

Review

Not peer-reviewed version

A Comprehensive Review on Carbon Dioxide Sequestration Methods

Gregory Tarteh Mwenketishi*, Nejat Rahmanian*, Hadj Benkreira

Posted Date: 9 October 2023

doi: 10.20944/preprints202310.0127.v1

Keywords: Aquifer; Carbon Subsurface storage (CSS); CO2 Sequestration; Environment; Geological storage; Carbon Capture and Storage (CCS)

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Remiero

A Comprehensive Review on Carbon Dioxide Sequestration Methods

Gregory Tarteh Mwenketishi, Hadj Benkreira and Nejat Rahmanian *

School of Engineering, Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK

* Correspondence: author: n.rahmanian@bradford.ac.uk.

Abstract: Capturing and storing CO₂ (CCS) was once regarded as a significant, urgent, and required option for reducing the emissions of CO2 from coal and oil and gas industries and mitigating the serious impacts of CO2 on the atmosphere and the environment. This recognition came about as a result of extensive research conducted in the past. The CCS cycle comes to a close with the last phase of CO2 storage, which is accomplished primarily by the adsorption of CO₂ in the ocean and injection of CO₂ subsurface reservoir formation, in addition to the formation of limestone by the process of CO2 reactivity with reservoir formation minerals through injectivities. CCS is the last stage in the carbon capture and storage (CCS) cycle and is accomplished chiefly via oceanic and subterranean geological sequestration, as well as mineral carbonation. The injection of supercritical CO2 into geological formations disrupts the sub-surface's existing physical and chemical conditions; changes can occur in the pore fluid pressure, temperature state, chemical reactivity, and stress distribution of the reservoir rock. This paper aims at advancing our current knowledge in CO2 injection and storage systems particularly CO₂ storage methods and the challenges encountered during the implementation of each method and analyses on how key uncertainties in CCS can be reduced. CCS sites are essentially unified systems; yet, given the scientific context, these storage systems are typically split during scientific investigations based on the physics and spatial scales involved. Separating the physics by using the chosen system as a boundary condition is a strategy that works effectively for a wide variety of physical applications. Unfortunately, the separation technique does not accurately capture the behaviour of the larger important system in the case of water and gas flow in porous media. This is due to the complexity of geological subsurface systems, which prevents the approach from being able to effectively capture the behaviour of the larger relevant system. This consequently gives rise to different CCS technology with different applications, costs and social and environmental impacts. The findings of this study can help improve understanding of selecting a suitable CCS application method and can further improve the efficiency of greenhouse gas emissions and their environmental impact, promoting the process sustainability and helping to tackle some of the most important issues that human being is currently accounting global climate change. Though this technology has already had large-scale development for the last decade, some issues and uncertainties are identified. Special attention was focused on the basic findings achieved in CO2 storage operational projects to date. The study has demonstrated that though a number of CCS technology has been researched and implemented to date, choosing a suitable and acceptable CCS technology is still daunting in terms of its technological application, cost-effectiveness and socio-environmental acceptance.

Keywords: aquifer; carbon subsurface storage (CSS); CO₂ sequestration; environment; geological storage; carbon capture and storage (CCS)

1. Introduction

Previous studies have emphasized Anthropogenic CO₂ as well as other greenhouse gas (GHG) emissions that have indeed been recognised as the primary cause of global warming and climate change (MacDowell et al., 2013). The reports published by IEA 2016 and NASA 2017 confirmed that CO₂ concentrations in the atmosphere have risen from 280 ppm in the mid-1800s to approximately

404 ppm in 2016, resulting in a nearly 1°C increase in mean earth temperature above the preindustrial levels. This temperature increase, which occurred between 1901 and 2010, resulted in a 20cm increase in worldwide mean sea level (UK Met Office 2016). It is widely acknowledged that the average global temperature increase from pre-industrial rates must be maintained far below 2°C by 2100 to avoid catastrophic climate change disasters (IPCC special report 2005). As a result, the European Union and the G7 countries have set a goal of reducing GHG emissions by at least 80% from 1990 levels by 2050 (IEA 2009) and (ECF 2010).

Power plants and other energy-intensive sectors are regarded as significant CO₂ emitters and are required to reduce their produced CO₂ emissions substantially. The high carbon intensity of the power industry (World Nuclear Association) 42%, is due to the significant proportion of coal-fired facilities in the worldwide energy supply. Furthermore, the development of shale gas in North America has resulted in an increase in coal production and exports from the United States. As a result, it resulted in a significant decrease in coal pricing, which in turn resulted in a greater proclivity for coal-based power generation (Hanak et al. 2015). Therefore, de-carbonization of the electricity and manufacturing sectors is critical to meeting emission reduction goals.

CCSI in 2011 provided evidence for Carbon Capture and Storage (CCS) as the most crucial method for decarbonizing the electricity and industrial sectors. It is predicted that CCS alone may contribute almost 20% of the decrease by 2050 and that excluding CCS can result in a 70% increase in the worldwide cost of meeting emission reduction goals (UK DECC 2012). Permanent CO₂ sequestration is the US-DOE United States Department of Energy's plan. USGS VSP Vertical Seismic Profile XRD (X-Ray Diffraction) is the final step in the CCS chain and could be implemented using a range of strategies, primarily mineral carbonation, oceanic, and underground geological storage along with saline aquifers, oil and natural gas reservoirs, inaccessible coal seams, and other geological porous media. According to Yamasaki (2003), the critical criteria of a viable CO₂ storage option are net CO₂ emission reduction, high storage capacity, long-term CO₂ isolation (at least several hundred years), acceptable cost and energy penalty, and little environmental effect. However, public acceptance/embracing is another essential element that may have a significant impact on the technology's adoption, Mabon et al. (2013).

Several reviews, including Bachu (2015), and (Bai et al. 2015), have addressed various features of CO₂ storage in the past. However, particular areas have yet to be addressed or thoroughly examined. Although CO₂ storage is a technically established technique, further deployment is hampered by ambiguity and challenges related to estimating storage capacity, tracking verification and monitoring of CO₂ during and after injection, characterising potential injection-induced seismicity, and standardising storage evaluation criteria, and practical, ethical mechanisms. Furthermore, CO₂ storage is a dynamic subject, and current success and growth must be examined and addressed as more information becomes available.

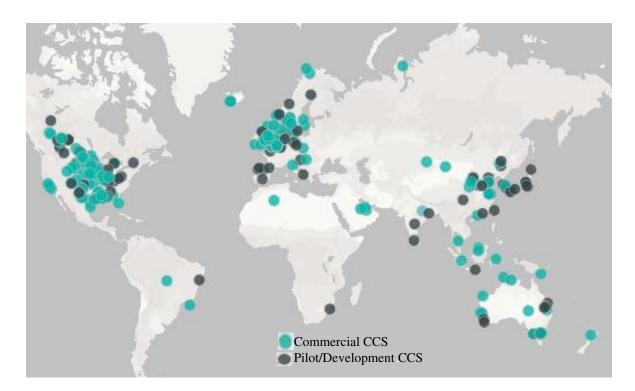
Within the framework of CCS, there exist various potential avenues for the sequestration of CO₂. These options include underground geological storage, deep ocean storage, and mineral carbonation (IPCC Special Report, 2005). Underground geological storage, in particular, encompasses several subcategories, such as saline aquifers, depleted oil and gas reservoirs, un-mineable coal seams, hydrate storage, and CO₂ storage within enhanced geothermal systems (Na J, et al. 2015)

This section offers a thorough examination of each storage approach and afterwards delineates potential avenues for future research that can enhance the existing knowledge.

CCS is widely recognised as a crucial approach for achieving decarbonization in the manufacturing and energy sectors (GCCSL, 2011). According to estimates, the implementation of CCS technology alone has the potential to achieve a reduction of about 20% in emissions by the year 2050. Furthermore, the absence of CCS might result in a significant rise of up to 70% in the overall global cost required to meet emission reduction targets (DECC, 2012). The final stage in the CCS process involves the long-term containment of CO₂. This can be accomplished through several methods, such as mineral carbonation, oceanic storage, and underground geological storage. The latter includes storing CO₂ in saline aquifers, depleted oil and gas reservoirs, unmineable coal seams, and other geological formations. The primary attributes of a viable CO₂ storage solution encompass

3

a net decrease in CO₂ emissions, substantial storage capacity, extended isolation of CO₂ for a minimum of several centuries, cost-effectiveness and minimal energy penalty, as well as mitigated environmental consequences (Yamasaki, 2003). However, the acceptance and embrace of the technology by the general population is another crucial component that can have a substantial impact on its implementation (Mabon and Shackley, 2013).


Multiple scholarly articles have examined many facets of CO₂ storage (Bachu, 2015) as indicated in Appendix 1. Nevertheless, certain aspects have not yet been addressed or thoroughly examined. Although CO₂ storage has been demonstrated to be a technically viable technology, its widespread implementation is hindered by various uncertainties and challenges. These include difficulties in accurately estimating storage capacity, effectively tracking, verifying, and monitoring CO₂ during and after injection, characterising the potential for induced seismic activity resulting from an injection, establishing standardised criteria for evaluating storage sites, and implementing effective ethical mechanisms. Furthermore, the topic of CO₂ storage is rapidly advancing, necessitating a comprehensive examination and discourse on recent advancements and developments.

In course of preparing this paper, a comprehensive and critical review has been carried out on the most up-to-date CCS methods and identify their application, limitations and potential future work through research analyses.

2. CO2 Sequestration Methods

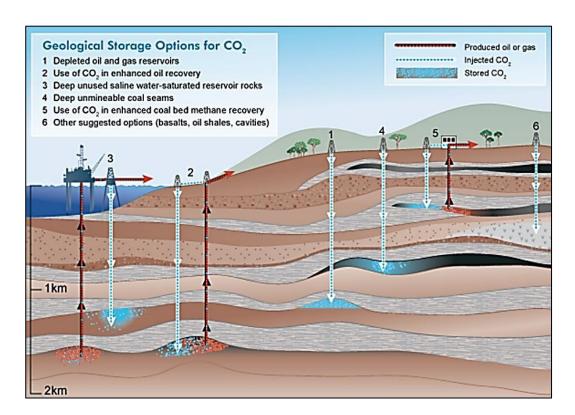

According to the IPCC Special Report from 2005, different CO₂ sequestration methods that could be used for stored CO₂ include deep ocean, geological and mineral carbonation, several subterranean reservoir formations alternatives do exist, including saline aquifers, depleted oil and gas reserves, unreachable coal seams, hydrate storage, and CO₂ inside improved geothermal systems, (Bachu et al. 2000), (Han and Winston Ho 2020).

Figure 2.1 and Appendix 1 presents a comprehensive review of significant large-scale CSS initiatives that have been implemented globally. In the majority of these operations, CO₂ has been sequestered in saline aquifers or utilised for enhanced oil recovery (EOR) purposes. The security of containment is a critical determinant for the success of storage projects. Therefore, it is imperative to consistently enhance the process of selecting and characterising sites, determining technical operation parameters, developing monitoring and verification systems, and conducting quantitative risk assessments. Taking a comprehensive approach to these variables will serve as the foundation for developing suitable technical rules and fostering a favourable public image, thus facilitating the smooth implementation of large-scale CSS operations.

Figure 2.1. Worldwide CCS initiatives encompassing large-scale commercial projects that have been previously operational and pilot development operations (MIT, 2015; Shukla et al. 2010; Global CCS Institute - CO₂RE).

The utilisation of underground geological storage has been widely regarded as the most feasible method for sequestration. Geological storage is considered a more advantageous method of sequestration when compared to carbonation and oceanic storage due to various factors. These factors encompass economic considerations, site accessibility (particularly relevant to ocean and mineral sequestration), as well as concerns related to the security of stored CO₂ and the potential negative environmental consequences associated with mineralisation and ocean storage. This section will provide a full discussion of many potential geological storage alternatives, as depicted in Figure 2.2 below.

Figure 2.2. Schematic Illustration of Various Geological Storage Systems for CO₂ (Courtesy CO₂CRC, 2015).

2.1. Storage in Subsurface Reservoir Formations

The most workable sequestration option is an underground geological storage system. The security of the CO₂ being stored, as well as the detrimental effects on the ecosystem, are some of the key points that set geological storage from CO₂ mineralization and marine storage. Figure 2.1 depicts various possible geological storage systems that are considered to be effective and would need further investigation for better understanding.

Considering that available information in the overwhelming CSS can managed at the vast majority of locations efficiently and safely, there is still a possibility that storage facilities might be put in danger by factors such as generated seismicity if these factors are not well analysed.

2.1.1. Brine Aquifers

Several researchers have acknowledged that storing CO₂ in deep salty aquifers represents one of the most successful strategies for reducing CO₂ in the atmosphere (Li et al. 2023) (Javaheri et al., 2011), (Yang et al. 2013), (Frerichs et al., 2014), and (Burnol et al. 2015), due to its already available technological and significant possible storage capacity, (Bachu et al. 2000). However, most saline aquifers are presently unsuitable for other synergistic or competing uses (Trémosa et al. 2014) especially in highly populated nations (Procesi et al. 2013; Quattrocchi et al. 2013). The absence of facilities including wells for CO₂ injection, surface handling equipment, and transportation pipeline networks makes many salty aquifers less desirable as potential storage reservoir formation alternatives at the moment (Li et al. 2006).

Recently, the topic of discussion has been the potential for CO₂ to be stored in salty aquifers (Bachu et al., 2003), (Wei et al. 2022) in combination with EOR storage (Boundary-Dam-Apache). These studies address topics including site description, as well as long-term planning, according to (Bachu 2010) as well as the range of complementary and competing subterranean uses (Procesi et al. 2013).

Because of their vast pore volume and high permeability, aquifer reservoir formations can hold massive amounts of CO₂, cutting down on an overall number of CO₂ injection wells required and

easing pressure dissipation (Shukla et al. 2010). Upon flowing into the storage reservoir formation, supercritical CO₂ dislocates brine in the pore spaces and initiates a chain reaction with the formation's minerals (groundwater, gas, and rocks) that lead to either formation of different chemical substances or the breakdown of current minerals (Le Gallo et al. 2002), (Cantucci et al. 2009). Mineral formation and dissolution may alter rock porosity and, as a result, the capacity of the storage reservoir (Wdowin 2013).

Previous studies (Tapia et al. 2018) have shown that supercritical CO₂ has a density of approximately 0.6-0.7g/cm³ in saline reservoirs, the low density can influence the uprise movement of CO₂ towards the cap-rock because of buoyancy forces due to density variation.

According to previous studies (Armitage et al., 2013), a large aquifer storage basin with a high sealing capacity of the cap-rock is necessary for long-term and stable CO₂ storage. Given that cap-rock, a formation at the reservoir's top with low to very low permeability (Fleury et al. 2010) should operate as a seal to prevent CO₂ migration from the storage deposit below. With its low permeability, cap-rock is crucial for preventing CO₂ from escaping the retention reservoir and minimizing leakage. Another essential element that may result in cap-rock integrity loss and CO₂ leakage is the existence of unrecognised fracturing and fault-plane. However, from the review, no previous researcher has investigated further study on the impacts of CO₂-brine reactivity on injectivity and the fracturing network and fault plane for CO₂ storage, as such, a thorough research study is required to investigate the effect of this reactivity and previous faults on cap-rock stability (Buttinelli et al. 2011).

Figure 2.3 below depicts the four major trapping processes that may safely handle CO₂ storage: a) Structural/stratigraphic; b) Residual; c) Solubility; d) Mineral trapping.

Stratigraphical and/or Structural Trapping: When CO₂ is introduced into a geological formation, it may move to the top and get trapped behind an impermeable top seal (Kim et al. 2017) where it can remain as a free phase that cannot go beyond or access the cap-rock pore region except by slow diffusion or fractures as illustrated on Figure 2.3a above. It's the most common kind of subsurface trapping system.

