA, Zweifel SA: Drusen, an old but new frontier. *Retina*. 2010, 30:1163–5. 10.1097/IAE.0b013e3181ed8d05
44. Curcio CA: Antecedents of Soft Drusen, the Specific Deposits of Age-Related Macular Degeneration, in the Biology of Human Macula. *Investigative Ophthalmology & Visual Science*. 2018, 59:AMD182. 10.1167/iovs.18-24883
45. Ferris FL, Davis MD, Clemons TE, et al.: A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. *Arch Ophthalmol*. 2005, 123:1570–4. 10.1001/archophth.123.11.1570
46. Davis MD, Gangnon RE, Lee L-Y, et al.: The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. *Arch Ophthalmol*. 2005, 123:1484–98. 10.1001/archophth.123.11.1484
47. Ferris FL, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, Sadda SR: Clinical Classification of Age-related Macular Degeneration. *Ophthalmology*. 2013, 120:844–51. 10.1016/j.ophtha.2012.10.036
48. Chen L, Messinger JD, Ferrara D, Freund KB, Curcio CA: Stages of Drusen-Associated Atrophy in Age-Related Macular Degeneration Visible via Histologically Validated Fundus Autofluorescence. *Ophthalmol Retina*. 2021, 5:730–42. 10.1016/j.oret.2020.11.006
49. Suzuki M, Curcio CA, Mullins RF, Spaide RF: REFRACTILE DRUSEN: Clinical Imaging and Candidate Histology. *Retina*. 2015, 35:859–65. 10.1097/IAE.0000000000000503
50. Balaratnasingam C, Cherepanoff S, Dolz-Marco R, et al.: Cuticular Drusen: Clinical Phenotypes and Natural History Defined Using Multimodal Imaging. *Ophthalmology*. 2018, 125:100–18. 10.1016/j.ophtha.2017.08.033
51. Lima LH, Laud K, Freund KB, Yannuzzi LA, Spaide RF: Acquired vitelliform lesion associated with large drusen. *Retina*. 2012, 32:647–51. 10.1097/IAE.0b013e31823fb847
52. Balaratnasingam C, Cherepanoff S, Dolz-Marco R, et al.: Cuticular Drusen: Clinical Phenotypes and Natural History Defined Using Multimodal Imaging. *Ophthalmology*. 2018, 125:100–18. 10.1016/j.ophtha.2017.08.033
53. Sakurada Y, Parikh R, Gal-Or O, et al.: CUTICULAR DRUSEN: Risk of Geographic Atrophy and Macular Neovascularization. *Retina*. 2020, 40:257–65. 10.1097/IAE.0000000000002399
54. Spaide RF, Curcio CA: Drusen characterization with multimodal imaging. *Retina*. 2010, 30:1441–54. 10.1097/IAE.0b013e3181ee5ce8
55. Shijo T, Sakurada Y, Tanaka K, et al.: Drusenoid Pigment Epithelial Detachment: Genetic and Clinical Characteristics. *Int J Mol Sci*. 2021, 22: 10.3390/ijms22084074
56. Yoneyama S, Sakurada Y, Mabuchi F, Imasawa M, Sugiyama A, Kubota T, Iijima H: Genetic and clinical factors associated with reticular pseudodrusen in exudative age-related macular degeneration. *Graefes Arch Clin Exp Ophthalmol*. 2014, 252:1435–41. 10.1007/s00417-014-2601-y
57. Ueda-Arakawa N, Ooto S, Nakata I, Yamashiro K, Tsujikawa A, Oishi A, Yoshimura N: Prevalence and genomic association of reticular pseudodrusen in age-related macular degeneration. *Am J Ophthalmol*. 2013, 155:260-269.e2. 10.1016/j.ajo.2012.08.011
58. Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF: Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. *Ophthalmology*. 2010, 117:1775–81. 10.1016/j.ophtha.2010.01.027
59. Zhou Q, Daniel E, Maguire MG, et al.: Pseudodrusen and Incidence of Late Age-Related Macular Degeneration in Fellow Eyes in the Comparison of Age-Related Macular Degeneration Treatments Trials. *Ophthalmology*. 2016, 123:1530–40. 10.1016/j.ophtha.2016.02.043

60. Suzuki M, Sato T, Spaide RF: Pseudodrusen subtypes as delineated by multimodal imaging of the fundus. *Am J Ophthalmol.* 2014, 157:1005–12. 10.1016/j.ajo.2014.01.025
61. Shijo T, Sakurada Y, Yoneyama S, Sugiyama A, Kikushima W, Tanabe N, Iijima H: Prevalence and characteristics of pseudodrusen subtypes in advanced age-related macular degeneration. *Graefes Arch Clin Exp Ophthalmol.* 2017, 255:1125–31. 10.1007/s00417-017-3622-0
62. Lee MY, Yoon J, Ham D-I: Clinical features of reticular pseudodrusen according to the fundus distribution. *Br J Ophthalmol.* 2012, 96:1222–6. 10.1136/bjophthalmol-2011-301207
