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Abstract: Self-driving vehicles demand efficient and reliable depth sensing technologies. Lidar, with its
capacity for long-distance, high-precision measurement, is a crucial component in this pursuit. However,
conventional mechanical scanning implementations suffer from reliability, cost, and frame rate limitations.
Solid-state lidar solutions have emerged as a promising alternative, but the vast amount of photon data
processed and stored using conventional direct time-of-flight (dToF) prevents long-distance sensing unless
power-intensive partial histogram approaches are used. In this paper, we introduce a groundbreaking ‘guided’
dToF approach, harnessing external guidance from other onboard sensors to narrow down the depth search
space for a power and data-efficient solution. This approach centers around a dToF sensor in-which the
exposed time widow of independent pixels can be dynamically adjusted. We utilize a 64-by-32 macropixel
dToF sensor and a pair of vision cameras to provide the guiding depth estimates. Our demonstrator captures
a dynamic outdoor scene at 3 fps with distances up 75 m. Compared to a conventional full histogram approach,
on-chip data is reduced by over 25 times, while the total laser cycles in each frame are reduced by at least 6
times compared to any partial histogram approach. The capability of guided dToF to mitigate multipath
reflections is also demonstrated. For self-driving vehicles where a wealth of sensor data is already available,
guided dToF opens new possibilities for efficient solid-state lidar.

Keywords: lidar; direct time-of-flight; dToF; flash lidar; SPADs; stereo depth; 3D vision

1. Introduction

Self-driving vehicles require a diverse range of depth sensors to ensure safety and reliability
[1,2]. This is the consensus among vehicle manufacturers such as Audi, BMW, Ford, and many more,
as outlined in their automated driving safety frameworks [3,4]. Sensor types include ultrasound,
radar, vision cameras and lidar. Of these, lidar can provide long distance sensing over hundreds of
meters with centimeter precision [5]. Direct time-of-flight (dToF), illustrated in Figure 1la, is
performed by measuring the roundtrip time of a short laser pulse and is currently the most suited
lidar approach for these distances [6]. However, traditional mechanical scanning implementations
introduce reliability issue, frame rate limitations and high cost [7]. For widespread adoption of self-
driving vehicles, a more practical and cost-effective lidar solution is required.

Contrastingly, new solid-state lidar solutions including flash lidar, are made using established
and economical semiconductor processes with no moving parts. Many solid-state lidar solutions
center around a chip containing a 2D array of dToF sensor pixels to time the returning laser from
each point in the scene. However, ambient background photons are also present, so the detected
arrival times of all photons must be accumulated over multiple laser cycles to distinguish the laser
arrival time, as illustrated in Figure 1b. This presents a significant challenge, as each pixel in the dToF
sensor must accommodate enough area to detect, process, and time the arrival of photons, as well as
store the resulting data. Histogramming, the process of sorting detected photon arrival times into
coarse time bins illustrated in Figure 1c, mitigates the challenge of storing large volumes of photon
data [8]. However, the requirement to process and store such large volumes of photon data inevitably
limits the achievable maximum distance and/or resolution.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Direct time-of-flight (a) ideal case with no ambient background photons (b) accumulating
photons over multiple laser cycles to average out background (c) compressing photon data into a
histogram (d) proposed ‘guided” approach.

The increased adoption of expensive 3D chip stacking processes (Figure 2) to add more
histogram bin storage in-pixel demonstrates the value in overcoming this challenge. This is further
highlighted by the increased adoption of novel “partial histogram” dToF sensors which concede a
limited bin capacity at the cost of greatly increasing lidar laser power consumption (discussed further
in Section 2.3).
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Figure 2. Bin capacity per ToF pixel of published dToF sensor arrays.

To overcome the unmanageable volume of photon data, without using power-hungry partial
histogram methods, we propose a new ‘guided’ direct time-of-flight approach. Illustrated in Figure
1d, this approach centers around a dToF sensor where the observed time window of each individual
pixel can be externally programmed on-the-fly. By allowing the diverse range of sensors already on
the vehicle to guide the sensor, each pixel can efficiently gather the returning laser photons with a
reduced set of bins.