CO₂ Rock Pores Capturing: Injection of CO₂ into aquifer porous rock gives rise to fluid displacement due to differences in density. Figure 2.3b above shows how the fluid displaced by the CO₂ flows, returns, disconnects, and traps the remaining CO₂ within pore spaces. It has been observed that the method occurs exclusively when water drainage processes occur during CO₂ injection, rather than inside structural and stratigraphic traps, (Bachu et al. 2007).

Solubility trapping: CO₂ dissolves in brine through the chemical process of solubility, plummeting the quantity of CO₂ gas-phase (Figure 2.3c). The density of brine is increased by the solubility of CO₂ and this may cause gravitational instability, hastening the transition of injected CO₂ to CO₂-lean brine (Kneafsey et al., 2010).

Trapping due to Mineral: CO2 undergoes chemical interactions with minerals and salty water found around the rock's periphery. Carbonate precipitation occurs as a consequence of these chemical reactivities and has the effect of sequestering CO2 in an inert lesser phase across a specific subsurface geological timeframe, as demonstrated in Figure 2.3d above (Bachu 1998). It is a more gradual process than the solubility capturing that takes place over a longer geologic period (Gunter et al. 2004), (Sundal et al. 2014).

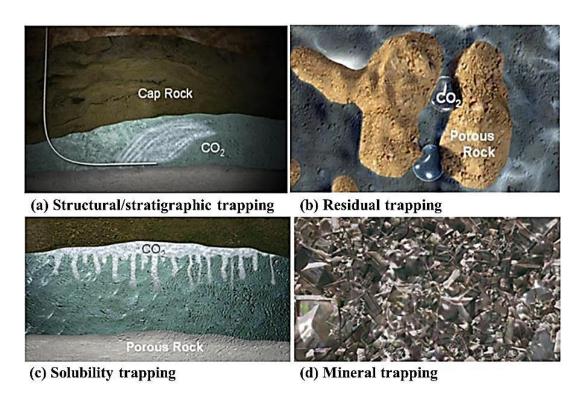


Figure 2.3. Illustrate the Major 4 CO₂ Trapping Subsurface systems (Zhao et al. 2014).

Although a number of studies have argued that storing CO₂ in salty aquifers would be more effective than CO₂ is often stored in depleted oil and gas fields, these assessments neglect to take into consideration the expenses connected as a result of the use of storage in saline reservoirs. In many instances, hydrocarbon fields already have production facilities in place, which, with only relatively modest adjustments, may be modified to meet storage operations. These changes can be made in order to accommodate storage activities. In addition, they have been well defined throughout the stages of crude oil exploitation, and they may employ CO₂ for storage as well as EOR. As a consequence, it is possible that storing CO₂ in hydrocarbon formations is better than storing it in saltwater aquifers.

2.1.2. Drained Hydrocarbon Reservoir Formations

The sequestration of CO₂ in depleted oil and gas reservoirs is widely recognised as one of the most efficient techniques of CO₂ storage. Among these advantages are the following: a) Drained hydrocarbon reservoirs have been the subject of substantial research both before and during the hydrocarbon exploring period, including research about their storage capacity; b) Both onshore and offshore infrastructural facilities, existing infrastructure, including CO₂ injection wells and transportation, may be used with little modification for the storage process (Sigman et al. 2021); c) If this was not the case, CO₂ gas injection to enhance oil recovery would have been less attractive and ends many years ago. Suitable hydrocarbon field data as an analogue may be utilise in illustrating the efficacy of cap-rock across geologic timeframe to strengthen oil and gas reservoirs (Heinemann et al. 2012).

Reservoir rocks and brine properties are similar and commonly found in both hydrocarbon reservoirs and deep aquifer storage systems (Li et al., 2014). Oil and gas reservoirs, on the other hand, may be considered for EOR, making them more economically advantageous than saline aquifers, (Zangeneh et al. 2013) and (Gao et al. 2016). Because the worldwide average recovery factor from a typical oilfield is about 40%, (BGS, 2017), usually, many barrels of oil are still in the hydrocarbon reservoirs. It's the primary motivation for the global deployment of EOR. However, technological deployment difficulties remain challenging, although these issues may have been foreseen and handled throughout the exploration and production phase of a field, they have just recently come to light.

Gas injection is the most frequently utilised among the current EOR alternatives such as gas, thermal, chemical, and plasma-pulse injection techniques. Miscible gases (CO₂, nitrogen, and natural gas) are injected into the reservoir using the gas injection process to decrease the interfacial tension between oil and water and increase oil displacement efficiency while preserving reservoir pressure. CO₂ injection seems to be the optimal choice because it may reduce oil viscosity and is less expensive than liquefied natural gas (Jaramillo et al. 2008). More CO₂ for improved oil recovery is anticipated to be accessible from vital gathering point sources with the introduction of CCS technology (IPCC Special Report 2005). It has been claimed, for example, that the use of CO₂ for EOR has resulted in an increased output of about 260,000bopd in the U.S.A (GCCSI 2017).

The International Energy Agency (IEA) 2015 set out the following as the primary criteria for the implementation of CO₂ oil recovery support (EOR) projects:

- a. Additional site characterization involves investigating potential leakage risks, such as the condition of the cap rock and any abandoned wells with integrity problems.
- b. Additional evaluations of surface processing plants' fugitive and discharging emissions
- c. Leakage rates may be estimated from specific locations and the normality of the reservoir's behaviour can be determined by increased monitoring and field surveillance.

In addition to the criteria mentioned above, governments must address legal problems and enact laws to cover storage facility operations. These issues arise because CO₂-EOR and CO₂ permanent storage fall under two distinct regulatory umbrellas, the former focuses on resource recovery, whereas the latter is concerned with waste management Marston (2013). Legal issues might arise, for instance, regarding the proper decontamination of oil left in situ after production ceases, if hydrocarbon recovery is prioritised. Such a scenario may be jurisdiction-specific and especially significant when onshore mineral and storage rights are owned privately.

One of the critical variables that must be rigorously defined before a CO₂-EOR project is initiated involves the kind and number of contaminants in CO₂ streams. Depending on the CO₂ source and the accompanying collecting procedures, a variety of contaminants might be contained as part of the CO₂ injection fluid. (Porter et al. 2015). The permissible impurities and concentrations are determined by a mix of transit, storage, and economic factors. CO₂ streams must meet a minimum purity standard of roughly 90%vol (Jarrell et al. 2002). In the case of CO₂, increasing impurity levels may cause the phase boundaries to move to even higher pressures, which demonstrates the requirement for higher injection pressures to keep the injected CO₂ in a higher concentration. It has also been established that non-condensable contaminants lower CO₂ storage capacity by a factor that is larger as compared to the mole percentage of contaminants present in the CO₂ injection system (IEAGHG 2011).

The most typical issue connected to contaminants is corrosion. Due to the corrosive effects that impurities (such as SO₂, NO₂, CO, H₂S, and Cl) may have on transportation and injection systems, it is essential to limit the quantity of contaminants on a scenario rationale. Additionally, it is essential to develop feasible mitigation solutions for potential problems, (Porter et al. 2015). It is important to note that even though certain impurities such as CO, H₂S, and CH₄ have a naturally occurring propensity to be combustible, safety considerations for combustibility are not typically factored into the evaluation of safety measures. This is because it is highly unlikely that the CO₂ injection stream will be combustible due to the low quantities of the impurities in question. Another issue that may influence the effectiveness of the CO₂-EOR process is an excessive concentration of O₂ in CO₂ streams. The presence of O₂ in the reservoir may stimulate microbial activity, (Porter et al. 2015), which can ultimately lead to operational problems such as injection obstruction, oil deterioration and oil souring.

The previous studies (Igunnu et al., 2014) have connected environmental problems of EOR with volumes of water production that may include radioactive compounds and dangerous heavy metallic substances. Failure to implement an appropriate waste management and disposal strategy implemented, these chemicals may pollute drinkable water sources. Although restrictions exist, governments must ensure that operators follow current laws when brine re-injection for recovery is permitted. For example, White (2009) provided evidence to show that the Weyburn-Midale CO₂ storage project in Canada is an example of how collected in the Weyburn oilfield, CO₂ might be used for EOR and retention. Not only does this procedure recover a significant amount of previously

unrecovered oil, but it also increases the oilfield's useful lifespan by 20–25 years, Thomas (2008). According to (Zaluski et al. 2016); (Verdon 2016) long-term surveillance, generated seismicity evaluation of CO2's impact on the reservoir and the fluids' mutual effect, oil and minerals have been the primary focuses of CO2-EOR research (Hutcheon et al. 2016). The Weyburn case history inspired (Cantucci et al. 2009) to study the geochemical equilibrium between brine and oil and develop a biogeochemical model for CO2 storage in underground reservoirs. A hundred years into the future, they predicted precipitation and disintegration processes based on research into reservoir formation during CO2 injection. During the first year of the simulation, they discovered that the two most significant chemical processes taking place in the reservoir were those involving CO2 and the dissolution of carbonate. Furthermore, the development of chemical characteristics over time indicated that CO2 might be securely stored via mineral and solubility trapping.

Perera (2016) acknowledges that though the CO₂-EOR method has substantially improved oil recoveries, further improvement is needed using the following strategies: a) Using numerical evidence, (Tenasaka 2011) proved that this was possible within the normal range of CO₂ injection. In the San Joaquin basin, scientists injected around 2.0HCPV (hydrocarbon pore volume) of CO₂ to prove that there was a greater possibility to extract more oil, almost 67% of the originally present oil (OOIP) was recovered. In addition, (Tenasaka 2011) demonstrated that there was a greater recovery of oil from his numerical methodology; b) Using a better and innovative CO₂ flooding design and well management can positively influence more oil recovery from the reservoir; c) Increasing the mobility-ratio by raising water's viscosity (Thomas 2008). Minimising miscibility pressure using miscibility-enhancing agents, Kuuskraa (2008).

2.1.3. In-accessible Coal Seams

An additional option for sequestering human-caused CO₂ is the use of inaccessible coal seams. Since cleats are present inside the coal matrix, the system is somewhat permeable. In addition, the matrix of coal is full of tiny holes (micropores) that may take in a lot of air. Coal has a greater affinity for CO₂ in the gas phase than methane, and this is the basis for the CO₂ trapping process. According to (Shukla 2010), this means that the methane output could be increased while the CO₂ was permanently stored. Thus, large amounts of CO₂ may be stored while commercial unconventional shale methane (CBM) processes are made more productive and profitable (Krooss et al. 2002), (Gilliland et al., 2013). It should be underlined that although CO₂ increases CBM synthesis, the overall quantity of methane generated is not always higher than without the addition of CO₂. The International Energy Agency Working Group on Greenhouse Gases (IEAGHG 2009) provided an overview of the essential technical parameters needed for the effective implementation of enhanced coal seam production, which include: a) The homogeneity Reservoir; b) Threshold of fractures and fault planes; c) Upper depth limit; d) Coal geomorphology; e) Permeability adequacy.

Two experimental locations, the Alberta Carbon Trunk Line (ACTL) in Canada with the San Juan Basin pilot in the United States, have reportedly used the ECBM approach, the conclusion of the evaluations for the Alberta project (Krooss 2002): a) Even in constrained reservoirs, continuous CO₂ injection is feasible; b) Injection may be performed notwithstanding a decrease in injectivity; c) Expected Significantly Enhanced CBM Production; d) The injected carbon dioxide stays in the reservoir, boosting sweep efficiency, (Lakeman 2016).

Key findings from the San Juan Basin pilot study revealed that methane recovery exceeded the predicted ultimate primary production. Second, the pilot project was not cost-effective because of the price of gas at the time it launched. However, if the price of gas continues to climb in the years to come, the pilot project may end up being lucrative; thirdly, because fuel prices were high when the project was first implemented, the trial project was not profitable. An additional pilot study of a Coal field is being done in the Appalachian Basin, with a focus on a variety of surveillance and verification techniques, and accounting (MVA) methods are being utilised to understand better storage complexity, (Gilliland et al. 2012). Furthermore, the possible ECBM implementation, as well as the significant variations in output across nearby wells with the same stratigraphic, has been studied in

the beginning. However, further research is needed to characterise and portray such disparities adequately.

While CO₂ EOR has been used successfully for years in the upstream oil and gas sector, the utilisation of CO₂ during ECBM is still limited in its recognition. There are still many unknowns when it comes to ECBM recovery, however, the current understanding of how the CO₂ EOR process works could help alleviate some of those worries. For example, the creation of technically recoverable shale in ECBM could need a look at already-existing technology from the oil industry that might be converted with very little work. Existing well materials may be utilised as a baseline for good integrity in ECBM production following suitable changes. Furthermore, field and reservoir management techniques processes, such as risk monitoring and evaluation may be modified from those already in place and used at any point in the lifetime of a project.

2.1.4. Subsurface Basalt Formations

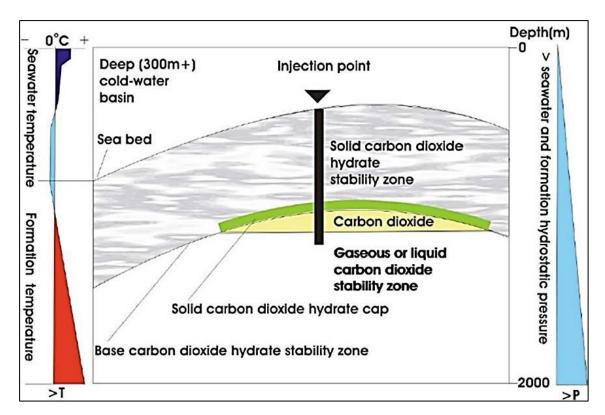
There exists a considerable body of literature on subsurface basalt deposits within central igneous provinces, and many researchers (McGrail et al. 2006), (Pollyea et al. 2014) and (Matter et al. 2016) have suggested subsurface basalt deposits as a possible CO₂ storage solution. Basaltic rocks make up around 8% of the continents and a large portion of the ocean bottom. As a result, basaltic rocks have a massive theoretical CO₂ storage capacity (Anthonsen et al. 2014). One of the most important advantages of such rocks' potential to store CO₂ is that their physical and chemical characteristics, as well as the amount of divalent metal ions they contain, may fix CO₂ during past geological periods (Van Pham et al., 2012). Permeability and porosity of Basalt flows, on the other hand, are very variable and often consist of an interior low-permeability region surrounded by periphery regions with high permeability. That said, the rubbly zones between separate flows are the most critical portions of a basalt sequence for CO₂ storage.

Complimentary CO₂ injected into subsurface basalts (the CarbFix pilot scheme, Iceland) may replace water in the rock's pore spaces and cracks (Matter et al., 2011). The decrease in water content may impede basalt carbonation and hydration. Therefore, it may be possible to inject CO₂ and the right amount of water into the same reservoir based on the following points: a) Because it offers sufficient depth, denser CO₂ liquid may sink, which delays the release of CO₂ back into the atmosphere; b) It makes it possible to form stable carbonates in a shorter amount of time than would normally be required by geologic processes; c) It prevents acidic basement fluids from rising via an impervious sediment layer; d) It can be converted into a stable hydrate; e) It is essential to remember that a small quantity of CO₂ leaking does not inevitably damage the sea bottom ecosystems.

Because of the anticipated development of dolomitic carbonate minerals, with the possibility of CO₂ being trapped in basalts for thousands of years, analysing changes in rock volume and the chance of fracture self-healing are key issues to consider. Quantitative research on such issues has been conducted (Van Pham et al., 2012). These researchers found out that at 40 degrees Celsius, oxide consumed a significant amount of calcium, limiting its use to the creation of siderite and ferromagnesian carbonates. Magnesite formed with ankerite and siderite at temperatures between 60 and 100 degrees Celsius. In addition, they found that the carbonation and hydration processes both increased solid volume and inhibited pore access, decreasing the maximum quantity of CO₂ stored.