63. Kim JH, Chang YS, Kim JW, Lee TG, Kim CG: PREVALENCE OF SUBTYPES OF RETICULAR PSEUDODRUSEN IN NEWLY DIAGNOSED EXUDATIVE AGE-RELATED MACULAR DEGENERATION AND POLYPOIDAL CHOROIDAL VASCULOPATHY IN KOREAN PATIENTS. *Retina.* 2015, 35:2604–12. 10.1097/IAE.0000000000000633
64. Spaide RF: Outer retinal atrophy after regression of subretinal drusenoid deposits as a newly recognized form of late age-related macular degeneration. *Retina.* 2013, 33:1800–8. 10.1097/IAE.0b013e31829c3765
65. Ueda-Arakawa N, Ooto S, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N: Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. *Retina.* 2013, 33:490–7. 10.1097/IAE.0b013e318276e0ae
66. Schmitz-Valckenberg S, Brinkmann CK, Alten F, et al.: Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration. *Invest Ophthalmol Vis Sci.* 2011, 52:7640–6. 10.1167/iovs.11-7457
67. Wolf-Schnurribusch UEK, Wittwer V V, Ghanem R, Niederhaeuser M, Enzmann V, Framme C, Wolf S: Blue-light versus green-light autofluorescence: lesion size of areas of geographic atrophy. *Invest Ophthalmol Vis Sci.* 2011, 52:9497–502. 10.1167/iovs.11-8346
68. Forte R, Querques G, Querques L, Leveziel N, Benhamou N, Souied EH: Multimodal evaluation of foveal sparing in patients with geographic atrophy due to age-related macular degeneration. *Retina.* 2013, 33:482–9. 10.1097/IAE.0b013e318276e11e
69. Fleckenstein M, Schmitz-Valckenberg S, Martens C, Kosanetzky S, Brinkmann CK, Hageman GS, Holz FG: Fundus autofluorescence and spectral-domain optical coherence tomography characteristics in a rapidly progressing form of geographic atrophy. *Invest Ophthalmol Vis Sci.* 2011, 52:3761–6. 10.1167/iovs.10-7021
70. Hassenstein A, Meyer CH: Clinical use and research applications of Heidelberg retinal angiography and spectral-domain optical coherence tomography - a review. *Clin Exp Ophthalmol.* 2009, 37:130–43. 10.1111/j.1442-9071.2009.02017.x
71. Charbel Issa P, Finger RP, Holz FG, Scholl HPN: Multimodal Imaging Including Spectral Domain OCT and Confocal Near Infrared Reflectance for Characterization of Outer Retinal Pathology in Pseudoxanthoma Elasticum. *Investigative Ophthalmology & Visual Science.* 2009, 50:5913. 10.1167/iovs.09-3541
72. Weinberger AWA, Lappas A, Kirschkamp T, Mazinani BAE, Huth JK, Mohammadi B, Walter P: Fundus Near Infrared Fluorescence Correlates with Fundus Near Infrared Reflectance. *Investigative Ophthalmology & Visual Science.* 2006, 47:3098. 10.1167/iovs.05-1104
73. Sakurada Y, Tanaka K, Fragiotta S: Differentiating drusen and drusenoid deposits subtypes on multimodal imaging and risk of advanced age-related macular degeneration. *Jpn J Ophthalmol.* 2023, 67:1–13. 10.1007/s10384-022-00943-y
74. Schmitz-Valckenberg S, Alten F, Steinberg JS, et al.: Reticular drusen associated with geographic atrophy in age-related macular degeneration. *Invest Ophthalmol Vis Sci.* 2011, 52:5009–15. 10.1167/iovs.11-7235
75. Smith RT, Sohrab MA, Busuioc M, Barile G: Reticular macular disease. *Am J Ophthalmol.* 2009, 148:733–743.e2. 10.1016/j.ajo.2009.06.028
76. Ueda-Arakawa N, Ooto S, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N: Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. *Retina.* 2013, 33:490–7. 10.1097/IAE.0b013e318276e0ae
77. Wu Z, Ayton LN, Luu CD, Baird PN, Guymer RH: Reticular Pseudodrusen in Intermediate Age-Related Macular Degeneration: Prevalence, Detection, Clinical, Environmental, and Genetic Associations. *Invest Ophthalmol Vis Sci.* 2016, 57:1310–6. 10.1167/iovs.15-18682
78. Lengyel I, Csutak A, Florea D, Leung I, Bird AC, Jonasson F, Peto T: A Population-Based Ultra-Widefield Digital Image Grading Study for Age-Related Macular Degeneration-Like Lesions at the Peripheral Retina. *Ophthalmology.* 2015, 122:1340–7. 10.1016/j.ophtha.2015.03.005
79. Youngquist RC, Carr S, Davies DE: Optical coherence-domain reflectometry: a new optical evaluation technique. *Opt Lett.* 1987, 12:158–60. 10.1364/ol.12.000158
80. Sadda SR, Guymer R, Holz FG, et al.: Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3. *Ophthalmology.* 2018, 125:537–48. 10.1016/j.ophtha.2017.09.028
