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Abstract: Image classification in Remote Sensing and Geographic Information Systems (GIS)
containing various land-cover classes is essential for efficient and sustainable land-use estimation, and
other tasks like object detection, localization and segmentation. Deep Learning (DL) techniques have
shown a tremendous potential in the GIS domain. While Convolutional Neural Networks (CNN) have
dominated most of the image analysis domain, a new architecture called transformers have proved to
be a unifying solution for several Al-based processing pipelines. Vision Transformers (ViT), a variant
of transformers can have comparable and in some cases better accuracy than a CNN. However,
they suffer from a significant drawback associated with an excessive use of training parameters. In
this research we explore several modifications in the vision transformer architectures, especially
MobileViT that can be optimized while boosting accuracy. To verify our proposed approach these
new architectures are trained on four land-cover datasets AID, EuroSAT, UC-Merced, and WHU-RS19.
Experiments reveal that combination of lightweight convolutional layers including ShuffleNet along
with depthwise separable convolutions and average pooling can reduce the trainable parameters by
17.85% and yet achieve higher accuracy than the base MobileViT. It is also observed that utilizing
a combination of convolution layers along with multi-headed self attention layers in MobileViT
variants provide better performance in capturing local and global features unlike the standalone ViT
architecture that utilizes almost 95% more parameters than the proposed MobileViT variant.

Keywords: vision transformers; Mobile ViT; ShuffleNet; CNN; Land cover classification

1. Introduction

Deep learning is a subset of machine learning that has exploded in popularity and become
prominent in many industries around the world today because it is based on powerful artificial
neural networks that are capable of learning and performing complex tasks such as Natural Language
Processing [1] and Image Classification [2]. As a result, deep learning has also become useful and
ubiquitous for remote sensing tasks because it has the computational power to extract compact features
from data with high spectral and spatial resolution used for purposes such as object detection, land
use and landscape classification [3-5], and multi-class classification [6-8]. Based on the successful
performance of parallel text processing, Transformers [9] have gained significant momentum in the
deep learning domain. Transformer neural networks are models that are highly adept at learning
context from input data using parallel multi-head attention mechanisms [10]. As a result, they can be
applied to remote sensing tasks such as multi-class classification of images because transformers can
extract long-range dependencies from the relationships between elements of an image sequence to
generate global representations.

Although Transformers can be applied for image analysis, CNNs are generally the dominant
model for most aspects of computer vision. CNN models are typically more compact and
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resource-efficient while Transformers are usually large, requiring significant Graphics Processing
Units (GPUs) for training. However, Transformers are able to get contextual understanding and global
dependencies from images using self-attention unlike CNNs which typically use local operations
that are restricted to small parts of images. This research demonstrates that a combination of CNN5s
and Transformers can be optimized to extract both local and global contextual information for image
classification. To achieve this objective, we propose modifications in the Mobile Vision Transformer
(ViT) [11] model as it closely relates a blend of CNN and Vision Transformers. Our findings demonstrate
a higher classification performance can be achieved even by using lightweight convolutional variants
only if they are used strategically in the entire architecture. Motivated by our previous work on
ShuffleNet optimization [12], this research further solidifies our approach to build lightweight deep
learning models without reducing accuracy.
In summary, here are our main contributions in this paper:

¢ All model variants reduce the original MobileViT’s training parameters by replacing expensive
CNN modules with a combination of Average Pooling, Depthwise Separable Convolution, and
ShuffleNet blocks. Our models retain the benefits of CNN and Transformers and use them to
boost performance on geospatial datasets without some of the other unnecessary costs.

¢ The usage of convolution layers combined with the self-attention layers of Transformers inside the
Mobile ViT variants provides better performance across all geospatial datasets when compared
with the standalone ViT model that uses 95% more parameters than the Mobile ViT variants.

* We test our proposed architectures on 4 geospatial datasets generating 80 models and conform
to testing standards as presented in literature. The trained models are also made available on
GitHub (Link) for benchmarking and research purposes.

2. Previous Work

Vision transformers (ViTs) and Transformer architectures have already been applied in the remote
sensing domain for tasks such as classifying various types of high-resolution UAV images. For example,
the researchers of the AiTLAS Benchmark Arena train ViT and nine other representative architectures
that are either CNN or Transformer-based on various multi-class classification datasets [13]. In addition,
some of the models are trained from scratch while others are pre-trained using ImageNet-1K weights.
Then, multiple models of each representative type and pre-training status are generated to create more
than 500 models that are then evaluated on their respective datasets before having their accuracies
averaged to get the final result. Authors in [14] utilize ViTs and their self-attention mechanism to
achieve extremely accurate results when attempting to classify images of various crops and plant
life. ViTs architecture allows it to focus on specific parts by enhancing or weakening predicted pixels
within a feature map while ignoring the other perceptible aspects. However, these works simply don't
address the MobileViT model which combines CNNs and Transformers. As a result experiments don’t
support how computationally expensive CNN layers are and if modifying them would provide a
better outcome. Another application of ViT for remote sensing image classification was demonstrated
in [15] where compressed ViT models with a reduced number of redundant encoder layers was
created before being trained on geospatial datasets. The results showed that using encoders with
at least five layers yield accuracy of over 90% and adding more encoder layers after that only leads
to 2% increases in accuracy. Another work that utilizes only parts of the ViT model instead of the
entire architecture is demonstrated in [16] which combines Channel-Spatial Attention (CSA) and the
Multi-Head Self-Attention (MHSA) in ViTs to create an effective high-resolution remote sensing (HRRS)
image scene classification network called Channel-Spatial Attention Transformer (CSAT). The ViT’s
MHSA mechanism is extremely useful for this work and boosts the overall model’s performance on
geospatial datasets because it can extract global features and learn long-range dependencies which
helps encode the patches with global contextual information. While works that modify ViTs in order
to reduce the number of parameters but retaining its benefits are useful, researchers were unable to
combine the benefits of CNNs with MobileViT to achieve a desired outcome.
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MobileViT has been applied for various purposes in fields where computer science is heavily
applied as demonstrated in [17]. In this research, authors create a drone detection algorithm that
has a lightweight MobileViTv1 backbone feature extractor and multi-scale attention feature fusion
network (CA-PANet). The backbone allows the algorithm to fully extract local and global features due
to its combined CNN and Transformer architecture which helps the network extract target location
information with high accuracy and a lesser number of parameters relative to other methods. Another
application was outlined in [18] which creates an automatic Diabetic Retinopathy (DR) grading
framework that has a ResNet101 (CNN) backbone and custom MobileViT-Plus backbone to extract
local and global information that will be fused together to assign DR grades (none, mild, moderate,
severe) for 2D fundus images. The custom MobileViT-Plus backbone was made during the research
and is made using depthwise separable convolutions as well as MobileViT-Plus blocks which replaces
the Transformer block with a lightweight-Transformer block. As a result, the model is able to obtain
results quickly with lower costs relative to ViT models while achieving better results when compared
to MobileViT and other models such as Resnext101 [19] and Se_resnet101 [20].