In addition to studying the mineral assemblages present in basalt, researchers have looked at the mechanisms of mineral carbonation in serpentinites, intending to acquire a more thorough comprehension of the fundamentals of CO₂ storage for the future utilising basic magnesium silicates. In serpentinites, rocks that are both plentiful and thermodynamically suitable for the production of magnesium carbonates, CO₂ combines with magnesium silicates to produce magnesium carbonates (Seifritz 1990). (Andreani et al. 2009) conducted an analysis of the carbonation process using flow parameters that were optimised. They found out that low-flow or low-diffusion regions are the only ones where porosity and permeability decrease. In contrast, higher flow rates contribute to armouring of mineral surfaces associated with the initial disintegration.

And further reason for alarm has been the occurrence of fractures in the basalt formations' protective cap-rock. Due to the possibility of leakage via the fissures, basalts are not likely to be


suitable for CO₂ storage. However, CO₂ seeping via fissures has the potential to mineralize and be trapped inside the formation, delaying its escape to the surface (IEAGHG, 2011). As such, further research is required to characterise the kinetics of CO₂-basalt interactions.

Alternate storage alternatives, including serpentinite and basaltic reservoir formations, could be necessary; knowledge improvement is required to identify possible uncertainties and investigate mitigation techniques. To do so, it may be necessary to apply computational techniques and to research the impact of carbon dioxide and rock contact on the ease or difficulty of migration, as well as to clarify CO₂ migration in the presence of likely fault plane, fractures.

2.1.5. CO₂ Sequestration in Hydrate Deep Formations

Previous studies (Anon n.d.) have shown that subsurface CO₂ storage systems as hydrates is another potential, modern strategy that uses a lattice of water molecules to capture CO₂ molecules. When water and the right level of pressure and temperature are present, CO₂ hydrate may form rapidly (Circone et al., 2003). Furthermore, its rapid formation kinetics may allow for some self-sealing in the rare crack development in the hydrate top layer formation. The development of CO₂ hydrate might have applications in both underground geology and the storage of CO₂ in the ocean. Because the formation of hydrate turns out to be very stable at higher pressure and low temperature of about 10°C (Rochelle et al. 2009) they can only be used in certain situations, such as shallower sediments under cold oceans bed and under extensive areas of icy hydrate formation, where it's possible that there is a lack of sufficient space for a CO₂ collecting plant.

The process of CO₂ hydrate storage mechanism involves buoyancy and drives the migration of liquid CO₂, which is capped by a developing impermeable CO₂ hydrate cap, (Figure 2.4 below). The CO₂ hydrate equilibrium zone is lowered by injecting liquid carbon dioxide into deep water or subpermafrost sediments, (Rochelle et al. 2009). As more liquid CO₂ moves into the colder hydrate stable zone, a layer of impenetrable CO₂-hydrates builds inside the pore holes of the sedimentary reservoir rock. The US Department of Energy (DOE) on the other hand proposed a CO₂-EGR-based hydrate storage technology (enhanced gas recovery). CO₂ is injected into sediments that contain methane hydrates, releasing the methane from the hydrates and forming CO₂ hydrates in its place (Burnol et al. 2015). Because CO₂-EGR is still a novel idea, research into its effectiveness has been limited so far. According to Oldenburg (2003), one of the primary issues is the use of Methane which might in turn react with the injected CO₂ in an enhanced gas cycle, resulting in the gas resources being depleted.

Figure 2.4. Illustration of Hydrate formation Diagram sequestration with its CO₂ Hydrate Seal, (Rochelle et al. 2009).

Presently, the technology required to store CO₂ in hydrates is not very advanced with most researchers (Jemai et al. 2014), (Talaghat et al. 2009) focusing on theoretical modelling and lab-scale experiments Ghavipour et al. 2013), (Ruffine et al. 2010) and (Rehder et al. 2009). For this reason, there are still a number of challenges to be solved, especially with CO₂-EGR. However, local temperature and pressure fluctuations caused by drilling through hydrate-bearing sediments may destabilise the hydrate formation in its entirety (Khabibullin et al., 2011). How the CO₂-CH₄ hydrate exchange mechanism affects methane production, and how hydrate cap development may be shown as the major outstanding problems that need to be solved to improve the evaluation of hydrate storage viability.

2.1.6. Enhanced Geothermal Systems Based on CO₂

Previous studies (Garapati et al. 2015), (Pruess 2006), (Zhang and Song 2013) have emphasized that dense-phase CO₂, like water, has thermal characteristics that allow it to transfer large quantities of heat. However, it has better physical characteristics, such as substantially lower viscosity, more excellent compressibility, and expansibility. As a result, CO₂ may be utilised in the process of geothermal energy by extracting heat from the ground. CO₂ can efficiently reach the rock mass due to its low viscosity and may be considered a medium for enhanced geothermal systems' operating fluid (Pruess 2006). Enhanced geothermal systems that use water as the heat transmission fluid suffers from the drawback of fluid loss. The inability to provide adequate water supplies is associated with financial difficulties because of the value placed on this resource. On the other hand, if upgraded geothermal systems (EGS) were to lose their reliance on CO₂, this would make underground geological storage of CO₂ possible, which might have further benefits.

It is essential for the effectiveness of CO₂-EGS storage that the rock mass loaded with CO₂ be separated from the surrounding rock mass, which is filled with water. These conditions are maintained in large part due to the formation of crystals of carbonate minerals at the interface between the CO₂-heavy centre of EGS with the brine-rich outside. Only countries having subsurface resources at economically feasible depths where the temperature is high enough would be able to use

this technology. Additionally, synergistic use of the subsurface may be more complicated and need more collaboration in heavily populated nations.

The technique is still in its early stages of technology readiness (TRL), with most research so far focused on theoretical modelling (Plaksina et al., 2016) and small-scale laboratory experiments. The main challenge to this method's development is the lack of clarity about the efficiency of closing off the area surrounding the CO₂ source. To top it all off, nothing is known about the interactions between CO₂ and rocks at high temperatures. Understanding how CO₂ affects dissolution and precipitation, and how that affects changes in fracture permeability and EGS functioning, requires further study.

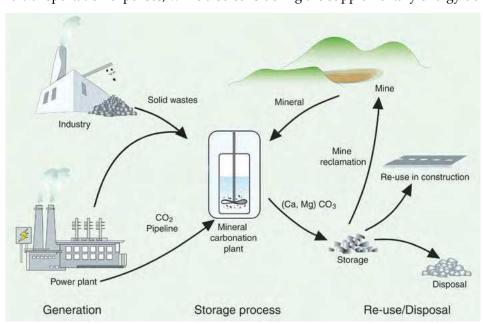
2.2. Carbonation of Mineral

Seifritz in 1990 was the first person to suggest the idea of CO₂ carbonation happening in the mineral as an alternative CO₂ sequestration method. The collected CO₂ is sequestered using this technique via the mineralisation process; in the presence of oxides or hydroxides of alkaline metals found in minerals, Carbonates are produced by the reaction of CO₂.

Incorporation of CO₂ into minerals may be accomplished in two ways: both in and out of place. The in-place technique includes injecting CO₂ into a geologic formation to produce carbonates. Meanwhile, the out-of-place process is carried out above the surface in a factory utilising rock that has been excavated earlier or rock that is indigenous to the area (Assima et al. 2014). In situ, mineral carbonation is often discussed in high-magnesium, high-iron, and high-calcium silicate rocks like basalts and ophiolites (Ekpo Johnson et al. 2023). The in-situ mineral carbonation technique has significant benefits since it does not need substantial mining and just a few boreholes to complete the process. However, there may be significant unknowns, such as the absence of geological characteristics or the lack of knowledge on the possible cap-rock or seal.

$$CO_2(g) + MgO(s) \rightarrow MgCO_3(s)$$
, $\Delta H \approx -118KJ/mol$

$$CO_2(g) + CaO(s) \rightarrow CaCO_3(s), \Delta H \approx -179KJ/mol$$


Also, geochemical processes may decrease reactivity, porosity, and permeability, lining the resultant flow channels. There are both direct and indirect techniques that could be used to carbonate minerals outside of their natural environments. The direct gas-based technique comprises the interaction of gaseous CO2 with minerals to form carbonates, as previously shown (Bobicki et al. 2012) and (Lim et al. 2010). Gas-solid carbonation normally occurs at temperatures below 65°C, with the rate of chemical reaction and the amount of space available in rocks being the key limiting variables (Calabrò et al. 2008). The direct aqueous-based process consists of a single stage, which entails CO₂ interacting with mineral deposits in the presence of water. This step takes place in the presence of water (Bobicki et al. 2012). Direct mineral carbonation has significant challenges in commercial deployment and development due to minerals and carbon dioxide being dissolved and forming a product layer dispersion (Olajire 2013); (Bobicki et al. 2012)). When looking at the feasibility of longterm mineral carbonation that allows for the underground sequestration of carbon dioxide, Matter and Kelemen in 2009 turned to natural analogues. According to their findings, sedimentary rocks that have magnesium and calcium elements in quite high concentrations tend to have a high rate of mineralization. Their results reveal that carbonate mineral precipitation may fill gaps already present, but that the tension caused by fast precipitation may also cause fracture and an increase in pore volume. The mining industry has a snowball impact on the environment because some mineral deposits that are rich in calcium and magnesium may also include asbestiform components as well as other pollutants that are harmful to human health (IPCC Special Report 2005).

Two of the most common alkali and alkaline-earth metal oxides, magnesium oxide (MgO) and calcium oxide (CaO), don't develop as binary oxides in free existence. Magnesium oxide has the chemical formula MgO, while calcium oxide has the chemical formula CaO. Compounds based on silicon dioxide, such as serpentine, are typical examples of this kind of assemblage. (Cipolli et al. 2004) and (Bruni et al. 2002) conducted studies on the effects of carbon dioxide on serpentine that had

been retrieved from the spring waters of Genova. Serpentinization modifies the complex interaction of ultramafic rocks with meteoric fluids, according to the results of a geochemical study of serpentinite-derived high-pH fluids and reaction-path simulation for aquifer-scale sequestration (Cipolli et al. 2004). MgHCO₃ waters are formed when CO₂ reacts with the rock, whereas Na-HCO₃ and Ca-OH type fluids are synthesised by further interactions with the host rock in a strongly lowering closed loop. Prior to employing reaction path modelling to simulate the process of injecting CO₂ at elevated pressure into aquifer formation, the findings suggested that serpentinites might be exploited for CO₂ sequestration because of their ability to create carbonate minerals. It should be emphasised that this method was only successful in reducing aquifer porosity under the circumstances of a closed system. This indicates that such consequences have to be examined thoroughly in both field and laboratory research.

Bruni and team in 2002 conducted research on the spring waters of the Genova area employing irreversible water-rock mass transfer. As a result of their investigation, they found some non-aligned Mg-HCO₃ fluids with several higher-pH Ca-OH fluids connected with serpentinites. They investigated if CO₂ sequestration is possible in the near and far future by dissolving serpentinite and then precipitating calcite. This was done in order to find out how effective this method might be. They determined that the interaction of these meteoric waters results in a gradual evolution in the chemistry of the aqueous phase. This development starts with magnesium-rich, low-salinity SO₄Cl facies and then moves on to intermediates facies made up of more developed Ca-OH and Mg-HCO₃ compounds. In order to arrive at this result, scientists examined dissolved N₂ and Ar in addition to water's stable isotopes. Higher alkalinity of Calcium Oxide solvent can capture CO₂ and transform it into deposits of Calcite formation or solute, this methodology might be used to sequester anthropogenic CO₂.

The implementation of a commercial process necessitates the extraction, pulverisation, and grinding of mineral-rich ores, as well as their transportation to a processing facility that receives a concentrated stream of CO₂ from a capture plant Figure 2.5. The energy consumption associated with the carbonation process is estimated to account for around 30 to 50% of the total output of the capture plant. When taking into account the supplementary energy demands associated with the capture of CO₂, it can be observed that a CCS system employing mineral carbonation necessitates an energy input per kilowatt-hour that is 60 to 180% higher compared to an electrical plant without capture or mineral carbonation, serving as a reference. The energy demands associated with this technology significantly increase the cost per metric tonne of CO₂ that is mitigated. The most exemplary case examined thus far pertains to the wet carbonation process of naturally occurring silicate olivine. The projected cost of this procedure is roughly 50-100 US\$/tCO₂ net mineralized, accounting for CO₂ capture and transportation expenses, while also considering the supplementary energy demands.

The mineral carbonation process necessitates the extraction of about 1.6 to 3.7 tonnes of silicates per tonne of CO₂, and results in the disposal of 2.6 to 4.7 tonnes of materials per tonne of CO₂ stored as carbonates. Consequently, the proposed endeavour would constitute a substantial undertaking, with an environmental footprint akin to that of existing extensive surface mining operations. Serpentine is frequently found to contain chrysotile, which is a naturally occurring variant of

The existence of this phenomenon necessitates the implementation of monitoring and mitigation strategies similar to those utilised in the mining sector. In contrast, the by-products of mineral carbonation do not contain chrysotile, as it is the most reactive constituent of the rock and hence undergoes conversion to carbonates at the earliest stage.

2.2.1. Limitation and Future Work

asbestos.

There are several unresolved concerns that must be addressed before any assessments of the storage capacity of mineral carbonation can be provided. The concerns encompass evaluations of the technological feasibility and associated energy demands on a significant scale, as well as the proportion of silicate deposits that may be viably and economically utilised for CO₂ storage. The potential of mining, waste disposal, and product storage may be limited due to their environmental impact. The current feasibility of utilising mineral carbonation remains uncertain due to the lack of knowledge regarding the potential quantity of exploitable silicate reserves and the presence of environmental concerns, as previously mentioned.

Another crucial inquiry is to the potential of industrial utilisation of CO₂ to yield a net decrease in CO₂ emissions on a comprehensive scale, through the substitution of alternative industrial processes or products. Accurate evaluation of the CO₂ utilisation processes necessitates the consideration of appropriate system boundaries for energy and material balances, as well as the execution of a comprehensive life-cycle study pertaining to the intended utilisation of CO₂. The existing body of literature pertaining to this subject is constrained in scope, although it reveals the challenges associated with accurately quantifying specific data. Moreover, it suggests that in numerous instances, the utilisation of industrial practices may result in an overall rise in emissions rather than a net decrease. Based on the limited amount of CO₂ kept, the modest quantities utilised, and the potential for substitution resulting in elevated CO₂ emissions, it may be deduced that the impact of industrial applications of captured CO₂ on mitigating climate change is anticipated to be minimal. Currently, there has been limited effort in evaluating and quantifying the aforementioned external costs. The examination of CCS is conducted within the framework of exploring various strategies for achieving worldwide reductions in greenhouse gas emissions.

Likewise, mineral carbonation might cause issues for both humans and the environment. Mineral carbonation processes have the potential to change the topography of an area in two different ways: via large-scale mining activities and, later on, through the disposal of reacted minerals. In addition, asbestiform phases and other potentially harmful pollutants may be present in some calcium and magnesium-rich mineral formations (IPCC Special Report 2005). Accordingly, future research should concentrate on a) The potential for less terrain change; b) Mineral carbonation in terms of mineral and CO₂ dissolution; c) Material stratum diffusion; and d) Managing mineral impurities throughout the sequestration process.

2.3. CO2 Sequestration on Ocean Floor

Intentionally injecting CO₂ into the deep ocean floor is another option for anthropogenic CO₂ sequestration (IPCC,2018). The oceans cover around 70% of the planet. In the industrial era, they sucked up over a third of all man-made CO₂ emissions from the atmosphere and had an average depth of 3.8 km (Adams et al., 2008) and (Tanhua et al. 2013). Mathematical simulations have

indicated that injected CO₂ may linger in the water for hundreds of years. This cold (1°C) and profound (4 to 5km) water flows slowly and may stay isolated from the atmosphere for millennia.