This paper is organized as follows: in Section 2 we discuss related work to highlight the value
of the proposed guided dToF approach; in Section 3 the technical details of the implemented guided
ToF system are documented; Section 4 presents the achieved performance of the system; and finally
a discussion and conclusion of the work is given in Section 5, respectively.

2. Related Work

Two techniques have so far played a critical role in enabling 2D arrays of dToF pixels for long
range solid-state lidar: 3D chip stacking and partial histogram techniques.

2.1. 3D Stacked DToF Sensors

While 3D chip stacking has been long established in image sensors, dToF sensors which rely on
the high sensitivity and fine time-resolution of single photon avalanche diodes (SPADs) have only
been made possible through more recent advancements. The first 3D stacked dToF sensor chip was
developed in 2018 by Ximenes et. al [9]. An infinite impulse response (IIR) filter is used, instead of
histogramming, to average successive photon arrival times and narrow in on the laser arrival time.
However, this technique suffers under ambient conditions, making it impractical for automotive
lidar. In 2019, Henderson et. al [10] showcased a stacked dToF sensor with capacity for 16 histogram
bins. The demonstrated ranging outdoors as far as 50 m within tens of centimeter accuracy while
running at 30 fps was a significant step towards automotive grade depth sensing performance. In
2021, Padmanabhan et al. [11] highlighted the value of using programmable time windows to achieve
long distance ranging outdoors. The stacked sensor presented achieved a maximum distance of 100 m
with 0.7 m error under low ambient light conditions (10 klux), although this is only given for a single-
point measurement and at an undisclosed frame rate.

2.2. Partial Histogram DToF Sensors

Partial histogram sensors aim to achieve the same maximum range and precision of a full
histogram approach (Figure 1c) with a reduced number of histogram bins. They can be grouped into
two categories: ‘zooming’ and ‘sliding’.

Zooming, as illustrated in Figure 3a, spreads the reduced histogram initially across the full
distance range. After multiple laser cycles, the peak (signal) bin is identified, and the histogram is
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zoomed in to a new, narrower time window. Multiple zoom steps can be performed until the required
precision is achieved. Zhang et al. [13] published the first dToF sensor capable of independent per-
pixel histogram zooming in 2019. Each pixel contained an 8x10-bit histogram which zoomed in 3
steps to achieve a maximum range of 50 m with 8.8 cm accuracy using a 60% reflective target, albeit
for a single point measurement. An updated iteration [14] built on a stacked process, enabled an
increased histogram bin capacity of 32 bins, allowing zooming to be reduced to a 2-step approach. In
2021, Kim et al. [15] reduced the required histogram capacity even further to only 2 bins using 8
zooming steps. The impact of using many zoom steps on frame rate was acknowledged and
prompted a follow-up publication by Park et al. [16]. This reduced the number of zoom steps from 8
down to 4 to range up to 33 m at 1.5 fps.
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Figure 3. [llustration of partial histogram approaches (a) zooming and (b) sliding. Reproduced from [12].

Sliding, as illustrated in Figure 3b, achieves a partial histogram solution by spreading the
reduced histogram across only a subset of the full distance range. After sufficient laser cycles have
been accumulated, the time window slides to a new time range and the process repeats until the full
the distance range has been covered. Stoppa et al. [17], published the first sliding histogram sensor
in 2021. Using 3D chip stacking, each pixel has capacity for 32 histogram bins which slide over 16
windows. 6 bins of overlap between each slide step is used to cover edge-cases. The sensor was
upgraded the following year [18] using 22 nm technology on the bottom tier (previously 40 nm), to
further increased to the histogram bin capacity to 59 bins per pixel.

2.3. Summary of DToF Histogram Approaches

The conventional full histogram dToF approach efficiently collects returning laser photons, but
limited on-chip area makes long-range, outdoor performance impractical. Even if a full histogram
solution could be implemented, the large amount of data output from potentially millions of pixels
would only compound the problem of high data volume that self-driving vehicles already face [19].

On the other hand, partial histogram dToF sensors are more feasible. However, these introduce
a severe laser power penalty. This occurs in zooming because each step adds an additional set of laser
cycles on top of what is required for a full histogram approach, while in sliding the penalty is a result
of most steps not containing the laser return time. This is particularly problematic for flash lidar
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architectures where a high peak laser power is typically required. The laser power introduced by
partial histogram approaches has been extensively studied in [20], showing a minimum 5x laser
power penalty is required to meet a typical automotive lidar specification.

