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Abstract: Self-driving vehicles demand efficient and reliable depth sensing technologies. Lidar, with its 

capacity for long-distance, high-precision measurement, is a crucial component in this pursuit. However, 

conventional mechanical scanning implementations suffer from reliability, cost, and frame rate limitations. 

Solid-state lidar solutions have emerged as a promising alternative, but the vast amount of photon data 

processed and stored using conventional direct time-of-flight (dToF) prevents long-distance sensing unless 

power-intensive partial histogram approaches are used. In this paper, we introduce a groundbreaking ‘guided’ 

dToF approach, harnessing external guidance from other onboard sensors to narrow down the depth search 

space for a power and data-efficient solution. This approach centers around a dToF sensor in-which the 

exposed time widow of independent pixels can be dynamically adjusted. We utilize a 64-by-32 macropixel 

dToF sensor and a pair of vision cameras to provide the guiding depth estimates. Our demonstrator captures 

a dynamic outdoor scene at 3 fps with distances up 75 m. Compared to a conventional full histogram approach, 

on-chip data is reduced by over 25 times, while the total laser cycles in each frame are reduced by at least 6 

times compared to any partial histogram approach. The capability of guided dToF to mitigate multipath 

reflections is also demonstrated. For self-driving vehicles where a wealth of sensor data is already available, 

guided dToF opens new possibilities for efficient solid-state lidar. 

Keywords: lidar; direct time-of-flight; dToF; flash lidar; SPADs; stereo depth; 3D vision 

 

1. Introduction 

Self-driving vehicles require a diverse range of depth sensors to ensure safety and reliability 

[1,2]. This is the consensus among vehicle manufacturers such as Audi, BMW, Ford, and many more, 

as outlined in their automated driving safety frameworks [3,4]. Sensor types include ultrasound, 

radar, vision cameras and lidar. Of these, lidar can provide long distance sensing over hundreds of 

meters with centimeter precision [5]. Direct time-of-flight (dToF), illustrated in Figure 1a, is 

performed by measuring the roundtrip time of a short laser pulse and is currently the most suited 

lidar approach for these distances [6]. However, traditional mechanical scanning implementations 

introduce reliability issue, frame rate limitations and high cost [7]. For widespread adoption of self-

driving vehicles, a more practical and cost-effective lidar solution is required. 

 Contrastingly, new solid-state lidar solutions including flash lidar, are made using established 

and economical semiconductor processes with no moving parts. Many solid-state lidar solutions 

center around a chip containing a 2D array of dToF sensor pixels to time the returning laser from 

each point in the scene. However, ambient background photons are also present, so the detected 

arrival times of all photons must be accumulated over multiple laser cycles to distinguish the laser 

arrival time, as illustrated in Figure 1b. This presents a significant challenge, as each pixel in the dToF 

sensor must accommodate enough area to detect, process, and time the arrival of photons, as well as 

store the resulting data. Histogramming, the process of sorting detected photon arrival times into 

coarse time bins illustrated in Figure 1c, mitigates the challenge of storing large volumes of photon 

data [8]. However, the requirement to process and store such large volumes of photon data inevitably 

limits the achievable maximum distance and/or resolution.  
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Figure 1. Direct time-of-flight (a) ideal case with no ambient background photons (b) accumulating 

photons over multiple laser cycles to average out background (c) compressing photon data into a 

histogram (d) proposed ‘guided’ approach. 

The increased adoption of expensive 3D chip stacking processes (Figure 2) to add more 

histogram bin storage in-pixel demonstrates the value in overcoming this challenge. This is further 

highlighted by the increased adoption of novel ‘partial histogram’ dToF sensors which concede a 

limited bin capacity at the cost of greatly increasing lidar laser power consumption (discussed further 

in Section 2.3).  
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Figure 2. Bin capacity per ToF pixel of published dToF sensor arrays.  

To overcome the unmanageable volume of photon data, without using power-hungry partial 

histogram methods, we propose a new ‘guided’ direct time-of-flight approach. Illustrated in Figure 

1d, this approach centers around a dToF sensor where the observed time window of each individual 

pixel can be externally programmed on-the-fly. By allowing the diverse range of sensors already on 

the vehicle to guide the sensor, each pixel can efficiently gather the returning laser photons with a 

reduced set of bins.  