There are two potential methods for ocean storage: the injection and dissolution of CO₂ into the water column, typically below 1,000 metres, using a fixed pipeline or a floating ship; or the deposition of CO₂ onto the sea floor at depths below 3,000 metres, using a fixed pipeline or an offshore platform. In the latter method, CO₂, being denser than water, is expected to form a concentrated "lake" that would delay its dissolution into the surrounding environment (Figure 2.6 below). The investigation of ocean storage and its ecological consequences is currently in the research phase.

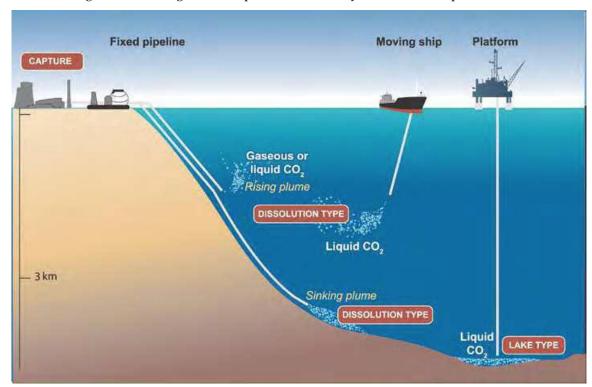


Figure 2.6. An illustration of many concepts related to the storage of CO_2 in the ocean. The process of ocean storage can be classified into two types: dissolution type and lake type. In the dissolution type, CO_2 undergoes rapid dissolution in ocean water. On the other hand, in the lake type, CO_2 exists initially as a liquid on the sea floor (CO_2CRC).

Direct CO₂ dissolution into seawater is the principal technique that could be used in ocean storage. The first involves releasing CO₂ directly into the ocean floor, where it will form droplet plumes that will rise into the air. As an alternate method, liquid CO₂ is injected into a column, where it has the potential to interact with saltwater at a pace that is under control, therefore producing hydrate (Adams et al. 2008). Since there is a potential for localised acidification of water from the sea in the vicinity of CO2 injection location, the storage of CO2 on the ocean floor is viewed with scepticism by a number of experts. This would have a deleterious effect on the benthic organisms. This is according to a series of recent studies published by Jacobson in 2009 and (Hofmann et al., 2010). Furthermore, it is unclear if international laws will permit CO2 storage in the ocean as a development project. The London Convention for the Protection of the Marine Environment from Pollution by Dumping of Wastes and Other Matter into the Sea signed in 1996 put an end to the practice of discharging wastes from industrial processes into the ocean (Anon 2012a, Anon 2012b). Therefore, it is prohibited to dump CO2 into the ocean if it is considered industrial waste. Although CO₂ was added to the "reverse list" in the London Protocol modification that allowed for the storage of CO₂ beneath the seabed in 2006, there is still no agreement on whether or not CO₂ should be classified as industrial waste. "CO2 may only be stored in compliance with an authorisation or permit given by the Party's competent authority," as stated in the North-East Atlantic Convention with the Interest of Preserving the Quality of the Marine Environment (Anon 2017), (ZeroCO₂ 2015).

Therefore, it is necessary to evaluate the ambiguity surrounding ocean sequestration and its effects on the ecosystem and to provide solutions to possible problems that may arise.

Oceanic sequestration efficiency may be evaluated based on a number of criteria, the most important of which are injection depth, residence time, and CO₂ concentration allocation. (Xu et al. 1999) constructed a regional ocean general circulation model that assumed there was no air-to-sea CO₂ exchange and investigated the prospect for CO₂ sequestration in the North Pacific by using a wide range of sub-grid mesoscale mixing parameters. According to their findings, storage depth is a crucial factor in sequestering CO₂ and limiting its emissions back into the atmosphere. It was discovered that a depth of injection of more than 1,000 metres is necessary to slowly release CO₂ into the water over very few 100 years.

Following fifty years of constant injection of CO₂, more than ten percent of the dissolved CO₂ would be released back into the environment. This leakage should be considered as a major concern. Addroft et al. in 2004 used an ocean circulation model to assess the storage efficiency of impulse injections based on mean residence time. CO₂ sequestration was more successful in the North Atlantic over hundreds of years, whereas it was more successful in the Pacific basin over shorter periods. Although the magnitudes that were tested were low and that the impact of air-sea CO₂ circulation was ignored, the relevance of this effect over large borders is still a concern and calls for more research.

In order to assess the efficacy of a potential sequestration location, the variation in CO₂ concentration after injection might be considered. A place where CO₂ is adequately diluted while having little environmental impact is preferable. However, by simulating CO₂ injection into a number of models of the ocean's main circulation at several sites around Japan, the spatial variability of CO₂ content concerning injection rate and eddy activity distribution has been studied (Masuda et al., 2008) These researchers used an ocean general circulation model to perform their research. Specifically, the data indicated that the highest CO₂ concentration may vary by a factor of 10 across places, where the principal driver of this variation is the regionalization of turbulent events. Additionally, it has been established that keeping injection rates below 20Mt/a would have little long-term impact on biota.

2.3.1. Limitation and Future Work

In order to advance the discussions surrounding the evaluation of oceanic sequestration, previous study has shown that a number of improvements and unknowns need to be investigated and resolved in future studies. One way to boost ocean storage efficiency is by updating the present numerical model to account for CO₂ exchange between the atmosphere and the ocean, and second, by reducing the number of assumptions underlying the model, further investigating the determination of storage efficiency.

The advancement of ocean CSS can be facilitated by addressing many significant gaps in knowledge and understanding, some of these gaps thus include: a) Further engineering and advancement of technology for operating in the deep sea, as well as the development of various equipment such as pipes, nozzles, and diffusers, that can be efficiently utilised in deep-sea environments while ensuring minimal costs for operation and maintenance; b) Biological and ecological factors – Investigations pertaining to the impact of increased CO₂ levels on biological systems inside the deep sea, encompassing investigations of greater duration and larger size than those previously conducted; c) Research centres – these are establishments dedicated to conducting scientific research and developing technologies related to ocean storage. They provide a platform for assessing the effectiveness and impacts of various ocean storage concepts, such as the release of CO₂ from a fixed pipe or ship, as well as carbonate-neutralization approaches. These assessments are carried out in situ, on a small scale, and an ongoing basis; d) Finally, the future focus should be on the advancement of methodologies and sensor technologies to detect CO₂ plumes, as well as understanding their ecological and geochemical impacts.

3. Discussion and Conclusions

18

This paper provides a comprehensive review of the current advancements in CO₂ sequestration with special interest in geological CO₂ storage. This highlights significant steps that have been covered so far, as well as obstacles that still need to be addressed for geological subsurface CO₂ sequestration, and approaches adopted in calculating CO₂ storage capacity.

Even though CO₂ sequestration by storage in the ocean and storage through the process of carbonation has been established, CSS remains the most viable option practical alternative because of financial concerns, vast geographical dispersal, and environmental difficulties. This is the case because it has been proven that CO₂ can be sequestered.

Mineral CO₂ sequestration on the other hand remains a more protracted alternative in comparison to other potential carbon sequestration methods. The current state of technological progress restricts the short-term sequestration potential. In addition, the present costs associated with its sequestration are somewhat excessive when compared to alternative sequestration methods, taking into account the projected prices of CO₂ in the near future. Feasibility may be limited to specific uses that offer an extra benefit, such as the practical utilisation of the carbonated product. Mineral CO₂ sequestration has the potential to evolve into a viable technology for employment, forming an integral component of a diverse range of CO₂-reducing technologies. It is crucial to use each technology in its most suitable context within a comprehensive portfolio. The field of mineral CO₂ sequestration is a relatively recent area of study, and significant advancements have been achieved in improving the pace at which carbonation occurs. The aforementioned observation, in conjunction with the enduring nature of CO₂ sequestration and its substantial potential for sequestration, justifies the need for additional investigation into mineral CO₂ sequestration.

Acknowledgements: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. This work is an outcome of research work in the Chemical Engineering Program, School of Engineering, Faculty of Engineering and Digital Technologies, University of Bradford, in Carbon Capture and Utilisation

Conflict of interest: Authors declare that they do not have any conflict of interest with anyone regarding this article.

Abbreviations

ACTL	Alberta Carbon Trunk Line

CBM Coal Bed Methane

CCS Carbon Capture and Storage

The Cooperative Research Centre

for Greenhouse Gas Technologies

DOE Department of Energy

ECBM Enhanced Coal Bed Methane

recovery

EGS Enhanced Geothermal System

EOR Enhanced Oil Recovery

GHG Greenhouse Gas

HCPV Hydrocarbon Pore Volume

Intergovernmental Panel on Climate

IPCC Change

LNG Liquefied Natural Gas

Massachusetts Institute of MIT

Technology

MVA	Monitoring, Verification and		
WVA	Accounting		
OGIP	Original Gas in Place		
OOIP	Original Oil in Place		
TRL	Technology Readiness Level		
LIVOCCDC	UK Carbon Capture and Storage		
UKCCSRC	Research Centre		
US-DOE	United States Department of Energy		
USGS	United States Geological Survey		
VSP	Vertical Seismic Profile		
XRD	X-Ray Diffraction		

Appendix 1 - Worldwide CCS initiatives encompassing large-scale commercial projects that have been previously operational and pilot development operations (MIT, 2015; Shukla et al. 2010; Global CCS Institute - $\rm CO_2RE$)

Facility Name	Facility Category	Facility Status	Country	Operationa 1	Facility Industry
In Salah CO2 Storage	Commercial CCS Facility	Completed	Algeria	2004	Natural Gas Processing
Bridgeport Energy Moonie CCUS project	Commercial CCS Facility	Advanced Developme nt	Australia	2023	CO2 Transport and Storage
Burrup CCS Hub	Commercial CCS Facility	Early Developme nt	Australia		CO2 Transport and Storage
Callide Oxyfuel Project	Pilot and Demonstratio n CCS Facility	Completed	Australia	2012	Power Generation
CarbonNet	Commercial CCS Facility	Advanced Developme nt	Australia		CO2 Transport and Storage
Cliff Head CCS Project (Mid West Clean Energy Project)	Commercial CCS Facility	Advanced Developme nt	Australia	2025	CO2 Transport and Storage
CO2CRC Otway	Pilot and Demonstratio n CCS Facility	Operational	Australia	2008	Natural Gas Processing

E H's N	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
CTSCo Surat Basin CCS Project	Pilot and Demonstratio n CCS	Advanced Developme nt	Australia	2023	Power Generation
Gorgon Carbon Dioxide Injection	Facility Commercial CCS Facility	Operational	Australia	2019	Natural Gas Processing
Hazelwood Carbon Capture and Mineral Sequestration Pilot Plant	Pilot and Demonstratio n CCS Facility	Completed	Australia	2009	Power Generation
Hydrogen Energy Supply Chain (HESC) project	Commercial CCS Facility	Advanced Developme nt	Australia		Hydrogen Production
Hydrogen Energy Supply Chain (HESC) project	Pilot and Demonstratio n CCS Facility	Completed	Australia	2028	Hydrogen Production
INPEX CCS Project Darwin	Commercial CCS Facility	Early Developme nt	Australia	2026	Natural Gas Processing
Mid-West Modern Energy Hub	Commercial CCS Facility	Early Developme nt	Australia		Hydrogen Production
Moomba CCS hub (Santos Cooper Basin CCS Project)	Commercial CCS Facility	In Constructio n	Australia	2024	Hydrogen Production
National Geosequestration Laboratory (NGL) Australia	Pilot and Demonstratio n CCS Facility	Operational	Australia	2015	Research and Development
Otway Natural Gas Plant CCS	Commercial CCS Facility	Early Developme nt	Australia	2026	Natural Gas Processing
Post-Combustion Capture (PCC)@CSIRO	Pilot and Demonstratio n CCS Facility	Operational	Australia	2005	Power Generation

Facility Name	Facility Category	Facility Status	Country	Operationa 1	Facility Industry
South East Australia Carbon Capture Hub	Commercial CCS Facility	Early Developme nt	Australia	2025	Natural Gas Processing
South West Hub	Pilot and Demonstratio n CCS Facility	Completed	Australia		Fertiliser Production
Wallumbilla Renewable Methane Demonstration Project	Pilot and Demonstratio n CCS Facility	Advanced Developme nt	Australia	2021	Direct Air Capture
Antwerp@C - BASF Antwerp CCS	Commercial CCS Facility	Advanced Developme nt	Belgium	2030	Chemical Production
Antwerp@C - Exxonmobil Antwerp Refinery CCS	Commercial CCS Facility	Early Developme nt	Belgium	2030	Chemical Production
Antwerp@C – Borealis Antwerp CCS	Commercial CCS Facility	Early Developme nt	Belgium	2030	Chemical Production
Antwerp@C – Ineos Antwerp CCS	Commercial CCS Facility	Early Developme nt	Belgium	2030	Chemical Production
LEILAC	Pilot and Demonstratio n CCS Facility	In Constructio n	Belgium	2025	Cement Production
Steelanol	Utilisation Facilities	Operational	Belgium	2023	Iron and Steel Production
FS Lucas do Rio Verde BECCS Project	Commercial CCS Facility	Early Developme nt	Brazil		Ethanol Production
Miranga CO2 Injection Project	Pilot and Demonstratio n CCS Facility	Completed	Brazil	2009	Fertiliser Production

Facility Name	Facility	Facility	Country	Operationa	Facility
	Category	Status		1	Industry
Petrobras Santos Basin Pre-Salt Oil Field CCS	Commercial CCS Facility	Operational	Brazil	2008	Natural Gas Processing
Air Products Net- Zero Hydrogen Energy Complex	Commercial CCS Facility	Advanced Developme nt	Canada	2024	Hydrogen Production
Alberta Carbon Conversion Technology Centre (ACCTC)	Pilot and Demonstratio n CCS Facility	Operational	Canada	2018	Power Generation
Alberta Carbon Trunk Line (ACTL)	Commercial CCS Facility	Operational	Canada	2020	CO2 Transport and Storage
Blue But Better	Commercial CCS Facility	In Constructio n	Canada	2024	Hydrogen Production
Boundary Dam Unit 3 Carbon Capture and Storage Facility (BD3 CCS facility)	Commercial CCS Facility	Operational	Canada	2014	Power Generation
Capital Power Genesee CCS Project	Commercial CCS Facility	Advanced Developme nt	Canada	2026	Power Generation
Caroline Carbon Capture Power Complex	Commercial CCS Facility	Early Developme nt	Canada	2025	Power Generation
CMC Research Institutes (CMCRI)	Pilot and Demonstratio n CCS Facility	Operational	Canada	2018	Research and Development
CO2 Solutions Valleyfield Carbon Capture Demonstration Project	Pilot and Demonstratio n CCS Facility	Completed	Canada	2015	Research and Development
Enhance Energy Clive CO2-EOR (ACTL)	Commercial CCS Facility	Operational	Canada	2020	CO2 Transport and Storage

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
Federated Co-	Commercial	Advanced			Ethanol
operatives Limited	CCS Facility	Developme	Canada	2024	Production
(Ethanol)	CCS rucinty	nt			Troduction
Federated Co-	Commercial	Advanced			
operatives Limited	CCS Facility	Developme	Canada	2026	Oil Refining
(Refinery)	CC3 Facility	nt			
Glacier Gas Plant	Commercial	Operational	Canada	2022	Natural Gas
MCCS	CCS Facility	Орстанопал	Cariada	2022	Processing
Husky Energy					
Lashburn and	Pilot and				
Tangleflags CO2	Demonstratio	Operational	Canada	2012	Ethanol
Injection in Heavy	n CCS	Орегацопал	Cariaua	2012	Production
Oil Reservoirs	Facility				
Project					
Nauticol Energy Net	Commercial	Early			Methanol
Zero Methanol	CCS Facility	Developme	Canada	2025	Production
(ACTL)	CC3 Facility	nt			rioduction
Northwest Redwater					
CO2 Recovery Unit	Commercial	Operational	Canada	2020	Oil Pofining
Sturgeon Refinery	CCS Facility	Operational	Canada	2020	Oil Refining
(ACTL)					
Origins Project	Commercial	Early			CO2
Carbon Storage Hub	CCS Facility	Developme	Canada	2026	Transport
Carbon Storage 11ab	CCSTacinty	nt			and Storage
Pembina Cardium	Pilot and				
CO2 Monitoring	Demonstratio	Completed	Canada	2005	Natural Gas
Pilot	n CCS	Completed	Cariada	2000	Processing
THOU	Facility				
	Commercial	Early			Hydrogen
Polaris CCS Project	CCS Facility	Developme	Canada	2025	Production
	CCSTacinty	nt			Troduction
Quest	Commercial	Operational	Canada	2015	Hydrogen
Quest	CCS Facility	Operational	Curiada	2010	Production
Saskatchewan NET	Commercial	Early			Power
Power Plant	CCS Facility	Developme	Canada	2025	Generation
	2 22 2 33223	nt			
Shand Carbon	Pilot and				Research and
Capture Test Facility	Demonstratio	Operational	Canada	2015	Development
(CCTF)					F