In addition to increased laser power, partial histogram approaches introduce other limitations.
Sliding does not solve the issue of high data volume and can introduce motion artefacts if the target
moves between slide windows within a frame. Zooming can also introduce image artefacts if multiple
peaks occur in the same line-of-sight as a result of transparent objects for example.

In contrast, if the complexity of integrating multiple on-board data sources can be overcome, a
guided dToF system would be able to achieve long distance outdoor depth sensing with a reduced
set of histogram bins and without a laser power penalty. Exploring the feasibility, implementation
and performance of such a system is therefore of significant value in the context of self-driving
vehicles, where an abundance of sensor data is already available. A summary of the merits of
different dToF histogram alongside the proposed guided dToF approach is provided in Table 1.

Table 1. Merits of different dToF histogram approaches alongside the proposed guided approach.

. Partial Histogram )
Parameter Full Histogram - — Guided
Zooming Sliding
Laser power penalty Low High High Low
Area requirement High Low Low Low
Data volume High Low High Low
Multipath reflection artefacts Low Medium Low Low
Motion artefacts Low Medium Medium Medium
System complexity Low Low Low High

3. Materials & Methods
3.1. Guided Lidar Sensor

The sensor used to demonstrate this approach (Figure 4) was fabricated in a standard 40 nm
CMOS technology and features 32x64 dToF pixels. Each pixel contains 4x4 SPADs alongside
processing and storage of photon events into a histogram of 8x12-bit bins. Originally presented in
[21], each dToF pixel is able to independently slide its histogram time window and automatically
lock on to a peak when detected. To use the chip as guided dToF sensor for this work, the tracking
feature is been disabled and configured such that the time window allocated to each pixel can
dynamically programmed.

Figure 4. Micrograph of the guided dToF sensor. Reproduced from [21] with author's permission.

3.2. Guiding Source: Stereo Camera Vision

The variety of sensors available on-board self-driving vehicles, including ultrasound, radar,
vision cameras, and geolocation, provide ample data for a guided lidar system. In this work, we use
a pair of vision cameras and perform stereo depth processing to provide the required guiding depth
estimates. The foundation of stereo depth estimation is to match each point in the image of one
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(principal) camera to that in the image of another (secondary) camera. The number of pixels any point
has shifted by, termed disparity d, gives the distance z to that point according to Equation (1)
assuming both cameras are separated by a baseline distance B and share the same focal length f.

_fB
T d

Quantization as a result of discrete pixel disparity values limits the achievable depth accuracy,
although sub-pixel estimation can enable resolving disparity to less than a single pixel value [22].
Stereo depth accuracy Az is derived in Equation (2) revealing the squared increase in error with
distance characteristic of stereo depth.
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In reality, the achieved accuracy is limited by the point matching ability of the chosen stereo
processing algorithm [23]. Although state-of-the-art machine learning algorithms now outperform
traditional computer vision algorithms for stereo depth estimation [24], the aim of this work is to
prove the concept of guided lidar. Therefore, we adopt the established semi-global matching (SGM)
algorithm for simplicity [25].

Figure 5 shows the process used to acquire stereo depth estimates in our guided dToF system.
Prior to running, the cameras must be carefully calibrated by imaging a checkerboard in various
poses [26]. This allows the intrinsic (focal length and optical center) and extrinsic (relative separation
and rotation) camera parameters to be extracted. These are used during runtime for both rectification
and conversion of disparity to distance. Rectification allows the stereo matching search space to be
dramatically reduced by aligning all points in both images along the same horizontal plane.

Setup
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Camera parameters
& e.g. semi-global matching, 5
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Figure 5. Process flow diagram of acquiring stereo depth estimates for the guided lidar system.