This paper is organized as follows: in Section 2 we discuss related work to highlight the value 

of the proposed guided dToF approach; in Section 3 the technical details of the implemented guided 

ToF system are documented; Section 4 presents the achieved performance of the system; and finally 

a discussion and conclusion of the work is given in Section 5, respectively. 

2. Related Work 

Two techniques have so far played a critical role in enabling 2D arrays of dToF pixels for long 

range solid-state lidar: 3D chip stacking and partial histogram techniques. 

2.1. 3D Stacked DToF Sensors 

While 3D chip stacking has been long established in image sensors, dToF sensors which rely on 

the high sensitivity and fine time-resolution of single photon avalanche diodes (SPADs) have only 

been made possible through more recent advancements. The first 3D stacked dToF sensor chip was 

developed in 2018 by Ximenes et. al [9]. An infinite impulse response (IIR) filter is used, instead of 

histogramming, to average successive photon arrival times and narrow in on the laser arrival time. 

However, this technique suffers under ambient conditions, making it impractical for automotive 

lidar. In 2019, Henderson et. al [10] showcased a stacked dToF sensor with capacity for 16 histogram 

bins. The demonstrated ranging outdoors as far as 50 m within tens of centimeter accuracy while 

running at 30 fps was a significant step towards automotive grade depth sensing performance. In 

2021, Padmanabhan et al. [11] highlighted the value of using programmable time windows to achieve 

long distance ranging outdoors. The stacked sensor presented achieved a maximum distance of 100 m 

with 0.7 m error under low ambient light conditions (10 klux), although this is only given for a single-

point measurement and at an undisclosed frame rate. 

2.2. Partial Histogram DToF Sensors 

Partial histogram sensors aim to achieve the same maximum range and precision of a full 

histogram approach (Figure 1c) with a reduced number of histogram bins. They can be grouped into 

two categories: ‘zooming’ and ‘sliding’. 

Zooming, as illustrated in Figure 3a, spreads the reduced histogram initially across the full 

distance range. After multiple laser cycles, the peak (signal) bin is identified, and the histogram is 
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zoomed in to a new, narrower time window. Multiple zoom steps can be performed until the required 

precision is achieved. Zhang et al. [13] published the first dToF sensor capable of independent per-

pixel histogram zooming in 2019. Each pixel contained an 8×10-bit histogram which zoomed in 3 

steps to achieve a maximum range of 50 m with 8.8 cm accuracy using a 60% reflective target, albeit 

for a single point measurement. An updated iteration [14] built on a stacked process, enabled an 

increased histogram bin capacity of 32 bins, allowing zooming to be reduced to a 2-step approach. In 

2021, Kim et al. [15] reduced the required histogram capacity even further to only 2 bins using 8 

zooming steps. The impact of using many zoom steps on frame rate was acknowledged and 

prompted a follow-up publication by Park et al. [16]. This reduced the number of zoom steps from 8 

down to 4 to range up to 33 m at 1.5 fps. 

 

Figure 3. Illustration of partial histogram approaches (a) zooming and (b) sliding. Reproduced from [12]. 

Sliding, as illustrated in Figure 3b, achieves a partial histogram solution by spreading the 

reduced histogram across only a subset of the full distance range. After sufficient laser cycles have 

been accumulated, the time window slides to a new time range and the process repeats until the full 

the distance range has been covered. Stoppa et al. [17], published the first sliding histogram sensor 

in 2021. Using 3D chip stacking, each pixel has capacity for 32 histogram bins which slide over 16 

windows. 6 bins of overlap between each slide step is used to cover edge-cases. The sensor was 

upgraded the following year [18] using 22 nm technology on the bottom tier (previously 40 nm), to 

further increased to the histogram bin capacity to 59 bins per pixel. 

2.3. Summary of DToF Histogram Approaches 

The conventional full histogram dToF approach efficiently collects returning laser photons, but 

limited on-chip area makes long-range, outdoor performance impractical. Even if a full histogram 

solution could be implemented, the large amount of data output from potentially millions of pixels 

would only compound the problem of high data volume that self-driving vehicles already face [19]. 

On the other hand, partial histogram dToF sensors are more feasible. However, these introduce 

a severe laser power penalty. This occurs in zooming because each step adds an additional set of laser 

cycles on top of what is required for a full histogram approach, while in sliding the penalty is a result 

of most steps not containing the laser return time. This is particularly problematic for flash lidar 
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architectures where a high peak laser power is typically required. The laser power introduced by 

partial histogram approaches has been extensively studied in [20], showing a minimum 5× laser 

power penalty is required to meet a typical automotive lidar specification. 