Although work applying the relatively lightweight but powerful MobileViT to a different fields
such as drones and healthcare is important, this research highlight fusion of ResNets with MobileNets
which increases model complexity. ResNets are to some extent costlier replacements to options
like pooling, MobileNet [21] and ShuffleNet [22]. Additionally, the model was trained to predict
only five classes compared to the extensive number of land-cover classes in geospatial datasets with
textual variation. A prior work that attempted to modify MobileViT models to boost performance
was also reported in [23] which replaces a 3 x 3 convolution layer in the Fusion block with a 1
x 1 convolution layer and replaces a 3 x 3 convolution layer in the Global Representation block
with a depthwise convolution layer. Also, the model fuses the input features, combines Local and
Global features, and increases the number of channels of the layers. Moreover, the model called
MobileViTv3 is able to outperform MobileViT variants such as MobileVitv1-XS and MobileViTv2-0.75
while maintaining a similar but slightly higher number of parameters. Another attempt to modify
MobileViT for better performance and lower latency is demonstrated in [24] which replaces the MHSA
in the MobileViTv1_Block’s Transformer Block with a separable self-attention method and does not
use MobileViTv1_Block’s skip-connection and Fusion Block. As a result, MobileViTv2 maintains a
similar or smaller number of parameters and outperforms the MobileViTv1l model by about 0.9% on
the ImageNet dataset. While these works are able to modify MobileViTs in a way that minimizes
costs and boosts performance, the number of parameters used is still to high at around more than
1.25 million (MobileViTv3-XXS), and the increase in accuracy (0.9% by MobileViTv2) from the original
MobileViT architecture is negligible. This is a big drawback to implementing plug-and-play Al models
in real world with resources-constrained environments.

3. Materials and Methods

3.1. Vision Transformers

Vision Transformers [25] splits an image into patches before flattening those patches and
converting them into linear embeddings with positional embeddings added to them. The sequence is
then fed into a standard transformer encoder which consists of alternating Multi-Head Self Attention
(MHSA) layers that map the input sequence to linear embeddings which are decoded to produce the
logits. This model’s architecture can be seen in Figure 1. Since ViT models deal with image patches at
a global level using the self-attention mechanism, they can attain high levels of performance because
they can capture contextual information and long-range dependencies between image pixels. However,
there are many significant drawbacks of ViT such as the exorbitant amount of training parameters as
well as the high computational costs which include the excessive number of images required to train
the model.
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The ViT model reshapes the input image tensor into a sequence of flattened patches with the
dimensions 3P x N. The dimension 3P is obtained by multiplying the height and width of the pixels
in the patches to produce P. Then, P is multiplied by the channels in the input image tensor to produce
3P. The dimension N represents the number of patches. The sequence of flattened patches is then
projected into a fixed dimensional space with the dimensions d X N. The dimension d represents the
size of the fixed dimensional space while the dimension N represents the number of patches. Finally,
a stack of L transformer blocks is used to learn long-range dependencies and global attention. The
dimension L represents the number of transformer blocks utilized for this purpose.

3P d

Lx

N
N
Input Image Flattened Linear Transformer Logits
—Flatten—>  Image Embedding

Positional
Encoding

Figure 1. Architecture of the Vision Transformer model

The Mobile-Friendly Vision Transformer or MobileViT model [11] contains MobileViT blocks that
uses convolution layers to generate local representations of the input tensor. Also, this block contains a
Transformer block with a MHSA mechanism which is used to generate global representations with
spatial inductive biases that are fused with the local representations in order to preserve the benefits of
Transformers and CNNSs.

The overall architecture of the model is displayed in Figure 2a. The architecture starts with a
striped 3 x 3 convolutional layer. This layer is followed by four MobileNetv2 (MV2 blocks). The
second and fourth blocks both use a stride of 2. These MV2 blocks are quite narrow and shallow which
means they don’t significantly factor into the training parameter count. This is because their main
responsibility is down-sampling. These blocks are followed by a MobileViT block which utilizes two
transformer blocks that are represented by L = 2. Also, the spatial dimensions of the feature maps are
often multiples of 2. As a result, the height and width dimensions of the feature maps represented
by h and w respectively are set to 2 at all spatial levels. Another MV2 block with stride of 2 is used
before a MobileViT block with 4 transformer blocks. A dimension of 2 for the height and width spatial
dimensions of the feature maps is applied. Then, a MV2 block with a stride of 2 is applied before the
final MobileViT block with 3 transformer blocks and a dimension of 2 for the height and width spatial
dimensions of the feature maps. Finally, a 1 x 1 convolutional layer and a global average pooling
operation for spatial data are applied to produce the logits or the output of the last layer inside the
model. Also, the output spatial dimensions of the model get smaller and smaller as the model gets
closer to generating the logits. The output spatial dimensions used are 128 x 128, 64 x 64, 32 x 32,
16 x 16,8 x 8,and 1 x 1.