3.3. Pixel Mapping

Once depth estimates of the scene have been acquired, they must be mapped onto each
individual pixel of the lidar sensor to guide it to the appropriate depth window. The process of
mapping a depth estimate from the principal (left) stereo camera to a lidar pixel is illustrated in Figure
6. Camera calibration is once again adopted to determine the translation of the lidar sensor with
respect to the principal stereo camera. Capturing checkerboard images using the lidar sensor is
achieved by configuring it for photon counting using intensity data. After calibration, the parameters
required for pixel mapping are established: the intrinsic matrix of the principal stereo camera Kj, the


https://doi.org/10.20944/preprints202310.0120.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 October 2023 do0i:10.20944/preprints202310.0120.v1

intrinsic matrix of the lidar K; and the extrinsic parameters of the lidar with respect to the principal
camera position, composed of rotation matrix R; and translation matrix T;.
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Figure 6. Pixel mapping a point from one stereo camera to the corresponding lidar sensor pixel.

The pixel mapping process is achieved in two steps: (a) map each pixel coordinate in the stereo
depth image (x;,¥s) to its corresponding world coordinate (X,Y,Z) and then (b) map each world
coordinate to the corresponding lidar camera pixel coordinate (x;, y;).

The first step is achieved by multiplying the inverse intrinsic matrix of the principal stereo
camera K; by the camera coordinate to give a normalized world coordinate. The world coordinate
can then be scaled appropriately by multiplying by the distance Z to that point (which has already
been estimated by the stereo depth algorithm).

Xs X
Kt x (ys) = <?> 3)
1 1
X X
-
1 Z

The second step is achieved by multiplying the lidar camera’s extrinsic matrix P; by the prior
calculated world coordinated, giving the corresponding lidar camera coordinate.

v\ _ (o
Pex\ 5= <3’1)
1 1 ®)

Where Pl = Kl X [Rl Tl]

In the case where multiple camera pixels map to one lidar pixel, the modal pixel value can be
taken. Alternatively, duplicates may be discarded to save processing time.

3.4. Process Optimization

The stereo depth and pixel matching processes can be greatly optimized by reducing the total
data processed in the pipeline. Figure 7a shows a full 1080 x 1440 resolution image produced by one
of the stereo vision cameras. Figure 7b shows the total processing time required to rectify and run the
SGM algorithm in our setup is approximately 0.4 s, equivalent to a maximum frame rate of around
2 fps. However, the projected lidar field-of-view overlaps only a small portion of the camera image.
In addition, multiple pixels of the stereo vision camera occupy a single projected lidar pixel. By
acquire images cropped to half height and enabling pixel binning in 2 x 2, the total amount of data is
reduced by 8 times, reducing the stereo depth processing time to 50 ms without degrading the
guiding depth estimates. Moreover, this also reduces number of coordinates that need to be point
matched to the lidar sensor.
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Figure 7. (a) Full resolution stereo camera image compared to the projected lidar FOV (b) processing
time for rectification and SGM stereo depth processing in MATLAB using the current setup.

3.5. Process Flow

An overview of each process step in the implemented guided dToF lidar system is illustrated in
Figure 8. After acquiring images from the stereo cameras, the stereo algorithm creates depth estimate
image from the perspective of the chosen principal (left) camera. Depth estimates are then mapped
to each pixel of the lidar sensor as described in Section 3.3. The exposure time window of each lidar
pixel is then programmed to the interval corresponding to the provided depth estimate. Finally, the
lidar acquisition period begins, with each pixel building a histogram of photon returns within its
allocated time window to converge on a precise measured distance, producing a depth map.

1 Acquire stereo camera images d 2 Estimate stereo depth

T T

3 Pixel mapping l
10m 10m
8m y 8m
!z 6m
X 4m
2m

5 Acquire lidar depth p 4 Convert estimates to depth windows

Figure 8. The main steps in the guided dToF lidar process. Adapted from [12].

3.6. Setup

Details of the guided dToF lidar demonstrator are presented in Table 2. The lidar sensor bin
widths are configured to 0.375 m (2.5 ns) as an optimum ratio to the laser pulse width as
recommended in [27]. While many solid-state lidar architectures utilize dToF sensors, a flash lidar
architecture is adopted here for proof-of-concept.

The entire setup runs off a 1.9 GHz Intel Core i7 8th generation laptop with a Bosch GLM250VF
rangefinder used to provide ground truth distance information for benchmarking. An image of the
working demonstrator is shown in in Figure 9.
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Figure 9. The guided dToF lidar demonstrator described in this publication. Adapted from [12].