81. Schmidt-Erfurth U, Waldstein SM: A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. *Prog Retin Eye Res.* 2016, 50:1–24. 10.1016/j.preteyeres.2015.07.007

82. Gass JD: Drusen and disciform macular detachment and degeneration. *Arch Ophthalmol.* 1973, 90:206–17. 10.1001/archopht.1973.01000050208006
83. Klein ML, Ferris FL, Armstrong J, et al.: Retinal precursors and the development of geographic atrophy in age-related macular degeneration. *Ophthalmology.* 2008, 115:1026–31. 10.1016/j.ophtha.2007.08.030
84. Ferris FL, Davis MD, Clemons TE, et al.: A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. *Arch Ophthalmol.* 2005, 123:1570–4. 10.1001/archopht.123.11.1570
85. Christenbury JG, Folgar FA, O'Connell R V, Chiu SJ, Farsiu S, Toth CA, Age-related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group: Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. *Ophthalmology.* 2013, 120:1038–45. 10.1016/j.ophtha.2012.10.018
86. Ouyang Y, Heussen FM, Hariri A, Keane PA, Sadda SR: Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. *Ophthalmology.* 2013, 120:2656–65. 10.1016/j.ophtha.2013.05.029
87. Wu Z, Luu CD, Ayton LN, et al.: Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration. *Ophthalmology.* 2014, 121:2415–22. 10.1016/j.ophtha.2014.06.034
88. Lek JJ, Brassington KH, Luu CD, et al.: Subthreshold Nanosecond Laser Intervention in Intermediate Age-Related Macular Degeneration: Study Design and Baseline Characteristics of the Laser in Early Stages of Age-Related Macular Degeneration Study (Report Number 1). *Ophthalmol Retina.* 2017, 1:227–39. 10.1016/j.oret.2016.12.001
89. Schaal KB, Rosenfeld PJ, Gregori G, Yehoshua Z, Feuer WJ: Anatomic Clinical Trial Endpoints for Nonexudative Age-Related Macular Degeneration. *Ophthalmology.* 2016, 123:1060–79. 10.1016/j.ophtha.2016.01.034
90. Holz FG, Strauss EC, Schmitz-Valckenberg S, van Lookeren Campagne M: Geographic atrophy: clinical features and potential therapeutic approaches. *Ophthalmology.* 2014, 121:1079–91. 10.1016/j.ophtha.2013.11.023
91. Zweifel SA, Spaide RF, Curcio CA, Malek G, Imamura Y: Reticular pseudodrusen are subretinal drusenoid deposits. *Ophthalmology.* 2010, 117:303-12.e1. 10.1016/j.ophtha.2009.07.014
92. Curcio CA, Zanzottera EC, Ach T, Balaratnasingam C, Freund KB: Activated Retinal Pigment Epithelium, an Optical Coherence Tomography Biomarker for Progression in Age-Related Macular Degeneration. *Invest Ophthalmol Vis Sci.* 2017, 58:BIO211–26. 10.1167/iovs.17-21872
93. Ferrara D, Silver RE, Louzada RN, Novais EA, Collins GK, Seddon JM: Optical Coherence Tomography Features Preceding the Onset of Advanced Age-Related Macular Degeneration. *Invest Ophthalmol Vis Sci.* 2017, 58:3519–29. 10.1167/iovs.17-21696
94. Ouyang Y, Heussen FM, Hariri A, Keane PA, Sadda SR: Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. *Ophthalmology.* 2013, 120:2656–65. 10.1016/j.ophtha.2013.05.029
95. Christenbury JG, Folgar FA, O'Connell R V, Chiu SJ, Farsiu S, Toth CA, Age-related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group: Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. *Ophthalmology.* 2013, 120:1038–45. 10.1016/j.ophtha.2012.10.018
96. Veerappan M, El-Hage-Sleiman A-KM, Tai V, et al.: Optical Coherence Tomography Reflective Drusen Substructures Predict Progression to Geographic Atrophy in Age-related Macular Degeneration. *Ophthalmology.* 2016, 123:2554–70. 10.1016/j.ophtha.2016.08.047
97. Abdelfattah NS, Zhang H, Boyer DS, Rosenfeld PJ, Feuer WJ, Gregori G, Sadda SR: Drusen Volume as a Predictor of Disease Progression in Patients With Late Age-Related Macular Degeneration in the Fellow Eye. *Invest Ophthalmol Vis Sci.* 2016, 57:1839–46. 10.1167/iovs.15-18572
98. Schaal KB, Gregori G, Rosenfeld PJ: En Face Optical Coherence Tomography Imaging for the Detection of Nascent Geographic Atrophy. *Am J Ophthalmol.* 2017, 174:145–54. 10.1016/j.ajo.2016.11.002
99. Monés J, Biarnés M, Trindade F: Hyporeflective wedge-shaped band in geographic atrophy secondary to age-related macular degeneration: an underreported finding. *Ophthalmology.* 2012, 119:1412–9. 10.1016/j.ophtha.2012.01.026