The architecture of one MobileViT block is displayed in Figure 2b. The MobileViT block receives
an input tensor with the dimensions C, H, and W which represent the channels, height, and width of
the input tensor. Then, a n X n convolutional layer and a 1 x 1 convolutional layer are applied to the
tensor in order to encode local spatial information and project the tensor to a high-dimensional space
respectively. As a result, this produces a modified tensor with the dimensions d, H, and W where d
is the size of the fixed dimensional space while the dimensions H and W represent the height and
width of the input tensor. After this, the modified tensor is unfolded into non-overlapping flattened
patches with the dimensions d, N, and P which represent the size of the fixed dimensional space, the
number of patches, and the product of the height and width of the pixels in the patches respectively. A
stack of L Transformer blocks where L represents the number of transformer blocks is applied to the
non-overlapping flattened patches to generate a new sequence of non-overlapping flattened patches
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with the same dimensions d, N, and P. However, unlike ViT, MobileViT can remember the patch order
and spatial order of pixels within each patch. The new sequence of flattened patches is then folded
and projected to a high-dimensional space in order to make a tensor with dimensions d, H, and W
where d represents the size of the fixed dimensional space. Then, a 1 x 1 convolutional layer is applied
to the tensor to project it to a low-dimensional space with the dimensions C, H, and W. After this, the
newly formed tensor is concatenated with the input tensor to produce a new tensor with dimensions
2C, H, and W. Finally, an n x n convolutional layer is applied to fuse the concatenated features and
generate the output tensor with dimensions C, H, and W. MobileViT is a powerful model because it
can achieve high performance with a reduced number of parameters relative to heavyweight ViTs and
CNN:s. It leverages the inherent advantages of both architectures.

2x
Conv-3x3| | | Mv2 MV2
Input Image MV2 MV2
¢ D) \ ) ¢2 ¢2

Output
Spatial 128 x 128 64 x 64 32x32
Dimensions

MobileViT
block

MobileViT MobileViT Global pool
block block Linear
h=w=2 8x8 h=w=2 1x1
(@)
Fusion
: N 2C
c Transformers as Convolutions (Global Representations) " \C
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X ; -nxn y H
N w
W W
Conv-nxn
to by d C
Conv-1x1 b Conv-
Local H 1x1 H
Representations W
w
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Figure 2. (a) Overall architecture of Mobile-Friendly Vision Transformer (Mobile-ViT) and (b) shows
the architecture of one MobileVit block in (a)

While MobileVit can utilize both dependable aspects of CNN and Transformers, there are still
potential improvements that can further optimize the MobileViT in order to boost its performance on
geospatial datasets and reduce its training parameters. In this research, we explore these parameters in
an incremental manner to further optimize this architecture by strategically replacing blocks that are
used to extract higher order features.

3.2. Datasets

Models were trained on four Multi-Class Classification GIS datasets: AID [26], EuroSAT [27,
28], UC Merced [29], and WHU-RS19 [30,31]. These datasets feature a diverse image sizes, spatial
resolutions, image types, image formats, and labels. These statistics and data are displayed in Table
1. The labels and their sequence numbers are provided in Table 2. Due to the variety of datasets
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utilized for this project, we ensured that the better performance of our custom MobileViT variants was
consistent across a wide range of labeled images.

Table 1. Dataset features used in this study.

Name Number Image Spatial Image Image | Number of
of Images Size Resolution Type Format Labels
AID 10000 600x600 | 05-8m Aerial RGB JPG 30
EuroSAT 24500 64 x 64 10 m Multispectral JPG 9
UC Merced 2100 256 x 256 0.3m Aerial RGB TIF 21
WHU-RS19 1005 600 x 600 <=0.5m Aerial RGB JPG 19
Table 2. Dataset labels used in this study.
Class # Labels
AID EuroSAT UC Merced WHU RS-19
0 Airport Annual Crop Agricultural Airport
1 BareLand Forest Airplane Beach
2 Baseball Field Herbaceous Vegetation | Baseball Diamond Bridge
3 Beach Highway Beach Commercial
4 Bridge Industrial Buildings Desert
5 Center Pasture Chaparral Farmland
6 Church Residential Dense Residnetial Forest
7 Commercial River Forest Industrial
8 Dense Residential Sea Lake Freeway Meadow
9 Desert Golf Course Mountain
10 Farmland Harbor Park
11 Forest Intersection Parking
12 Industrial Medium Residential Pond
13 Meadow Mobile Home Park Port
14 Medium Residential Overpass Residential
15 Mountain Parking Lot River
16 Park River Viaduct
17 Parking Runway Football Field
18 Playground Sparse Residential | Railway Station
19 Pond Storage Tanks
20 Port Tennis Court
21 Railway Station
22 Resort
23 River
24 School
25 Sparse Residential
26 Square
27 Stadium
28 Storage Tanks
29 Viaduct

The AID dataset is a large aerial image dataset that was formed by collecting images from Google
Earth imagery. These Google Earth images are also post-processed with RGB renderings extracted
from the original optical aerial images. The images of the AID dataset are labeled with 30 aerial scene
class labels which is the most out of all the datasets. Also, there are 10,000 JPG images inside AID
which have the size 600 x 600, and an image resolution ranging from 0.5 m to 8 m. Figures 3a-3e
display five sample images from the AID dataset.
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(a) AID - Dense (b) Farmland (c) Forest (d) Industrial (e) River
Residential

1y

63 EuroSat - (g) Annual Crop (h) Forest (i) Industrial (j) River
Residential

\
- a

(k) UC Merced - Dense () Agriculture (m) Forest (n) Overpass (o) River
Residential

(p) WHU-RS19 - (q) Farmland (r) Forest (s) Industrial (t) River
Residential

Figure 3. Sample images from the four datasets used in this study.

The EuroSAT dataset is a large-scale satellite multispectral image dataset that was collated by
using Sentinel-2 satellite images that are accessible from the open-source Earth observation program
Copernicus [32]. Also, this dataset is unique because the images are multispectral and cover 13 spectral
bands that are in the short infrared, near infrared, and visible parts of the spectrum. Our experiments
used a smaller version of EuroSAT and the images of the dataset are labeled with nine class labels
which is one less than the original and the least out of the four datasets. In addition, EuroSAT was the
largest dataset as it contained 24,500 JPG images that have the size of 64 pixels by 64 pixels, and the
image resolution 10 m. Figures 3f-3j display sample images from the EuroSAT datasets.