Table 2. Component and attributes for the presented guided dToF lidar system.

Component Parameter Value
Baseline Im
. Camera type BFS-U3-1652M-CS
Stereo Rig Maximum resolution 1080=1440
Focal length 12 mm
Laser pulse width 4.5 ns FWHM
Laser repetition rate 80 kHz
Wavelength 940 nm
Filter bandwidth 10 nm FWHM
Lidar
Focal length 25 mm
Field of view (HxV) 16°x4°
Histogram bins 8x12-bit
Histogram bin width 0.375m (2.5 ns)
Histogram window step 1.875 m (1.25 ns)
4. Results
4.1. Scenes

To assess the guided lidar demonstrator, multiple challenging scenes have been captured in real
time running at 3 fps.

4.1.1. Outdoor Clear Conditions

The first scene is conducted under daylight conditions of 15 klux and captures a van driving
away from the guided lidar setup. The constituent parts in one frame of guided lidar data from this
scene are shown in Figure 10. By configuring the lidar sensor histogram window step size (1.875 m)
to be less than the window size (3 m), the depth map across the van is continuous even though it
spans multiple time windows.
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Figure 10. One frame of guided lidar data showing each of the constituent parts of the process as
outlined in Figure 8. Adapted from [12].

Figure 11 shows the subsequent frames captured from the same scene. The histogram and
guided time window of a sample lidar pixel are provided to validate that the pixel is correctly
updated as the van drives away. The guided lidar setup continues to track and resolve the distance
to the van all the way out to 75 m.
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Figure 11. Three further frames of the outdoor scene in Figure 10 on a clear day. A sample pixel of the
lidar sensor shows the time window it is configured to and the resulting histogram produced.
Reproduced from [12].

4.1.2. Outdoor Foggy Conditions

Fog presents adverse weather conditions for lidar. Not only does it reduce the intensity of the
returning laser, but it also produces early laser returns reflecting from the fog itself [28]. The scene
presented in Figure 12 is captured under foggy conditions with both a moving pedestrian and car.
The figure shows the time window of a lidar pixel looking at the pedestrian being correctly updated
independently of the pixel looking at the car, with the car distance resolved as far as 60 m under these
challenging conditions.
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Figure 12. Three frames of an outdoor scene on a foggy day. Sample pixels of the lidar sensor show
the time windows they are configured to and the resulting histogram produced.

4.1.3. Transparent Obstacles

Transparent objects such as glass present additional challenges to lidar due to the multipath
reflections they introduce [29]. This is particularly problematic for approaches such as partial
histogram zooming which favor the first signal peak. The point cloud in Figure 13b shows the result
of evaluating only the first peak when presented with a scene through a glass door Figure 13a. Using
a guided dToF approach, each lidar pixel can be correctly guided to the human figure behind the
glass door, as shown in Figure 13c.

CMOS Camera Image First Peak Guided
(’ F ] 2 \’g 8 8
< 7 7
» = 6 6
e = 5 5
4 4
Distance (m) Distance (m)
(a) (b) (©)

Figure 13. (a) a scene through a glass door (b) human figure obscured if only the first lidar peak is
used (c) human figure resolved using guided dToF lidar. Reproduced from [12].

4.2. Performance
4.2.1. Measurement Error

To quantitively evaluate the performance of the guided dToF demonstrator, the measured
distance to a human target is compared to ground truth distance from the rangefinder. A window of
3x3 pixels across 9 frames are assessed to provide a total 81 sample points at each distance step. The
experiment was conducted outdoors under daylight conditions of 72 klux. As before, the setup is
configured to run at 3 fps (no frame averaging). The results are presented in Figure 14, showing the
guided lidar maintains a root-mean squared (RMS) error less than 20 cm as far 50 m. The error of the
stereo depth guiding source is also evaluated, showing the squared increase in distance error
characteristic of this approach.
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Figure 14. Distance measurement error operating at 3 fps under 72 klux ambient intensity. Theoretical
stereo depth accuracy based on to Equation (2) assuming a sub-pixel disparity resolution of 0.25

pixels. Reproduced from [12].

4.2.2. Processing Time

The time consumed by each step within a single frame of our guided lidar system is shown in
Figure 15. Aside from the lidar acquisition period, the main processes consume a total of 150 ms
running on the 1.9 GHz Intel Core i7 processor, limiting the maximum achievable frame rate of this

demonstrator to just over 6 fps.