100. Wu Z, Luu CD, Ayton LN, et al.: Fundus autofluorescence characteristics of nascent geographic atrophy in age-related macular degeneration. *Invest Ophthalmol Vis Sci.* 2015, 56:1546–52. 10.1167/iovs.14-16211
101. Wu Z, Luu CD, Ayton LN, et al.: Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration. *Ophthalmology.* 2014, 121:2415–22. 10.1016/j.ophtha.2014.06.034
102. Guymer RH, Rosenfeld PJ, Curcio CA, et al.: Incomplete Retinal Pigment Epithelial and Outer Retinal Atrophy in Age-Related Macular Degeneration: Classification of Atrophy Meeting Report 4. *Ophthalmology.* 2020, 127:394–409. 10.1016/j.ophtha.2019.09.035

103. Niu S, de Sisternes L, Chen Q, Rubin DL, Leng T: Fully Automated Prediction of Geographic Atrophy Growth Using Quantitative Spectral-Domain Optical Coherence Tomography Biomarkers. *Ophthalmology*. 2016, 123:1737–50. 10.1016/j.ophtha.2016.04.042
104. Staurenghi G, Sadda S, Chakravarthy U, Spaide RF, International Nomenclature for Optical Coherence Tomography (IN•OCT) Panel: Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. *Ophthalmology*. 2014, 121:1572–8. 10.1016/j.ophtha.2014.02.023
105. Litts KM, Ach T, Hammack KM, Sloan KR, Zhang Y, Freund KB, Curcio CA: Quantitative Analysis of Outer Retinal Tubulation in Age-Related Macular Degeneration From Spectral-Domain Optical Coherence Tomography and Histology. *Invest Ophthalmol Vis Sci*. 2016, 57:2647–56. 10.1167/iovs.16-19262
106. Steinberg JS, Auge J, Fleckenstein M, Holz FG, Schmitz-Valckenberg S: Longitudinal analysis of reticular drusen associated with age-related macular degeneration using combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging. *Ophthalmologica*. 2015, 233:35–42. 10.1159/000368168
107. Wu Z, Ayton LN, Luu CD, Baird PN, Guymer RH: Reticular Pseudodrusen in Intermediate Age-Related Macular Degeneration: Prevalence, Detection, Clinical, Environmental, and Genetic Associations. *Invest Ophthalmol Vis Sci*. 2016, 57:1310–6. 10.1167/iovs.15-18682
108. Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA: Optical coherence tomography today: speed, contrast, and multimodality. *J Biomed Opt*. 2014, 19:071412. 10.1117/1.JBO.19.7.071412
109. Spaide RF, Koizumi H, Pozzoni MC: Enhanced depth imaging spectral-domain optical coherence tomography. *Am J Ophthalmol*. 2008, 146:496–500. 10.1016/j.ajo.2008.05.032
110. Tan ACS, Fleckenstein M, Schmitz-Valckenberg S, Holz FG: Clinical Application of Multicolor Imaging Technology. *Ophthalmologica*. 2016, 236:8–18. 10.1159/000446857
111. Pang CE, Freund KB: Ghost maculopathy: an artifact on near-infrared reflectance and multicolor imaging masquerading as chorioretinal pathology. *Am J Ophthalmol*. 2014, 158:171–178.e2. 10.1016/j.ajo.2014.03.003
112. Ben Moussa N, Georges A, Capuano V, Merle B, Souied EH, Querques G: MultiColor imaging in the evaluation of geographic atrophy due to age-related macular degeneration. *Br J Ophthalmol*. 2015, 99:842–7. 10.1136/bjophthalmol-2014-305643
113. De Bats F, Mathis T, Mauget-Faÿsse M, Joubert F, Denis P, Kodjikian L: PREVALENCE OF RETICULAR PSEUDODRUSEN IN AGE-RELATED MACULAR DEGENERATION USING MULTIMODAL IMAGING. *Retina*. 2016, 36:46–52. 10.1097/IAE.0000000000000648
114. Alten F, Clemens CR, Heiduschka P, Eter N: Characterisation of reticular pseudodrusen and their central target aspect in multi-spectral, confocal scanning laser ophthalmoscopy. *Graefes Arch Clin Exp Ophthalmol*. 2014, 252:715–21. 10.1007/s00417-013-2525-y
115. Bischoff PM, Flower RW: Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue? *Doc Ophthalmol*. 1985, 60:235–91. 10.1007/BF00157827
116. Zhu L, Zheng Y, von Kerczek CH, Topoleski LDT, Flower RW: Feasibility of extracting velocity distribution in choriocapillaris in human eyes from ICG dye angiograms. *J Biomech Eng*. 2006, 128:203–9. 10.1115/1.2165692
117. Flower RW: Extraction of choriocapillaris hemodynamic data from ICG fluorescence angiograms. *Invest Ophthalmol Vis Sci*. 1993, 34:2720–9.