In addition to increased laser power, partial histogram approaches introduce other limitations. 

Sliding does not solve the issue of high data volume and can introduce motion artefacts if the target 

moves between slide windows within a frame. Zooming can also introduce image artefacts if multiple 

peaks occur in the same line-of-sight as a result of transparent objects for example.  

In contrast, if the complexity of integrating multiple on-board data sources can be overcome, a 

guided dToF system would be able to achieve long distance outdoor depth sensing with a reduced 

set of histogram bins and without a laser power penalty. Exploring the feasibility, implementation 

and performance of such a system is therefore of significant value in the context of self-driving 

vehicles, where an abundance of sensor data is already available. A summary of the merits of 

different dToF histogram alongside the proposed guided dToF approach is provided in Table 1. 

Table 1. Merits of different dToF histogram approaches alongside the proposed guided approach. 

Parameter Full Histogram 
Partial Histogram 

Guided 
Zooming Sliding 

Laser power penalty  Low High High Low 

Area requirement High Low Low Low 

Data volume High Low High Low 

Multipath reflection artefacts Low Medium Low Low 

Motion artefacts Low Medium Medium Medium 

System complexity Low Low Low High 

3. Materials & Methods 

3.1. Guided Lidar Sensor 

The sensor used to demonstrate this approach (Figure 4) was fabricated in a standard 40 nm 

CMOS technology and features 32×64 dToF pixels. Each pixel contains 4×4 SPADs alongside 

processing and storage of photon events into a histogram of 8×12-bit bins. Originally presented in 

[21], each dToF pixel is able to independently slide its histogram time window and automatically 

lock on to a peak when detected. To use the chip as guided dToF sensor for this work, the tracking 

feature is been disabled and configured such that the time window allocated to each pixel can 

dynamically programmed. 

 

Figure 4. Micrograph of the guided dToF sensor. Reproduced from [21] with author's permission. 

3.2. Guiding Source: Stereo Camera Vision 

The variety of sensors available on-board self-driving vehicles, including ultrasound, radar, 

vision cameras, and geolocation, provide ample data for a guided lidar system. In this work, we use 

a pair of vision cameras and perform stereo depth processing to provide the required guiding depth 

estimates. The foundation of stereo depth estimation is to match each point in the image of one 
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(principal) camera to that in the image of another (secondary) camera. The number of pixels any point 

has shifted by, termed disparity 𝑑 , gives the distance 𝑧 to that point according to Equation (1) 

assuming both cameras are separated by a baseline distance 𝐵 and share the same focal length 𝑓. 

Quantization as a result of discrete pixel disparity values limits the achievable depth accuracy, 

although sub-pixel estimation can enable resolving disparity to less than a single pixel value [22]. 

Stereo depth accuracy ∆𝑧 is derived in Equation (2) revealing the squared increase in error with 

distance characteristic of stereo depth. ∆𝑧∆𝑑 ൌ െ 𝑓 𝐵𝑑ଶ   ⇒   |∆𝑧| ൌ 𝑧ଶ ∆𝑑𝑓 𝐵  (2) 

In reality, the achieved accuracy is limited by the point matching ability of the chosen stereo 

processing algorithm [23]. Although state-of-the-art machine learning algorithms now outperform 

traditional computer vision algorithms for stereo depth estimation [24], the aim of this work is to 

prove the concept of guided lidar. Therefore, we adopt the established semi-global matching (SGM) 

algorithm for simplicity [25]. 

Figure 5 shows the process used to acquire stereo depth estimates in our guided dToF system. 

Prior to running, the cameras must be carefully calibrated by imaging a checkerboard in various 

poses [26]. This allows the intrinsic (focal length and optical center) and extrinsic (relative separation 

and rotation) camera parameters to be extracted. These are used during runtime for both rectification 

and conversion of disparity to distance. Rectification allows the stereo matching search space to be 

dramatically reduced by aligning all points in both images along the same horizontal plane. 

 

Figure 5. Process flow diagram of acquiring stereo depth estimates for the guided lidar system. 