The UC Merced dataset [29] is a large aerial image dataset that was formed by extracting a diverse
range of smaller images from large images that were collated in the USGS National Map Urban Area
Imagery Collection. The sizes of these smaller images are 256 x 256, and the images come from
different urban areas around the United States of America. The dataset’s images feature the smallest
spatial resolution of the 4 datasets at 0.3 m, and they are the only dataset with TIF images. In addition,
the dataset features images that belong to 21 classes, and there are 100 images per each image class
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which leads to a total of 2100 images in the dataset. Figures 3k-30 displays five sample images from
the UC Merced dataset.

The WHU-RS19 dataset is a large-scale aerial image dataset that consists of satellite images that
were collected from Google Earth. The dataset is similar to AID in that both datasets have the same
image sizes (600 x 600), and they both originate from Google Earth imagery. In addition, WHU-RS19 is
the smallest dataset out of the four datasets with 1005 JPG images. Also, the images in the dataset range
have a spatial resolution of up to 0.5 m as well as a diverse range of orientations and illuminations.
Also, the images of the dataset belong to 19 image classes. Figures 3p-3t displays sample images from
the WHU-RS19 dataset.

3.3. Proposed lightweight transformer modifications

3.3.1. MobileVit-Avg

The first variant tested in our research is called MobileViT-Avg. To create this variant,a 1 x 1
convolution layer in the Local Representations section of the MobileViT block was removed. An
average pooling layer that features a pool_size of 2 x 2 was added. A 1 x 1 upsampling layer was
introduced in between the folded global feature map that contains global features extracted by the
Transformer block and the concatenate layer which combines the folded global feature map and
the local features that were extracted using the N x N convolution layer and average pooling layer.
Following these changes, the number of training parameters was reduced significantly when compared
to the benchmark ViT and MobileViT models. Across all 4 datasets, MobileViT-Avg had exactly
19,952 less parameters than MobileViT (1.52% decrease on average). In addition, MobileViT-Avg had
20,384,359 less parameters than ViT on average (94.04% decrease).

The architecture of MobileViT-Avg block is shown in Figure 4. The MobileViT block receives
an input tensor with the dimensions C, H, and W which represent the channels, height, and width
of the input tensor. Then, the model modifies the Local Representations section by using a n x n
convolutional layer and an average pooling layer with a pool size of 2 x 2 that replaces the original
1 x 1 convolutional layer in order to encode local spatial information and project the tensor to a
high-dimensional space respectively. This produces a modified tensor with the dimensions d, H,
and W where d is the size of the fixed dimensional space. The modified tensor is unfolded into
non-overlapping flattened patches with the dimensions d, N, and P where N and P represents the
number of patches, and the product of the height and width of the pixels in the patches respectively.
A stack of L number of Transformer blocks is applied to the non-overlapping flattened patches to
generate a new sequence of non-overlapping flattened patches with the same dimensions d, N, and P.
This new sequence of flattened patches is folded and projected to a high-dimensional space in order to
make a tensor with dimensions d, H, and W. A 1 x 1 convolutional layer is applied to the tensor to
project it to a low-dimensional space with the dimensions C, H, and W. The tensor is then fed into an
upsampling layer that helps balance the class labels followed by concatenation with the input tensor
to produce a new tensor with dimensions 2C, H, and W. Finally, a n X n convolutional layer is applied
to fuse the concatenated features and generate the output tensor with same dimensions C, H, and W.
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Figure 4. Architecture of the proposed MobileVit-Avg Transformer block with changes in red.

3.3.2. MobileViT-Depth

The second variant that was created is called MobileViT-Depth. To create this variant, we first
started with the MobileViT-Avg architecture which contains the average pooling and upsampling
layers as a base. Then, we further modified the MobileViT block inside the model by replacing the
first N x N convolution layer that takes in the input tensor in order to generate Local Representations
with a N x N depthwise separable convolution layer. After the changes were made, the reduction
of training parameters for the MobileViT-Depth model was greater than the decrease achieved for
the MobileViT-Avg model. When compared to the ViT model, MobileViT-Depth had 20,509,607
less parameters than ViT on average (94.62% decrease). When compared to the MobileViT model,
MobileViT-Depth had exactly 145,200 less parameters than MobileViT across all 4 datasets (11.06%
decrease).

The architecture of MobileViT-Depth block is shown in Figure 5. This block receives an input
tensor with the dimensions C, H, and W. Then, the model modifies the Local Representations
section by using a n X n separable convolutional layer instead of a regular convolutional layer as
well as an average pooling layer with a pool size of 2 x 2 in order to encode local spatial information
and project the tensor to a high-dimensional space respectively. This produces a modified tensor
with the dimensions d, H, and W which passes through the Transformer layers as explained in the
previous MobileViT-Avg section. The new sequence of flattened patches is folded and projected
to a high-dimensional space in order to make a tensor with dimensions d, H, and W. Then, a1 x 1
convolutional layer is applied to the tensor to project it to a low-dimensional space with the dimensions
C, H, and W. The tensor is then fed into an upsampling layer which was also added in the previous
iteration of MobileVit-Avg that helps balance the class labels.

Fusion
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\C Transformers as Convoluti (Global Repr ions) H \C
y !
X nxn Y
DN w
W N 1 W
SeparableConv2D
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Figure 5. Architecture of the proposed MobileVit-Depth Transformer block with changes in red.
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3.3.3. MobileVit-Shuffle

For the first two MobileViT variants, it's important to note that we only modified the MobileViT
block architecture and left the overall architecture intact. However, for our last variant, we modified
the MobileViT block architecture and the overall MobileViT architecture by inserting a custom block
into the overall architecture. The third variant that we generated is called MobileViT-Shuffle. The
custom ShuffleNet block replaces the final MobileViT block as shown in Figure 2a. This ShuffleNet
block sets the default kernel size of its layers to be 1 x 1, and it sets the default number of filters to be
320.