118. Yu L, Chen Z: Doppler variance imaging for three-dimensional retina and choroid angiography. *J Biomed Opt*. 2010, 15:016029. 10.1117/1.3302806
119. An L, Wang RK: In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. *Opt Express*. 2008, 16:11438–52. 10.1364/oe.16.011438
120. Fingler J, Schwartz D, Yang C, Fraser SE: Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. *Opt Express*. 2007, 15:12636–53. 10.1364/oe.15.012636
121. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y: Optical coherence angiography. *Opt Express*. 2006, 14:7821–40. 10.1364/oe.14.007821
122. Borrelli E, Shi Y, Uji A, Balasubramanian S, Nassisi M, Sarraf D, Sadda SR: Topographic Analysis of the Choriocapillaris in Intermediate Age-related Macular Degeneration. *Am J Ophthalmol*. 2018, 196:34–43. 10.1016/j.ajo.2018.08.014
123. Alten F, Heiduschka P, Clemens CR, Eter N: Exploring choriocapillaris under reticular pseudodrusen using OCT-Angiography. *Graefes Arch Clin Exp Ophthalmol*. 2016, 254:2165–73. 10.1007/s00417-016-3375-1
124. Vujosevic S, Toma C, Villani E, et al.: Quantitative choriocapillaris evaluation in intermediate age-related macular degeneration by swept-source optical coherence tomography angiography. *Acta Ophthalmol*. 2019, 97:e919–26. 10.1111/aos.14088
125. Lee B, Ahn J, Yun C, Kim S-W, Oh J: Variation of Retinal and Choroidal Vasculatures in Patients With Age-Related Macular Degeneration. *Invest Ophthalmol Vis Sci*. 2018, 59:5246–55. 10.1167/iovs.17-23600

126. Borrelli E, Souied EH, Freund KB, et al.: REDUCED CHORIOCAPILLARIS FLOW IN EYES WITH TYPE 3 NEOVASCULARIZATION AND AGE-RELATED MACULAR DEGENERATION. *Retina*. 2018, 38:1968–76. 10.1097/IAE.00000000000002198
127. Müller PL, Pfau M, Schmitz-Valckenberg S, Fleckenstein M, Holz FG: Optical Coherence Tomography-Angiography in Geographic Atrophy. *Ophthalmologica*. 2021, 244:42–50. 10.1159/000510727
128. Thulliez M, Zhang Q, Shi Y, et al.: Correlations between Choriocapillaris Flow Deficits around Geographic Atrophy and Enlargement Rates Based on Swept-Source OCT Imaging. *Ophthalmol Retina*. 2019, 3:478–88. 10.1016/j.oret.2019.01.024
129. Alagorie AR, Nassisi M, Verma A, Nittala M, Corradetti G, Velaga S, Sadda SR: Relationship between proximity of choriocapillaris flow deficits and enlargement rate of geographic atrophy. *Graefes Arch Clin Exp Ophthalmol*. 2020, 258:995–1003. 10.1007/s00417-020-04615-w
130. Nassisi M, Baghdasaryan E, Borrelli E, Ip M, Sadda SR: Choriocapillaris flow impairment surrounding geographic atrophy correlates with disease progression. *PLoS One*. 2019, 14:e0212563. 10.1371/journal.pone.0212563
131. Biesemeier A, Taubitz T, Julien S, Yoeruek E, Schraermeyer U: Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration. *Neurobiol Aging*. 2014, 35:2562–73. 10.1016/j.neurobiolaging.2014.05.003
132. Choi W, Moult EM, Waheed NK, et al.: Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. *Ophthalmology*. 2015, 122:2532–44. 10.1016/j.ophtha.2015.08.029
133. McLeod DS, Taomoto M, Otsuji T, Green WR, Sunness JS, Lutty GA: Quantifying changes in RPE and choroidal vasculature in eyes with age-related macular degeneration. *Invest Ophthalmol Vis Sci*. 2002, 43:1986–93.
134. McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA: Relationship between RPE and choriocapillaris in age-related macular degeneration. *Invest Ophthalmol Vis Sci*. 2009, 50:4982–91. 10.1167/iovs.09-3639
135. Spaide RF, Fujimoto JG, Waheed NK: IMAGE ARTIFACTS IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. *Retina*. 2015, 35:2163–80. 10.1097/IAE.0000000000000765
136. Sunness JS, Rubin GS, Zuckerbrod A, Applegate CA: Foveal-Sparing Scotomas in Advanced Dry Age-Related Macular Degeneration. *J Vis Impair Blind*. 2008, 102:600–10.
137. Owsley C, Jackson GR, White M, Feist R, Edwards D: Delays in rod-mediated dark adaptation in early age-related maculopathy. *Ophthalmology*. 2001, 108:1196–202. 10.1016/s0161-6420(01)00580-2
138. Neelam K, Nolan J, Chakravarthy U, Beatty S: Psychophysical function in age-related maculopathy. *Surv Ophthalmol*. 2009, 54:167–210. 10.1016/j.survophthal.2008.12.003
139. Dimitrov PN, Robman LD, Varsamidis M, Aung KZ, Makeyeva GA, Guymer RH, Vingrys AJ: Visual function tests as potential biomarkers in age-related macular degeneration. *Invest Ophthalmol Vis Sci*. 2011, 52:9457–69. 10.1167/iovs.10-7043
140. Feigl B, Lovie-Kitchin J, Brown B: Objective functional assessment of age-related maculopathy: a special application for the multifocal electroretinogram. *Clin Exp Optom*. 2005, 88:304–12. 10.1111/j.1444-0938.2005.tb06714.x
141. Hood DC, Odel JG, Chen CS, Winn BJ: The multifocal electroretinogram. *J Neuroophthalmol*. 2003, 23:225–35. 10.1097/00041327-200309000-00008
142. Lai TY, Chan W-M, Lai RYK, Ngai JWS, Li H, Lam DSC: The clinical applications of multifocal electroretinography: a systematic review. *Surv Ophthalmol*. 2007, 52:61–96. 10.1016/j.survophthal.2006.10.005
143. Palmowski AM, Sutter EE, Bearse MA, Fung W: [Multifocal electroretinogram (MF-ERG) in diagnosis of macular changes. Example: senile macular degeneration]. *Ophthalmologe*. 1999, 96:166–73. 10.1007/s003470050389
144. Feigl B, Brown B, Lovie-Kitchin J, Swann P: Cone-mediated multifocal electroretinogram in early age-related maculopathy and its relationships with subjective macular function tests. *Curr Eye Res*. 2004, 29:327–36. 10.1080/02713680490516198
145. Chen C, Wu L, Wu D, Huang S, Wen F, Luo G, Long S: The local cone and rod system function in early age-related macular degeneration. *Doc Ophthalmol*. 2004, 109:1–8. 10.1007/s10633-004-1041-0
146. Li J, Tso MO, Lam TT: Reduced amplitude and delayed latency in foveal response of multifocal electroretinogram in early age related macular degeneration. *Br J Ophthalmol*. 2001, 85:287–90. 10.1136/bjo.85.3.287
147. Heinemann-Vernaleken B, Palmowski AM, Allgayer R, Ruprecht KW: Comparison of different high resolution multifocal electroretinogram recordings in patients with age-related maculopathy. *Graefes Arch Clin Exp Ophthalmol*. 2001, 239:556–61. 10.1007/s004170100308
148. Huang S, Wu D, Jiang F, Ma J, Wu L, Liang J, Luo G: The multifocal electroretinogram in age-related maculopathies. *Doc Ophthalmol*. 2000, 101:115–24. 10.1023/a:1026587103165

149. Gerth C, Hauser D, Delahunt PB, Morse LS, Werner JS: Assessment of multifocal electroretinogram abnormalities and their relation to morphologic characteristics in patients with large drusen. *Arch Ophthalmol.* 2003, 121:1404–14. 10.1001/archophth.121.10.1404
150. Parisi V, Perillo L, Tedeschi M, Scassa C, Gallinaro G, Capaldo N, Varano M: Macular function in eyes with early age-related macular degeneration with or without contralateral late age-related macular degeneration. *Retina.* 2007, 27:879–90. 10.1097/IAE.0b013e318042d6aa
151. Palmowski AM, Sutter EE, Bearse MA, Fung W: [Multifocal electroretinogram (MF-ERG) in diagnosis of macular changes. Example: senile macular degeneration]. *Ophthalmologe.* 1999, 96:166–73. 10.1007/s003470050389
152. Falsini B, Piccardi M, Iarossi G, Fadda A, Merendino E, Valentini P: Influence of short-term antioxidant supplementation on macular function in age-related maculopathy: a pilot study including electrophysiologic assessment. *Ophthalmology.* 2003, 110:51–60; discussion 61. 10.1016/s0161-6420(02)01547-6