3.3. Pixel Mapping 

Once depth estimates of the scene have been acquired, they must be mapped onto each 

individual pixel of the lidar sensor to guide it to the appropriate depth window. The process of 

mapping a depth estimate from the principal (left) stereo camera to a lidar pixel is illustrated in Figure 

6. Camera calibration is once again adopted to determine the translation of the lidar sensor with 

respect to the principal stereo camera. Capturing checkerboard images using the lidar sensor is 

achieved by configuring it for photon counting using intensity data. After calibration, the parameters 

required for pixel mapping are established: the intrinsic matrix of the principal stereo camera 𝐾௦, the 

𝑧 ൌ 𝑓 𝐵𝑑  (1) 
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intrinsic matrix of the lidar 𝐾௟ and the extrinsic parameters of the lidar with respect to the principal 

camera position, composed of rotation matrix 𝑅௟ and translation matrix 𝑇௟.  

 

Figure 6. Pixel mapping a point from one stereo camera to the corresponding lidar sensor pixel. 

The pixel mapping process is achieved in two steps: (a) map each pixel coordinate in the stereo 

depth image (𝑥௦, 𝑦௦) to its corresponding world coordinate (𝑋, 𝑌, 𝑍) and then (b) map each world 

coordinate to the corresponding lidar camera pixel coordinate (𝑥௟ , 𝑦௟).  

The first step is achieved by multiplying the inverse intrinsic matrix of the principal stereo 

camera 𝐾௦ by the camera coordinate to give a normalized world coordinate. The world coordinate 

can then be scaled appropriately by multiplying by the distance 𝑍 to that point (which has already 

been estimated by the stereo depth algorithm).  

𝑍 ∙ ൭𝑋෨𝑌෨1൱ ൌ ൭𝑋𝑌𝑍൱ (4) 

The second step is achieved by multiplying the lidar camera’s extrinsic matrix 𝑃௟ by the prior 

calculated world coordinated, giving the corresponding lidar camera coordinate. 

𝑃௟ ൈ ቌ𝑋𝑌𝑍1ቍ ൌ ቆ𝑥௟𝑦௟1 ቇ  

where 𝑃௟  ൌ 𝐾௟ ൈ  ሾ𝑅௟ 𝑇௟ሿ (5) 

In the case where multiple camera pixels map to one lidar pixel, the modal pixel value can be 

taken. Alternatively, duplicates may be discarded to save processing time.  

3.4. Process Optimization 

The stereo depth and pixel matching processes can be greatly optimized by reducing the total 

data processed in the pipeline. Figure 7a shows a full 1080 × 1440 resolution image produced by one 

of the stereo vision cameras. Figure 7b shows the total processing time required to rectify and run the 

SGM algorithm in our setup is approximately 0.4 s, equivalent to a maximum frame rate of around 

2 fps. However, the projected lidar field-of-view overlaps only a small portion of the camera image. 

In addition, multiple pixels of the stereo vision camera occupy a single projected lidar pixel. By 

acquire images cropped to half height and enabling pixel binning in 2 × 2, the total amount of data is 

reduced by 8 times, reducing the stereo depth processing time to 50 ms without degrading the 

guiding depth estimates. Moreover, this also reduces number of coordinates that need to be point 

matched to the lidar sensor. 

𝐾௦ି ଵ ൈ ቆ𝑥௦𝑦௦1 ቇ ൌ ൭𝑋෨𝑌෨1൱ (3) 
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Figure 7. (a) Full resolution stereo camera image compared to the projected lidar FOV (b) processing 

time for rectification and SGM stereo depth processing in MATLAB using the current setup. 

3.5. Process Flow 

An overview of each process step in the implemented guided dToF lidar system is illustrated in 

Figure 8. After acquiring images from the stereo cameras, the stereo algorithm creates depth estimate 

image from the perspective of the chosen principal (left) camera. Depth estimates are then mapped 

to each pixel of the lidar sensor as described in Section 3.3. The exposure time window of each lidar 

pixel is then programmed to the interval corresponding to the provided depth estimate. Finally, the 

lidar acquisition period begins, with each pixel building a histogram of photon returns within its 

allocated time window to converge on a precise measured distance, producing a depth map. 

 

Figure 8. The main steps in the guided dToF lidar process. Adapted from [12]. 

3.6. Setup 

Details of the guided dToF lidar demonstrator are presented in Table 2. The lidar sensor bin 

widths are configured to 0.375 m (2.5 ns) as an optimum ratio to the laser pulse width as 

recommended in [27]. While many solid-state lidar architectures utilize dToF sensors, a flash lidar 

architecture is adopted here for proof-of-concept.   