The custom ShuffleNet block mentioned in the previous paragraph can be seen in Figure 6. This
block consists of two pathways of layers that are fused together in order to generate the output tensor.
Both pathways receive an input tensor with the dimensions C, H, and W. The first pathway of layers is
called A, and it starts with feeding the input tensor into a 3 x 3 depthwise convolution layer. Then, the
output from that initial layer is processed by a batch normalization layer as well asa 1 x 1 convolution
layer. Finally, the pathway ends with the output being processed by another batch normalization and a
ReLU layer. The second pathway of layers is labeled with B, and it starts with feeding the input tensor
into a 1 x 1 convolution layer. The output from the initial layer is processed by a batch normalization
layer and a ReLU Layer. Then, the new output is processed by a 3 x 3 depthwise convolution layer
as well as another 1 x 1 convolution layer. The activation map is then processed by another batch
normalization layer and another ReLU layer. To fuse the two pathways, a concatenate layer is utilized.
The fusion results in an output tensor with dimensions C, H, and W. After these changes were made,
the reduction in training parameters for the MobileViT-Shuffle variant was greater than the training
parameter decrease for the other two variants. Across the 4 datasets, MobileViT-Shuffle had 20,598,679
less parameters than ViT on average (95.03% decrease). Also, MobileViT-Shuffle had exactly 234,272
less parameters than MobileViT across all 4 datasets (17.85% decrease).

A
e

Depthwise Batch ey Batch Concatenate
Conv2D Normalization 1x1 Normalization ReLU axis=-1 Y H
3x3 axis=-1 axis=-1 [A, B] N
B w
B
Batch Depthwise Batch
C10r:v Normalization ReLU Conv2D 01qu Normalization ReLU
X aX|s- 3x3 X axis=-1

Figure 6. Architecture of the ShuffleNet block that replaces the final MobileVit block to create final the
MobileVit-Shuffle transformer variant

The total number of training parameters for each model architecture trained across the 4 GIS
datasets AID, EuroSAT, UC Merced, and WHU-RS19 is summarized in the Table 3. All of the
hyperparameters except number of classes and train-test splits used by the model don’t influence the
number of training parameters, so there are only 4 entries for each model. An observable trend in the
table is that the training model parameters for each architecture increases on datasets that have a larger
number of image labels. This shows that each model’s output layer which maps to a differing number
of image classes for each dataset slightly influences the training parameters inside each model.

Table 3. Comparison of trainable parameters across the three MobileVit Transformer variants

Dataset ViT MobileViT M"'XL;V‘T' M%’;;:‘T' Mg'l’lﬂgf‘lzT'
AID 21,687,269 | 1,315,646 1,295,694 1,170,446 1,081,374
EuroSAT | 21,665,744 | 1,308,905 1,288,953 1,163,705 1,074,633
UC Merced | 21,678,044 | 1,312,757 1,292,805 1,167,557 1,078,485
WHU-RS19 | 21,675,994 | 1,312,115 1,292,163 1,166,015 1,077,843
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4. Results

For the training and evaluation stage of the completed model architectures, a group of four
experiments were devised where each experiment corresponded to one of the four datasets that we
were going to train and evaluate the models on. This was followed by application of each representative
architecture which includes the two benchmarks ViT and MobileViT along with the three MobileViT
variants to all of the datasets. Multiple train-test splits for each model architecture was also introduced
to ascertain if the models could achieve a high level of performance with lesser amounts of training
data. The train-test splits used were 20%-80%, 40%-60%, 50%-50%, and 60%-40% respectively. Hence,
each experimental group corresponding to one of the four datasets had 20 models were used for
training which can be calculated by multiplying the number of model architectures (5) and the number
of train-test splits (4). In summary, a total of 80 models which can be calculated by multiplying the
number of model architectures (five), the number of train-test splits (four), and the number of datasets
(four). All experiments were conducted on Blugold Center for High Performance Computing using
NVIDIA Tesla V100 GPU with 32GB memory and AMD EPYC CPU at 2.35 GHz.

Data augmentation for the training images started with resizing all of the images to 72 x 72
followed by randomly flipping those images along a horizontal axis. The images were randomly
rotated before being randomly zoomed into during the training process. Hyperparameters were
configured in order to control the training process. The number of epochs was kept constant at 500,
and the batch size was kept constant at 64. Also, all of the models used an Adam optimizer to help
change the weights and loss rates. For this optimizer, the learning rate was set to 0.001 which allowed
for slow and precise learning. The weight decay was set to 0.0001 in order to regularize the neural
network by adding a penalty to the loss function. The only hyperparameter that we varied across
the models was the number of classes or labels because each dataset has a different number of image
classes. This hyperparameter played a role in influencing the total number of training parameters
because it modified the size of the output Dense layer in the ViT models. The training and validation
accuracy for all model variants are shown in Table 4.

Table 4. Final training and validation accuracy from all the models.

Split Catego Split Catego

Dataset Model 2080 T 2060 | 5050 T e0au|  Dataset et e T 50-50 T 6020

ViT 9905 [ 99.1 | 99.14 | 98.82 9952 [ 99.76 | 98.86 | 99.76

Train MViT 99.05 | 99.4 | 99.46 | 99.28 9857 [ 98.69 | 99.76 | 98.95
Accuracy AID MViT-Avg 99.95 100 99.68 | 99.6 UCMerced 100 100 100 100
MViT-Depth | 99.45 | 99.62 | 99.46 | 999 100 | 99.64 [ 100 | 99.84

MViT-Shuffle | 100 | 99.95 | 9954 | 994 100 | 99.88 [ 99.8T | 99.84

ViT 5671 | 6622 | 687 | 715 5077 [ 6222 | 67.05 | 75.71

Valid MViT 7396 | 829 | 85.82 | 86.58 6339 [ 8135 | 83.14 | 87.62
Acouracy | AID MViT-Avg | 77.36 | 86,55 | 8886 | 87.78 | UCMerced [ 769 | 87.2Z | 901 | 9036
MViT-Depth | 7529 | 84.28 | 8744 | 88.25 769 [ 8325 | 9171 | 8655