153. Neveu MM, Tufail A, Dowler JG, Holder GE: A comparison of pattern and multifocal electroretinography in the evaluation of age-related macular degeneration and its treatment with photodynamic therapy. *Doc Ophthalmol.* 2006, 113:71–81. 10.1007/s10633-006-9016-y
154. Mackay AM, Brown MC, Hagan RP, Fisher AC, Grierson I, Harding SP: Deficits in the electroretinogram in neovascular age-related macular degeneration and changes during photodynamic therapy. *Doc Ophthalmol.* 2007, 115:69–76. 10.1007/s10633-007-9056-y
155. Feigl B, Lovie-Kitchin J, Brown B: Objective functional assessment of age-related maculopathy: a special application for the multifocal electroretinogram. *Clin Exp Optom.* 2005, 88:304–12. 10.1111/j.1444-0938.2005.tb06714.x
156. Feigl B, Brown B, Lovie-Kitchin J, Swann P: Cone- and rod-mediated multifocal electroretinogram in early age-related maculopathy. *Eye (Lond).* 2005, 19:431–41. 10.1038/sj.eye.6701503
157. Feigl B, Brown B, Lovie-Kitchin J, Swann P: The rod-mediated multifocal electroretinogram in aging and in early age-related maculopathy. *Curr Eye Res.* 2006, 31:635–44. 10.1080/02713680600762739
158. Wu Z, Ayton LN, Guymer RH, Luu CD: Relationship between the second reflective band on optical coherence tomography and multifocal electroretinography in age-related macular degeneration. *Invest Ophthalmol Vis Sci.* 2013, 54:2800–6. 10.1167/iovs.13-11613
159. Gerth C, Delahunt PB, Alam S, Morse LS, Werner JS: Cone-mediated multifocal electroretinogram in age-related macular degeneration: progression over a long-term follow-up. *Arch Ophthalmol.* 2006, 124:345–52. 10.1001/archophth.124.3.345
160. Campa C, Hagan R, Sahni JN, Brown MC, Beare NA V, Heimann H, Harding SP: Early multifocal electroretinogram findings during intravitreal ranibizumab treatment for neovascular age-related macular degeneration. *Invest Ophthalmol Vis Sci.* 2011, 52:3446–51. 10.1167/iovs.10-6588
161. Moschos MM, Brouzas D, Chatziralli IP, Ladas I: Ranibizumab in the treatment of choroidal neovascularisation due to age-related macular degeneration: an optical coherence tomography and multifocal electroretinography study. *Clin Exp Optom.* 2011, 94:268–75. 10.1111/j.1444-0938.2011.00589.x
162. Moschos MM, Brouzas D, Apostolopoulos M, Koutsandrea C, Loukianou E, Moschos M: Intravitreal use of bevacizumab (Avastin) for choroidal neovascularization due to ARMD: a preliminary multifocal-ERG and OCT study. *Multifocal-ERG after use of bevacizumab in ARMD.* *Doc Ophthalmol.* 2007, 114:37–44. 10.1007/s10633-006-9036-7
163. Karanja R, Eng KT, Gale J, Sharma S, ten Hove MW: Electrophysiological effects of intravitreal Avastin (bevacizumab) in the treatment of exudative age-related macular degeneration. *Br J Ophthalmol.* 2008, 92:1248–52. 10.1136/bjo.2008.138800
164. Park JY, Kim SH, Park TK, Ohn Y-H: Multifocal electroretinogram findings after intravitreal bevacizumab injection in choroidal neovascularization of age-related macular degeneration. *Korean J Ophthalmol.* 2011, 25:161–5. 10.3341/kjo.2011.25.3.161
165. Chandramohan A, Stinnett SS, Petrowski JT, Schuman SG, Toth CA, Cousins SW, Lad EM: VISUAL FUNCTION MEASURES IN EARLY AND INTERMEDIATE AGE-RELATED MACULAR DEGENERATION. *Retina.* 2016, 36:1021–31. 10.1097/IAE.00000000000001002
166. Wu Z, Ayton LN, Luu CD, Guymer RH: Longitudinal changes in microperimetry and low luminance visual acuity in age-related macular degeneration. *JAMA Ophthalmol.* 2015, 133:442–8. 10.1001/jamaophthalmol.2014.5963
167. Midena E, Vujosevic S, Convento E, Manfre' A, Cavarzeran F, Pilotto E: Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. *Br J Ophthalmol.* 2007, 91:1499–503. 10.1136/bjo.2007.119685
168. Luu CD, Dimitrov PN, Robman L, et al.: Role of flicker perimetry in predicting onset of late-stage age-related macular degeneration. *Arch Ophthalmol.* 2012, 130:690–9. 10.1001/archophthalmol.2012.277