F 114 ST	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
	n CCS				
	Facility				
Southeast	Commercial	Advanced			CO2
Saskatchewan CCUS	CCS Facility	Developme	Canada		Transport
Hub - Storage	CCS Facility	nt			and Storage
Svante and Husky	Pilot and	Advanced			
Energy	Demonstratio	Developme	Canada	2018	Oil Refining
VeloxoTherm	n CCS	nt	Cariaua	2016	On Kenning
Capture Process Test	Facility	111			
WCS Redwater CO2	Commercial				Fertiliser
Recovery Unit	CCS Facility	Operational	Canada	2020	Production
(ACTL)	CC3 Facility				Froduction
	Pilot and				
Zama Field	Demonstratio	Completed	Canada	2005	Natural Gas
Validation Test	n CCS	Completed	eted Canada	2005	Processing
	Facility				
Australia-China Post	Pilot and				
Combustion		Completed China			Dower
Capture (PCC)			China	2010	
Feasibility Study					Generation
Project	Facility				
Australia-China Post	Dilotand				
Combustion			China	2010	Dozuzon
Capture (PCC)		Completed			
Feasibility Study		-			Generation
Project	Facility				
China Coalbed	Pilot and				
Methane	Demonstratio	Completed	China	2004	Research and
Technology	n CCS	Completed	Cillia	2004	Development
Sequestration Project	Facility				
China National	Commonaial				Potezon
Energy Guohua		Operational	China	2020	
Jinjie	CC3 Facility				Generation
China National	Commonaial	In			Postron
		Constructio	China	2023	
Energy Taizhou	CC3 Facility	n			Generation
Chinese-European	Pilot and	Advanced			
Emission-Reducing		Developme	China	2022	Oil Refining
Solutions (CHEERS)	Demonstratio	nt			
Capture (PCC) Feasibility Study Project Australia-China Post Combustion Capture (PCC) Feasibility Study Project China Coalbed Methane Technology Sequestration Project China National Energy Guohua Jinjie China National Energy Taizhou Chinese-European Emission-Reducing	Demonstratio n CCS Facility Pilot and Demonstratio n CCS Facility Pilot and Demonstratio	Completed Completed Operational In Constructio n Advanced Developme	China China China	2010 2004 2020 2023	Power Generation Power Generation

Facility Name	Facility Category	Facility Status	Country	Operationa 1	Facility Industry
-	n CCS				
	Facility				
CNOOC Enping CCS Offshore Project	Commercial CCS Facility	Operational	China	2023	Natural Gas Processing
CNPC Jilin Oil Field CO2 EOR	Commercial CCS Facility	Operational	China	2018	Natural Gas Processing
CNPC Jilin Oil Field EOR Demonstration Project	Pilot and Demonstratio n CCS Facility	Completed	China	2008	Natural Gas Processing
Daqing Oil Field EOR Demonstration Project	Pilot and Demonstratio n CCS Facility	Operational	China	2003	Natural Gas Processing
Guanghui Energy CCUS	Commercial CCS Facility	In Constructio n	China		Methanol Production
Haifeng Carbon Capture Test Platform	Pilot and Demonstratio n CCS Facility	Operational	China	2018	Power Generation
Huaneng GreenGen IGCC Demonstration-scale System (Phase 2)	Pilot and Demonstratio n CCS Facility	In Constructio n	China	2025	Power Generation
Huaneng Longdong Energy Base Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	China	2023	Power Generation
ITRI Calcium Looping Pilot	Pilot and Demonstratio n CCS Facility	Operational	China	2013	Cement Production
Jinling Petrochemical CCUS (Nanjing Refinery)	Commercial CCS Facility	Operational	China	2023	Oil Refining
Karamay Dunhua Oil Technology CCUS EOR Project	Commercial CCS Facility	Operational	China	2015	Methanol Production

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
PetroChina Changqing Oil Field EOR CCUS	Pilot and Demonstratio n CCS Facility	Operational	China	2017	Fuel transformatio n
Shenhua Group Ordos Carbon Capture and Storage (CCS) Demonstration Project	Pilot and Demonstratio n CCS Facility	Completed	China	2011	Fuel transformatio n
Shuncheng CO2-TO-METHANOL Anyang Petrochemical	Utilisation Facilities	Operational	China	2022	Chemical Production
Sinopec Nanjing Chemical Industries CCUS Cooperation Project	Commercial CCS Facility	Operational	China	2021	Chemical Production
Sinopec Qilu- Shengli CCUS Project	Commercial CCS Facility	Operational	China	2022	Chemical Production
Sinopec Shengli Oilfield Carbon Capture Utilization and Storage Pilot Project	Pilot and Demonstratio n CCS Facility	Operational	China	2010	Power Generation
Sinopec Shengli Power Plant CCS	Commercial CCS Facility	Advanced Developme nt	China	2025	Power Generation
Sinopec Zhongyuan Carbon Capture Utilization and Storage	Pilot and Demonstratio n CCS Facility	Completed	China	2006	Chemical Production
Yanchang Integrated CCS Demonstration	Commercial CCS Facility	Operational	China	2012	Chemical Production
Geothermal Plant with CO2 Re- injection	Pilot and Demonstratio n CCS Facility	Operational	Croatia	2018	Power Generation

Facility Name	Facility Category	Facility Status	Country	Operationa 1	Facility Industry
	Pilot and	Status		1	mustry
CASTOR	Demonstratio n CCS Facility	Completed	Denmark	2006	Power Generation
CESAR	Pilot and Demonstratio n CCS Facility	Completed	Denmark	2008	Power Generation
Copenhill (Amager Bakke) Waste to Energy CCS	Commercial CCS Facility	Advanced Developme nt	Denmark	2025	Waste Incineration
Greenport Scandinavia	Commercial CCS Facility	Early Developme nt	Denmark	2025	Bioenergy
Project Greensand	Commercial CCS Facility	Advanced Developme nt	Denmark	2025	CO2 Transport and Storage
Air Liquide CalCC	Commercial CCS Facility	Early Developme nt	France	2028	Lime Production
Air Liquide Normandy CCS	Commercial CCS Facility	Early Developme nt	France	2025	Hydrogen Production
C2A2 Field Pilot - Le Havre	Pilot and Demonstratio n CCS Facility	Completed	France	2013	Power Generation
DMX [™] Demonstration in Dunkirk	Pilot and Demonstratio n CCS Facility	Operational	France	2022	Iron and Steel Production
K6	Commercial CCS Facility	Early Developme nt	France	2028	Cement Production
Lacq CCS Pilot Project	Pilot and Demonstratio n CCS Facility	Completed	France	2010	Power Generation

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
CEMEX, Rüdersdorf, Germany	Commercial CCS Facility	Early Developme nt	Germany	2026	Cement Production
Ketzin Pilot Project	Pilot and Demonstratio n CCS Facility	Completed	Germany	2004	Power Generation
Schwarze Pumpe Oxy-fuel Pilot Plant	Pilot and Demonstratio n CCS Facility	Completed	Germany	2008	Power Generation
Wilhelmshaven CO2 Capture Pilot Plant	Pilot and Demonstratio n CCS Facility	Completed	Germany	2012	Power Generation
MOL Szank field CO2 EOR	CCS Facility Pilot and	Operational	Hungary	1992	Natural Gas Processing
CarbFix Project	Demonstratio n CCS Facility	Operational	Iceland	2012	Power Generation
CODA Shipping	Commercial CCS Facility	Advanced Developme nt	Iceland	2026	CO2 Transport and Storage
CODA Terminal Onshore Infrastructure	Commercial CCS Facility	Advanced Developme nt	Iceland	2026	CO2 Transport and Storage
CODA Terminal Pipeline	Commercial CCS Facility	Advanced Developme nt	Iceland	2026	CO2 Transport and Storage
CODA Terminal Storage	Commercial CCS Facility	Advanced Developme nt	Iceland	2026	CO2 Transport and Storage
Mammoth	Commercial CCS Facility	In Constructio n	Iceland	2024	Direct Air Capture
Orca	Commercial CCS Facility	Operational	Iceland	2021	Direct Air Capture

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
Carbon Clean	Pilot and				
Solutions Solvay	Demonstratio	Completed	India	2012	Power
Vishnu Capture	n CCS			2012	Generation
Project	Facility				
NTPC Vindhyachal Super Thermal Power Station CCS	Utilisation Facilities	Operational	India	2022	Power Generation
Tata Steel Jamshedpur Steel Plant	Pilot and Demonstratio n CCS Facility	Operational	India	2021	Iron and Steel Production
Tuticorin (TTPS)- Carbon Clean Solution	Utilisation Facilities	Operational	India	2016	Power Generation
Tuticorin Alkali Chemicals and Fertilizers Ltd	Pilot and Demonstratio n CCS Facility	Operational	India	2016	Chemical Production
Arun CCS Hub	Commercial CCS Facility	Early Developme nt	Indonesia	2029	CO2 Transport and Storage
Gundih CCS Pilot	Pilot and Demonstratio n CCS Facility	Advanced Developme nt	Indonesia	2025	Natural Gas Processing
PAU Central Sulawesi Clean Fuel Ammonia Production with CCUS	Commercial CCS Facility	Early Developme nt	Indonesia	2025	Fertiliser Production
Repsol Sakakemang Carbon Capture and Injection	Commercial CCS Facility	Early Developme nt	Indonesia	2026	Natural Gas Processing
Sukowati CCUS	Commercial CCS Facility	Early Developme nt	Indonesia	2028	Oil Refining
Ervia Cork CCS	Commercial CCS Facility	Early Developme nt	Ireland	2028	Power Generation

Facility Name	Facility	Facility	Country	Operationa	Facility
	Category	Status	Country	1	Industry
Heletz, Israel pilot CO2 injection site	Pilot and Demonstratio n CCS Facility	Completed	Israel	2026	Research and Development
Brindisi CO2 Capture Pilot Plant	Pilot and Demonstratio n CCS Facility	Completed	Italy	2010	Power Generation
Ravenna CCS Hub	Commercial CCS Facility	Early Developme nt	Italy	2027	CO2 Transport and Storage
COURSE 50 - CO2 Ultimate Reduction in Steelmaking Process by Innovative Technology for Cool Earth 50	Pilot and Demonstratio n CCS Facility	Operational	Japan	2008	Iron and Steel Production
EAGLE	Pilot and Demonstratio n CCS Facility	Completed	Japan	2002	Power Generation
Kashiwazaki Clean Hydrogen/Ammoni a Project	Pilot and Demonstratio n CCS Facility	In Constructio n	Japan	2024	Hydrogen Production
Mikawa Post Combustion Capture Demonstration Plant	Pilot and Demonstratio n CCS Facility	Operational	Japan	2020	Power Generation
Nagaoka CO2 Storage Project	Pilot and Demonstratio n CCS Facility	Completed	Japan	2003	Natural Gas Processing
Osaki CoolGen Project	Pilot and Demonstratio n CCS Facility	In Constructio n	Japan	2020	Power Generation

Essilita Nicore	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
	Pilot and				
Taiheiyo Cement	Demonstratio	0 " 1	T	2021	Cement
Corporation	n CCS	Operational	Japan	2021	Production
	Facility				
Tomakomai CCS	Pilot and				
Demonstration	Demonstratio	Operational	Japan	2016	Hydrogen
Project	n CCS	Ореганопат	Japan	2010	Production
Troject	Facility				
	Commercial	In			Natural Gas
Kasawari	CCS Facility	Constructio	Malaysia	2025	Processing
		n			Trecessing
	Commercial	Advanced		2026	Natural Gas
Lang Lebah CCS	CCS Facility	Developme	Malaysia		Processing
	,	nt			O
Air Liquide Refinery	Commercial	Advanced	Netherland		Hydrogen
Rotterdam CCS	CCS Facility		s	2024	Production
A. D. L.		nt			
Air Products	Commercial	Advanced	Netherland	2024	Hydrogen
Refinery Rotterdam	CCS Facility	Developme	s	2024	Production
CCS	Pilot and	nt			
Buggenum Carbon Capture (CO2	Demonstratio		Netherland		Power
Capture (CO2 Catch-up) Pilot	n CCS	Completed	s	2011	Generation
Project	Facility		3		Generation
Troject	1 active	Early			CO2
Delta Corridor	Commercial	Developme	Netherland	2026	Transport
Pipeline Network	CCS Facility	nt	S	2020	and Storage
		Advanced			O
ExxonMobil Benelux	Commercial	Developme	Netherland	2024	Hydrogen
Refinery CCS	CCS Facility	nt	S		Production
		Early			-
Hydrogen 2	Commercial	Developme	Netherland	2024	Power
Magnum (H2M)	CCS Facility	nt	S		Generation
	Pilot and				
K12-B CO2 Injection	Demonstratio	Commission 1	Netherland	2004	Natural Gas
Project	n CCS	Completed	s	2004	Processing
	Facility				

Engility Name	Facility	Facility	C 1	Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
L10 Carbon Capture and Storage	Commercial CCS Facility	Early Developme nt	Netherland s	2026	Hydrogen Production
Porthos - Compressor Station	Commercial CCS Facility	Advanced Developme nt	Netherland s	2024	CO2 Transport and Storage
Porthos - Offshore Pipeline	Commercial CCS Facility	Advanced Developme nt	Netherland s	2024	CO2 Transport and Storage
Porthos - Onshore Pipeline	Commercial CCS Facility	Advanced Developme nt	Netherland s	2024	CO2 Transport and Storage
Porthos Storage	Commercial CCS Facility	Advanced Developme nt	Netherland s	2024	CO2 Transport and Storage
Shell Energy and Chemicals Park Rotterdam	Commercial CCS Facility	In Constructio n	Netherland s	2024	Bioenergy
Yara Sluiskil	Commercial CCS Facility	Early Developme nt	Netherland s	2025	Fertiliser Production
Zeeland Refinery Azur	Commercial CCS Facility	Early Developme nt	Netherland s	2026	Hydrogen Production
Project Pouakai Hydrogen Production with CCS	Commercial CCS Facility	Early Developme nt	New Zealand	2024	Hydrogen Production
Barents Blue	Commercial CCS Facility	Early Developme nt	Norway	2025	Fertiliser Production
Borg CO2	Commercial CCS Facility	Early Developme nt	Norway		CO2 Transport and Storage
CEMCAP	Pilot and Demonstratio n CCS Facility	Completed	Norway	2015	Cement Production