D Pixel mapping DStereo depth DWrite time windows DDecode histograms Dother i iLidar exposure (variable)

Process Time (B2 50 20| a |2 200 |
(ms) AAIApAAanHanmamanmanuonAmmamhuanRaanmamamananmamm
Total F I t t t t } t }
O rame
R 0 50 100 150 200 250 300 350
Equiv. Frame
Rate (fps) & 20 10 6.7 5 4 3.33 2.9

Figure 15. Execution time of each main process in one frame of our guided dToF demonstrator.

4.3. Laser Power Efficiency

To further benchmark the presented guided dToF lidar system, the lidar sensor’s photon budget
(signal and background photon arrival rate) are characterized. This allows established models [20,27]
to be applied and determine the additional laser power consumed by equivalent partial histogram

approaches.

4.3.1. Lidar Characterisation

To characterize the photon budget of our lidar system, a 1 m? Lambertian target calibrated to
10% reflectivity is positioned at various distance intervals and captured. Characterization was
performed under ambient daylight conditions of 60 klux. A photograph of the scene during
characterization is shown in Figure 16a.

For the signal (laser) photon budget, the lidar exposure time is optimized to ensure a high signal
count without clipping. For the background photon budget, the laser is disabled. A total of 100 frames
are averaged and a window of 3x3 pixels are sampled. The results are shown in Figure 16b. The
observed background return rate is independent of distance, in keeping with literature [30], and is
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measured to be 4.8 Mcounts/s, equivalent to 8 Mcounts/s at 100 klux. While the observed signal
photon return rate varies with distance, it can be considered to follow an inverse square law. Fitting
a trendline to this relationship allows the expected signal photons per laser cycle for any target
distance (z) for this lidar system to be approximated as 89z2.

1027
..., Signal =89 z2
1001 e
<@
©
S 100 B,
& i{
g 1074
§ Background (per 2.5 ns bin) = 0.012
(<1 IR T ST SO I PR Befomeecessscessebosnsesateran egeebesobusdsedsated
£ 102 = - x
103 T |
2 20 200

Distance (m)

(a) (b)

Figure 16. (a) Setup during characterization using a 10% reflectivity target under ambient conditions
of 60 klux (b) measured and extrapolated photon return rate during characterization. .

4.3.2. Laser Power Penalty of Partial Histogram Equivalent

Having characterized the lidar photon budget, the required number of laser cycles as a function
of distance for equivalent partial histogram approaches can be quantified. The Thompson model
presented in [27] calculates the minimum number of laser cycles for a dToF lidar system to achieve a
specified precision. Using attribute of our lidar sensor (laser pulse and histogram bin width) in Table
2, and measured photon return rate in Figure 16b, the minimum laser cycles required to achieve 10 cm
precision using a full histogram approach as given by the Thompson model is shown in Figure 17a.

An equivalent sliding partial histogram approach (8x0.375 m bins sliding in intervals of 3 m)
would require the same number of laser cycles for distances up to the width of the first slide window.
Past this distance, the total laser cycles required to measure any given distance with 10 cm precision
is the sum of the full histogram laser cycle value for each additional 3 m slide window. The resulting
increase in laser cycles for an equivalent sliding partial histogram approach is shown in Figure 17a.

An equivalent zooming partial histogram approach would require an additional zoom step to
measure distances greater than 3 m by configuring each bin to 3 m wide. Past 27 m, yet another zoom
step would be required, configuring each bin to 27 m wide. At each zoom step, the laser must be
cycled enough times to detect the peak bin within a specified probability of detection for a given
distance. Using the probability of detection model for histogram-based dToF published in [20] and
specifying a minimum 99.7% detection rate (30 rule), the minimum number of laser cycles for each
step of an equivalent zooming dToF sensor is given in Figure 17b. The total laser cycles required to
zoom to a given distance is therefore sum of laser cycles required at each zoom step for a given
distance, shown in Figure 17a.