MViT-Shuffle | 78.12 | 87.23 | 8736 | 833 6238 | 8444 | 851 | 89.88

ViT 998 | 995 | 99.6 | 99.44 T00 | 9925 | 998 | 99

Train MViT 99.8 [ 99.8 | 99.84 | 99.85 985T [ 9925 | 99.8 | 96.35
Accuracy | EuroSat [~ MIVIT-Avg | 998 | 9985 | 9945 | 9986 | WHU-RSI9 [985T [ 97.76 | 100 | 9751
MViT-Depth | 99.78 | 99.87 | 99.75 | 99.63 99 [ 9851 | 99.6 | 99.67

MViT-Shuffle | 99.98 [ 99.2 | 99.78 | 99.78 985T [ 99.75 | 100 | 98.84

ViT 9178 | 92.65 | 92.97 | 9443 1677 | 5738 | 6083 | 6045

Valid MViT 9571 [ 9636 | 97.98 | 97.69 66.04 | 79.77 | 8131 | 6418
Acouracy | EuroSat [~ MIVIT-Avg | 9588 | 9704 | 9777 | 9747 | WHU-RSI9 [ 5697 | 7844 | 827 | 694
MViT-Depth 92.08 | 97.7 97.67 | 96.49 63.8 79.77 | 81.11 77.36

MViT-Shuffle | 97.44 | 97.8 | 9739 | 9821 5858 | 7413 | 8489 | 8035

For the AID experiment group the MobileViT variants Avg, Depth, and Shuffle outperformed
the ViT model across all of the splits. We noted a consistent trend among all the architectures where
the 50 — 50 split was usually the highest performing model when compared to the other splits of
the same architecture with validation accuracy of 88.86% that outperformed ViT’s best validation
accuracy by 17.36% and the benchmark MobileViT’s validation accuracy by 2.28%. The class-based
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performance for 50-50 AID testing dataset is shown in Table 5. In addition, the variants were able
to achieve this result despite having 94.03%, 94.60%, and 95.01% less parameters respectively. Also,
each MobileViT variant’s best split outperformed the original MobileViT’s best split. Moreover, this
outcome was achieved despite the Avg, Depth, and Shuffle variants having 1.52%, 11.04%, and 17.81%
less parameters respectively. Figure 7 further shows a comparison of the validation accuracy for the
AID dataset used in this study. Table 5 displays the per-class validation accuracy of the 50-50 split using
AID. We notice that several classes that performed poorly using ViT show significant improvements
when MobileViT variants are used. For example, the accuracy of Airports (class 0) jumped from 40% to
91.11% for MobileViT-Shuffle. Similar trends were observed for Farmlands (class 10), Mountains (class
15), Parks (class 16), Storage Tanks (class 28) and Viaduct (class 29). All models found it challenging to
classify a Square (class 26). This could be because square was a shape containing several sub-classes
like buildings and airports making it challenging to group them into a separate class.

Table 5. Accuracy of 50-50 Split Models on the AID Dataset

Class . O MobileViT- | MobileViT- | MobileViT-

Number ViT MobileViT Avg Depth Shulffle
0 40.00% 85.56% 93.89% 87.22% 9T.11%

1 84.52% 87.74% 91.61% 73.55% 80.65%

2 76.37% 92.72% 100.00% 94.55% 92.73%

3 87.50% 95.00% 94.00% 97.00% 97.50%

1 70.00% 89.44% 93.89% 85.56% 90.56%

5 71.54% 80.00% 81.54% 69.23% 77.69%

6 60.83% 95.00% 90.00% 93.33% 95.00%

7 86.86% 72.57% 84.57% 89.71% 72.57%

8 80.98% 95.12% 93.66% 81.46% 94.63%

9 84.67% 82.00% 87.33% 96.00% 94.67%

10 64.86% 89.73% 87.57% 89.73% 86.49%
11 76.00% 97.60% 100.00% 97.60% 99.20%
12 65.64% 78.46% 85.64% 86.15% 83.08%
13 80.71% 95.71% 97.14% 95.00% 95.71%
14 76.55% 91.72% 89.66% 92.41% 88.28%
15 54.12% 85.29% 95.29% 97.65% 9T.18%
16 62.86% 77 71% 88.57% 82.86% 84.00%
17 81.54% 98.46% 96.92% 96.41% 96.41%
18 81.62% 92.43% 87.57% 88.11% 89.19%
19 83.33% 79.05% 88.57% 87.62% 89.52%
20 75.79% 97.37% 95.26% 95.79% 92.63%
21 36.92% 94.62% 78.46% 74.62% 87.69%
22 62.07% 68.97% 68.28% 68.97% 80.00%
23 45.37% 87.80% 93.66% 90.73% 85.85%
24 42.00% 57.33% 62.00% 78.00% 62.67%
25 84.67% 96.67% 96.67% 96.00% 97.33%
26 38.79% 44.24% 62.42% 63.64% 52.12%
27 86.21% 86.90% 92.41% 95.17% 93.79%
28 63.89% 84.44% 87.22% 82.22% 80.56%
29 53.81% 93.81% 95.24% 91.90% 95.71%
Mean Acc 0.6861 0.8593 0.8871 0.8731 0.8792
Overall Acc | 0.6862 0.8597 0.8893 0.8750 0.8796
Kappa 0.6750 0.8548 0.8854 0.8705 0.8755
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Figure 7. Validation accuracy comparison of AID dataset.

The results for the EuroSAT experiment group established the 60 — 40 split was usually the
highest performing model although the 50-50 split was not far behind as shown in Table 4. The
MobileViT variants Avg, Depth, and Shuffle also outperformed the ViT model across all of the splits.
The MobileViT variant Shuffle was the best performing model with an accuracy of 98.21% that
outperformed ViT’s best split by 3.78% and the benchmark MobileViT’s best split by 0.23%. Moreover,
Shuffle was able to outperform the benchmark MobileViT model despite being the most lightweight
variant that has 17.90% less parameters than the MobileViT model. The class-based performance
for 60-40 EuroSAT testing dataset is shown in Table 6 along with the validation accuracy graphs in
Figure 8. Unlike the AID dataset where we observed noticeable improvements when shifting from
ViT to MobileViT variants, the accuracy for EuroSAT was mostly consistent with minor increase in
accuracy. For example, the largest jump in accuracy was for Highways (class 3) where ViTs achieved
70% compared to MobileViT-Shuffle which reached 82.5%. Other than that, the accuracy was mostly
consistent with the highest positive change being 5.25% for River (class 7). A contributing factor to this
trend may have to do with EuroSAT’s data resolution being significantly lower than the remaining
datasets however further investigation is needed to confirm this trend.
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Figure 8. Validation accuracy comparison of EuroSAT 60-40.