E2126 NT	Facility	Country		Operationa	Facility
Facility Name	Category		Country	1	Industry
CO2 Capture Test Facility at Norcem Brevik	Pilot and Demonstratio n CCS Facility	Completed	Norway	2013	Cement Production
Equinor Smeaheia (Norway)	Commercial CCS Facility	Early Developme nt	Norway	2028	CO2 Storage
Fortum Oslo Varme - Shipping Route	Commercial CCS Facility	Early Developme nt	Norway	2025	Waste Incineration
Hafslund Oslo Celsio	Commercial CCS Facility	In Constructio n	Norway	2024	Waste Incineration
Hafslund Oslo Celsio- Truck Route	Commercial CCS Facility	Advanced Developme nt	Norway	2025	Waste Incineration
Norcem Brevik - Cement Plant	Commercial CCS Facility	In Constructio n	Norway	2024	Cement Production
Norcem Brevik - Shipping Route	Commercial CCS Facility	In Constructio n	Norway	2024	Cement Production
Northern Lights - Pipeline	Commercial CCS Facility	Early Developme nt	Norway	2024	CO2 Transport and Storage
Northern Lights - Storage	Commercial CCS Facility	In Constructio n	Norway	2024	CO2 Transport and Storage
Polaris Carbon Storage	Commercial CCS Facility	Advanced Developme nt	Norway	2024	Hydrogen Production
Sleipner CCS Project	Commercial CCS Facility	Operational	Norway	1996	Natural Gas Processing
Snohvit CO2 Storage	Commercial CCS Facility Pilot and	Operational	Norway	2008	Natural Gas Processing
Technology Centre Mongstad (TCM)	Demonstratio n CCS Facility	Operational	Norway	2012	Oil Refining

Facility Name	Facility	Facility	Country	Operationa	Facility
	Category	Status	Country	1	Industry
Project Hajar	Commercial CCS Facility	In Constructio n	Oman	2024	Direct Air Capture
Papua LNG CCS	Commercial CCS Facility	Early Developme nt	Papua New Guinea	2027	Natural Gas Processing
GO4ECOPLANET	Commercial CCS Facility	Early Developme nt	Poland	2027	Cement Production
North Field East Project (NFE) CCS	Commercial CCS Facility	In Constructio n	Qatar	2025	Natural Gas Processing
Qatar LNG CCS	Commercial CCS Facility	Operational	Qatar	2019	Natural Gas Processing
Novatek Yamal LNG CCS	Commercial CCS Facility	Early Developme nt	Russia	2027	Natural Gas Processing
Uthmaniyah CO2- EOR Demonstration	Commercial CCS Facility	Operational	Saudi Arabia	2015	Natural Gas Processing
Pilot Carbon Storage Project (PCSP) - Zululand Basin, South Africa	Pilot and Demonstratio n CCS Facility	Advanced Developme nt	South Africa	2020	Under Evaluation
Boryeong - KoSol Process for CO2 Capture (KPCC) Test	Pilot and Demonstratio n CCS Facility	Completed	South Korea	2010	Power Generation
Hadong - Dry- sorbent CO2 Capture System Test	Pilot and Demonstratio n CCS Facility	Completed	South Korea	2014	Power Generation
Korea-CCS 1 & 2	Commercial CCS Facility	Early Developme nt	South Korea	2025	Power Generation
CIUDEN: CO2 Capture & Transport Technology Development Plant	Pilot and Demonstratio n CCS Facility	Completed	Spain	2012	Power Generation

Facility Name	Facility	Facility	Country	Operationa	Facility
	Category	Status		1	Industry
CIUDEN: CO2 Storage Technology Development Plant	Pilot and Demonstratio n CCS Facility	Operational	Spain	2015	Research and Development
ELCOGAS Pre- combustion Carbon Capture Pilot Project: Puertollano	Pilot and Demonstratio n CCS Facility	Completed	Spain	2010	Power Generation
La Pereda Calcium Looping Pilot Plant	Pilot and Demonstratio n CCS Facility	Completed	Spain	2012	Power Generation
Cementa CCS (Slite Cement plant)	Commercial CCS Facility	Early Developme nt	Sweden	2030	Cement Production
Cinfracap - Pipeline	Commercial CCS Facility	Early Developme nt	Sweden	2026	CO2 Transport and Storage
Cinfracap - Shipping Route	Commercial CCS Facility	Early Developme nt	Sweden	2026	CO2 Transport and Storage
Karlshamn Field Pilot	Pilot and Demonstratio n CCS Facility	Completed	Sweden	2009	Power Generation
Preem Refinery CCS	Commercial CCS Facility	Early Developme nt	Sweden	2025	Hydrogen Production
STEPWISE Pilot of SEWGS Technology at Swerea/Mefos	Pilot and Demonstratio n CCS Facility	Operational	Sweden	2017	Iron and Steel Production
Stockholm Exergi BECCS	Commercial CCS Facility	Advanced Developme nt	Sweden	2027	Bioenergy
Stockholm Exergi BECCS - Shipping Route	Commercial CCS Facility	Advanced Developme nt	Sweden	2027	Bioenergy

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
PTTEP Arthit CCS	Commercial CCS Facility	Advanced Developme nt	Thailand	ТВС	Natural Gas Processing
Bayu-Undan CCS	Commercial CCS Facility	Advanced Developme nt	Timor- Leste	2027	Natural Gas Processing
Abu Dhabi CCS (Phase 1 being Emirates Steel Industries)	Commercial CCS Facility	Operational	United Arab Emirates	2016	Iron and Steel Production
Abu Dhabi CCS Phase 2: Natural gas processing plant	Commercial CCS Facility	Advanced Developme nt	United Arab Emirates	2025	Natural Gas Processing
Ghasha Concession Fields	Commercial CCS Facility	Advanced Developme nt	United Arab Emirates	2025	Natural Gas Processing
Aberthaw Pilot Carbon Capture Facility	Pilot and Demonstratio n CCS Facility	Completed	United Kingdom	2013	Power Generation
Acorn	Commercial CCS Facility	Early Developme nt	United Kingdom	2024	Hydrogen Production
Acorn (Minimum Viable CCS Development)	Pilot and Demonstratio n CCS Facility	Advanced Developme nt	United Kingdom	2025	CO2 Transport and Storage
Acorn CO2 Pipeline	Commercial CCS Facility	Early Developme nt	United Kingdom	2026	CO2 Transport and Storage
Acorn Direct Air Capture Facility	Commercial CCS Facility	Early Developme nt	United Kingdom	2026	Hydrogen Production
Acorn Hydrogen	Commercial CCS Facility	Early Developme nt	United Kingdom	2025	Hydrogen Production
Acorn Storage Site	Commercial CCS Facility	Advanced Developme nt	United Kingdom	2025	CO2 Transport and Storage

E. M. N	Facility	Facility	Carat	Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
Buxton Lime Net Zero	Commercial CCS Facility	Early Developme nt	United Kingdom	2024	Lime Production
Caledonia Clean Energy	Commercial CCS Facility	Early Developme nt	United Kingdom	2025	Power Generation
CF Fertilisers Billingham Ammonia CCS	Commercial CCS Facility	Early Developme nt	United Kingdom	2023	Fertiliser Production
Damhead Pipeline (Medway Hub)	Commercial CCS Facility	Early Developme nt	United Kingdom		Power Generation
Damhead Power Station (Medway)	Commercial CCS Facility	Early Developme nt	United Kingdom		Power Generation
Drax BECCS Project	Commercial CCS Facility	Early Developme nt	United Kingdom	2027	Power Generation
Drax bioenergy carbon capture pilot plant	Pilot and Demonstratio n CCS Facility	Operational	United Kingdom	2019	Power Generation
East Coast Cluster Humber Pipeline	Commercial CCS Facility	Advanced Developme nt	United Kingdom	2025	CO2 Transport and Storage
East Coast Cluster Teesside Pipeline	Commercial CCS Facility	Advanced Developme nt	United Kingdom	2025	CO2 Transport and Storage
Endurance Storage Site	Commercial CCS Facility	Advanced Developme nt	United Kingdom	2025	CO2 Transport and Storage
Esmond and Forbes Carbon Storage (Medway Hub)	Commercial CCS Facility	Early Developme nt	United Kingdom		Power Generation
Ferrybridge Carbon Capture Pilot (CCPilot100+)	Pilot and Demonstratio n CCS Facility	Completed	United Kingdom	2011	Power Generation

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
Grain Power Station (Medway)	Commercial CCS Facility	Early Developme nt	United Kingdom		Power Generation
H2NorthEast	Commercial CCS Facility	Early Developme nt	United Kingdom	2027	Hydrogen Production
Hydrogen to Humber Saltend	Commercial CCS Facility	Early Developme nt	United Kingdom	2025	Hydrogen Production
HyNet Hydrogen Production Project (HPP)	Commercial CCS Facility	Early Developme nt	United Kingdom	2025	Hydrogen Production
HyNet North West	Commercial CCS Facility	Early Developme nt	United Kingdom	2026	Hydrogen Production
HyNet North West - Hanson Cement CCS	Commercial CCS Facility	Early Developme nt	United Kingdom	2026	Cement Production
HyNet Pipeline	Commercial CCS Facility	Early Developme nt	United Kingdom	2025	CO2 Transport and Storage
Hynet Storage Site	Commercial CCS Facility	Early Developme nt	United Kingdom	2025	CO2 Transport and Storage
Isle of Grain LNG Terminal (Medway Hub)	Commercial CCS Facility	Early Developme nt	United Kingdom	2026	Power Generation
Keady 3 CCS Power Station	Commercial CCS Facility	Early Developme nt	United Kingdom	2027	Power Generation
Killingholme Power Station	Commercial CCS Facility	Early Developme nt	United Kingdom	2027	Hydrogen Production
Medway Hub Shipping	Commercial CCS Facility	Early Developme nt	United Kingdom		Power Generation
Medway Power Station	Commercial CCS Facility	Early Developme nt	United Kingdom		Power Generation

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
NET Power Plant (East Coast Cluster)	Commercial CCS Facility	Early Developme nt	United Kingdom	2025	Power Generation
Net Zero Teesside - CCGT Facility	Commercial CCS Facility	Early Developme nt	United Kingdom	2025	Power Generation
Net Zero Teesside – BP H2Teesside	Commercial CCS Facility	Early Developme nt	United Kingdom	2027	Hydrogen Production
Northern Gas Network H21 North of England	Commercial CCS Facility	Early Developme nt	United Kingdom	2026	Hydrogen Production
Pembroke Power Station	Commercial CCS Facility	Early Developme nt	United Kingdom	2030	Power Generation
Peterhead CCS Power Station	Commercial CCS Facility	Advanced Developme nt	United Kingdom	2026	Power Generation
Phillips 66 Humber Refinery CCS	Commercial CCS Facility	Advanced Developme nt	United Kingdom	2028	Hydrogen Production
Prax Lindsey Carbon Capture Project (PLCCP)	Commercial CCS Facility	Advanced Developme nt	United Kingdom	2028	Oil Refining
Redcar Energy Centre	Commercial CCS Facility	Early Developme nt	United Kingdom	2025	Power Generation
Renfrew Oxy-fuel (Oxycoal 2) Project	Pilot and Demonstratio n CCS Facility	Completed	United Kingdom	2007	Power Generation
Suez Waste to Energy CCS (East Coast Cluster)	Commercial CCS Facility	Early Developme nt	United Kingdom	2027	Waste Incineration
Tees Valley Energy Recovery Facility Project (TVERF)	Commercial CCS Facility	Early Developme nt	United Kingdom	2026	Bioenergy
UKCCSRC Pilot- scale Advanced	Pilot and Demonstratio	Completed	United Kingdom	2012	Power Generation

Facility Name	Facility	Facility	Country	Operationa	Facility
	Category	Status		1	Industry
Capture Technology	n CCS				
(PACT)	Facility				
Vertex Hydrogen	Commercial CCS Facility	Early Developme nt	United Kingdom	2025	Oil Refining
Viking CCS Pipeline	Commercial CCS Facility	Advanced Developme nt	United Kingdom	2027	CO2 Transport and Storage
Viking CCS Storage Site	Commercial CCS Facility	Advanced Developme nt	United Kingdom	2027	CO2 Transport and Storage
Viridor Runcorn Carbon Capture	Commercial CCS Facility	Early Developme nt	United Kingdom		Waste Incineration
VPI Immingham Power Plant CCS	Commercial CCS Facility	Advanced Developme nt	United Kingdom	2027	Power Generation
Whitetail Clean Energy	Commercial CCS Facility	Early Developme nt	United Kingdom		Power Generation
ADM Illinois Industrial	Commercial CCS Facility	Operational	USA	2017	Ethanol Production
ArcelorMittal Texas (formerly voestalpine Texas)	Commercial CCS Facility	Early Developme nt	USA		Iron and Steel Production
Arkalon CO2 Compression Facility	Commercial CCS Facility	Operational	USA	2009	Ethanol Production
Ascension Clean Energy (Louisiana)	Commercial CCS Facility	Early Developme nt	USA	2027	Hydrogen Production
Atkinson Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Bayou Bend CCS	Commercial CCS Facility	Advanced Developme nt	USA	2025	CO2 Transport and Storage

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
Baytown Low Carbon Hydrogen	Commercial CCS Facility	Advanced Developme nt	USA	2027	Hydrogen Production
Bell Creek - Incidental CO2 Storage Associated with a Commercial EOR Project	Pilot and Demonstratio n CCS Facility	Operational	USA	2010	Natural Gas Processing
Bonanza BioEnergy CCUS EOR	Commercial CCS Facility	Operational	USA	2012	Ethanol Production
Borger CO2 Compression Facility	Commercial CCS Facility	Completed	USA	2001	Fertiliser Production
Bushmills Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Cal Capture	Commercial CCS Facility	Advanced Developme nt	USA	2027-28	Power Generation
Cane Run CCS	Commercial CCS Facility	Early Developme nt	USA		Power Generation
Carbon TerraVault I Project	Commercial CCS Facility	Early Developme nt	USA	2025	CO2 Transport and Storage
CarbonFree Skymine	Utilisation Facilities	Operational	USA	2015	Cement Production
Casselton Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Central City Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Central Louisiana Regional Carbon Storage (CENLA) Hub	Commercial CCS Facility	In Constructio n	USA	2027	CO2 Transport and Storage
Century Plant	Commercial CCS Facility	Operational	USA	2010	Natural Gas Processing

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
Clean Energy Systems BiCRS Plant - Madera County	Commercial CCS Facility	Early Developme nt	USA	2027	Power Generation
Clean Energy Systems Carbon Negative Energy Plant - Central Valley	Commercial CCS Facility	Early Developme nt	USA	2025	Power Generation
CO2 Sequestration Field Test: Deep Unminable Lignite Seam	Pilot and Demonstratio n CCS Facility	Completed	USA	2009	Research and Development
Coastal Bend CCS	Commercial CCS Facility	Early Developme nt	USA	2026	CO2 Transport and Storage
Coffeyville Gasification Plant	Commercial CCS Facility	Operational	USA	2013	Fertiliser Production
Core Energy CO2- EOR	Commercial CCS Facility	Operational	USA	2003	Natural Gas Processing
Coyote Clean Power Project	Commercial CCS Facility	Advanced Developme nt	USA	2025	Power Generation
CPV Shay Energy Center (CPV West Virginia Natural Gas Power Station CCS)	Commercial CCS Facility	Early Developme nt	USA		Power Generation
Cranfield Project	Pilot and Demonstratio n CCS Facility	Operational	USA	2009	Research and Development
Cyclus Power Generation	Commercial CCS Facility	Early Developme nt	USA		Bioenergy
Dave Johnston Plant Carbon Capture	Commercial CCS Facility	Early Developme nt	USA	2025	Power Generation
Deer Park Energy Centre CCS Project	Commercial CCS Facility	Advanced Developme nt	USA		Power Generation

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
Diamond Vault CCS	Commercial CCS Facility	Early Developme nt	USA	2028	Power Generation
Donaldsonville	Commercial CCS Facility	In Constructio n	USA	2025	Ammonia Production
Dry Fork Integrated Commercial Carbon Capture and Storage (CCS)	Commercial CCS Facility	Early Developme nt	USA	2025	Power Generation
E.W. Brown 0.7 MWe Pilot Carbon Capture Unit	Pilot and Demonstratio n CCS Facility	Operational	USA	2014	Power Generation
El Dorado CCS Project	Commercial CCS Facility	Early Developme nt	USA	2026	Fertiliser Production
Enid Fertilizer	Commercial CCS Facility	Operational	USA	1982	Fertiliser Production
Fairmont Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Farley DAC Project	Commercial CCS Facility	Advanced Developme nt	USA		Direct Air Capture
Farnsworth Unit EOR Field Project - Development Phase	Pilot and Demonstratio n CCS Facility	Operational	USA	2013	Ethanol Production
Freeport LNG CCS project	Commercial CCS Facility Pilot and	Cancelled	USA	2024	Natural Gas Processing
Frio Brine Pilot	Demonstratio n CCS	Completed	USA	2004	Research and Development
Fuel Cell Carbon Capture Pilot Plant	Facility Pilot and Demonstratio n CCS Facility	Operational	USA	2016	Power Generation