The required increase in total laser cycles for each equivalent partial histogram approach
compared to a full histogram/guided approach, is shown in Figure 17c. At the maximum distance of
75 m achieved by our guided dToF system, a minimum 6x laser power is saved compared to adopting
an equivalent partial histogram approach. It should be noted that the sliding approach modelled here
assumes no overlapping of windows between steps which would further increase its laser power
penalty.
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Figure 17. (a) Minimum laser cycles required to achieve 10 cm depth precision using the presented

guided lidar configuration and equivalent sliding and zooming partial histogram approaches (b)

minimum laser cycles required for each step of an equivalent zooming partial histogram approach (c)

laser power penalty of equivalent sliding and zooming partial histogram approaches.

5. Discussion

A summary of the presented guided dToF demonstrator performance alongside state-of-the-art
dToF lidar sensors is presented in Table 3. The table shows that, while the implemented system uses
a single-tier sensor chip with a relatively small number of histogram bins in each macropixel, the
combined range and frame rate achieved in bright ambient conditions through a guided dToF
approach is amongst the top performing. Using only 8 histogram bins per macropixel, the guided
dToF demonstrator achieves a maximum distance of 75 m. A conventional full histogram approach
with equivalent 0.375 m bin width would require over 200 histogram bins per macropixel. This is

much more than any state-of-the-art sensor is yet to achieve and equivalent to a 25x increase in pixel

histogram area for our sensor.
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Table 3. Performance overview of state-of-the-art direct time-of-flight lidar sensors.
Resolution Max. Ambient Precision/ Frame Histogram Partial
Author Ref (ToF  Range Intensity Accuracy Rate Bir%s Stacked Histoeram
pixels) (m) (klux) (m) (Hz) &
Ximenes [9] 64x128 300! - 047/08 302 - Yes No
Henderson [10] 64 x64 50 - -/0.17 30 16 Yes No
0.0014 / .
Zhang [13] 144 x252 50 - 0.88 302 8 No  Zooming
Okino [31] 900 x1200 250 - 15/- - - No No
Kim [15] 40x48 45 - 0.014/ - 2 No  Zoomin
0.023 &
Kumagai [32] 63x168 200 117 -/03 20 - Yes No
Padmanabhan [11] 128 x256 1001 10 -/0.07 - - Yes No
Stoppa [17] 60 x 80 4.4 50 0.007/0.04 30 32 Yes Sliding
Zhang [14] 160x240 95 10 0.01/0.02 20 32 Yes  Zooming
Park [16] 60x80 45 30 06001255/ 1.52 4 No  Zooming
Taloud [18] 32x42 8.2 1 0.007/0.03 30 59 Yes Sliding
This work - 32 x 64 75 70 0.2 3 8 No No

1. Single point measurement. 2. Frame rate not specified at maximum distance.

The ability to correctly guide lidar under multipath conditions is also of unique value. In
addition to the glass obstruction tested in Figure 15, many other real-world conditions can create
multiple signal peaks which can be incorrectly interpreted by a standalone lidar. These include
obstructions from smoke [33] and retroreflectors such as road signs [34].

Various enhancements are proposed to enable the preliminary guided dToF demonstrator
presented here to achieve the performance required for automotive lidar of 200 m range at 25 fps [35].
Firstly, by adopting the increased sensitivity of state-of-the-art SPAD processes [32,36], the maximum
range of the system can be extended while reducing the required lidar exposure time. Figure 15 shows
the stereo depth processing algorithm to be the next most time-dominant process after the lidar
exposure time. A guided dToF solutions with a greater capacity for histogram bins would tolerate
larger error from the stereo depth estimates, allowing for less accurate but faster stereo algorithms
[37]. Parallel execution of the various guided processes and adoption of GPU processing will also
enable further acceleration. Finally, the use of different depth estimate sources (radar, ultrasound)
should be explored, as well as processing methods such as Kalman filters to extrapolate previous
depth frames.

For the practical realization of guided dToF in self-driving vehicle using the specific
implementation presented here, the main practical challenge is camera alignment. Any variation in
the extrinsic properties of the cameras due to vehicle movement or vibrations not only worsen the
accuracy of stereo depth accuracy, but also impact pixel mapping of depth estimates to the lidar
sensor. While continuous camera self-calibration techniques have been developed [38], these need to
be explored in the context of a stereo camera guided dToF lidar system.
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