Table 6. Accuracy of 60-40 Split Models on the EuroSAT Dataset

Class . O MobileViT- | MobileViT- | MobileViT-

Number viT MobileViT Avg Depth Shuffle
0 93.08% 99.08% 98.75% 95.67% 98.08%

1 99.33% 99.50% 99.67% 99.33% 99.58%

2 93.17% 97.08% 96.75% 93.25% 97.25%

3 70.00% 80.67% 79.75% 80.67% 82.50%

q 81.25% 77.08% 74.50% 73.17% 79.50%

5 61.42% 64.17% 65.00% 65.50% 64.25%

6 98.42% 100.00% 100.00% 100.00% 100.00%

7 76.25% 81.33% 82.00% 81.00% 81.50%

8 98.25% 98.92% 99.17% 99.42% 99.42%
Mean Acc 0.9415 0.9753 0.9726 0.9641 0.9810
Overall Acc | 0.9443 0.9769 0.9742 0.9649 0.9821
Kappa 0.9372 0.9740 0.9709 0.9604 0.9799

The results for the UC-Merced experiment group show that the 60 — 40 split model was usually
the highest performing model, however following a similar pattern, the 50 — 50 split performed well
too. In fact, the best performing model was in the 50 — 50 split. This was MobileViT-Depth with
an accuracy of 91.71% that outperformed ViT’s best split by 16% and the benchmark MobileViT’s
best split by 4.09% when compared to the other splits of the same architecture. Following previous
trends we also observed that the MobileViT variants Avg, Depth, and Shuffle outperformed the ViT
model across all of the splits. Also, we found that the best splits for the Avg, Depth, and Shuffle
variants outperformed the best split of the MobileViT benchmark model. The graph showing validation
accuracies of UC-Merced can be seen in Figure 9. The class-based validation performance for 50 — 50
UC-Merced housing the best performing model is shown in Table 7. Unlike the AID dataset we
noticed substantial improvements with the MobileViT-derived architecture across multiple classes.
For example, a comparison between ViT and MobileViT-Shuffle revealed a 46% increase for Dense
Residential (class 6), 42% increase for Golf course (class 9), 46% increase for Overpass (class 14), 66%
increase for Sparse Residential (class 18), 44% increase for Storage Tanks (class 19) and a 42% increase
for Tennis Course (class 20). In fact the highest increase in accuracy was observed in residential classes

showing that the Mobile-Vit architectures are capable to accurately differentiate between different
types of housing structures.
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Figure 9. Validation accuracy comparison of UCMerced 50-50.

Table 7. Accuracy of 50-50 Split Models on the UC Merced Dataset

Class . s MobileViT- | MobileViT- | MobileViT-
Number ViT MobileViT Avg Depth Shuffle
0 90.00% 98.00% 100.00% 98.00% 100.00%
1 68.00% 92.00% 96.00% 92.00% 98.00%
2 84.00% 88.00% 96.00% 92.00% 98.00%
3 100.00% 94.00% 94.00% 98.00% 100.00%
q 56.00% 72.00% 72.00% 72.00% 60.00%
5 100.00% 100.00% 100.00% 100.00% 100.00%
6 38.00% 92.00% 98.00% 84.00% 84.00%
7 80.00% 100.00% 98.00% 92.00% 96.00%
8 74.00% 88.00% 100.00% 94.00% 94.00%
9 50.00% 80.00% 88.00% 92.00% 92.00%
10 94.00% 100.00% 98.00% 98.00% 100.00%
11 74.00% 88.00% 90.00% 86.00% 84.00%
12 56.00% 48.00% 54.00% 84.00% 72.00%
13 80.00% 92.00% 98.00% 98.00% 98.00%
14 48.00% 90.00% 96.00% 90.00% 94.00%
15 74.00% 98.00% 98.00% 100.00% 100.00%
16 80.00% 94.00% 96.00% 98.00% 98.00%
17 78.00% 100.00% 96.00% 100.00% 96.00%
18 22.00% 92.00% 82.00% 94.00% 88.00%
19 26.00% 50.00% 66.00% 78.00% 70.00%
20 36.00% 74.00% 76.00% 86.00% 78.00%
Mean Acc 0.6705 0.8714 0.9010 0.9171 0.9048
Overall Acc 0.6705 0.8714 0.9010 0.9171 0.9048
Kappa 0.6540 0.8650 0.8960 0.913 0.900

The results for the WHU-RS19 experiment group are shown reveal that the 50 — 50 split was the
highest performing model when compared to the other splits of the same architecture. In a similar
trend, the MobileViT variants Avg, Depth, and Shuffle outperformed the ViT model across all of
the splits. MobileViT-Shuffle was the highest performing model with an accuracy of 84.89% that
outperformed ViT’s best split by 24.44% and MobileViT’s best split by 3.58%. Moreover, Shuffle
achieved this result despite being the most lightweight architecture in terms of number of trainable
parameters out of all of the five representative model architectures. The class-based performance for
50 — 50 WHU-RS19 dataset is shown in Table 8 along with the validation accuracy graphs in Figure
10.We also note that like AID, and UC-Merced, using the MobileNet variants resulted in significant
accuracy increase for several classes. To summarize, Figures 11 and Figures 12 shows the training and
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validation accuracy scores for the best split across all four datasets. While training accuracy in most
cases remained consistently high, we noticed significant variation in the validation accuracy mostly in
UC-Merced and WHU-RS19 datasets. However, the models were able to converge to an acceptable
value at the end of 500 epochs.