The entire setup runs off a 1.9 GHz Intel Core i7 8th generation laptop with a Bosch GLM250VF 

rangefinder used to provide ground truth distance information for benchmarking. An image of the 

working demonstrator is shown in in Figure 9. 
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Figure 9. The guided dToF lidar demonstrator described in this publication. Adapted from [12]. 

Table 2. Component and attributes for the presented guided dToF lidar system. 

Component Parameter Value 

Stereo Rig 

Baseline 1 m 

Camera type BFS-U3-16S2M-CS 

Maximum resolution 1080×1440 

Focal length 12 mm 

Lidar 

Laser pulse width 4.5 ns FWHM 
Laser repetition rate 80 kHz 

Wavelength 940 nm 

Filter bandwidth 10 nm FWHM 

Focal length 25 mm 

Field of view (H×V) 16°×4° 

Histogram bins 8×12-bit 

Histogram bin width 0.375 m (2.5 ns) 

 Histogram window step 1.875 m (1.25 ns) 

4. Results 

4.1. Scenes 

To assess the guided lidar demonstrator, multiple challenging scenes have been captured in real 

time running at 3 fps. 

4.1.1. Outdoor Clear Conditions 

The first scene is conducted under daylight conditions of 15 klux and captures a van driving 

away from the guided lidar setup. The constituent parts in one frame of guided lidar data from this 

scene are shown in Figure 10. By configuring the lidar sensor histogram window step size (1.875 m) 

to be less than the window size (3 m), the depth map across the van is continuous even though it 

spans multiple time windows. 
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Figure 10. One frame of guided lidar data showing each of the constituent parts of the process as 

outlined in Figure 8. Adapted from [12]. 

Figure 11 shows the subsequent frames captured from the same scene. The histogram and 

guided time window of a sample lidar pixel are provided to validate that the pixel is correctly 

updated as the van drives away. The guided lidar setup continues to track and resolve the distance 

to the van all the way out to 75 m. 

 

Figure 11. Three further frames of the outdoor scene in Figure 10 on a clear day. A sample pixel of the 

lidar sensor shows the time window it is configured to and the resulting histogram produced. 

Reproduced from [12]. 

4.1.2. Outdoor Foggy Conditions 

Fog presents adverse weather conditions for lidar. Not only does it reduce the intensity of the 

returning laser, but it also produces early laser returns reflecting from the fog itself [28]. The scene 

presented in Figure 12 is captured under foggy conditions with both a moving pedestrian and car. 

The figure shows the time window of a lidar pixel looking at the pedestrian being correctly updated 

independently of the pixel looking at the car, with the car distance resolved as far as 60 m under these 

challenging conditions. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 October 2023                   doi:10.20944/preprints202310.0120.v1

https://doi.org/10.20944/preprints202310.0120.v1


 11 

 

 

Figure 12. Three frames of an outdoor scene on a foggy day. Sample pixels of the lidar sensor show 

the time windows they are configured to and the resulting histogram produced. 

4.1.3. Transparent Obstacles 

Transparent objects such as glass present additional challenges to lidar due to the multipath 

reflections they introduce [29]. This is particularly problematic for approaches such as partial 

histogram zooming which favor the first signal peak. The point cloud in Figure 13b shows the result 

of evaluating only the first peak when presented with a scene through a glass door Figure 13a. Using 

a guided dToF approach, each lidar pixel can be correctly guided to the human figure behind the 

glass door, as shown in Figure 13c.   

 

Figure 13. (a) a scene through a glass door (b) human figure obscured if only the first lidar peak is 

used (c) human figure resolved using guided dToF lidar. Reproduced from [12]. 

4.2. Performance 

4.2.1. Measurement Error 

To quantitively evaluate the performance of the guided dToF demonstrator, the measured 

distance to a human target is compared to ground truth distance from the rangefinder. A window of 

3×3 pixels across 9 frames are assessed to provide a total 81 sample points at each distance step. The 

experiment was conducted outdoors under daylight conditions of 72 klux. As before, the setup is 

configured to run at 3 fps (no frame averaging). The results are presented in Figure 14, showing the 

guided lidar maintains a root-mean squared (RMS) error less than 20 cm as far 50 m. The error of the 

stereo depth guiding source is also evaluated, showing the squared increase in distance error 

characteristic of this approach. 
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Figure 14. Distance measurement error operating at 3 fps under 72 klux ambient intensity. Theoretical 

stereo depth accuracy based on to Equation (2) assuming a sub-pixel disparity resolution of 0.25 

pixels. Reproduced from [12]. 