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
G2 Net-Zero LNG	Commercial CCS Facility	Early Developme nt	USA		Natural Gas Processing
Galva Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Gerald Gentleman Station Carbon Capture	Commercial CCS Facility	Advanced Developme nt	USA	2025	Power Generation
Goldfield Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Grand Forks Blue Ammonia Capture plant	Commercial CCS Facility	Early Developme nt	USA		Natural Gas Processing
Grand Junction Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Granite Falls Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Great Plains Synfuels Plant and Weyburn-Midale	Commercial CCS Facility	Operational	USA	2000	Hydrogen Production
Hackberry Carbon Sequestration Project (Sempra)	Commercial CCS Facility	Early Developme nt	USA		CO2 Transport and Storage
Haynesville Gas Processing (CENLA Hub)	Commercial CCS Facility	In Constructio n	USA	2027	Natural Gas Processing
Heartland Greenway Storage	Commercial CCS Facility	Early Developme nt	USA	2025	Ethanol Production
Heartland Hydrogen Hub	Commercial CCS Facility	Advanced Developme nt	USA		Power Generation
HeidelbergCement CCS	Commercial CCS Facility	Advanced Developme nt	USA	2023	Cement Production

	Facility	Facility		Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
Heron Lake Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Huron Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Illinois Allam- Fetvedt cycle power plant Illinois Basin	Commercial CCS Facility	Early Developme nt	USA	2025	Power Generation
Decatur Project (CO2 Injection Completed, Monitoring Ongoing)	Pilot and Demonstratio n CCS Facility	Completed	USA	2011	Ethanol Production
James M. Barry Electric Generating Plant CCS Project	Commercial CCS Facility	Advanced Developme nt	USA	2030	Power Generation
Kevin Dome Carbon Storage Project - Development Phase	Pilot and Demonstratio n CCS Facility	Completed	USA	2013	Research and Development
LafargeHolcim Cement Carbon capture	Commercial CCS Facility	Early Developme nt	USA	2025	Cement Production
LafargeHolcim Ste. Genevieve Cement Plant CCS	Commercial CCS Facility	Early Developme nt	USA		Cement Production
Lake Charles Methanol	Commercial CCS Facility	Advanced Developme nt	USA	2025	Chemical Production
Lamberton Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Lawler Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production

Facility Name	Facility Category	Facility Status	Country	Operationa 1	Facility Industry
Linde hydrogen	<u> </u>				<u> </u>
plant for OCI fertilizer blue ammonia Beaumont	Commercial CCS Facility	In Constructio n	USA	2025	Hydrogen Production
Lone Cypress Hydrogen Project	Commercial CCS Facility	Early Developme nt	USA	2025	Hydrogen Production
Lost Cabin Gas Plant	Commercial CCS Facility	Operational	USA	2013	Natural Gas Processing
Louisiana Clean Energy Complex	Commercial CCS Facility	In Constructio n	USA	2025	Hydrogen Production
Marcus Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Marshall County ECBM Project	Pilot and Demonstratio n CCS Facility	Completed	USA	2009	Research and Development
Mason City Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Mendota BECCS	Commercial CCS Facility	Early Developme nt	USA	2025	Bioenergy
Merrill Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
MGSC Validation Phase (Phase II): CO2 Storage and Enhanced Oil Recovery: Bald Unit Oil Field Test Site	Pilot and Demonstratio n CCS Facility	Completed	USA	2009	Research and Development
MGSC Validation Phase (Phase II): CO2 Storage and Enhanced Oil Recovery: Sugar	Pilot and Demonstratio n CCS Facility	Completed	USA	2009	Research and Development

Estitu Nome	Facility	Facility	Country	Operationa	Facility
Facility Name	Category	Status	Country	1	Industry
Creek Oil Field Test					
Site					
Michigan Basin	Pilot and				
(Phase II) Geologic	Demonstratio	Completed	USA	2008	Natural Gas
CO2 Sequestration	n CCS	Completed	USA	2000	Processing
Field Test	Facility				
Michigan Basin	Pilot and				
_	Demonstratio	Operational	USA	2013	Natural Gas
Large-Scale Injection Test	n CCS	Operational	USA	2013	Processing
rest	Facility				
Midwest AgEnergy	Commercial	Early			Ethanol
Blue Flint ethanol		Developme	USA	2022	Production
CCS	CCS Facility	nt			Froduction
Mina Biorefinery	Commercial	Advanced			Ethanol
Carbon Capture and	CCS Facility	Developme	USA	2024	Production
Storage	CC3 Facility	nt			Troduction
	Pilot and				
Mountaineer	Demonstratio	Completed	USA	2009	Power
Validation Facility	n CCS	Completed	UJA	2007	Generation
	Facility				
Mt. Simon CCS Hub	Commercial	Early			CO2
(Iowa Illinois	CCS Facility	Developme	USA		Transport
Carbon Pipeline)	CC5 ruenty	nt			and Storage
Mustang Station of		Advanced			
Golden Spread	Commercial	Developme	USA		Power
Electric Cooperative	CCS Facility	nt	0011		Generation
Carbon Capture		110			
National Carbon	Pilot and				
Capture Center	Demonstratio	Operational	USA	2011	Research and
(NCCC)	n CCS	o peratronar	0011	_011	Development
(11000)	Facility				
NET Power Clean	Pilot and				
Energy Large-scale	Demonstratio	Operational	USA	2018	Power
Pilot Plant	n CCS	o peratronar	0011	_010	Generation
THOU THAIR	Facility				
Nevada Biorefinery	Commercial	Advanced			Ethanol
Carbon Capture and	CCS Facility	Developme	USA	2024	Production
Storage		nt			

Facility Name	Facility Category	Facility		Operationa	Facility
		Status	Country	1	Industry
NextDecade Rio Grande LNG CCS	Commercial CCS Facility	Early Developme nt	USA	2025	Natural Gas Processing
Norfolk Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Northern Delaware Basin CCS	Commercial CCS Facility	Advanced Developme nt	USA	2023	Natural Gas Processing
NuDACCS - Nuclear Direct Air CCS Project	Pilot and Demonstratio n CCS Facility	Advanced Developme nt	USA		Direct Air Capture
OCI Fertiliser	Commercial CCS Facility	In Constructio n	USA	2025	Fertiliser Production
One Earth Energy facility Carbon Capture	Commercial CCS Facility	Advanced Developme nt	USA	2025	Ethanol Production
Onida Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Otter Tail Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Oxy-combustion of Heavy Liquid Fuels - 15 MW Pilot Test	Pilot and Demonstratio n CCS Facility	Completed	USA	2012	Power Generation
PCS Nitrogen	Commercial CCS Facility	Operational	USA	2013	Fertiliser Production
Petra Nova Carbon Capture Project	Commercial CCS Facility	Operational	USA	2017	Power Generation
Plainview Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Plant Barry & Citronelle Integrated Project	Pilot and Demonstratio	Completed	USA	2012	Power Generation

Facility Name	Facility Category	Facility Status	Country	Operationa	Facility
				1	Industry
	n CCS				
	Facility				
Plant Daniel Carbon Capture	Commercial CCS Facility	Advanced Developme	USA		Power Generation
1	,	nt			
Pleasant Prairie Power Plant Field Pilot	Pilot and Demonstratio n CCS Facility	Completed	USA	2008	Power Generation
Polk Power Station CCS	Commercial CCS Facility	Advanced Developme nt	USA	Under Evaluation	Power Generation
Prairie State Generating Station Carbon Capture	Commercial CCS Facility	Advanced Developme nt	USA	2025	Power Generation
Project Interseqt - Hereford Ethanol Plant	Commercial CCS Facility	Early Developme nt	USA	2023	Ethanol Production
Project Interseqt - Plainview Ethanol Plant	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Project Tundra	Commercial CCS Facility	Advanced Developme nt	USA	2026	Power Generation
Red Trail Energy CCS	Commercial CCS Facility	Operational	USA	2022	Ethanol Production
Redfield Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
River Bend CCS Louisiana Pipeline	Commercial CCS Facility	Early Developme nt	USA	2026	CO2 Transport and Storage
San Juan Basin ECBM Storage Test	Pilot and Demonstratio n CCS Facility	Completed	USA	2008	Research and Development
Shenandoah Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production

Facility Name	Facility	Facility	6 .	Operationa	Facility
	Category	Status	Country	1	Industry
Shute Creek Gas	Commercial CCS Facility	0 " 1	I IC A	1986	Natural Gas
Processing Plant		Operational U	USA		Processing
Sioux Center	Commercial CCS Facility	Advanced	USA	2024	Ethanol
Biorefinery Carbon		Developme			Production
Capture and Storage		nt			rioduction
Steamboat Rock	Commercial	Advanced	USA	2024	Ethanol
Biorefinery Carbon	CCS Facility	Developme			Production
Capture and Storage	CC3 Facility	nt			Troduction
STRATOS	Commercial CCS Facility	In	tructio USA	2024	Direct Air
(1PointFive Direct		Constructio			
Air Capture)	CC3 Facility	n			Capture
Summit Carbon	Commercial	Advanced		2024	CO2
Solutions - Storage	CCS Facility	Developme USA	USA		Transport
Solutions - Storage	CC3 Facility	nt			and Storage
	Commercial CCS Facility	Advanced		2024	
Summit Pipeline		Developme			Bioenergy
	CC3 Facility	nt			
Superior Biorefinery	Commercial	Advanced	USA	2024	Ethanol
Carbon Capture and	CCS Facility	Developme			Production
Storage	CC3 Facility	nt			Troduction
Terrell Natural Gas					
Processing Plant	Commercial	Operational USA	IISΔ	JSA 1972	Natural Gas
(formerly Val Verde	CCS Facility		USA		Processing
Natural Gas Plants)					
The Illinois Clean	Commercial	Early			Chemical
Fuels Project	CCS Facility	Developme	USA	2025	Production
rueis i roject	CCS Tucinty	nt			Troduction
Valero Port Arthur	Commercial	Operational	USA	2013	Hydrogen
Refinery	CCS Facility	operational	1 05/1	2010	Production
Velocys' Bayou	Commercial CCS Facility	Early	USA	2026	Chemical
Fuels Negative		Developme			Production
Emission Project		nt			Troduction
Wabash CO2	Commercial CCS Facility	Advanced	ced		Fertiliser
Sequestration		Developme	USA	2022	Production
sequestration		nt			Troduction
Watertown	Commercial CCS Facility	Advanced		2024	Ethanol
Biorefinery Carbon		Developme	USA		Production
Capture and Storage		nt			

Facility Name	Facility Category	Facility Status	Country	Operationa 1	Facility Industry
Wentworth Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
West Pearl Queen CO2 Sequestration Pilot Test and Modelling Project	Pilot and Demonstratio n CCS Facility	Completed	USA	2002	Research and Development
Wood River Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production
Wyoming Integrated Test Center (ITC)	Pilot and Demonstratio n CCS Facility	Operational	USA	2018	Power Generation
York Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Developme nt	USA	2024	Ethanol Production

References

- Anon (n.d.) Communication Supporting the Research on CO2 Storage at the Ketzin Pilot Site, Germany A Status Report after Ten Years of Public Outreach | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S1876610214008947?token=10B64E5A1D23D16D86B29D14466B1 CE4BCAF556D3264EC284914F038F0B4716FC9FDBC1381E41B0FEBCC90BC579D72B8&originRegion=euwest-1&originCreation=20220825114237 Accessed 25 August 2022.
- Armitage PJ, Worden RH, Faulkner DR, Aplin AC, Butcher AR, Espie AA. (2013) Mercia Mudstone Formation caprock to carbon capture and storage sites: Petrology and petrophysical characteristics. J Geol Soc London 2013;170:119–32.
- Assima GP, Larachi F, Molson J, Beaudoin G. (2014) Impact of temperature and oxygen availability on the dynamics of ambient CO2 mineral sequestration by nickel mining residues. Chem Eng J 2014;240:394–403. https://doi.org/10.1016/j.cej.2013.12.010
- BGS. (2017) Man-made (anthropogenic) greenhouse gases. Accessed on September 23, 2022 at https://www.bgs.ac.uk/discovering-geology/climate-change/CCS/Anthropogenic.html
- Bobicki ER, Liu Q, Xu Z, Zeng H. (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci 2012;38:302–20. https://doi.org/10.1016/j.pecs.2011.11.002
- Bruni J, Canepa M, Chiodini G, Cioni R, Cipolli F, Longinelli A, et al. (2002) Irreversible water–rock mass transfer accompanying the generation of the neutral, Mg–HCO3 and high-pH, Ca–OH spring waters of the Genova province, Italy. Appl Geochemistry 2002;17:455–74.
- Buttinelli, M., Procesi, M., Cantucci, B., Quattrocchi, F. and Boschi, E. (2011) The geo-database of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy. *Energy* 36 (5), Elsevier Ltd2968–2983.
- Calabrò A, Deiana P, Fiorini P, Girardi G, Stendardo S. (2008) Possible optimal configurations for the ZECOMIX high efficiency zero emission hydrogen and power plant. Energy 2008;33:952–62. https://doi.org/10.1016/j.energy.2008.01.004
- Cantucci, B., Montegrossi, G., Vaselli, O., Tassi, F., Quattrocchi, F. and Perkins, E.H. (2009) Geochemical modeling of CO2 storage in deep reservoirs: The Weyburn Project (Canada) case study. *Chemical Geology* 265 (1–2), 181–197.
- Circone S., Stern LA., Kirby SH., Durham WB., Chakoumakos BC., Rawn CJ., et al. (2003) CO2 hydrate: Synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate. J Phys Chem B 2003;107:5529–39.
- CO2CRC. (2015) CO2 dispersion. Coop Res Cent Greenh Gas Technol.

52

CO2CRC. (2021) Injection & storage 2015. Accessed June 20, 2022 at http://old.co2crc.com.au/aboutccs/storage

DECC. (2012) CCS Roadmap - Supporting deployment of Carbon Capture and Storage in the UK.

Ekpo Johnson, E., Scherwath, M., Moran, K., Dosso, S.E. and Rohr, K.M. (2023) Fault Slip Tendency Analysis for a Deep-Sea Basalt CO2 Injection in the Cascadia Basin. *GeoHazards* 4 (2), 121–135.

EPA. (2021) Class II Oil and Gas Related Injection Wells. United States Environ Prot Agency n.d. https://www.epa.gov/uic/class-ii-oil-and-gas-related-injection-wells-Opened on September 15

Fleury, M., Pironon, J., Le Nindre, Y.M., Bildstein, O., Berne, P., Lagneau, V., et al. (2010) Evaluating Sealing Efficiency of Caprocks for CO2 Storage: An Overview of the Geocarbone-Integrity Program and Results. Oil Gas Sci Technol – Rev IFP 2010;65:435–44.

Frerichs J, Rakoczy J, Ostertag-Henning C, Kru¨ger M. (2014) Viability and Adaptation Potential of Indigenous Microorganisms from Natural Gas Field Fluids in High Pressure Incubations with Supercritical CO2. Environ Sci Technol 2014;48:1306–14. doi:10.1021/es4027985.

GCCSI. (2011) Accelerating the Uptake of CCS: Industrial Use of Captured Carbon Dioxide.