Table 8. Accuracy of 50-50 Split Models on the WHU-RS19 Dataset

Class . R MobileViT- | MobileViT- | MobileViT-
Number viT MobileViT Avg Depth Shuffle
0 28.57% 67.86% 60.71% 60.71% 67.86%
1 100.00% 96.00% 96.00% 96.00% 96.00%
2 65.38% 80.77% 92.31% 80.77% 92.31%
3 32.14% 85.71% 89.29% 60.71% 85.71%
4 100.00% 100.00% 96.00% 100.00% 100.00%
5 60.00% 72.00% 88.00% 84.00% 88.00%
6 88.46% 100.00% 92.31% 88.46% 88.46%
7 50.00% 80.77% 61.54% 92.31% 76.92%
8 93.55% 77.42% 83.87% 77.42% 96.77%
9 44.00% 56.00% 92.00% 96.00% 84.00%
10 68.00% 52.00% 64.00% 88.00% 64.00%
11 28.00% 92.00% 64.00% 96.00% 80.00%
12 66.67% 92.59% 96.30% 100.00% 96.30%
13 37.04% 88.89% 77.78% 77.78% 77.78%
14 70.37% 74.07% 74.07% 25.93% 66.67%
15 64.29% 71.43% 82.14% 82.14% 82.14%
16 24.14% 79.31% 86.21% 62.07% 82.76%
17 92.00% 88.00% 96.00% 92.00% 88.00%
18 48.00% 92.00% 80.00% 92.00% 100.00%
Mean Acc 0.6108 0.8141 0.8307 0.8071 0.8510
Overall Acc 0.6083 0.8131 0.8303 0.7953 0.8506
Kappa 0.5865 0.8027 0.8209 0.7840 0.8423
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Figure 10. Validation accuracy comparison of WHU-RS19 50-50.
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Figure 11. Training accuracy graphs of best models evaluated in this study.
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Figure 12. Validation accuracy graphs of best models evaluated in this study.
5. Discussion

Our experiments revealed that a confluence of modern transformer architecture with lightweight
CNN frameworks have the potential to yield superior outcomes. As a result, it opens up a vast array
of possibilities where deep learning can be made optimized based and generalized across multiple
domains. It is worth noting that along with the successful three variants we also explored other
modifications in CNN architectures which did not have a similar outcome. In this section we will list
those variants that were unable to boost or preserve accuracy.

Five of the unsuccessful MobileViT variants involved removing entire MobileViT blocks from
the overall architecture of the benchmark model in an attempt to lower training parameters. All of
these variants had their respective architectures configured on the UC-Merced dataset and a 50 — 50
train-test split. One of these variants had a modified structure that removed the first MobileViT
block from the overall MobileViT architecture. The removal resulted in the variant having 1,112,725
trainable parameters which meant the number of training parameters was reduced by 15.24% relative
to the benchmark MobileViT architecture. However, this variant could not maintain the benchmark’s
performance as it achieved an accuracy of 78.00% which was 9.14% lower than the 87.14% accuracy
achieved by MobileViT. In addition, we created another variant that removed the last MobileViT
from the overall MobileViT architecture. The removal resulted in the variant having 687,605 training
parameters which meant the number of training parameters was reduced by 47.62% relative to the
benchmark. Unfortunately, the variant failed to achieve the benchmark’s accuracy as it attained the
testing accuracy of 83.24% which was 3.90% lower than the benchmark’s accuracy.
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The other two out of the five variants which removed entire blocks from the overall architecture
of the benchmark model focused on eliminating some of the inverted residual blocks. One of these
variants had a modified architecture that removed the first inverted residual MV2 block from the overall
benchmark architecture. This removal resulted in the variant having 1,309,501 training parameters
which meant the number of training parameters was reduced by 0.25%. However, the variant could
not achieve the benchmark’s performance as it attained an accuracy of 84.19% which was 2.95% lower
than the benchmark’s accuracy. In addition, we also created another variant which removed the second
inverted residual MV2 block from the overall benchmark architecture. This elimination resulted in
the variant having 1,309,501 training parameters which meant the number of training parameters was
reduced by 0.25%. Unfortunately, the variant also could not achieve the benchmark’s accuracy as it
attained an accuracy of 84.19% which was 2.95% lower than the benchmark’s performance on the same
dataset and train-test split.

Our final failed variant featured changes that were similar to the more fine-tuned and subtle
manipulations made on the benchmark MobileViT model to generate the three successful variants.
This variant was also configured on the UC-Merced dataset and a 50 — 50 train-test split before being
compared to the original MobileViT benchmark configured on the same dataset and train-test split. It
had a modified structure that replaced the last N X N convolutional layer in the MobileViT block’s
Fusion section with a N x N Depthwise Separable Convolution layer. In addition, this variant also had
the changes from the MobileViT-Avg variant which include the average pooling layer that replaced the
second N x N convolutional layer in the MobileViT block’s local representations section as well as
an added UpSampling layer in the MobileViT block’s Fusion section. This replacement resulted in
the variant having 1,042,309 training parameters which meant the number of training parameters was
reduced by 20.60%. However, the variant could not attain the benchmark’s accuracy as it attained an
accuracy of 77.81% which was 9.33% lower than the benchmark’s performance.

6. Conclusions

This work presented three new variants of the benchmark MobileViT model called MobileViT-Avg,
MobleViT-Depth, and MobileViT-Shuffle as well as their training and evaluation results on 4 GIS
datasets namely AID, EuroSAT, UC-Merced, and WHU-RS19. The results show that the three variants
outperform the benchmark MobileViT and ViT architectures despite having a significantly smaller
footprint. As a result, we can reason that our methods retained the benefits of CNNs and Transformers
while replacing some of the expensive deep learning computational layers by boosting accuracy and
reducing the training parameters. However, as highlighted in the discussions, these changes should not
use the effectiveness of diverse activation maps. This would then have an adverse effect on the model’s
performance. Future work would explore further modifications mostly to optimize the Transformer
layers. The model performance will also be integrated with ImageNet dataset to explore possibilities
of transfer learning. Finally an endeavor to create usable GIS deep learning transformer based models
will be developed for the community by attempting to train and evaluate these models on a merged
dataset composed of images from the AID, EuroSAT, UC-Merced, and WHU-RS19 datasets to ensure
the continuity and validity of our results.
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Here are the loss graphs of the models found using the best splits.
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Figure A1. Training loss graphs of best models evaluated in this study.
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Figure A2. Validation loss graphs of best models evaluated in this study.
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