4.2.2. Processing Time 

The time consumed by each step within a single frame of our guided lidar system is shown in 

Figure 15. Aside from the lidar acquisition period, the main processes consume a total of 150 ms 

running on the 1.9 GHz Intel Core i7 processor, limiting the maximum achievable frame rate of this 

demonstrator to just over 6 fps. 

 

Figure 15. Execution time of each main process in one frame of our guided dToF demonstrator. 

4.3. Laser Power Efficiency 

To further benchmark the presented guided dToF lidar system, the lidar sensor’s photon budget 

(signal and background photon arrival rate) are characterized. This allows established models [20,27] 

to be applied and determine the additional laser power consumed by equivalent partial histogram 

approaches. 

4.3.1. Lidar Characterisation 

To characterize the photon budget of our lidar system, a 1 m2 Lambertian target calibrated to 

10% reflectivity is positioned at various distance intervals and captured. Characterization was 

performed under ambient daylight conditions of 60 klux. A photograph of the scene during 

characterization is shown in Figure 16a. 

For the signal (laser) photon budget, the lidar exposure time is optimized to ensure a high signal 

count without clipping. For the background photon budget, the laser is disabled. A total of 100 frames 

are averaged and a window of 3×3 pixels are sampled. The results are shown in Figure 16b. The 

observed background return rate is independent of distance, in keeping with literature [30], and is 
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measured to be 4.8 Mcounts/s, equivalent to 8 Mcounts/s at 100 klux. While the observed signal 

photon return rate varies with distance, it can be considered to follow an inverse square law. Fitting 

a trendline to this relationship allows the expected signal photons per laser cycle for any target 

distance (𝑧) for this lidar system to be approximated as 89𝑧-2. 

 

Figure 16. (a) Setup during characterization using a 10% reflectivity target under ambient conditions 

of 60 klux (b) measured and extrapolated photon return rate during characterization. . 

4.3.2. Laser Power Penalty of Partial Histogram Equivalent 

Having characterized the lidar photon budget, the required number of laser cycles as a function 

of distance for equivalent partial histogram approaches can be quantified. The Thompson model 

presented in [27] calculates the minimum number of laser cycles for a dToF lidar system to achieve a 

specified precision. Using attribute of our lidar sensor (laser pulse and histogram bin width) in Table 

2, and measured photon return rate in Figure 16b, the minimum laser cycles required to achieve 10 cm 

precision using a full histogram approach as given by the Thompson model is shown in Figure 17a. 

An equivalent sliding partial histogram approach (8×0.375 m bins sliding in intervals of 3 m) 

would require the same number of laser cycles for distances up to the width of the first slide window. 

Past this distance, the total laser cycles required to measure any given distance with 10 cm precision 

is the sum of the full histogram laser cycle value for each additional 3 m slide window. The resulting 

increase in laser cycles for an equivalent sliding partial histogram approach is shown in Figure 17a. 

An equivalent zooming partial histogram approach would require an additional zoom step to 

measure distances greater than 3 m by configuring each bin to 3 m wide. Past 27 m, yet another zoom 

step would be required, configuring each bin to 27 m wide. At each zoom step, the laser must be 

cycled enough times to detect the peak bin within a specified probability of detection for a given 

distance. Using the probability of detection model for histogram-based dToF published in [20] and 

specifying a minimum 99.7% detection rate (3σ rule), the minimum number of laser cycles for each 

step of an equivalent zooming dToF sensor is given in Figure 17b. The total laser cycles required to 

zoom to a given distance is therefore sum of laser cycles required at each zoom step for a given 

distance, shown in Figure 17a. 

The required increase in total laser cycles for each equivalent partial histogram approach 

compared to a full histogram/guided approach, is shown in Figure 17c. At the maximum distance of 

75 m achieved by our guided dToF system, a minimum 6× laser power is saved compared to adopting 

an equivalent partial histogram approach. It should be noted that the sliding approach modelled here 

assumes no overlapping of windows between steps which would further increase its laser power 

penalty. 
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Figure 17. (a) Minimum laser cycles required to achieve 10 cm depth precision using the presented 

guided lidar configuration and equivalent sliding and zooming partial histogram approaches (b) 

minimum laser cycles required for each step of an equivalent zooming partial histogram approach (c) 

laser power penalty of equivalent sliding and zooming partial histogram approaches. 