169. Wu Z, Ayton LN, Luu CD, Guymer RH: Longitudinal changes in microperimetry and low luminance visual acuity in age-related macular degeneration. *JAMA Ophthalmol.* 2015, 133:442–8. 10.1001/jamaophthalmol.2014.5963
170. Wu Z, Ayton LN, Guymer RH, Luu CD: Comparison between multifocal electroretinography and microperimetry in age-related macular degeneration. *Invest Ophthalmol Vis Sci.* 2014, 55:6431–9. 10.1167/iovs.14-14407
171. Meleth AD, Mettu P, Agrón E, Chew EY, Sadda SR, Ferris FL, Wong WT: Changes in retinal sensitivity in geographic atrophy progression as measured by microperimetry. *Invest Ophthalmol Vis Sci.* 2011, 52:1119–26. 10.1167/iovs.10-6075
172. Querques L, Querques G, Forte R, Souied EH: Microperimetric correlations of autofluorescence and optical coherence tomography imaging in dry age-related macular degeneration. *Am J Ophthalmol.* 2012, 153:1110–5. 10.1016/j.ajo.2011.11.002
173. Landa G, Su E, Garcia PMT, Seiple WH, Rosen RB: Inner segment-outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration. *Retina.* 2011, 31:364–70. 10.1097/IAE.0b013e3181e91132
174. Hariri AH, Tepelus TC, Akil H, Nittala MG, Sadda SR: Retinal Sensitivity at the Junctional Zone of Eyes With Geographic Atrophy Due to Age-Related Macular Degeneration. *Am J Ophthalmol.* 2016, 168:122–8. 10.1016/j.ajo.2016.05.007
175. Gorusupudi A, Nelson K, Bernstein PS: The Age-Related Eye Disease 2 Study: Micronutrients in the Treatment of Macular Degeneration. *Adv Nutr.* 2017, 8:40–53. 10.3945/an.116.013177
176. Rosenberg D, Deonarain DM, Gould J, et al.: Efficacy, safety, and treatment burden of treat-and-extend versus alternative anti-VEGF regimens for nAMD: a systematic review and meta-analysis. *Eye (Lond).* 2023, 37:6–16. 10.1038/s41433-022-02020-7
177. Patel PJ, Villavicencio P, Hanumunthadu D: Systematic Review of Neovascular Age-Related Macular Degeneration Disease Activity Criteria Use to Shorten, Maintain or Extend Treatment Intervals with Anti-VEGF in Clinical Trials: Implications for Clinical Practice. *Ophthalmol Ther.* 2023, 12:2323–46. 10.1007/s40123-023-00768-z
178. Cheng AM, Joshi S, Banoub RG, Saddeci J, Chalam K V: Faricimab Effectively Resolves Intraretinal Fluid and Preserves Vision in Refractory, Recalcitrant, and Nonresponsive Neovascular Age-Related Macular Degeneration. *Cureus.* 2023, 15:e40100. 10.7759/cureus.40100
179. ElSheikh RH, Chauhan MZ, Sallam AB: Current and Novel Therapeutic Approaches for Treatment of Neovascular Age-Related Macular Degeneration. *Biomolecules.* 2022, 12: 10.3390/biom12111629
180. Constable IJ, Pierce CM, Lai C-M, et al.: Phase 2a Randomized Clinical Trial: Safety and Post Hoc Analysis of Subretinal rAAV.sFLT-1 for Wet Age-related Macular Degeneration. *EBioMedicine.* 2016, 14:168–75. 10.1016/j.ebiom.2016.11.016
181. Rakoczy EP, Lai C-M, Magno AL, et al.: Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. *Lancet.* 2015, 386:2395–403. 10.1016/S0140-6736(15)00345-1
182. Lukacs R, Schneider M, Nagy ZZ, et al.: Seven-year outcomes following intensive anti-vascular endothelial growth factor therapy in patients with exudative age-related macular degeneration. *BMC Ophthalmol.* 2023, 23:110. 10.1186/s12886-023-02843-2
183. Pegcetacoplan (Syfovre) for geographic atrophy in age-related macular degeneration. *Med Lett Drugs Ther.* 2023, 65:49–50. 10.58347/mlt.2023.1673a
184. Biarnés M, Garrell-Salat X, Gómez-Benlloch A, et al.: Methodological Appraisal of Phase 3 Clinical Trials in Geographic Atrophy. *BioMedicines.* 2023, 11: 10.3390/biomedicines11061548
185. Cruz-Pimentel M, Wu L: Complement Inhibitors for Advanced Dry Age-Related Macular Degeneration (Geographic Atrophy): Some Light at the End of the Tunnel? *J Clin Med.* 2023, 12: 10.3390/jcm12155131
186. Borchert GA, Shamsnajafabadi H, Hu ML, et al.: The Role of Inflammation in Age-Related Macular Degeneration-Therapeutic Landscapes in Geographic Atrophy. *Cells.* 2023, 12: 10.3390/cells12162092

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.