GCCSI. (2017) Alberta Carbon Trunk Line ("ACTL") with North West Sturgeon Refinery CO2 Stream. Glob CCS Inst 2017. https://co2re.co/FacilityData

GCCSI. (2010) CO2 for use in enhanced oil recovery (EOR). Glob CCS Inst

GCCSI. Frio Brine Pilot Project 2010. https://www.globalccsinstitute.com/archive/hub/publications/158508/strategic-plan-implementation-report.pdf

Gao, R.S., Sun, A.Y. and Nicot, J.P. (2016) Identification of a representative dataset for long-term monitoring at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada. *International Journal of Greenhouse Gas Control* 54, Elsevier Ltd454–465.

Ghavipour, Mohammad, Ghavipour, Mina, Chitsazan, M., Najibi, S.H. and Ghidary, S.S. (2013) Experimental study of natural gas hydrates and a novel use of neural network to predict hydrate formation conditions. *Chemical Engineering Research and Design* 91 (2), 264–273.

Gilliland E., Ripepi N., Karmis M., Conrad M. (2012) An examination of MVA techniques applicable for CCUS in thin, stacked coals of the central appalachian basin. 29th Annu. Int. Pittsburgh Coal Conf. 2012, PCC 2012, vol. 3, 2012, p. 1931–8.

Gilliland ES., Ripepi N., Conrad M., Miller MJ., Karmis M. (2013) Selection of monitoring techniques for a carbon storage and enhanced coalbed methane recovery pilot test in the Central Appalachian Basin. Int J Coal Geol 2013;118:105–12.

Gunter WD, Bachu S, Benson S. (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geol Soc London, Spec Publ 2004;233:129–45.

Han, Y. and Winston Ho, W.S. (2020) Recent advances in polymeric facilitated transport membranes for carbon dioxide separation and hydrogen purification. *Journal of Polymer Science*.

Hanak DP, Anthony EJ, Manovic V. (2015) A review of developments in pilot-plant testing and modelling of calcium looping process for CO2 capture from power generation systems. Energy Environ Sci 2015;8:2199–249. doi:10.1039/c5ee01228g.

Heinemann, N., Stewart, R.J., Wilkinson, M., Pickup, G.E. and Haszeldine, R.S. (2016) Hydrodynamics in subsurface CO2 storage: Tilted contacts and increased storage security. *International Journal of Greenhouse Gas Control* 54, Elsevier Ltd322–329.

Hofmann M, Schellnhuber HJ. (2010) Ocean acidification: A millennial challenge. Energy Environ Sci 2010;3:1883–96.

Huijgen W., Witkamp G., Comans R. (2005) Carbondioxide sequestration by mineral carbonation, Energy Research Centre of the Netherlands (ECN)

IEAGHG. (2011) Effects of Impurities on Geological Storage of CO2. Cheltenham, UK

IEAGHG. (2009) CO2 storage in depleted gas fields. Oxford.

IEAGHG. (2013) Induced seismicity and its implications for CO2 storage. Cheltenham.

IEAGHG. (2009) Long term integrity of CO2 storage - well abandonment..

Iglauer S, Pentland CH, Busch A. (2014) CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resour Res 2014;51:729–74. doi:10.1002/2014WR015553.

Igunnu ET, Chen GZ. (2014) Produced water treatment technologies. Int J Low-Carbon Technol 2014;9:157.

International Energy Agency IEA. (2015) Storing CO2 through Enhanced Oil Recovery, Combining EOR with CO2 storage (EOR) for profit.

IPCC. (2005). Special Report on Carbon Dioxide Capture and Storage. Cambridge: 2005.

Jaramillo P, Griffin WM, Matthews HS. (2008) Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT Liquid Fuels from Coal and Natural Gas. Environ Sci Technol 2008;42:7559–65.

Javaheri M, Jessen K. (2011) Residual Trapping in Simultaneous Injection of CO2 and Brine in Saline Aquifers. SPE West. North Am. Reg. Meet., Society of Petroleum Engineers; 2011, p. 603. doi:10.2118/144613-MS.

- Jemai K, Kvamme B, Vafaei MT. (2014) Theoretical studies of CO2 hydrates formation and dissociation in cold aquifers using retrasocodebright simulator. WSEAS Trans Heat Mass Transf 2014;9:150–68.
- Khabibullin T, Falcone G, Teodoriu C. (2011) Drilling through gas-hydrate sediments: Managing wellbore-stability risks. SPE Drill Complet 2011;26:287–94.
- Kim Y, Jang H, Kim J, Lee J. (2017) Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network. Appl Energy 2017;185, Part:916–28. https://doi.org/10.1016/j.apenergy.2016.10.012
- Kneafsey TJ, Pruess K. (2010) Laboratory Flow Experiments for Visualizing Carbon Dioxide-Induced, Density-Driven Brine Convection. Transp Porous Media 2010;82:123–39.
- Krooss BM., Van Bergen F., Gensterblum Y., Siemons N., Pagnier HJM., David P. (2002) High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. Int J Coal Geol 2002;51:69–92.
- Kuuskraa V, Ferguson R. (2008) Storing CO2 with enhanced oil recovery. Washington, D.C.: 2008.
- Lakeman B. (2016) Alberta Research Council Enhanced Coalbed Methane Recovery Project in Alberta, Canada.
- Le Gallo Y, Couillens P, Manai T. (2002) CO2 Sequestration in Depleted Oil or Gas Reservoirs. Int. Conf. Heal. Saf. Environ. Oil Gas Explor. Prod., Society of Petroleum Engineers; 2002, p. 1390–2. doi:10.2118/74104-MS.
- Lim M, Han G-C, Ahn J-W, You K-S. (2010) Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology. Int J Environ Res Public Health 2010;7:203–28.
- Luo T, Zhou L, Jiao Z, Bai Y, Wang S. (2014) The Ordos Basin: A Premier Basin for Integrating geological CO2 Storage with Enhanced oil Recovery Projects in China. Energy Procedia 2014;63:7772–9. https://doi.org/10.1016/j.egypro.2014.11.811
- Mabon L, Shackley S. Public engagement in discussing carbon capture and storage. World Soc. Sci. Rep. 2013 Chang. Glob. Environ., ISSC, UNESCO; 2013, p. 398–403.
- MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, et al. (2013) An overview of CO2 capture technologies. Energy Environ Sci 2010;3:1645–69. doi:10.1039/c004106h.
- Marston P. (2013) Bridging the gap: An analysis and comparison of legal and regulatory frameworks for CO2-EOR and CO2-CCS.
- Masuda Y, Yamanaka Y, Sasai Y, Magi M, Ohsumi T. (2009) Site selection in CO2 ocean sequestration: Dependence of CO2 injection rate on eddy activity distribution. Int J Greenh Gas Control 2009;3:67–76. https://doi.org/10.1016/j.ijggc.2008.07.002
- Matter JM., Broecker WS., Gislason SR., Gunnlaugsson E., Oelkers EH., Stute M., et al. (2011) The CarbFix Pilot Project Storing carbon dioxide in basalt. Energy Procedia, vol. 4, 2011, p. 5579–85.
- Matter JM., Stute M., Snæbjörnsdottir SÓ., Oelkers EH., Gislason SR., Aradottir ES., et al. (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science (80-) 2016;352:1312–4.
- McGrail BP., Schaef HT., Ho AM., Chien Y-J., Dooley JJ., Davidson CL. (2006) Potential for carbon dioxide sequestration in flood basalts. J Geophys Res Solid Earth 2006;111.
- MIT. Carbon Capture and Sequestration Technologies. Massachusetts Inst Technol 2015. https://sequestration.mit.edu/tools/projects/index.html (accessed October 1, 2022).
- Na J, Xu T, Yuan Y, Feng B, Tian H, Bao X. An integrated study of fluid–rock interaction in a CO₂-based enhanced geothermal system: A case study of Songliao Basin, China.
- NASA National Aeronautics and Space Administration. (2018) A blanket around the earth 2018. Accessed on September 23 at https://climate.nasa.gov/causes/
- NASA National Aeronautics and Space Administration. (2021) Carbon Dioxide 2021. https://climate.nasa.gov/vital-signs/carbon-dioxide/
- Olajire AA. (2013) A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng https://doi.org/10.1016/j.petrol.2013.03.013
- Oldenburg CM. (2003) Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage.
- Perera MSA, Gamage RP, Rathnaweera TD, Ranathunga AS, Koay A, Choi X. A (2016) Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis. Energies 2016;9.
- Plaksina T, White C. (2016) Modeling coupled convection and carbon dioxide injection for improved heat harvesting in geopressured geothermal reservoirs. Geotherm Energy 2016;4:2.
- Pollyea RM., Fairley JP., Podgorney RK., Mcling TL. (2014) Physical constraints on geologic CO2 sequestration in low-volume basalt formations. Bull Geol Soc Am 2014;126:344–51.
- Porter, R.T.J., Fairweather, M., Pourkashanian, M. and Woolley, R.M. (2015) The range and level of impurities in CO2 streams from different carbon capture sources. *International Journal of Greenhouse Gas Control* 36, Elsevier Ltd161–174.

- Preston C., Whittaker S., Rostron B., Chalaturnyk R., White D., Hawkes C., et al. IEA GHG Weyburn-Midale CO2 monitoring and storage project-moving forward with the Final Phase. Energy Procedia, vol. 1, 2009, p. 1743–50.
- Procesi M, Cantucci B, Buttinelli M, Armezzani G, Quattrocchi F, Boschi E. (2013) Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy). Appl Energy 2013;110:104–31. https://doi.org/10.1016/j.apenergy.2013.03.071
- Pruess K. (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006;35:351–67. https://doi.org/10.1016/j.geothermics.2006.08.002
- Pruess K. (2008) On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers Manag 2008;49:1446–54.
- Quattrocchi, F., Boschi, E., Spena, A., Buttinelli, M., Cantucci, B. and Procesi, M. (2013) Synergic and conflicting issues in planning underground use to produce energy in densely populated countries, as Italy. Geological storage of CO2, natural gas, geothermics and nuclear waste disposal. *Applied Energy* 101, Elsevier Ltd393–412.
- Quattrocchi, F., Galli, G., Gasparini, A., Magno, L., Pizzino, L., Sciarra and Voltattorni, N. (2011) Very slightly anomalous leakage of CO2, CH4 and radon along the main activated faults of the strong l'Aquila earthquake (Magnitude 6.3, Italy). Implications for risk assessment monitoring tools & public acceptance of CO2 and CH4 underground storage. *Energy Procedia* Elsevier Ltd4067–4075.
- Rehder, G., Leifer, I., Brewer, P.G., Friederich, G. and Peltzer, E.T. (2009) Controls on methane bubble dissolution inside and outside the hydrate stability field from open ocean field experiments and numerical modeling. *Marine Chemistry* 114 (1–2), 19–30.
- Rochelle, C.A., Camps, A.P., Long, D., Milodowski, A., Bateman, K., Gunn, D., Jackson, P., Lovell, M.A. and Rees, J. (2009) Can CO2 hydrate assist in the underground storage of carbon dioxide? *Geological Society Special Publication* 319, 171–183.
- Ruffine L, Donval JP, Charlou JL, Cremière A, Zehnder BH. (2010) Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Mar Pet Geol 2010;27:1157–65. https://doi.org/10.1016/j.marpetgeo.2010.03.002
- Rutqvist J. (2012) The Geomechanics of CO2 Storage in Deep Sedimentary Formations. Geotech Geol Eng 2012;30:525–51. doi:10.1007/s10706-011-9491-0.
- Seifritz W. (1990) CO2 disposal by means of silicates. Nature 1990;345:486–486.
- SIS. (2021) Enhanced Oil Recovery (EOR). Schlumberger Inf Solut Ltd 2021. Accessed on August 21st 2021 at https://www.slb.com/technical-challenges/enhanced-oil-recovery
- Shi, Y., Lu, Y., Rong, Y., Bai, Z., Bai, H., Li, M. and Zhang, Q. (2023) Geochemical reaction of compressed CO2 energy storage using saline aquifer. *Alexandria Engineering Journal* 64, .
- Shukla, R., Ranjith, P., Haque, A. and Choi, X. (2010) A review of studies on CO2 sequestration and caprock integrity. *Fuel* Elsevier Ltd2651–2664.
- Sigman, D.M., Fripiat, F., Studer, A.S., Kemeny, P.C., Martínez-García, A., Hain, M.P., Ai, X., Wang, X., Ren, H. and Haug, G.H. (2021) The Southern Ocean during the ice ages: A review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific. *Quaternary Science Reviews*.
- Song J, Zhang D. (2013) Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environ Sci Technol 2013; 47:9–22.
- Sundal A, Hellevang H, Miri R, Dypvik H, Nystuen JP, Aagaard P. (2014) Variations in mineralization potential for CO2 related to sedimentary facies and burial depth a comparative study from the North Sea. Energy Procedia 2014;63:5063–70. https://doi.org/10.1016/j.egypro.2014.11.536
- Talaghat MR, Esmaeilzadeh F, Fathikaljahi J. (2009) Experimental and theoretical investigation of simple gas hydrate formation with or without presence of kinetic inhibitors in a flow mini-loop apparatus. Fluid Phase Equilib 2009;279:28–40.
- Tenasaka I. (2011) Global CCS Institute Bridging the Commercial Gap For Carbon Capture and Storage July 2011. Maryland, USA.
- Thomas, S. (2008) Enhanced Oil Recovery An Overview. Oil Gas Sci Technol Rev IFP 2008;63:9-19.
- Trémosa J, Castillo C, Vong CQ, Kervévan C, Lassin A, Audigane P. (2014) Long-term assessment of geochemical reactivity of CO2 storage in highly saline aquifers: Application to Ketzin, In Salah and Snøhvit storage sites. Int J Greenh Gas Control 2014;20:2–26. https://doi.org/10.1016/j.ijggc.2013.10.022
- Van Pham TH, Aagaard P, Hellevang H. (2012) On the potential for CO2 mineral storage in continental flood basalts PHREEQC batch- and 1D diffusion-reaction simulations. Geochem Trans 2012
- Wei, N., Li, X., Jiao, Z., Stauffer, P.H., Liu, S., Ellett, K. and Middleton, R.S. (2022) A Hierarchical Framework for CO2 Storage Capacity in Deep Saline Aquifer Formations. *Frontiers in Earth Science*.

- Wdowin M, Tarkowski R, Manecki M. (2013) Petrographic-mineralogical and textural changes in reservoir and sealing rocks (Zaosie anticline) as a result of a long-term experiment in CO2-brine-rock interactions. Gospod Surowcami Miner Miner Resour Manag 2013;29:137.
- White D. (2009) Monitoring CO2 storage during EOR at the Weyburn-Midale field. Lead Edge 2009;28:838–42. Xu Y, Ishizaka J, Aoki S. (1999) Simulations of the distribution of sequestered CO2 in the North Pacific using a regional general circulation model. Energy Convers Manag 1999;40:683–91.
- Yamasaki A. (2003) An overview of CO2 mitigation options for global warming Emphasizing CO2 sequestration options. J Chem Eng Japan 2003;36:361–75. doi:10.1252/jcej.36.361.
- Zaluski, W., El-Kaseeh, G., Lee, S.Y., Piercey, M. and Duguid, A. (2016) Monitoring technology ranking methodology for CO2-EOR sites using the Weyburn-Midale Field as a case study. *International Journal of Greenhouse Gas Control* 54, Elsevier Ltd466–478.
- Zangeneh, H., Jamshidi, S. and Soltanieh, M. (2013) Coupled optimization of enhanced gas recovery and carbon dioxide sequestration in natural gas reservoirs: Case study in a real gas field in the south of Iran. *International Journal of Greenhouse Gas Control* 17, 515–522.
- Zero CO2. (2015) CCS-International legislation. Zero Emiss Resour Organ 2015. http://www.zeroco2.no/introduction/ccs-international-legislation (Opened September 3, 2021)
- Zhao X, Liao X, Wang W, Chen C, Rui Z, Wang H. (2014) The CO2 storage capacity evaluation: Methodology and determination of key factors. J Energy Inst 2014;87:297–305.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.