5. Discussion 

A summary of the presented guided dToF demonstrator performance alongside state-of-the-art 

dToF lidar sensors is presented in Table 3. The table shows that, while the implemented system uses 

a single-tier sensor chip with a relatively small number of histogram bins in each macropixel, the 

combined range and frame rate achieved in bright ambient conditions through a guided dToF 

approach is amongst the top performing. Using only 8 histogram bins per macropixel, the guided 

dToF demonstrator achieves a maximum distance of 75 m. A conventional full histogram approach 

with equivalent 0.375 m bin width would require over 200 histogram bins per macropixel. This is 

much more than any state-of-the-art sensor is yet to achieve and equivalent to a 25× increase in pixel 

histogram area for our sensor. 
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Table 3. Performance overview of state-of-the-art direct time-of-flight lidar sensors. 

Author Ref 

Resolution 

(ToF 

pixels) 

Max. 

Range 

(m) 

Ambient 

Intensity

(klux) 

Precision / 

Accuracy  

(m) 

Frame 

Rate 

(Hz) 

Histogram 

Bins 
Stacked 

Partial 

Histogram 

Ximenes [9] 64 × 128 300 1 - 0.47 / 0.8 30 2 - Yes No 

Henderson [10] 64 × 64 50 - - / 0.17 30 16 Yes No 

Zhang [13] 144 × 252 50 - 
0.0014 / 

0.88 
30 2 8 No Zooming 

Okino [31] 900 × 1200 250 - 1.5 / - - - No No 

Kim [15] 40 × 48 45 - 
0.014 / 

0.023 
- 2 No Zooming 

Kumagai [32] 63 × 168 200 117 - / 0.3 20 - Yes No 

Padmanabhan [11] 128 × 256 100 1 10 - / 0.07 - - Yes No 

Stoppa [17] 60 × 80 4.4 50 0.007 / 0.04 30 32 Yes Sliding 

Zhang [14] 160 × 240 9.5 10 0.01 / 0.02 20 32 Yes Zooming 

Park [16] 60 × 80 45 30 
0.015 / 

0.025 
1.5 2 4 No Zooming 

Taloud [18] 32 × 42 8.2 1 0.007 / 0.03 30 59 Yes Sliding 

This work - 32 × 64 75 70 0.2 3 8 No No 

1. Single point measurement. 2. Frame rate not specified at maximum distance. 

The ability to correctly guide lidar under multipath conditions is also of unique value. In 

addition to the glass obstruction tested in Figure 15, many other real-world conditions can create 

multiple signal peaks which can be incorrectly interpreted by a standalone lidar. These include 

obstructions from smoke [33] and retroreflectors such as road signs [34]. 

Various enhancements are proposed to enable the preliminary guided dToF demonstrator 

presented here to achieve the performance required for automotive lidar of 200 m range at 25 fps [35]. 

Firstly, by adopting the increased sensitivity of state-of-the-art SPAD processes [32,36], the maximum 

range of the system can be extended while reducing the required lidar exposure time. Figure 15 shows 

the stereo depth processing algorithm to be the next most time-dominant process after the lidar 

exposure time. A guided dToF solutions with a greater capacity for histogram bins would tolerate 

larger error from the stereo depth estimates, allowing for less accurate but faster stereo algorithms 

[37]. Parallel execution of the various guided processes and adoption of GPU processing will also 

enable further acceleration. Finally, the use of different depth estimate sources (radar, ultrasound) 

should be explored, as well as processing methods such as Kalman filters to extrapolate previous 

depth frames. 

For the practical realization of guided dToF in self-driving vehicle using the specific 

implementation presented here, the main practical challenge is camera alignment. Any variation in 

the extrinsic properties of the cameras due to vehicle movement or vibrations not only worsen the 

accuracy of stereo depth accuracy, but also impact pixel mapping of depth estimates to the lidar 

sensor. While continuous camera self-calibration techniques have been developed [38], these need to 

be explored in the context of a stereo camera guided dToF lidar system.  
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